JP2005305279A - Method and apparatus for treating fluorine-containing water - Google Patents

Method and apparatus for treating fluorine-containing water Download PDF

Info

Publication number
JP2005305279A
JP2005305279A JP2004124740A JP2004124740A JP2005305279A JP 2005305279 A JP2005305279 A JP 2005305279A JP 2004124740 A JP2004124740 A JP 2004124740A JP 2004124740 A JP2004124740 A JP 2004124740A JP 2005305279 A JP2005305279 A JP 2005305279A
Authority
JP
Japan
Prior art keywords
fluorine
granular material
containing water
transfer pipe
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004124740A
Other languages
Japanese (ja)
Other versions
JP4628013B2 (en
Inventor
Harutoshi Sakai
治利 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyama Inc
Original Assignee
Miyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyama Inc filed Critical Miyama Inc
Priority to JP2004124740A priority Critical patent/JP4628013B2/en
Publication of JP2005305279A publication Critical patent/JP2005305279A/en
Application granted granted Critical
Publication of JP4628013B2 publication Critical patent/JP4628013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for treating fluorine-containing water which can continue the treatment of fluorine-containing water without interruption during the regeneration of a granular material mainly comprising calcium carbonate. <P>SOLUTION: The fluorine-containing water treatment apparatus comprises a transfer pipe 8 having a first opening 8a opened at a part located at the lower part of a packed bed 4 and a second opening 8b opened at a part located higher than the upper surface of the packed bed 4, a fluid supply means 10 for supplying fluid into the transfer pipe 8 so that upward flow of a fluid is generated in the transfer pipe 8 to transfer the granular material and treated water sucked from a first opening 8a into the transfer pipe 8, films of calcium fluoride of the granular material are broken and removed by mutual collision in the granular material and collision with the inner wall of the transfer pipe 8, and the granular material and the treated water are discharged from a second opening 8b, and a separation mean for separating the granular material and the treat water to return the granular material discharged from the second opening 8b to the packed bed 4, and to discharge the treated water discharged from the second opening 8b to the outside of a reaction tank 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭酸カルシウムを主成分とする粒状物から成る充填層が形成された反応処理槽内にフッ素含有水を通水し、フッ素含有水中のフッ素成分と粒状物の炭酸カルシウムとの反応により非水溶性のフッ化カルシウムから成る皮膜を粒状物の表面に形成させて、フッ素含有水からフッ素成分を除去するフッ素含有水の処理装置、およびそれを用いたフッ素含有水の処理方法に関する。   The present invention allows fluorine-containing water to flow into a reaction treatment tank in which a packed bed composed of a granular material containing calcium carbonate as a main component is formed, and the reaction between the fluorine component in the fluorine-containing water and the granular calcium carbonate. The present invention relates to a treatment apparatus for fluorine-containing water that forms a film made of water-insoluble calcium fluoride on the surface of a granular material and removes a fluorine component from fluorine-containing water, and a treatment method for fluorine-containing water using the same.

半導体、液晶、水晶加工の工場などからは、HFあるいはH2SiF6等の水溶性のフッ素化合物(フッ素成分)を含んだフッ素含有廃水が多量に排出される。
このフッ素含有廃水からフッ素成分を除去する方法としては、消石灰を用いる方法や炭酸カルシウムを用いる方法が知られている。
A large amount of fluorine-containing wastewater containing water-soluble fluorine compounds (fluorine components) such as HF or H 2 SiF 6 is discharged from semiconductor, liquid crystal, and crystal processing factories.
As a method for removing the fluorine component from the fluorine-containing wastewater, a method using slaked lime or a method using calcium carbonate is known.

消石灰を用いる方法においては、フッ素含有廃水に消石灰を添加することにより、フッ素成分と消石灰とを反応させて、フッ素成分を非水溶性のフッ化カルシウムとして沈殿させて、フッ素成分を除去処理している。
しかしながら、この消石灰を用いる方法においては、フッ素含有廃水のフッ素濃度の変動に対応可能となるように、反応当量以上の消石灰を添加する必要がある。したがって、フッ素との反応生成物であるフッ化カルシウムばかりでなく、未反応の消石灰が排出されるので、大量の汚泥が生じる。
In the method using slaked lime, by adding slaked lime to the fluorine-containing wastewater, the fluorine component and slaked lime are reacted, the fluorine component is precipitated as water-insoluble calcium fluoride, and the fluorine component is removed. Yes.
However, in this method using slaked lime, it is necessary to add slaked lime of a reaction equivalent or more so as to be able to cope with fluctuations in the fluorine concentration of the fluorine-containing wastewater. Therefore, not only calcium fluoride, which is a reaction product with fluorine, but also unreacted slaked lime is discharged, resulting in a large amount of sludge.

一方、炭酸カルシウムを用いる方法は、炭酸カルシウムを主成分とする粒状物から成る充填層が形成された充填塔(反応処理槽)内に、フッ素含有廃水を通水させて、フッ素成分と炭酸カルシウムとを反応させる。この反応の結果生じた非水溶性のフッ化カルシウムは、粒状物の表面に皮膜として残り、フッ素含有水からフッ素成分が除去される。
この炭酸カルシウムを用いる方法は、フッ素濃度が変動しても未反応の汚泥等が発生することがない点や、処理後の処理水のフッ素成分残留濃度を低くできる点や、処理薬剤費が安価で済む点で、消石灰を用いる方法に比較して有利である。
On the other hand, in the method using calcium carbonate, a fluorine-containing wastewater is passed through a packed tower (reaction treatment tank) in which a packed bed made of a granular material containing calcium carbonate as a main component is formed. And react. The water-insoluble calcium fluoride produced as a result of this reaction remains as a film on the surface of the granular material, and the fluorine component is removed from the fluorine-containing water.
This method using calcium carbonate does not generate unreacted sludge even if the fluorine concentration varies, reduces the residual fluorine component concentration of treated water after treatment, and the cost of treatment chemicals is low. This is advantageous compared to the method using slaked lime.

しかしながら、この炭酸カルシウムを用いる方法においては、フッ素成分の除去処理を継続していると、前記粒状物の粒の表面がフッ化カルシウムの皮膜によって覆われ、フッ素除去能力が低下する。   However, in this method using calcium carbonate, if the fluorine component removal treatment is continued, the surface of the granular material is covered with a calcium fluoride film, and the fluorine removal ability is lowered.

この点、本発明者は、先に特許文献1において、フッ素除去能力が低下した炭酸カルシウムを主成分とする粒状物を再生し得るフッ素含有水の処理装置を提案した。
係るフッ素含有水の処理装置の概略図を図3に示す。図3に示すフッ素含有水の処理装置Bにおいては、炭酸カルシウムを主成分とする粒状物から成る充填剤75を充填した充填塔70内に、原水ポンプ40を駆動してフッ素含有水を通水することにより、粒状物の表面にフッ化カルシウム皮膜が形成されて、フッ素含有水中のフッ素成分が除去される。そして、フッ化カルシウム皮膜が形成されてフッ素除去能力が低下した粒状物の再生処理の際に、フッ化カルシウム皮膜を粉砕して除去できるように、逆洗水ポンプ41を駆動して充填塔70内に逆洗水中で粒状物を強制的に撹拌しうる撹拌子81aが充填塔70内に設けられているものである。
In this regard, the present inventor previously proposed a treatment apparatus for fluorine-containing water in Patent Document 1 that can regenerate a granular material mainly composed of calcium carbonate having reduced fluorine removal ability.
A schematic diagram of such a fluorine-containing water treatment apparatus is shown in FIG. In the fluorine-containing water treatment apparatus B shown in FIG. 3, the raw water pump 40 is driven into the packed tower 70 filled with a filler 75 composed mainly of calcium carbonate. By doing so, a calcium fluoride film is formed on the surface of the granular material, and the fluorine component in the fluorine-containing water is removed. Then, the backwash water pump 41 is driven so that the calcium fluoride film can be pulverized and removed during the regeneration treatment of the granular material in which the calcium fluoride film is formed and the fluorine removing ability is reduced. A stirrer 81a capable of forcibly stirring the granular material in the backwash water is provided in the packed tower 70.

図3に示すフッ素含有水の処理装置Bによれば、粒状物の表面に形成されたフッ化カルシウムの皮膜を除去でき、粒状物のフッ素除去能力を再生できる。   According to the treatment apparatus B for fluorine-containing water shown in FIG. 3, the calcium fluoride film formed on the surface of the granular material can be removed, and the fluorine removing ability of the granular material can be regenerated.

特開2003−181468号公報(段落0008−0009,第1図)JP 2003-181468 (paragraphs 0008-0009, FIG. 1)

しかしながら、図3に示すフッ素含有水の処理装置Bでは、フッ素除去能力が低下した粒状物の再生処理の際には、フッ素含有水の処理を中断しなければならず、フッ素含有水の処理効率が低下する。
特に、高濃度のフッ素成分を含有するフッ素含有水を処理する際には、短時間で粒状物の表面にフッ化カルシウムの皮膜が形成されやすい。このため、粒状物の再生処理の頻度を高くする必要が生じ、処理効率が更に低下する。
However, in the treatment apparatus B for fluorine-containing water shown in FIG. 3, the treatment of fluorine-containing water must be interrupted when regenerating the particulate matter having reduced fluorine removal capacity, and the treatment efficiency of fluorine-containing water is reduced. Decreases.
In particular, when treating fluorine-containing water containing a high concentration of fluorine component, a calcium fluoride film is easily formed on the surface of the granular material in a short time. For this reason, it is necessary to increase the frequency of the regeneration processing of the particulate matter, and the processing efficiency further decreases.

