JP6939296B2 - Treatment method and treatment equipment for selenium-containing water - Google Patents

Treatment method and treatment equipment for selenium-containing water Download PDF

Info

Publication number
JP6939296B2
JP6939296B2 JP2017174989A JP2017174989A JP6939296B2 JP 6939296 B2 JP6939296 B2 JP 6939296B2 JP 2017174989 A JP2017174989 A JP 2017174989A JP 2017174989 A JP2017174989 A JP 2017174989A JP 6939296 B2 JP6939296 B2 JP 6939296B2
Authority
JP
Japan
Prior art keywords
selenium
water
reduction tower
containing water
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017174989A
Other languages
Japanese (ja)
Other versions
JP2019051447A (en
Inventor
友時 安池
友時 安池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017174989A priority Critical patent/JP6939296B2/en
Publication of JP2019051447A publication Critical patent/JP2019051447A/en
Application granted granted Critical
Publication of JP6939296B2 publication Critical patent/JP6939296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、セレン含有水を、金属チタンとチタンより卑な金属との混合物又は合金と接触させて還元処理する方法及び装置に係り、特にセレン含有水が亜硫酸イオン、チオ硫酸イオン、亜硝酸イオンなどを含んでいるセレン含有水の処理方法及び装置に関する。 The present invention relates to a method and an apparatus for reducing selenium-containing water by contacting it with a mixture or alloy of metallic titanium and a metal lower than titanium, and in particular, the selenium-containing water is sulfite ion, thiosulfate ion, nitrite ion. The present invention relates to a method and an apparatus for treating selenium-containing water containing such substances.

石炭ガス化排水等のセレン含有水を、金属チタン粒子とそれよりも卑な金属粒子(例えばアルミニウム粒子)との混合物と接触させ、その際にpHを下げるなどしてアルミニウム等を溶出させることにより、局部電池作用で排水中のセレンを還元処理することにより除去するセレンの処理方法が知られている(特許文献1〜3)。 By bringing selenium-containing water such as coal gasified wastewater into contact with a mixture of metallic titanium particles and lower metal particles (for example, aluminum particles) and elution of aluminum or the like by lowering the pH at that time. , A method for treating selenium, which is removed by reducing selenium in wastewater by a local battery action, is known (Patent Documents 1 to 3).

還元体によるセレン還元反応では、以下の副生反応により水素ガスや硫化水素、セレン化水素ガスなどが発生するため(下記反応式等参照)、発生量によってはファンやスクラバーなどのガス処理設備によってガス濃度を低減する必要があった。特許文献3には、酸化鉄系の硫化水素吸収材を充填したカラムに通気するか、あるいはアルカリスクラバーに還元塔からの発生ガスを通気し、微量な硫化水素を除去することが記載されている。
<水素ガス発生反応式>
鉄還元体の場合 Fe+2HCl→Fe2++2Cl+H
複合金属還元体の場合 2Al+6HCl→2Al3++6Cl+3H
<硫化水素ガス発生反応機構>
原水に亜硫酸イオンやチオ硫酸イオンが含まれていた場合、酸化還元電位が低い条件ではこれらも同時に還元され、硫化水素が発生する。
<セレン化水素ガス発生反応機構>
セレン酸(Se(VI))は還元によって亜セレン酸(Se(IV))を経て不定形セレンや金属セレン等の0価の固体状の元素態セレン(Se(0))となり、元素態セレン(Se(0))の一部はさらに還元されて気体状のセレン化水素(HSe)となる。
In the selenium reduction reaction by the reducer, hydrogen gas, hydrogen sulfide, hydrogen selenium gas, etc. are generated by the following by-product reactions (see the reaction formula below, etc.). It was necessary to reduce the gas concentration. Patent Document 3 describes that a column filled with an iron oxide-based hydrogen sulfide absorber is ventilated, or an alkaline scrubber is ventilated with a gas generated from a reduction tower to remove a trace amount of hydrogen sulfide. ..
<Hydrogen gas generation reaction formula>
In the case of iron reducer Fe + 2HCl → Fe 2+ + 2Cl + H 2
In the case of composite metal reducer 2Al + 6HCl → 2Al 3+ + 6Cl + 3H 2
<Hydrogen sulfide gas generation reaction mechanism>
When the raw water contains sulfite ions and thiosulfate ions, they are also reduced at the same time under the condition that the redox potential is low, and hydrogen sulfide is generated.
<Hydrogen selenide gas generation reaction mechanism>
Selenium (Se (VI)) is reduced to selenous acid (Se (IV)) and then becomes zero-valent solid elemental selenium (Se (0)) such as amorphous selenium and metallic selenium. a (Se (0)) of the part is further reduced gaseous hydrogen selenide (H 2 Se).