このため、図3に示す処理装置Bよりもフッ素含有水の処理効率の高い処理装置が要望されている。
そこで、本発明の解決しようとする課題は、炭酸カルシウムを主成分とする粒状物の再生処理の際にも、フッ素含有水の処理を中断することなく継続し得るフッ素含有水の処理装置および処理方法を提供することにある。
For this reason, the processing apparatus with higher processing efficiency of fluorine-containing water than the processing apparatus B shown in FIG. 3 is desired.
Accordingly, the problem to be solved by the present invention is that a fluorine-containing water treatment apparatus and treatment that can continue the treatment of fluorine-containing water without interruption even during the regeneration treatment of the granular material mainly composed of calcium carbonate. It is to provide a method.

本発明者は、前記課題を解決するには、粒状物の表面に形成されたフッ化カルシウムの皮膜の除去とフッ素含有水の処理とを同時に行うことが有効と考え、検討した結果、本発明に到達した。
本発明に係るフッ素含有水の処理装置は、上記課題を解決するために、以下の構成を備える。すなわち、炭酸カルシウムを主成分とする粒状物から成る充填層が形成された反応処理槽内にフッ素含有水を通水し、フッ素含有水中のフッ素成分と粒状物の炭酸カルシウムとの反応により非水溶性のフッ化カルシウムから成る皮膜を粒状物の表面に形成させて、フッ素含有水からフッ素成分を除去するフッ素含有水の処理装置において、前記反応処理槽内の下部から上方に延びる筒体であって、前記充填層の下部に位置する部位の側面に開口された第一開口部と、充填層の上面よりも上方に位置する部位に開口された第二開口部とが形成された移送管と、該移送管内に上方向へ向かう流体の流れを発生させて、前記第一開口部から移送管内に吸い込まれた前記充填層の下部の粒状物およびフッ素成分が除去された処理水を、移送管内の上部方向へ移送し、該粒状物の表面に形成されたフッ化カルシウムの皮膜を、該粒状物同士および移送管の内壁への衝突によって砕いて取り除き、該粒状物、該粒状物の表面から取り除かれたフッ化カルシウム片、および該処理水を前記第二開口部から排出するように、移送管内に流体を供給する流体供給手段と、前記第二開口部から排出された粒状物を前記充填層に戻すとともに、第二開口部から排出された処理水を前記反応処理槽外に排出すべく、該粒状物と該処理水とを分離する分離手段とを備えることを特徴とする。
The present inventor considered that it is effective to simultaneously perform the removal of the calcium fluoride film formed on the surface of the granular material and the treatment of the fluorine-containing water in order to solve the above problems. Reached.
The fluorine-containing water treatment apparatus according to the present invention has the following configuration in order to solve the above problems. That is, fluorine-containing water is passed through a reaction treatment tank in which a packed bed composed mainly of calcium carbonate is formed, and water-insoluble due to the reaction between the fluorine component in the fluorine-containing water and calcium carbonate in the granular material. In a fluorine-containing water treatment apparatus that forms a film made of porous calcium fluoride on the surface of a granular material and removes a fluorine component from fluorine-containing water, the tubular body extends upward from the lower part in the reaction treatment tank. A transfer pipe formed with a first opening opened on a side surface of a portion located below the packed bed and a second opening opened on a portion located above the upper surface of the packed bed; Then, an upward fluid flow is generated in the transfer pipe, and the treated water from which particulate matter and fluorine components in the lower part of the packed bed sucked into the transfer pipe from the first opening are removed is transferred to the transfer pipe. Top of The calcium fluoride film formed on the surface of the granular material is crushed and removed by collision with the granular materials and the inner wall of the transfer pipe, and is removed from the surface of the granular material and the granular material. Calcium fluoride pieces and fluid supply means for supplying fluid into the transfer pipe so as to discharge the treated water from the second opening, and particulate matter discharged from the second opening in the packed bed And separating means for separating the granular material and the treated water so as to discharge the treated water discharged from the second opening to the outside of the reaction treatment tank.

さらに、前記移送管の上端を閉塞して設けられ、移送管内を移送される前記粒状物が衝突することによって、該粒状物の表面に形成された前記フッ化カルシウムの皮膜を砕いて取り除くための衝突壁を備え、前記第二開口部は、前記移送管の側面に形成されていることを特徴とする。
これによれば、粒状物を衝突壁に衝突させて、フッ化カルシウムの皮膜を、より有効に取り除くことができる。
Furthermore, the upper end of the transfer pipe is closed, and when the granular material transferred through the transfer pipe collides, the calcium fluoride film formed on the surface of the granular material is crushed and removed. A collision wall is provided, and the second opening is formed on a side surface of the transfer pipe.
According to this, it is possible to remove the calcium fluoride coating more effectively by causing the particulate matter to collide with the collision wall.

また、前記流体供給手段は、前記第一開口部よりも上方位置から、前記移送管内に前記流体を上方向に向けて供給することで、移送管の下部の内部に負圧を発生させて、第一開口部から移送管内に前記粒状物および前記処理水を吸い込ませることを特徴とする。
これによれば、簡単な構成で、粒状物および処理水を移送するための流体の流れを発生させることができる。
Further, the fluid supply means generates a negative pressure inside the lower portion of the transfer pipe by supplying the fluid upward from the position above the first opening into the transfer pipe. The granular material and the treated water are sucked into the transfer pipe from the first opening.
According to this, the flow of the fluid for transferring the granular material and the treated water can be generated with a simple configuration.

また、前記分離手段は、内部に前記移送管の前記第二開口部が位置する筒体であって、底面が前記充填層の上面に接するよう配設され、該底面に、第二開口部から排出され前記分離手段により前記フッ化カルシウム片および前記処理水と分離されて溜まった粒状物を充填層に戻すための通過口が形成された分離層と、前記第二開口部から排出されて前記粒状物と分離された前記フッ化カルシウム片および前記処理水を、前記分離槽から排出する排水路とを有することを特徴とする。
これによれば、粒状物とフッ化カルシウム片および処理水とを、簡単な構成で分離できる。
Further, the separating means is a cylindrical body in which the second opening of the transfer pipe is located, and is disposed so that a bottom surface is in contact with an upper surface of the packed bed. A separation layer formed with a passing port for returning the accumulated granular material separated from the calcium fluoride pieces and the treated water by the separation means to the packed bed, and discharged from the second opening and the It has the drainage channel which discharges | emits the said calcium fluoride piece isolate | separated from the granular material and the said treated water from the said separation tank, It is characterized by the above-mentioned.
According to this, a granular material, a calcium fluoride piece, and treated water can be isolate | separated by simple structure.

また、前記分離槽内に溜まった粒状物が所定量より少なくなった際に、分離層内に粒状物を供給する粒状物供給手段を備えることを特徴とする。
これによれば、分離槽内に所定量以上の粒状物を維持でき、充填層の上面と分離槽を構成する筒体の底面との間に隙間が生じることを防止できる。このため、反応処理槽内に供給されたフッ素含有水が、充填層を通過することなく分離槽内にバイパスすることを防止できる。
Moreover, when the granular material collected in the said separation tank becomes less than predetermined amount, it is provided with the granular material supply means which supplies a granular material in a separation layer, It is characterized by the above-mentioned.
According to this, a predetermined amount or more of granular materials can be maintained in the separation tank, and a gap can be prevented from being generated between the upper surface of the packed bed and the bottom surface of the cylindrical body constituting the separation tank. For this reason, it can prevent that the fluorine-containing water supplied in the reaction processing tank bypasses in a separation tank, without passing a packed bed.

また、本発明に係るフッ素含有水の処理方法は、上記課題を解決するために、以下の構成を備える。すなわち、請求項1〜5のうちのいずれか一項記載のフッ素含有水の処理装置を用い、フッ素含有水中のフッ素成分を除去することを特徴とする。   Moreover, in order to solve the said subject, the processing method of fluorine-containing water which concerns on this invention is equipped with the following structures. That is, the fluorine-containing water treatment apparatus according to any one of claims 1 to 5 is used to remove the fluorine component in the fluorine-containing water.