特開2008−30020号公報Japanese Unexamined Patent Publication No. 2008-30020 特開2009−11914号公報Japanese Unexamined Patent Publication No. 2009-11914 特開2015−39652号公報JP-A-2015-39652

特許文献3には、還元塔への被処理水の通水工程後に、被処理水の通水を停止し、還元塔に空気及び洗浄水を上向流通水して還元塔を洗浄することが記載されている。還元体を充填した還元塔に被処理水を通水する場合、通常運転時に経時的に、還元体と還元体の間隙に発生ガスがたまり、通常運転から逆洗運転に移行した時に多量のガスが還元塔から放出されてガス処理設備に供給される。そのため、ガス処理設備を大きくする必要がある。 According to Patent Document 3, after the step of passing the water to be treated to the reduction tower, the passage of the water to be treated is stopped, and air and washing water are flowed upward to the reduction tower to wash the reduction tower. Have been described. When the water to be treated is passed through the reducing tower filled with the reducing body, the generated gas accumulates in the gap between the reducing body and the reducing body over time during the normal operation, and a large amount of gas is generated when the normal operation is shifted to the backwashing operation. Is released from the reduction tower and supplied to the gas treatment facility. Therefore, it is necessary to increase the size of the gas treatment equipment.

本発明は、洗浄開始時に還元塔から多量のガスが発生することが防止されるセレン含有水の処理方法及び処理装置を提供することを目的とする。 An object of the present invention is to provide a method and an apparatus for treating selenium-containing water in which a large amount of gas is prevented from being generated from the reduction tower at the start of washing.

本発明のセレン含有水の処理方法は、セレン含有水を還元塔に通水し、該還元塔に充填された金属チタンとチタンより卑な金属との混合物又は合金と接触させて、前記卑な金属の単体の一部を溶出させることにより、該セレン含有水中のセレンを還元処理するセレン含有水の処理方法であって、該還元塔へのセレン含有水の通水を停止した後、還元塔に空気及び水で洗浄する洗浄工程を行うセレン含有水の処理方法において、該洗浄工程に先立ち、前記還元塔内からガスを排出するガス抜きを行うことを特徴とするものである。 In the method for treating selenium-containing water of the present invention, the selenium-containing water is passed through a reduction tower and brought into contact with a mixture or alloy of metallic titanium filled in the reduction tower and a metal lower than titanium to bring the selenium-containing water into contact with the base. A method for treating selenium-containing water in which selenium in the selenium-containing water is reduced by eluting a part of a single metal. The method for treating selenium-containing water, which carries out a washing step of washing with air and water, is characterized in that, prior to the washing step, degassing to discharge gas from the reduction tower is performed.

本発明のセレン含有水の処理方法の一態様では、前記還元塔内から水を抜き、再度水張りすることにより前記ガス抜きを行う。 In one aspect of the method for treating selenium-containing water of the present invention, the degassing is performed by draining water from the reduction tower and refilling it with water.

本発明のセレン含有水の処理方法の一態様では、前記還元塔内に空気及び/又は不活性ガスを通気することにより前記ガス抜きを行う。 In one aspect of the method for treating selenium-containing water of the present invention, the degassing is performed by aerating air and / or an inert gas into the reducing tower.

本発明の一態様のセレン含有水の処理装置は、セレン含有水を、金属チタンとチタンより卑な金属の単体との混合物又は合金と接触させて、前記卑な金属の一部を溶出させることにより該セレン含有水中のセレンを還元処理する還元塔と、該還元塔に空気及び水を供給して洗浄を行う洗浄手段とを有するセレン含有水の処理装置において、前記還元塔内から水を抜き再度水張りすることにより還元塔内からガス抜きするガス抜き手段を備えたことを特徴とするものである。 In the selenium-containing water treatment apparatus of one aspect of the present invention, the selenium-containing water is brought into contact with a mixture or alloy of metallic titanium and a simple substance of a metal lower than titanium to elute a part of the base metal. In a selenium-containing water treatment apparatus having a reduction tower for reducing selenium in the selenium-containing water and a cleaning means for supplying air and water to the reduction tower for cleaning, water is drained from the reduction tower. It is characterized by being provided with a degassing means for degassing from the inside of the reduction tower by refilling with water.

本発明の一態様のセレン含有水の処理装置は、セレン含有水を、金属チタンとチタンより卑な金属の単体との混合物又は合金と接触させて、前記卑な金属の一部を溶出させることにより該セレン含有水中のセレンを還元処理する還元塔と、該還元塔に空気及び水を供給して洗浄を行う洗浄手段とを有するセレン含有水の処理装置において、前記還元塔内に空気及び/又は不活性ガスを通気して還元塔内からガス抜きするガス抜き手段を備えたことを特徴とするものである。 In the selenium-containing water treatment apparatus of one aspect of the present invention, the selenium-containing water is brought into contact with a mixture or alloy of metallic titanium and a simple substance of a metal lower than titanium to elute a part of the base metal. In a selenium-containing water treatment apparatus having a reduction tower for reducing selenium in the selenium-containing water and a cleaning means for supplying air and water to the reduction tower for cleaning, air and / / in the reduction tower. Alternatively, it is characterized by being provided with a degassing means for venting an inert gas and venting the gas from the inside of the reduction tower.

本発明は、セレン含有水を金属チタンとそれよりも卑な金属との混合物又は合金と接触させ、該卑な金属の一部を溶出させることによりセレンを還元するセレン含有排水の処理方法及び装置において、洗浄工程開始前に還元塔からガス抜きを行うので、洗浄開始時に多量のガスが還元塔から発生することが防止される。本発明によると、ガス処理設備を大きくすることが不要となり、コストアップが防止される。 The present invention is a method and apparatus for treating selenium-containing wastewater in which selenium is reduced by bringing selenium-containing water into contact with a mixture or alloy of metallic titanium and a base metal thereof and eluting a part of the base metal. Since the gas is degassed from the reduction tower before the start of the cleaning process, it is possible to prevent a large amount of gas from being generated from the reduction tower at the start of cleaning. According to the present invention, it is not necessary to increase the size of the gas treatment equipment, and the cost increase is prevented.

本発明のセレン含有水の処理装置の実施の形態を示す系統図である。It is a system diagram which shows the embodiment of the selenium-containing water treatment apparatus of this invention.

以下に本発明のセレン含有水の処理方法及び処理装置の実施の形態を詳細に説明する。 Hereinafter, embodiments of the selenium-containing water treatment method and treatment apparatus of the present invention will be described in detail.

本発明において処理対象となるセレン含有水は、セレンとしてセレン酸のような6価セレン、亜セレン酸のような4価セレンを含むものであり、例えば、石炭ガス化排水、土壌浸出水、上水用原水、金属精錬工業排水、ガラス工業排水、石炭又は石油等の燃焼排ガス処理プロセス排水、火力発電所の排煙脱硫排水、半導体工場排水などがあげられる。 The selenium-containing water to be treated in the present invention contains hexavalent selenium such as selenic acid and tetravalent selenium such as selenic acid as selenium. Examples include raw water for water, wastewater from the metal refining industry, wastewater from the glass industry, wastewater from the combustion exhaust gas treatment process for coal or oil, wastewater from flue gas desulfurization at thermal power plants, and wastewater from semiconductor factories.

セレン含有水をチタンと卑金属の混合物又は合金(以下、混合物等ということがある。)と接触させると、水中に卑金属イオンが溶出する。この卑金属が溶出する際に生成する電子は、金属チタンの表面に移動し、金属チタン表面でセレン含有水中のセレン、例えば6価のセレンが以下の反応式に従って還元処理される。
SeO 2−+6e+8H → Se+4H
When selenium-containing water is brought into contact with a mixture or alloy of titanium and a base metal (hereinafter, may be referred to as a mixture or the like), base metal ions are eluted in the water. The electrons generated when the base metal elutes move to the surface of the metallic titanium, and selenium in the selenium-containing water, for example, hexavalent selenium, is reduced on the surface of the metallic titanium according to the following reaction formula.
SeO 4 2- + 6e - + 8H + → Se 0 + 4H 2 O

この還元処理で用いるチタン/卑金属混合物等の卑金属には、チタンよりも卑の各種の金属を用いることができるが、卑金属イオン溶出後のpH調整により生成する水酸化物からなる汚泥が白色を呈するものが好ましい。即ち、汚泥が白色であると、褐色などに着色している場合に比べて、汚泥の処分が容易である。白色の汚泥を生成する卑金属であって、好ましいものとしては、アルミニウム、亜鉛(Zn)、スズ(Sn)などがあり、特に、アルミニウムは溶解性の面でも優れており、本発明では好適に使用できる。卑金属としては、1種の金属のみでもよいが、2種以上の複数の金属の混合物又は合金であってもよい。 As the base metal such as the titanium / base metal mixture used in this reduction treatment, various metals lower than titanium can be used, but the sludge made of hydroxide generated by pH adjustment after elution of the base metal ion exhibits a white color. Those are preferable. That is, when the sludge is white, it is easier to dispose of the sludge than when it is colored brown or the like. Base metals that generate white sludge, preferably aluminum, zinc (Zn), tin (Sn), etc., are particularly excellent in terms of solubility, and are preferably used in the present invention. can. The base metal may be only one kind of metal, but may be a mixture or alloy of two or more kinds of metals.