本発明に係るフッ素含有水の処理装置および処理方法では、移送管の下部に形成された第一開口部から吸い込まれた充填層の下部の粒状物は、流体供給手段によって供給された流体によって移送管の下部から上部方向に移送される。その際に、粒状物同士および移送管の内壁との衝突によって、粒状物の表面を覆っているフッ化カルシウムの皮膜を粉砕して除去し、粒状物のフッ素除去能力を再生できる。
係る粒状物のフッ素処理能力を再生する間においても、移送管の外部に充填されたフッ素処理能力を有する粒状物は、充填層の上方から下方に向けて移動しつつ、フッ素含有水中のフッ素成分と反応してフッ化カルシウム皮膜を形成して、フッ素成分を除去できる。
このように、粒状物の表面に形成されたフッ化カルシウムの皮膜の除去とフッ素含有水の処理とを同時に行うことができる結果、高濃度のフッ素成分を含有するフッ素含有水であっても、処理を中断することなく連続して行うことができ、その処理効率を著しく向上できる。
In the fluorine-containing water treatment apparatus and treatment method according to the present invention, the particulate matter in the lower part of the packed bed sucked from the first opening formed in the lower part of the transfer pipe is transferred by the fluid supplied by the fluid supply means. It is transported from the bottom of the tube upward. At that time, the calcium fluoride coating covering the surface of the granular material is pulverized and removed by the collision between the granular materials and the inner wall of the transfer pipe, thereby regenerating the fluorine removing ability of the granular material.
Even during the regeneration of the fluorine treatment capacity of the granular material, the granular material having the fluorine treatment capacity filled outside the transfer pipe moves from the upper side to the lower side of the packed bed, while the fluorine component in the fluorine-containing water. Fluorine component can be removed by forming a calcium fluoride film.
As described above, the removal of the calcium fluoride film formed on the surface of the granular material and the treatment of the fluorine-containing water can be performed simultaneously. As a result, even if the fluorine-containing water contains a high concentration of fluorine components, The processing can be performed continuously without interruption, and the processing efficiency can be remarkably improved.

以下、本発明に係るフッ素含有水の処理装置および処理方法を実施するための最良の形態を、添付図面に基づいて詳細に説明する。
図1は、本実施の形態に係るフッ素含有水の処理装置Aの構成を示す側面説明図であり、図2は、フッ素含有水の処理装置Aの平面説明図である。
BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out a treatment apparatus and treatment method for fluorine-containing water according to the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is an explanatory side view showing a configuration of a treatment apparatus A for fluorine-containing water according to the present embodiment, and FIG. 2 is an explanatory plan view of the treatment apparatus A for fluorine-containing water.

図1に示すように、フッ素含有水の処理装置Aは、反応処理槽2内に、炭酸カルシウムを主成分とする粒状物が充填されて成る充填層4が形成されている。この粒状物は、石灰石を原料として篩い分けられたものであり、結晶性重質炭酸カルシウムが特に好適に用いられる。   As shown in FIG. 1, in the treatment apparatus A for fluorine-containing water, a packed bed 4 is formed in a reaction treatment tank 2, which is filled with granular materials mainly composed of calcium carbonate. This granular material is sieved using limestone as a raw material, and crystalline heavy calcium carbonate is particularly preferably used.

また、反応処理槽2の上方には、半導体、液晶、または水晶等の加工の際に排出された、HFあるいはH2SiF6等の水溶性のフッ素化合物(フッ素成分)を含有するフッ素含有廃水(以下、単にフッ素含有水と称することがある)を、反応処理槽2内に供給する原水供給管6が設けられる。
原水供給管6は、反応処理槽2の上部にフッ素含有廃水を供給する輸送ポンプ(図示せず)に連通される。
Further, above the reaction treatment tank 2, fluorine-containing wastewater containing a water-soluble fluorine compound (fluorine component) such as HF or H 2 SiF 6 discharged during processing of semiconductor, liquid crystal, crystal, or the like. A raw water supply pipe 6 for supplying the reaction treatment tank 2 (hereinafter sometimes simply referred to as fluorine-containing water) is provided.
The raw water supply pipe 6 communicates with a transport pump (not shown) that supplies fluorine-containing waste water to the upper part of the reaction treatment tank 2.

反応処理槽2内には、充填層4の下部から上方に延びる筒体から成る移送管8が設けられている。移送管8は、好ましくは反応処理槽2の中心軸線に沿って鉛直に配設される。移送管8の充填層4の下部に位置する部位の側面には、単数または複数の孔から成る第一開口部8aが形成される。更に、この移送管8の充填層4よりも上方に突出した部位の側面には、単数または複数の孔から成る第二開口部8bが形成される。第一および第二開口部8a,8bは、特に限定されないが、それぞれ移送管8の周方向に4つ程度並べて形成すると好適である。また、移送管8の上端は閉塞されて、衝突壁8cが形成されている。
係る移送管8の第一開口部8aのやや上方の外周壁には、頂部が上側に向けられたコーン状の傘部材12が取り付けられている。
In the reaction processing tank 2, a transfer pipe 8 made of a cylindrical body extending upward from the lower part of the packed bed 4 is provided. The transfer pipe 8 is preferably arranged vertically along the central axis of the reaction processing tank 2. A first opening 8 a made up of one or a plurality of holes is formed on a side surface of a portion of the transfer pipe 8 located below the packed bed 4. Furthermore, a second opening 8b made of a single or a plurality of holes is formed on the side surface of the portion of the transfer pipe 8 that protrudes above the filling layer 4. Although the first and second openings 8a and 8b are not particularly limited, it is preferable that about four are formed side by side in the circumferential direction of the transfer pipe 8. In addition, the upper end of the transfer pipe 8 is closed to form a collision wall 8c.
A cone-shaped umbrella member 12 whose top is directed upward is attached to the outer peripheral wall slightly above the first opening 8 a of the transfer pipe 8.

(流体供給手段)
更に、フッ素含有水の処理装置Aは、移送管8の下部から流体としてのエアーを供給して、移送管8内に上方向へ向かうエアー噴流(流体の流れ)を発生させる流体供給手段としてのエアー供給手段10を備える。エアー供給手段10は、エアー噴流を発生させるエアー供給装置10aと、エアー供給装置10aに連通し、発生されたエアー噴流を移送管8内に導くパイプ10bと、パイプ10bの中途部に設けられたバルブ10cとから成る。バルブ10cは、パイプ10b内の流路を閉塞して設けられ、このバルブ10cにより、エアー供給装置10aから移送管8内へのエアーの供給を断続したり、エアーの供給量を調節したりすることができる。
なお、エアー供給装置10aに、発生させるエアー噴流の流量を適宜調節する制御が可能な出力制御手段を設ければさらに好適である。
(Fluid supply means)
Furthermore, the treatment apparatus A for fluorine-containing water supplies air as a fluid from the lower part of the transfer pipe 8, and serves as a fluid supply means for generating an upward air jet (fluid flow) in the transfer pipe 8. Air supply means 10 is provided. The air supply means 10 is provided in the middle of the pipe 10b, an air supply device 10a that generates an air jet, a pipe 10b that communicates with the air supply device 10a and guides the generated air jet into the transfer pipe 8. And a valve 10c. The valve 10c is provided by closing the flow path in the pipe 10b, and the valve 10c is used to interrupt the supply of air from the air supply device 10a into the transfer pipe 8 or to adjust the supply amount of air. be able to.
It is more preferable that the air supply device 10a is provided with output control means capable of controlling the flow rate of the generated air jet appropriately.

パイプ10bの、エアー供給装置10aに連通する一端の他端10dは、移送管8の下端から移送管8内に進入して、移送管8内に上向きに開口する。パイプ10bの他端10dは、第一開口部8aよりも上方に位置するよう配設される。   The other end 10 d of one end of the pipe 10 b communicating with the air supply device 10 a enters the transfer pipe 8 from the lower end of the transfer pipe 8 and opens upward in the transfer pipe 8. The other end 10d of the pipe 10b is arranged to be positioned above the first opening 8a.

(分離手段)
移送管8の上端側には、分離槽14が設けられる。分離槽14は、円筒状に形成され、移送管8の第二開口部8bが内部に位置するように、移送管8の上端部を取り囲んで配設される。
また、分離槽14は、その底面が、充填層4の上面に接するよう配設される。言い換えると、充填層4は、その上面が分離槽14の底面に接するように前記粒状物の量が調節されて、反応処理槽2内に形成されている。
(Separation means)
A separation tank 14 is provided on the upper end side of the transfer pipe 8. The separation tank 14 is formed in a cylindrical shape, and is disposed so as to surround the upper end portion of the transfer pipe 8 so that the second opening 8b of the transfer pipe 8 is located inside.
Further, the separation tank 14 is disposed so that the bottom surface thereof is in contact with the top surface of the packed bed 4. In other words, the packed bed 4 is formed in the reaction processing tank 2 by adjusting the amount of the granular material so that the upper surface thereof is in contact with the bottom surface of the separation tank 14.

分離槽14内には、分離槽14の壁部と所定の間隙を開けて同軸に設けられた円筒状の気液分離壁16が設けられる。気液分離壁16の下端は、分離槽14の底面から若干離間するよう設けられる。   In the separation tank 14, a cylindrical gas-liquid separation wall 16 provided coaxially with a predetermined gap from the wall of the separation tank 14 is provided. The lower end of the gas-liquid separation wall 16 is provided so as to be slightly separated from the bottom surface of the separation tank 14.