チタン/卑金属混合物等の形状は、表面積が大きいものであることが好ましい。例えば、粒径10μm〜5mm程度の粉状物、粒状物、繊維状物、微細薄膜状(鱗片状)物などを使用することができる。チタン/卑金属混合物は、同形状、同寸法の金属チタンと卑金属単体との混合物であってもよく、形状ないしは寸法の異なる金属チタンと卑金属単体との混合物であってもよい。また、金属チタン、卑金属単体の各々に異なる形状、異なる寸法のものが混在していてもよい。なお、金属チタンとしては、比表面積が大きいことから、スポンジチタンを用いることが好ましい。 The shape of the titanium / base metal mixture or the like preferably has a large surface area. For example, a powdery substance, a granular substance, a fibrous substance, a fine thin film-like substance (scale-like substance), or the like having a particle size of about 10 μm to 5 mm can be used. The titanium / base metal mixture may be a mixture of metallic titanium having the same shape and size and a base metal alone, or a mixture of metallic titanium having a different shape or size and a base metal alone. Further, each of the metallic titanium and the base metal alone may have different shapes and different dimensions. As the metallic titanium, it is preferable to use sponge titanium because it has a large specific surface area.

チタン/卑金属混合物等の金属チタンと卑金属との割合は、金属チタンが多いと卑金属の溶解の際に生じた電子が金属チタン表面に移動する量が増え、金属チタン表面で還元されるセレン量が増加して還元効率が向上するが、卑金属の割合が少な過ぎると卑金属の溶解の際に生じた電子のうち、多くが卑金属表面で放出されてしまい、金属チタン表面に移動してセレンの還元に寄与する電子量が少なくなり非効率的である。従って、卑金属単体の充填層の容積Mと金属チタンの充填層の容積Tiとの比M/Tiは、1/4以上、特に1/2以上であることが好ましく、また、4以下、特に2以下であることが好ましい。卑金属としては特にアルミニウムが好適であり、金属チタンの充填層の容積をTiとし、アルミニウムの充填層の容積をAlとした場合、Al/Tiが1/4〜4特に1/2〜2であると、きわめて効率よくセレンを還元処理することができる。 As for the ratio of metallic titanium to base metal such as titanium / base metal mixture, if the amount of metallic titanium is large, the amount of electrons generated when the base metal is melted increases to the surface of metallic titanium, and the amount of selenium reduced on the surface of metallic titanium increases. It increases and the reduction efficiency is improved, but if the proportion of the base metal is too small, most of the electrons generated during the dissolution of the base metal are released on the surface of the base metal and move to the surface of the metallic titanium to reduce selenium. It is inefficient because the amount of electrons that contribute is small. Therefore, the ratio M / Ti of the volume M of the packed layer of the base metal alone and the volume Ti of the packed layer of metallic titanium is preferably 1/4 or more, particularly 1/2 or more, and 4 or less, particularly 2 The following is preferable. Aluminum is particularly preferable as the base metal, and when the volume of the packed layer of metallic titanium is Ti and the volume of the packed layer of aluminum is Al, Al / Ti is 1/4 to 4 and particularly 1/2 to 2. Then, the selenium can be reduced very efficiently.

セレン含有水とチタン/卑金属混合物等とを接触させるために、チタン/卑金属混合物等を充填した充填層(充填材層)を有する還元塔にセレン含有水を好ましくは上向流にて通水する。 In order to bring the selenium-containing water into contact with the titanium / base metal mixture or the like, the selenium-containing water is preferably passed through an upward flow through a reduction tower having a filling layer (filler layer) filled with the titanium / base metal mixture or the like. ..

この還元処理は、卑金属の溶出速度を高めるために、酸性条件下で行うことが好ましい。ここで、酸性条件とするための酸添加量は、予め求めておいた卑金属(例えばアルミニウム)溶出量とセレン除去率との関係から、必要な卑金属溶出量を算出し、その卑金属溶出量とするために必要な酸(例えば塩酸)添加量に換算して求めることができる。即ち、卑金属溶出量とセレン除去率には相関があるため、目的のセレン除去率が得られるような卑金属溶出量となるように必要な酸添加量を決定することができる。また、簡便にpHを1〜3、特に1.5〜2.5の範囲を好適な範囲としてもよい。 This reduction treatment is preferably carried out under acidic conditions in order to increase the elution rate of the base metal. Here, the amount of acid added to make the acidic condition is determined by calculating the required base metal elution amount from the relationship between the base metal (for example, aluminum) elution amount and the selenium removal rate obtained in advance, and using that base metal elution amount. It can be obtained by converting it into the amount of acid (for example, hydrochloric acid) added for this purpose. That is, since there is a correlation between the base metal elution amount and the selenium removal rate, it is possible to determine the amount of acid added so that the base metal elution amount can obtain the desired selenium removal rate. Further, the pH may be easily set to 1 to 3, particularly 1.5 to 2.5 as a suitable range.