また、分離槽14の周壁には開口部14aが形成される。開口部14aには、管状の排水路18が連通される。排水路18は、反応処理槽2の外方に向かって延び、反応処理槽2の外周壁を貫通している。   An opening 14 a is formed in the peripheral wall of the separation tank 14. A tubular drainage channel 18 communicates with the opening 14a. The drainage channel 18 extends outward from the reaction treatment tank 2 and penetrates the outer peripheral wall of the reaction treatment tank 2.

また、分離槽14の内周壁に沿って、集水樋部20が設けられる。集水樋部20は、分離槽14内で所定の水位(集水樋部20の上端)に達して集水樋部20内に溢れ落ちた水(処理水)を、排水路18へと導くよう設けられる。
集水樋部20は、分離槽14の壁部と気液分離壁16との間に、両者に所定の間隔を開けて同軸に設けられる。また、集水樋部20の上端は、気液分離壁16の下端よりも上方へ延びて設けられる。
In addition, a water collecting trough 20 is provided along the inner peripheral wall of the separation tank 14. The catchment tank 20 reaches the predetermined water level (the upper end of the catchment tank part 20) in the separation tank 14, and guides the water (treated water) overflowing into the catchment tank part 20 to the drainage channel 18. It is provided as follows.
The water collecting unit 20 is provided coaxially between the wall of the separation tank 14 and the gas-liquid separation wall 16 with a predetermined interval therebetween. Further, the upper end of the water collecting basin 20 is provided to extend upward from the lower end of the gas-liquid separation wall 16.

また、分離槽14の底面には、開口部(通過口14b)が形成され、分離槽14内の粒状物22が、通過口14bを通じて充填層4上に流れ込むよう構成されている。通過口14bを通じて充填層4上に流れ込んだ粒状物22は、新たに充填層4を構成する。   Further, an opening (passage port 14b) is formed on the bottom surface of the separation tank 14, and the particulate matter 22 in the separation tank 14 is configured to flow onto the packed bed 4 through the passage port 14b. The particulate matter 22 that has flowed onto the packed bed 4 through the passage port 14 b newly forms the packed bed 4.

(粒状物供給手段)
また、分離槽14内には、分離槽14内に溜まった粒状物22の量を検出する検出手段としてのレベルセンサ24が設けられる。レベルセンサ24により分離槽14内の粒状物22が所定量より少なくなったことを検出した際には、レベルセンサ24に連繋された制御部(図示せず)が、粒状物供給装置(図示せず)を駆動して、分離槽14内に向けて設けられた粒状物供給口26から粒状物を放出させて、分離槽14内に粒状物を供給する。
レベルセンサ24としては、接触式のセンサや、赤外線センサ等を採用できる。
(Particle supply means)
In the separation tank 14, a level sensor 24 is provided as a detecting means for detecting the amount of the granular material 22 accumulated in the separation tank 14. When the level sensor 24 detects that the particulate matter 22 in the separation tank 14 has become less than a predetermined amount, a control unit (not shown) linked to the level sensor 24 detects a particulate matter supply device (not shown). And the particulate matter is discharged from the particulate matter supply port 26 provided in the separation tank 14, and the particulate matter is supplied into the separation tank 14.
As the level sensor 24, a contact sensor, an infrared sensor, or the like can be employed.

次に、本実施の形態に係るフッ素含有水の処理装置Aの動作および作用、ならびに、フッ素含有水の処理装置Aを用いたフッ素含有水の処理方法について説明する。   Next, the operation and action of the fluorine-containing water treatment apparatus A according to the present embodiment and the fluorine-containing water treatment method using the fluorine-containing water treatment apparatus A will be described.

充填層4が形成された反応処理槽2内に、前記輸送ポンプにより、原水供給管6からフッ素含有水(フッ素含有廃水)が供給されると、フッ素含有水は充填層4内を通過し、フッ素含有水中のフッ素成分は、充填層4を構成する粒状物の炭酸カルシウムと反応する。この反応により、非水溶性のフッ化カルシウムから成る皮膜が粒状物の表面に形成され、フッ素含有水からフッ素成分が除去される。そして、フッ素含有水は、充填層4の下方に浸透しながらフッ素成分の濃度が低くなり、充填層4の下部に到達した際には、フッ素成分がほぼ除去された処理水となる。   When fluorine-containing water (fluorine-containing wastewater) is supplied from the raw water supply pipe 6 by the transport pump into the reaction treatment tank 2 in which the packed bed 4 is formed, the fluorine-containing water passes through the packed bed 4, The fluorine component in the fluorine-containing water reacts with the granular calcium carbonate constituting the packed bed 4. By this reaction, a film made of water-insoluble calcium fluoride is formed on the surface of the granular material, and the fluorine component is removed from the fluorine-containing water. Then, the fluorine-containing water becomes treated water from which the fluorine component has been substantially removed when it reaches the lower part of the packed bed 4 while the fluorine component has a lower concentration while penetrating below the packed bed 4.

本フッ素含有水の処理装置Aで処理を行う際には、原水供給管6からフッ素含有水を供給するとともに、エアー供給装置10aを駆動して、移送管8内に、上方向に向かうエアー噴流を発生させる。
ここで、パイプ10bの、エアーが放出される端部10dは、第一開口部8aよりも上方に位置するよう配設されているため、移送管8の下端部の内部には負圧が生じる。この負圧により、第一開口部8aから、充填層4の下部の粒状物およびフッ素成分が除去された前記処理水が吸い込まれ、エアー噴流に乗って移送管8内を上方向に高速で移送される。そして、この粒状物および処理水は、移送管8の上端部を閉塞している衝突壁8cに衝突し、第二開口部8bから分離槽14内に噴出される。
When the fluorine-containing water treatment apparatus A performs the treatment, the fluorine-containing water is supplied from the raw water supply pipe 6 and the air supply apparatus 10a is driven to move the air jet flow upward in the transfer pipe 8. Is generated.
Here, since the end portion 10d of the pipe 10b from which air is discharged is disposed above the first opening 8a, a negative pressure is generated inside the lower end portion of the transfer pipe 8. . Due to this negative pressure, the treated water from which the particulate matter and fluorine component in the lower part of the packed bed 4 have been removed is sucked from the first opening 8a, and is transported by the air jet at high speed in the transfer pipe 8 upward. Is done. And this granular material and treated water collide with the collision wall 8c which has block | closed the upper end part of the transfer pipe 8, and are ejected in the separation tank 14 from the 2nd opening part 8b.

ここで、粒状物が移送管8内を高速で移動して、粒状物同士で衝突したり、衝突壁8c、移送管8の内周壁、および気液分離壁16へ衝突したりすることにより、その衝撃で粒状物の表面に形成されたフッ化カルシウムの皮膜が砕かれて取り除かれる。
なお、衝突壁8c内面や移送管8の内周壁に、下ろし金状の凹凸を形成しておくと、衝突した粒状物の皮膜がより砕かれやすくなるため好適である。
Here, the granular material moves in the transfer pipe 8 at a high speed and collides with each other, or collides with the collision wall 8c, the inner peripheral wall of the transfer pipe 8, and the gas-liquid separation wall 16. By the impact, the calcium fluoride film formed on the surface of the granular material is crushed and removed.
In addition, it is preferable to form a metal-like unevenness on the inner surface of the collision wall 8c or on the inner peripheral wall of the transfer tube 8 because the collided granular film is more easily broken.

そして、第二開口部8bから分離槽14内に噴出された粒状物22は、下方に落下して分離槽14内に溜まる。   Then, the particulate matter 22 ejected from the second opening 8 b into the separation tank 14 falls downward and accumulates in the separation tank 14.

このようにして、充填層4の下部の粒状物が上方に移送されることで、充填層4は常に下方に流動する。そして、充填層4の上部には、分離槽14内に溜まった粒状物22が、通過口14bを通じて供給される。分離槽14内から供給される粒状物は、フッ化カルシウムの皮膜が取り除かれたものであるため、充填層4にはフッ素成分との反応性の高い粒状物が常に供給されることとなる。   In this way, the granular material below the packed bed 4 is transferred upward, so that the packed bed 4 always flows downward. And the granular material 22 collected in the separation tank 14 is supplied to the upper part of the packed bed 4 through the passage port 14b. Since the granular material supplied from the inside of the separation tank 14 is obtained by removing the calcium fluoride film, the granular material highly reactive with the fluorine component is always supplied to the packed bed 4.

一方、第二開口部8bから分離槽14内に噴出された前記処理水は、分離槽14内に溜まって集水樋部20内に溢れ落ち、排水路18から分離槽14および反応処理槽2の外部に排出される。   On the other hand, the treated water ejected from the second opening 8b into the separation tank 14 accumulates in the separation tank 14 and overflows into the catchment basin 20, and is separated from the drainage channel 18 into the separation tank 14 and the reaction treatment tank 2. Is discharged outside.

この際、粒状物から取り除かれたフッ化カルシウムの皮膜の屑(フッ化カルシウム片)は、粒径が小さいために、処理水とともに流されて排水路18から排出される。   At this time, the calcium fluoride film scraps (calcium fluoride pieces) removed from the particulate matter are discharged together with the treated water and discharged from the drainage channel 18 because the particle size is small.

処理水とともに排出するフッ化カルシウム片の大きさは、気液分離壁16および集水樋部20の形状および配置により設定できる。即ち、集水樋部20と気液分離壁16との間の間隔をより狭く設定すれば、集水樋部20内に流れ落ちる処理水の流速が速くなるため、より大きい屑(フッ化カルシウム片)までも排出されるようになる。また、集水樋部20の上端と気液分離壁16の下端との高低差をより小さくすれば、処理水内の固形物が集水樋部20内に流れ込みやすくなり、より大きい屑(フッ化カルシウム片)までも排出されるようになる。
通常は、気液分離壁16および集水樋部20の形状および配置を、処理水内の概ね直径0.5mm以下のフッ化カルシウム片が排出されるよう設定すると好適である。これにより、粒状物から剥離したフッ化カルシウムの皮膜や小さくなりすぎた粒状物はほとんど排出されるとともに、充填層4を構成するに好適な大きさを保った粒状物は分離槽14内に溜めて充填層4へ再循環させることができる。
The magnitude | size of the calcium fluoride piece discharged | emitted with a treated water can be set with the shape and arrangement | positioning of the gas-liquid separation wall 16 and the water collecting basin part 20. FIG. That is, if the interval between the water collecting basin 20 and the gas-liquid separation wall 16 is set narrower, the flow rate of the treated water flowing into the water collecting basin 20 is increased, so that larger waste (calcium fluoride piece) ) Will also be discharged. Further, if the difference in height between the upper end of the water collecting basin 20 and the lower end of the gas-liquid separation wall 16 is made smaller, the solid matter in the treated water can easily flow into the water collecting basin 20 and larger debris (flood) Even calcium fluoride pieces) are discharged.
Usually, it is preferable to set the shape and arrangement of the gas-liquid separation wall 16 and the water collecting trough 20 so that calcium fluoride pieces having a diameter of approximately 0.5 mm or less in the treated water are discharged. As a result, the calcium fluoride film peeled off from the granular material and the excessively small granular material are almost discharged, and the granular material having a size suitable for constituting the packed bed 4 is stored in the separation tank 14. Can be recycled to the packed bed 4.

本フッ素含有水の処理装置Aによりフッ素含有水の処理を行ううち、フッ化カルシウムの皮膜が取り除かれることで、粒状物の粒径は次第に小さくなる。
このままでは、充填層4の体積が減少してフッ素成分の除去が十分に行われなくなるといった問題や、分離槽14内に滞留する粒状物22の量が少なくなって、充填層4の上面と分離槽14の通過口14bとの間に隙間ができ、反応処理槽2内に、原水供給管6から供給されたフッ素含有水が、通過口14bから分離槽14内に入り込んで、未処理のまま排水路18から排水されてしまうといった問題が生じる。
While the fluorine-containing water treatment apparatus A performs the treatment of the fluorine-containing water, the particle size of the granular material is gradually reduced by removing the calcium fluoride film.
In this state, the volume of the packed bed 4 is reduced and the fluorine component cannot be sufficiently removed, and the amount of the particulate matter 22 staying in the separation tank 14 is reduced, so that the upper surface of the packed bed 4 is separated. A gap is formed between the tank 14 and the passage port 14b, and the fluorine-containing water supplied from the raw water supply pipe 6 enters the separation tank 14 from the passage port 14b into the reaction treatment tank 2 and remains untreated. There arises a problem that the water is drained from the drainage channel 18.

そこで、本フッ素含有水の処理装置Aにおいては、粒状物供給手段を設けている。粒状物供給手段は、前述の通り、制御部が、レベルセンサ24の検出状態により分離槽14内の粒状物22が所定の量よりも少なくなったことを検出した際には、粒状物供給装置(図示せず)を駆動して、分離槽14内に向けて設けられた粒状物供給口26から粒状物を放出させて、分離槽14内に粒状物を供給する。
粒状物供給手段により、分離槽14内に常に所定量以上の粒状物が維持されるため、充填層4の減少を防ぐことができ、また、充填層4の上面と分離槽14の通過口14bとの間が粒状物で埋められて、フッ素含有水が未処理まま排出されてしまうことを防ぐことができる。
なお、分離槽14内に滞留される粒状物の量は、充填層4の粒状物の量の10%程度が好適である。
In view of this, in the treatment apparatus A for fluorine-containing water, a granular material supply means is provided. As described above, when the control unit detects that the granular material 22 in the separation tank 14 is less than a predetermined amount due to the detection state of the level sensor 24, the granular material supplying device (Not shown) is driven to release the granular material from the granular material supply port 26 provided in the separation tank 14 to supply the granular material into the separation tank 14.
Since the particulate matter supply means always maintains a predetermined amount or more of the particulate matter in the separation tank 14, the reduction of the packed bed 4 can be prevented, and the upper surface of the packed bed 4 and the passage port 14 b of the separation tank 14 can be prevented. It is possible to prevent the fluorine-containing water from being discharged untreated by being filled with particulate matter.
Note that the amount of the particulate matter retained in the separation tank 14 is preferably about 10% of the amount of the particulate matter in the packed bed 4.

なお、傘部材12は、充填層4の、第二開口部8b周辺の部分に、充填層4自身の重みにより掛かる圧力を軽減させるために設けられる。傘部材12がなければ、充填層4の下部には大きな圧力が掛かって稠密となり、流動性が低下して、充填層4を構成する粒状物がスムーズに第一開口部8a内に吸引されなくなってしまう。傘部材12が第一開口部8aの周辺の充填層4に掛かる圧力を受けることにより、充填層4の下部の圧力が軽減され、粒状物は流動性が向上して、スムーズに第一開口部8a内に流入できる。   The umbrella member 12 is provided to reduce the pressure applied to the portion around the second opening 8b of the filling layer 4 due to the weight of the filling layer 4 itself. Without the umbrella member 12, a large pressure is applied to the lower portion of the packed bed 4 to become dense, the fluidity is lowered, and the particulate matter constituting the packed bed 4 is not smoothly sucked into the first opening 8a. End up. When the umbrella member 12 receives pressure applied to the packed bed 4 around the first opening 8a, the pressure under the packed bed 4 is reduced, and the flowability of the granular material is improved, so that the first opened portion smoothly. It can flow into 8a.

なお、反応処理槽2内を下方に移動するフッ素含有および水粒状物の移動速度(時間あたりの移動体積)は、フッ素含有水の移動速度が、粒状物の移動速度の5倍程度となるように、エアー噴流の流速、移送管8の内径、および第一開口部8aの大きさ等を調整すると好適である。   In addition, the moving speed (moving volume per hour) of the fluorine-containing and water particulates moving downward in the reaction treatment tank 2 is such that the moving speed of the fluorine-containing water is about 5 times the moving speed of the granular materials. Further, it is preferable to adjust the flow velocity of the air jet, the inner diameter of the transfer pipe 8, the size of the first opening 8a, and the like.

本実施の形態に係るフッ素含有水の処理装置Aおよびそれを用いた処理方法によれば、高濃度のフッ素含有水を処理する場合であっても、フッ素成分除去処理を中断することなく粒状物の表面に形成されたフッ化カルシウムの皮膜を取り除いて、粒状物の粒の表面を、フッ素成分との反応性の高い状態に維持することができ、処理効率が非常に高いという効果がある。また、係る効果を、コンパクト、簡単かつ安価な構成で実現できる。   According to the treatment apparatus A for fluorine-containing water and the treatment method using the same according to the present embodiment, even when treating high-concentration fluorine-containing water, the particulate matter is not interrupted without interrupting the fluorine component removal treatment. By removing the calcium fluoride film formed on the surface, the surface of the granular particles can be maintained in a highly reactive state with the fluorine component, and the processing efficiency is very high. Further, such an effect can be realized with a compact, simple and inexpensive configuration.

また、本フッ素含有水の処理装置Aで処理を行えば、従来の消石灰を用いた処理方法に比較して、処理済の処理水中のフッ化カルシウムの粒子径が大きくなりかつ遊離フッ素濃度を低くできるため、この下流工程で凝集や固液分離を行う装置を、簡易かつ小型な構成とすることができる。   Further, if the treatment is performed with the treatment apparatus A of the present fluorine-containing water, the particle diameter of calcium fluoride in the treated water is increased and the free fluorine concentration is lowered as compared with the conventional treatment method using slaked lime. Therefore, an apparatus that performs aggregation and solid-liquid separation in this downstream process can be configured to be simple and small.

次に、本実施の形態に係るフッ素含有水の処理装置Aのより具体的な実施例およびその実施結果について述べる。   Next, more specific examples of the fluorine-containing water treatment apparatus A according to the present embodiment and the results of the implementation will be described.