このような還元処理により、セレン含有水中のセレン、例えば、6価セレンは大部分が0価のセレンとなり、チタン/卑金属混合物等の表面に析出して除去される。残余のセレンは6価から低価数、例えば4価のセレンに還元され、凝集処理により沈殿しやすい形態となる。 By such a reduction treatment, most of the selenium in the selenium-containing water, for example, hexavalent selenium becomes zero-valent selenium, and is precipitated and removed on the surface of the titanium / base metal mixture or the like. The residual selenium is reduced from hexavalent to low valence, for example, tetravalent selenium, and becomes a form that easily precipitates by agglutination treatment.

本発明においては、上記の還元処理後、還元処理水を凝集分離処理することが好ましい。凝集分離処理は、還元処理水のpHを調整して、溶出した卑金属等を水酸化物などの不溶性化合物として析出させ、析出した金属化合物を固液分離することによって行われる。 In the present invention, it is preferable that the reduction-treated water is coagulated and separated after the above-mentioned reduction treatment. The coagulation separation treatment is carried out by adjusting the pH of the reduction-treated water, precipitating the eluted base metal or the like as an insoluble compound such as a hydroxide, and solid-liquid separating the precipitated metal compound.

還元処理水のpH調整は、通常、水酸化ナトリウム、水酸化カリウム、消石灰などのアルカリを添加して行う。金属チタンとともに使用した卑金属がアルミニウムである場合、還元処理水にアルカリを添加して、溶解アルミニウムを水酸化アルミニウムとして析出させる。この場合、アルカリの添加により還元処理水のpHを5〜8に調整するのがよく、pH4以下又はpH9以上では水酸化アルミニウムは溶解するので、不適当である。金属チタンとともに使用した卑金属が亜鉛である場合は、還元処理水のpHを9〜10に調整することにより、亜鉛を水酸化物として析出させることができる。 The pH of the reduction-treated water is usually adjusted by adding an alkali such as sodium hydroxide, potassium hydroxide, or slaked lime. When the base metal used together with the metallic titanium is aluminum, an alkali is added to the reduction-treated water to precipitate the dissolved aluminum as aluminum hydroxide. In this case, it is preferable to adjust the pH of the reduction-treated water to 5 to 8 by adding an alkali, and aluminum hydroxide dissolves at pH 4 or less or pH 9 or more, which is inappropriate. When the base metal used together with the metallic titanium is zinc, zinc can be precipitated as a hydroxide by adjusting the pH of the reduction-treated water to 9 to 10.

上記のpH調整によって金属化合物を析出させる際、有機凝集剤、無機凝集剤を添加して、固液分離性を向上させることができる。 When the metal compound is precipitated by the above pH adjustment, an organic flocculant and an inorganic flocculant can be added to improve the solid-liquid separability.

析出した金属化合物を水中から分離するために、固液分離操作を行う。固液分離は、通常用いられる任意の方法を採用することができ、沈殿、濾過、遠心分離、膜分離などにより、処理水と不溶性金属化合物からなる汚泥とに分離する。 A solid-liquid separation operation is performed to separate the precipitated metal compound from water. For the solid-liquid separation, any commonly used method can be adopted, and the treated water and sludge composed of an insoluble metal compound are separated by precipitation, filtration, centrifugation, membrane separation, or the like.

還元処理水のpH調整、固液分離により、還元処理時に溶出した卑金属が不溶化され、水中から分離され、金属を含まない処理水として排出される。また、この溶出金属が不溶性化合物、例えば、水酸化アルミニウムとして析出する際、水中に残留する還元された低価のセレンも水酸化アルミニウムのフロックに吸着され、共沈現象により析出する。 By adjusting the pH of the reduction-treated water and solid-liquid separation, the base metal eluted during the reduction treatment is insolubilized, separated from the water, and discharged as metal-free treated water. Further, when this eluted metal is precipitated as an insoluble compound, for example, aluminum hydroxide, the reduced low-valent selenium remaining in water is also adsorbed on the flocs of aluminum hydroxide and precipitated by the co-precipitation phenomenon.