フッ素含有水の処理装置Aにおいて、充填層4の有効充填体積を200Lとし、粒状物として2mm径の炭酸カルシウム粒子を採用した。そして、フッ化水素酸濃厚液と水道水とを混合してフッ素濃度1,000〜1,300mg/Lに調整したフッ素含有水を空間速度5/h(1時間あたり、有効充填体積の5倍。すなわち本例においては、1,000L/h)で反応処理槽2に供給するとともに、エアー供給手段10により18m3/hの流速でエアーを供給して、フッ素含有水の処理を25時間連続して行った。また、フッ素含有水の処理とともに、粒状物供給手段により炭酸カルシウム粒子を補充した。 In the fluorine-containing water treatment apparatus A, the effective filling volume of the packed bed 4 was 200 L, and 2 mm diameter calcium carbonate particles were employed as the granular material. Then, the fluorine-containing water prepared by mixing hydrofluoric acid concentrate and tap water to adjust the fluorine concentration to 1,000 to 1,300 mg / L is a space velocity of 5 / h (5 times the effective filling volume per hour. In the example, it was supplied to the reaction treatment tank 2 at 1,000 L / h), and air was supplied at a flow rate of 18 m 3 / h by the air supply means 10 to treat the fluorine-containing water continuously for 25 hours. . Further, along with the treatment of the fluorine-containing water, the calcium carbonate particles were replenished by the granular material supply means.

上記条件にて処理されて排水路18から排出された処理水をタンクに蓄え、無機凝集剤(ポリ塩化アルミニウム液 PAC)を600mg/Lの濃度で加えてかき混ぜた後、高分子凝集剤液を2mg-高分子/L添加してフッ化カルシウムを粗大化して沈降分離した。
この処理水(上澄み液)のフッ素濃度を分析したところ、5.8mg/Lであった。
一方、沈降したスラリーを引き抜き、濾紙上で加圧脱水したところ、汚泥の含水率は42%となった。この汚泥を110℃で2時間乾燥した後、組成を分析したところ、
Ca分: 510,000mg/kg-dry
F 分: 420,000mg/kg-dry
の値が得られた。これより、汚泥中にはCaF2が86%含まれていると見積もられた。
The treated water that has been treated under the above conditions and discharged from the drainage channel 18 is stored in a tank, an inorganic flocculant (polyaluminum chloride liquid PAC) is added at a concentration of 600 mg / L, and the polymer flocculant liquid is added. 2 mg-polymer / L was added to coarsen calcium fluoride and separate by settling.
When the fluorine concentration of this treated water (supernatant liquid) was analyzed, it was 5.8 mg / L.
On the other hand, when the settled slurry was pulled out and pressure dehydrated on the filter paper, the moisture content of the sludge was 42%. The sludge was dried at 110 ° C for 2 hours and analyzed for composition.
Ca content: 510,000mg / kg-dry
F min: 420,000mg / kg-dry
The value of was obtained. From this, it was estimated that 86% CaF 2 was contained in the sludge.

また、フッ素含有水の処理を止めた後、分離槽14内の炭酸カルシウム粒子22の組成を分析して、衝突壁8c等への衝突によるフッ化カルシウム皮膜の除去後のフッ素の残留量を調べたところ、
F 残留分: 1,500mg/kg-dry
の値が得られた(なお、採取した炭酸カルシウム粒子に、粒状物供給手段によって新たに供給された炭酸カルシウム粒子が混ざらないよう、採取前には粒状物供給装置を停止した)。これより、フッ化カルシウム皮膜の除去後の炭酸カルシウム粒子にはCaF2として3,100mg/kg-dry(0.3%)残留していると見積もられた。
In addition, after the treatment with fluorine-containing water is stopped, the composition of the calcium carbonate particles 22 in the separation tank 14 is analyzed, and the residual amount of fluorine after the removal of the calcium fluoride film by collision with the collision wall 8c and the like is examined. Where
F Residue: 1,500mg / kg-dry
(The granular material supply device was stopped before collection so that the calcium carbonate particles newly collected by the granular material supply means were not mixed with the collected calcium carbonate particles). From this, it was estimated that 3,100 mg / kg-dry (0.3%) of CaF 2 remained in the calcium carbonate particles after removal of the calcium fluoride film.

これらの実験結果から、炭酸カルシウムはほぼ無駄なく反応に寄与しており、かつ炭酸カルシウム粒子表面はフッ化カルシウム皮膜が十分に剥離されて脱落し、常時反応性が高い状態が維持されていることが判明した。   From these experimental results, calcium carbonate contributes to the reaction almost without waste, and the surface of calcium carbonate particles is sufficiently peeled off and removed, and the state of high reactivity is always maintained. There was found.

次に、実施例2につき説明する。なお、実施例1と同じ条件については説明を省略する。   Next, Example 2 will be described. Note that description of the same conditions as those in the first embodiment is omitted.

フッ素濃度3,300mg/Lに調整したフッ素含有水を、空間速度3/h(すなわち本例においては、600L/h)で反応処理槽2に供給するとともに、エアー供給手段10により54m3/hの流速でエアーを供給してフッ素含有水の処理を2時間連続して行った。 Fluorine-containing water adjusted to a fluorine concentration of 3,300 mg / L is supplied to the reaction treatment tank 2 at a space velocity of 3 / h (that is, 600 L / h in this example), and 54 m 3 / h by the air supply means 10. Air was supplied at a flow rate to treat the fluorine-containing water continuously for 2 hours.

上記条件にて処理されて排水路18から排出された処理水をタンクに蓄え、無機凝集剤(ポリ塩化アルミニウム液 PAC)を600mg/Lの濃度で加えてかき混ぜた後、高分子凝集剤液を3mg-高分子/L添加してフッ化カルシウムを粗大化して沈降分離した。
この処理水(上澄み液)のフッ素濃度を分析したところ、5.9mg/Lであった。
一方、沈降したスラリーを引き抜き、濾紙上で加圧脱水した所、汚泥の含水率は36%となった。
The treated water that has been treated under the above conditions and discharged from the drainage channel 18 is stored in a tank. After adding an inorganic flocculant (polyaluminum chloride liquid PAC) at a concentration of 600 mg / L and stirring, the polymer flocculant liquid is added. 3 mg-polymer / L was added to coarsen calcium fluoride and separate by settling.
It was 5.9 mg / L when the fluorine concentration of this treated water (supernatant liquid) was analyzed.
On the other hand, the sedimented slurry was pulled out and pressure dehydrated on the filter paper, and the moisture content of the sludge was 36%.

また、フッ素含有水の処理を止めた後、分離槽14内の炭酸カルシウム粒子22の組成を分析して、衝突壁8c等への衝突によるフッ化カルシウム皮膜の除去後のフッ素の残留量を調べたところ、
F 残留分: 12,000mg/kg-dry
の値が得られた。これより、フッ化カルシウム皮膜の除去後の炭酸カルシウム粒子にはCaF2として25,000mg/kg-dry(2.5%)残留していると見積もられた。
In addition, after the treatment with fluorine-containing water is stopped, the composition of the calcium carbonate particles 22 in the separation tank 14 is analyzed, and the residual amount of fluorine after the removal of the calcium fluoride film by collision with the collision wall 8c and the like is examined. Where
F Residue: 12,000mg / kg-dry
The value of was obtained. From this, it was estimated that 25,000 mg / kg-dry (2.5%) of CaF 2 remained in the calcium carbonate particles after removal of the calcium fluoride film.

これらの結果より、本実施の形態に係るフッ素含有水の処理装置Aは、フッ素濃度3,000mg/L程度の高濃度フッ素含有水に対しても連続的な処理が可能なことが判明した。   From these results, it was found that the fluorine-containing water treatment apparatus A according to the present embodiment is capable of continuous treatment even for high-concentration fluorine-containing water having a fluorine concentration of about 3,000 mg / L.

(比較例1)
特許文献1に開示された構造を有する、有効充填体積20Lの、間欠再生型の充填塔を用いて比較実験を行った。
フッ化水素酸濃厚液と水道水を混合して、フッ素濃度1,000mg/Lに調整したフッ素含有水を、空間速度5/h(すなわち本例においては、100L/h)で充填塔に供給し、下向流で通水した。
(Comparative Example 1)
A comparative experiment was conducted using an intermittent regeneration type packed tower having an effective packed volume of 20 L having the structure disclosed in Patent Document 1.
Fluorine-containing water mixed with hydrofluoric acid concentrate and tap water to adjust the fluorine concentration to 1,000 mg / L is supplied to the packed tower at a space velocity of 5 / h (ie, 100 L / h in this example). The water flowed downward.

充填塔を通過した液のpHを測定したところ、通水開始後約5時間経過した時点でpHが5以下に低下した。通過液を採取して、No.5Cの濾紙を用いて濾過した後、ろ液中のフッ素濃度を測定したところ、通水開始直後の値が12mg/L、5時間後の値が28mg/Lとなり、通水開始後5時間から充填塔の反応性が低下することが判明した。   When the pH of the liquid passing through the packed tower was measured, the pH dropped to 5 or less when about 5 hours had passed after the start of water flow. After collecting the passing liquid and filtering using No. 5C filter paper, the fluorine concentration in the filtrate was measured. The value immediately after the start of water flow was 12 mg / L, and the value after 5 hours was 28 mg / L. Thus, it has been found that the reactivity of the packed tower decreases from 5 hours after the start of water flow.

この時点でフッ素含有水の供給を停止し、水道水を上向流、線速度40mm/sで圧入しつつ、充填塔上部に設置した撹拌翼を回転させて充填剤を研磨し、洗浄水をストレーナを介して排出した。この再生処理を120秒間行った。
充填剤表面に残留したフッ素の量を分析したところ、
F 残留分: 15,000mg/kg-dry
の値が得られた。これより、撹拌翼の回転とともに表面が研磨された後の炭酸カルシウム粒子にはCaF2として31,000mg/kg-dry(3%)残留していると見積もられた。
At this point, the supply of fluorine-containing water is stopped, tap water is flowed upward, and the filler is polished by rotating the stirring blade installed at the top of the packed tower while pressing at a linear velocity of 40 mm / s. Drained through strainer. This regeneration process was performed for 120 seconds.
When the amount of fluorine remaining on the filler surface was analyzed,
F Residue: 15,000mg / kg-dry
The value of was obtained. From this, it was estimated that 31,000 mg / kg-dry (3%) of CaF 2 remained in the calcium carbonate particles after the surface was polished with the rotation of the stirring blade.

再生処理後、再びフッ素含有水を通水したところ、通水開始後2時間でpH値が5以下に低下した。
これらの結果より、比較的高濃度のフッ素含有水を処理する場合には、間欠再生処理法では、原水供給の停止と再生処理が頻繁(2回目以降、少なくとも2時間以内毎)に必要であることが判明した。
When the fluorine-containing water was passed again after the regeneration treatment, the pH value decreased to 5 or less 2 hours after the start of the water flow.
From these results, when treating relatively high concentrations of fluorine-containing water, the intermittent regeneration method requires frequent stoppage and regeneration of the raw water supply (at least every 2 hours after the second time). It has been found.

(比較例2)
実施例1で使用した同じフッ素含有水を、消石灰をもちいた処理方法により処理して、比較実験を実施した。
フッ素含有水(1,000mg/L)に消石灰スラリーを添加してpH10に調整し、60分間撹拌して反応させた。反応後、PACを600mg/L濃度で添加して掻き混ぜたのち、硫酸を添加してpH7に調整した。更に高分子凝集剤を2mg-高分子/L添加してフッ化カルシウムを粗大化して沈降分離した。
処理水(上澄み液)のフッ素濃度を分析したところ、12mg/Lであった。
一方、沈降したスラリーを濾紙上で加圧脱水した所、汚泥の含水率は74%となった。この汚泥を110℃で2時間乾燥した後、組成を分析したところ、
Ca分: 520,000mg/kg-dry
F 分: 380,000mg/kg-dry
の値が得られた。これより、汚泥中にはCaF2が78%含まれていると見積もられた。
この実験結果から、従来の消石灰スラリーを用いたフッ素含有水の処理方法は、本炭酸カルシウム充填塔法に比べて、処理水のフッ素濃度が高く、かつ汚泥の含水率が高くなるため、その排出量が多くなってしまうことが判明した。
(Comparative Example 2)
The same fluorine-containing water used in Example 1 was treated by a treatment method using slaked lime, and a comparative experiment was performed.
Slaked lime slurry was added to fluorine-containing water (1,000 mg / L) to adjust to pH 10, and the mixture was stirred for 60 minutes for reaction. After the reaction, PAC was added at a concentration of 600 mg / L and stirred, and then sulfuric acid was added to adjust the pH to 7. Further, 2 mg-polymer / L of a polymer flocculant was added to coarsen calcium fluoride and separate by precipitation.
When the fluorine concentration of the treated water (supernatant liquid) was analyzed, it was 12 mg / L.
On the other hand, when the sedimented slurry was pressure dehydrated on filter paper, the moisture content of the sludge was 74%. The sludge was dried at 110 ° C for 2 hours and analyzed for composition.
Ca content: 520,000mg / kg-dry
F min: 380,000mg / kg-dry
The value of was obtained. From this, it was estimated that 78% of CaF 2 was contained in the sludge.
From this experimental result, the conventional fluorine-containing water treatment method using slaked lime slurry has a higher fluorine concentration in treated water and a higher water content of sludge than the calcium carbonate packed tower method. It turned out that the amount would increase.

本発明のフッ素含有水の処理装置および処理方法は、半導体、液晶、水晶加工等により発生するフッ素含有廃水を処理する用途のみに限定されるものではなく、フッ素含有水からフッ素成分を除去する目的であれば、あらゆる用途に適用することができる。   The treatment apparatus and treatment method for fluorine-containing water of the present invention are not limited to the use of treating fluorine-containing wastewater generated by semiconductors, liquid crystals, crystal processing, etc., and are intended to remove fluorine components from fluorine-containing water. If it is, it can be applied to all uses.

本実施の形態に係るフッ素含有水の処理装置の構成を示す側面説明図である。It is side explanatory drawing which shows the structure of the processing apparatus of fluorine-containing water which concerns on this Embodiment. 本実施の形態に係るフッ素含有水の処理装置の構成を示す平面説明図である。It is plane explanatory drawing which shows the structure of the processing apparatus of fluorine-containing water which concerns on this Embodiment. 従来のフッ素含有水の処理装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the processing apparatus of the conventional fluorine-containing water.

符号の説明Explanation of symbols

A フッ素含有水の処理装置
2 反応処理槽
4 充填層
6 原水供給管
8 移送管
8a 第一開口部
8b 第二開口部
8c 衝突壁
10 エアー供給手段(流体供給手段)
10a エアー供給装置
10b パイプ
12 傘部材
14 分離槽
14a 開口部
14b 通過口
16 気液分離壁
18 排水路
20 集水樋部
22 粒状物(炭酸カルシウム粒子)
24 レベルセンサ
26 粒状物供給口
A treatment apparatus for fluorine-containing water 2 reaction treatment tank 4 packed bed 6 raw water supply pipe 8 transfer pipe 8a first opening 8b second opening 8c collision wall 10 air supply means (fluid supply means)
DESCRIPTION OF SYMBOLS 10a Air supply apparatus 10b Pipe 12 Umbrella member 14 Separation tank 14a Opening part 14b Passage port 16 Gas-liquid separation wall 18 Drainage channel 20 Catchment part 22 Granules (calcium carbonate particle)
24 Level sensor 26 Granule supply port

Claims (6)