また、セレン含有排水にフッ素及び又はホウ素が共存している場合、チタン/卑金属混合物等の卑金属としてアルミニウムを採用すると、還元処理後、pH調整により水酸化アルミニウムが析出する際、フッ素及び/又はホウ素も共沈現象により析出させて除去することができる。 When aluminum and / or boron coexist in the selenium-containing wastewater, if aluminum is used as the base metal such as the titanium / base metal mixture, the fluorine and / or boron will be deposited when aluminum hydroxide is precipitated by pH adjustment after the reduction treatment. Can be precipitated and removed by the co-precipitation phenomenon.

このような還元処理により、セレン含有水中のセレンは通常0.1mg/L以下の濃度にまで除去される。 By such a reduction treatment, selenium in the selenium-containing water is usually removed to a concentration of 0.1 mg / L or less.

<還元塔のガス抜き及び洗浄>
セレン含有水を金属チタンと金属アルミニウムとの混合物と接触させ、金属アルミニウムの一部を溶出させることによりセレンを還元し、さらに溶解したアルミニウムを凝集処理するセレン含有排水の処理方法においては、排水中セレンの90%以上が、金属混合物等が充填された還元塔において元素態セレン(0価)にまで還元され、不溶化する。不溶化した元素態セレンの通常50%〜70%は還元塔処理水に移行する。不溶化した元素態セレンの通常30%〜50%は還元塔処理水に移行せず、還元塔内の金属混合物等の充填層内に蓄積する。そこで、セレン含有水を所定時間又は所定量通水した後、還元塔を洗浄する。また、還元塔へのセレン含有水の通水を継続すると、充填層中にガスが溜ってくるので、本発明では、この洗浄開始前に還元塔内からガス抜きを行う。
<Degassing and cleaning of reduction tower>
In the treatment method of selenium-containing wastewater, in which selenium-containing water is brought into contact with a mixture of metallic titanium and metallic aluminum, selenium is reduced by eluting a part of metallic aluminum, and the dissolved aluminum is coagulated, the wastewater is in the wastewater. 90% or more of selenium is reduced to elemental selenium (zero valence) in a reduction tower filled with a metal mixture or the like, and is insolubilized. Usually 50% to 70% of the insolubilized elemental selenium is transferred to the reduction tower treated water. Normally, 30% to 50% of the insolubilized elemental selenium does not transfer to the reduction tower treated water, but accumulates in the packed bed such as a metal mixture in the reduction tower. Therefore, after passing a predetermined amount of selenium-containing water for a predetermined time, the reduction tower is washed. Further, if the selenium-containing water is continuously passed through the reduction tower, gas will be accumulated in the packed bed. Therefore, in the present invention, the gas is degassed from the inside of the reduction tower before the start of this cleaning.

還元塔を洗浄するには、洗浄流体として空気及び水の混合流体を還元塔に上向流にて流すのが好ましい。洗浄流体中の空気と水との体積比は、水1容に対し空気0.5〜3.0容(標準状態)程度が好ましい。洗浄流体の上向流速(LV)は水空気混合状態として150〜250m/hr特に約200m/hr程度が好ましい。 In order to clean the reduction tower, it is preferable to flow a mixed fluid of air and water as a cleaning fluid through the reduction tower in an upward flow. The volume ratio of air to water in the cleaning fluid is preferably about 0.5 to 3.0 volumes (standard state) of air with respect to 1 volume of water. The upward flow velocity (LV) of the cleaning fluid is preferably about 150 to 250 m / hr, particularly about 200 m / hr in the water-air mixed state.

還元塔からガス抜きを行うには、次のガス抜き方法A又はBを行うのが好ましい。
ガス抜き方法A:還元塔から全て又は大部分の水を抜いて充填材の全量又は大部分を気相中に露出させ、再度、水張りを所定範囲の給水速度で行うことで、還元体充填層から対象ガスを放出させる。この際、水張り時の給水速度を適正範囲に制御することにより、ガスを効率よく放出させることができる。
ガス抜き方法B:還元塔下部から気体として空気又は空気と不活性ガス(例えば窒素)との混合気体を吹き込み、還元体充填層からガスを放出させる。この際、気体供給量を適正範囲に制御することにより、ガスを効率よく放出させることができる。
In order to degas from the reduction tower, it is preferable to perform the following degassing method A or B.
Degassing method A: The reducing body filling layer is formed by draining all or most of the water from the reducing tower to expose all or most of the filler in the gas phase, and then refilling with water at a water supply rate within a predetermined range. The target gas is released from. At this time, the gas can be efficiently released by controlling the water supply speed at the time of filling with water within an appropriate range.
Degassing method B: Air or a mixed gas of air and an inert gas (for example, nitrogen) is blown as a gas from the lower part of the reduction tower, and the gas is released from the reducing material packed bed. At this time, by controlling the gas supply amount within an appropriate range, the gas can be efficiently released.

ガス抜き方法Aは、次の第1及び第2工程によって行われることが好ましい。
第1工程:水抜き(全量〜充填材層下面付近くらい)(好ましくはLV1〜15m/hr)
第2工程:水張り(充填材層上面の少し上位まで)(好ましくはLV1.5〜30m/hr)
The degassing method A is preferably performed by the following first and second steps.
First step: Draining water (total amount to near the lower surface of the filler layer) (preferably LV1 to 15 m / hr)
Second step: Water filling (up to a little above the upper surface of the filler layer) (preferably LV1.5 to 30 m / hr)

第1工程により充填材層から水が抜けると共に空気が導入されると、表面張力の低下により、充填材同士の間隙に存在して局所的に高濃度になっていたガスが空気中に分散して放出される。なお、洗浄運転の時間を短縮しようとして第1工程でLVを上げ過ぎると、充填材層に物理的に捕捉されているSS(還元処理により生成した金属セレンや充填材の摩耗による微細SSなど)が還元塔外に排出されてしまうので、LVは上記範囲とすることが好ましい。(これらSSは還元塔洗浄工程で塔外に排出されるのが好ましい。) When water is removed from the filler layer and air is introduced in the first step, the locally high concentration of gas existing in the gaps between the fillers is dispersed in the air due to the decrease in surface tension. Is released. If the LV is raised too much in the first step in an attempt to shorten the cleaning operation time, SS physically trapped in the filler layer (metal selenium generated by the reduction treatment, fine SS due to wear of the filler, etc.) Is discharged to the outside of the reduction tower, so the LV is preferably in the above range. (It is preferable that these SSs are discharged to the outside of the tower in the reduction tower cleaning step.)

第2工程では、還元塔から押し出されたガスをスクラバーに供給するのが好ましい。洗浄運転の時間を短縮しようとして第2工程のLVを上げ過ぎると、スクラバーに供給されるガス流量が多くなりすぎるので、LVは上記範囲とすることが好ましい。 In the second step, it is preferable to supply the gas extruded from the reduction tower to the scrubber. If the LV of the second step is raised too much in an attempt to shorten the cleaning operation time, the gas flow rate supplied to the scrubber becomes too large, so the LV is preferably in the above range.

ガス抜き方法Bは、次の第1’及び第2’工程によって行われるのが好ましい。
第1’工程:少量水抜きする。(充填材層上面の少し上位まで)
第2’工程:空気及び/又は不活性ガスで緩曝気する。(好ましくはLV0.025〜0.5Nm/m/min)
The degassing method B is preferably performed by the following first and second steps.
1st step: Drain a small amount of water. (Up to a little higher on the upper surface of the filler layer)
Second'step: Slow aeration with air and / or inert gas. (Preferably LV 0.025 to 0.5 Nm 3 / m 2 / min)

第2’工程では、充填材同士の間隙に存在して局所的に高濃度になっていたガスはゆっくり時間をかけて曝気気体に分散し、少しずつ塔外に排出してスクラバーに供給される。曝気が強すぎるとスクラバーに供給されるガス流量が多くなりすぎる。一方、曝気が弱すぎるとガス抜き運転が長時間に及んでしまう上に、充填材間のガスへの接触効率が低くなる。そのため、LVは上記範囲が好ましい。 In the second'step, the locally high-concentration gas existing in the gap between the fillers is slowly dispersed into the aerated gas over time, and is gradually discharged to the outside of the tower and supplied to the scrubber. .. If the aeration is too strong, the gas flow rate supplied to the scrubber will be too large. On the other hand, if the aeration is too weak, the degassing operation will take a long time, and the contact efficiency between the fillers with the gas will be low. Therefore, the LV is preferably in the above range.

このようなガス抜き方法A又はBを行った後、上記洗浄を行い、その後、水張り(満水まで)及び通水再開(通常運転に切替え)を行う。 After performing such a degassing method A or B, the above cleaning is performed, and then water filling (until full water) and resumption of water flow (switching to normal operation) are performed.

なお、還元塔洗浄排水については、濾過器で濾過することにより、洗浄排水中の不溶化セレンを処理水から選択的に除去することができる。濾過手段としては砂濾過、アンスラサイト濾過、膜濾過、長毛繊維濾過等があるが、通水温度が高い、固形物の付着性が高い、元素態セレンが酸やアルカリに不溶であり化学洗浄しにくい等の制約条件を考慮し、砂濾過、アンスラサイト濾過、またはこれらを併用した二層濾過を用いるのが望ましい。 The insolubilized selenium in the cleaning wastewater can be selectively removed from the treated water by filtering the reduction tower cleaning wastewater with a filter. Filtration means include sand filtration, anthracite filtration, membrane filtration, long-hair fiber filtration, etc., but the water flow temperature is high, solids have high adhesion, and elemental selenium is insoluble in acids and alkalis and is chemically washed. Considering the constraint conditions such as difficulty, it is desirable to use sand filtration, anthracite filtration, or double-layer filtration in which these are combined.