炭酸カルシウムを主成分とする粒状物から成る充填層が形成された反応処理槽内にフッ素含有水を通水し、フッ素含有水中のフッ素成分と粒状物の炭酸カルシウムとの反応により非水溶性のフッ化カルシウムから成る皮膜を粒状物の表面に形成させて、フッ素含有水からフッ素成分を除去するフッ素含有水の処理装置において、
前記反応処理槽内の下部から上方に延びる筒体であって、前記充填層の下部に位置する部位の側面に開口された第一開口部と、充填層の上面よりも上方に位置する部位に開口された第二開口部とが形成された移送管と、
該移送管内に上方向へ向かう流体の流れを発生させて、前記第一開口部から移送管内に吸い込まれた前記充填層の下部の粒状物およびフッ素成分が除去された処理水を、移送管内の上部方向へ移送し、該粒状物の表面に形成されたフッ化カルシウムの皮膜を、該粒状物同士および移送管の内壁への衝突によって砕いて取り除き、該粒状物、該粒状物の表面から取り除かれたフッ化カルシウム片、および該処理水を前記第二開口部から排出するように、移送管内に流体を供給する流体供給手段と、
前記第二開口部から排出された粒状物を前記充填層に戻すとともに、第二開口部から排出された処理水を前記反応処理槽外に排出すべく、該粒状物と該処理水とを分離する分離手段とを備えることを特徴とするフッ素含有水の処理装置。
Fluorine-containing water is passed through a reaction treatment tank in which a packed bed composed of a granular material mainly composed of calcium carbonate is formed, and water-insoluble due to the reaction between the fluorine component in the fluorine-containing water and calcium carbonate in the granular material. In a fluorine-containing water treatment apparatus that forms a film made of calcium fluoride on the surface of a granular material and removes a fluorine component from fluorine-containing water,
A cylindrical body extending upward from the lower part in the reaction treatment tank, wherein the first opening part is opened on the side surface of the part located at the lower part of the packed bed, and the part is located above the upper surface of the packed bed. A transfer pipe formed with an opened second opening;
An upward fluid flow is generated in the transfer pipe, and treated water from which particulate matter and fluorine components in the lower part of the packed bed sucked into the transfer pipe from the first opening are removed is transferred to the transfer pipe. The calcium fluoride coating formed on the surface of the granular material transferred to the upper direction is crushed and removed by collision with the granular materials and the inner wall of the transfer pipe, and is removed from the surface of the granular material and the granular material. Fluid supply means for supplying fluid into the transfer pipe so as to discharge the calcium fluoride pieces and the treated water from the second opening,
The particulate matter and the treated water are separated to return the particulate matter discharged from the second opening to the packed bed and to discharge the treated water discharged from the second opening to the outside of the reaction treatment tank. The fluorine-containing water treatment apparatus is characterized by comprising a separating means.
前記移送管の上端を閉塞して設けられ、移送管内を移送される前記粒状物が衝突することによって、該粒状物の表面に形成された前記フッ化カルシウムの皮膜を砕いて取り除くための衝突壁を備え、
前記第二開口部は、前記移送管の側面に形成されていることを特徴とする請求項1記載のフッ素含有水の処理装置。
A collision wall provided by closing the upper end of the transfer pipe and crushing and removing the calcium fluoride film formed on the surface of the granular material when the granular material transferred through the transfer pipe collides. With
The apparatus for treating fluorine-containing water according to claim 1, wherein the second opening is formed on a side surface of the transfer pipe.
前記流体供給手段は、前記第一開口部よりも上方位置から、前記移送管内に前記流体を上方向に向けて供給することで、移送管の下部の内部に負圧を発生させて、第一開口部から移送管内に前記粒状物および前記処理水を吸い込ませることを特徴とする請求項1または2記載のフッ素含有水の処理装置。   The fluid supply means supplies the fluid upward in the transfer pipe from a position above the first opening, thereby generating a negative pressure inside the lower part of the transfer pipe, The apparatus for treating fluorine-containing water according to claim 1 or 2, wherein the granular material and the treated water are sucked into the transfer pipe from the opening. 前記分離手段は、
内部に前記移送管の前記第二開口部が位置する筒体であって、底面が前記充填層の上面に接するよう配設され、該底面に、第二開口部から排出され前記分離手段により前記フッ化カルシウム片および前記処理水と分離されて溜まった粒状物を充填層に戻すための通過口が形成された分離層と、
前記第二開口部から排出されて前記粒状物と分離された前記フッ化カルシウム片および前記処理水を、前記分離槽から排出する排水路とを有することを特徴とする請求項1〜3のうちのいずれか一項記載のフッ素含有水の処理装置。
The separating means includes
A cylindrical body in which the second opening of the transfer pipe is located, the bottom surface is disposed so as to contact the top surface of the packed bed, and the bottom surface is discharged from the second opening and is separated by the separating means. A separation layer in which a passage port for returning the calcium fluoride pieces and the granular material separated and collected from the treated water to the packed bed is formed;
It has the drainage channel which discharges the calcium fluoride piece and the treated water which were discharged from the second opening and separated from the particulate matter from the separation tank. The apparatus for treating fluorine-containing water according to any one of the above.
前記分離槽内に溜まった粒状物が所定量より少なくなった際に、分離層内に粒状物を供給する粒状物供給手段を備えることを特徴とする請求項4記載のフッ素含有水の処理装置。   The apparatus for treating fluorine-containing water according to claim 4, further comprising a granular material supply means for supplying the granular material into the separation layer when the granular material accumulated in the separation tank becomes less than a predetermined amount. . 請求項1〜5のうちのいずれか一項記載のフッ素含有水の処理装置を用い、フッ素含有水中のフッ素成分を除去することを特徴とするフッ素含有水の処理方法。   A method for treating fluorine-containing water, wherein the fluorine-containing water treatment apparatus according to any one of claims 1 to 5 is used to remove a fluorine component in fluorine-containing water.
JP2004124740A 2004-04-20 2004-04-20 Fluorine-containing water treatment apparatus and treatment method Expired - Lifetime JP4628013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124740A JP4628013B2 (en) 2004-04-20 2004-04-20 Fluorine-containing water treatment apparatus and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124740A JP4628013B2 (en) 2004-04-20 2004-04-20 Fluorine-containing water treatment apparatus and treatment method

Publications (2)

Publication Number Publication Date
JP2005305279A true JP2005305279A (en) 2005-11-04
JP4628013B2 JP4628013B2 (en) 2011-02-09

Family

ID=35434656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124740A Expired - Lifetime JP4628013B2 (en) 2004-04-20 2004-04-20 Fluorine-containing water treatment apparatus and treatment method

Country Status (1)

Country Link
JP (1) JP4628013B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103973A (en) * 1977-02-23 1978-09-09 Ebara Infilco Co Ltd Removing method for phosphoric acid salts in liquid
JPS5524570A (en) * 1978-08-11 1980-02-21 Ebara Infilco Co Ltd Removing method for phosphates in solution
JPS56102933A (en) * 1980-01-18 1981-08-17 Sanki Eng Co Ltd Method and apparatus for washing and circulating solid granules constituting fluid bed
JPS56151642U (en) * 1981-04-02 1981-11-13
JPS5712892A (en) * 1980-06-25 1982-01-22 Ebara Infilco Co Ltd Disposal of phosphate ion-containing waste water
JPS5721905A (en) * 1980-07-17 1982-02-04 Dowa Eng Kk Continuous sand filter
JPS60225691A (en) * 1984-04-25 1985-11-09 Mitsubishi Heavy Ind Ltd Apparatus for treating waste water from waste gas desulfurization process
JPS61157391A (en) * 1984-12-28 1986-07-17 Ebara Infilco Co Ltd Removal of ss and phosphorus in sewage
JPH09271608A (en) * 1996-04-05 1997-10-21 Nippon Kankyo Res:Kk Fluidized bed type filtration apparatus
JPH10249359A (en) * 1997-03-11 1998-09-22 Kitakiyuushiyuushi Phosphorus removing and recovering device utilizing seawater
JP2001104965A (en) * 1999-10-05 2001-04-17 Maezawa Ind Inc Waste water treatment apparatus
JP2003181468A (en) * 2001-12-19 2003-07-02 Miyama Kk Method for treating fluorine-containing water and equipment therefor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103973A (en) * 1977-02-23 1978-09-09 Ebara Infilco Co Ltd Removing method for phosphoric acid salts in liquid
JPS5524570A (en) * 1978-08-11 1980-02-21 Ebara Infilco Co Ltd Removing method for phosphates in solution
JPS56102933A (en) * 1980-01-18 1981-08-17 Sanki Eng Co Ltd Method and apparatus for washing and circulating solid granules constituting fluid bed
JPS5712892A (en) * 1980-06-25 1982-01-22 Ebara Infilco Co Ltd Disposal of phosphate ion-containing waste water
JPS5721905A (en) * 1980-07-17 1982-02-04 Dowa Eng Kk Continuous sand filter
JPS56151642U (en) * 1981-04-02 1981-11-13
JPS60225691A (en) * 1984-04-25 1985-11-09 Mitsubishi Heavy Ind Ltd Apparatus for treating waste water from waste gas desulfurization process
JPS61157391A (en) * 1984-12-28 1986-07-17 Ebara Infilco Co Ltd Removal of ss and phosphorus in sewage
JPH09271608A (en) * 1996-04-05 1997-10-21 Nippon Kankyo Res:Kk Fluidized bed type filtration apparatus
JPH10249359A (en) * 1997-03-11 1998-09-22 Kitakiyuushiyuushi Phosphorus removing and recovering device utilizing seawater
JP2001104965A (en) * 1999-10-05 2001-04-17 Maezawa Ind Inc Waste water treatment apparatus
JP2003181468A (en) * 2001-12-19 2003-07-02 Miyama Kk Method for treating fluorine-containing water and equipment therefor

Also Published As

Publication number Publication date
JP4628013B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
KR100851456B1 (en) Method and apparatus for treatment of water
EP1041042A1 (en) Water purification apparatus and method thereof
US20080121585A1 (en) Water treatment using de-supersaturation
AU2002220093A1 (en) Method and apparatus for treatment of water and wastewater
AU2008294551A1 (en) Mobile systems and methods of sufficiently treating water so that the treated water may be utilized in well-treatment operations
CN205760582U (en) Limestone-plaster wet desulfurizing system
JP6284156B2 (en) Pollutant separation and volume reduction system and method
CA2789207C (en) Method and system for decontaminating sand
WO2013001791A1 (en) Water treatment system
JP5492243B2 (en) Water treatment method and water treatment apparatus
JP4628013B2 (en) Fluorine-containing water treatment apparatus and treatment method
JP7033484B2 (en) Cleaning treatment system and cleaning treatment method for pesticide-contaminated soil
JP2007083179A (en) Treatment method and apparatus for copper particle-containing water
JP3791760B2 (en) Method and apparatus for removing and recovering phosphorus from water containing SS and phosphorus
JP2007244995A (en) Treatment equipment of digestion sludge
TWI640477B (en) Method of synthesizing homogeneous granular basic cupric carbonate and copper oxide by using fluidized-bed crystallization technology
JP6425170B2 (en) Muddy water treatment system and muddy water treatment method
JPH08155469A (en) Apparatus for granulating and removing phosphorus compound
JP4014679B2 (en) Wastewater treatment method
JP3973150B2 (en) Sludge separation device, sludge recovery device, and sludge separation method
JPH1057969A (en) Fluorine-containing waste water treating device and its treatment
JPH06180391A (en) Carbon dioxide gas absorbing tower
JP2006021173A5 (en)
JP6939296B2 (en) Treatment method and treatment equipment for selenium-containing water
JP2001009472A (en) Granulating and dephosphorizing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4628013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250