セレン含有水を金属チタンと金属アルミニウムとの混合物と接触させ、金属アルミニウムの一部を溶出させることによりセレンを還元する処理では水素ガスが副生成物として発生する。この水素ガスを回収することにより、さまざまな用途に活用できる。例えば燃料や排水処理の還元剤として使用することができる。なお、還元塔からの水素ガスには微量な硫化水素等が含まれる。これらはアルカリスクラバーや、硫化水素吸収材を充填したカラムに発生ガスを通気することで除去が可能であり、純度の高い水素ガスが得られる。 In the process of reducing selenium by bringing selenium-containing water into contact with a mixture of metallic titanium and metallic aluminum and eluting a part of metallic aluminum, hydrogen gas is generated as a by-product. By recovering this hydrogen gas, it can be used for various purposes. For example, it can be used as a reducing agent for fuel and wastewater treatment. The hydrogen gas from the reduction tower contains a small amount of hydrogen sulfide and the like. These can be removed by aerating the generated gas through a column filled with an alkaline scrubber or a hydrogen sulfide absorbent, and high-purity hydrogen gas can be obtained.

[処理装置]
以下に、本発明のセレン含有水の処理装置の一実施形態を示す図1を参照して説明する。
[Processing device]
Hereinafter, it will be described with reference to FIG. 1 showing an embodiment of the selenium-containing water treatment apparatus of the present invention.

原水(セレン含有水)は、原水配管1によりpH調整槽2に導入され、塩酸などの酸が添加手段2aによって添加され、好ましくはpH3〜5特に3.5〜4.5に調整される。また、この実施の形態では、原水に含まれるスケール成分の濃度に応じて酸以外にスケール分散剤が添加手段2bから添加されることがある。スケール分散剤としては、アクリル酸系ポリマー、ポリリン酸塩などを用いることができるが、これに限定されない。 The raw water (selenium-containing water) is introduced into the pH adjusting tank 2 by the raw water pipe 1, and an acid such as hydrochloric acid is added by the adding means 2a, and the pH is preferably adjusted to 3 to 5, particularly 3.5 to 4.5. Further, in this embodiment, a scale dispersant may be added from the adding means 2b in addition to the acid depending on the concentration of the scale component contained in the raw water. As the scale dispersant, an acrylic acid-based polymer, a polyphosphate, or the like can be used, but the scale dispersant is not limited thereto.

pH調整槽2からの水は、中継槽3、ポンプ4、配管5を介して還元塔7に送られる。この配管5において蒸気添加手段6aから蒸気が添加されて40〜80℃特に50〜65℃に加温されると共に、酸添加手段6bから塩酸などの酸が添加され、pH1〜3特に1.5〜2.5にpH調整される。この水が還元塔7に通水され、チタン/卑金属混合物等の充填層7Aでセレンが還元除去される。 The water from the pH adjusting tank 2 is sent to the reduction tower 7 via the relay tank 3, the pump 4, and the pipe 5. In this pipe 5, steam is added from the steam adding means 6a and heated to 40 to 80 ° C., particularly 50 to 65 ° C., and an acid such as hydrochloric acid is added from the acid adding means 6b to pH 1-3, especially 1.5. The pH is adjusted to ~ 2.5. This water is passed through the reduction tower 7, and selenium is reduced and removed in the packed bed 7A such as a titanium / base metal mixture.

還元塔7から流出した還元処理水は、配管8を介してpH調整槽13に導入され、アルカリ添加手段13aからNaOHなどのアルカリが添加され、水酸化物が析出するpHに調整される。卑金属がアルミニウムである場合はpH5〜8、好ましくは7〜8、亜鉛である場合はpH9〜10に調整される。 The reduction-treated water flowing out of the reduction tower 7 is introduced into the pH adjusting tank 13 via the pipe 8, and an alkali such as NaOH is added from the alkali adding means 13a to adjust the pH to a pH at which hydroxides are precipitated. When the base metal is aluminum, the pH is adjusted to 5 to 8, preferably 7 to 8, and when zinc is used, the pH is adjusted to 9 to 10.

pH調整槽13からの水は凝集槽14に導入され、凝集剤添加手段14aからポリマー凝集剤が添加され、凝集処理された後、沈殿槽15に導入され、沈殿処理される。上澄水は処理水として配管17から取り出される。沈降した汚泥の一部は返送配管18によってpH調整槽13に返送され、残部は配管19によって排出される。上記のポリマー凝集剤としてはポリアクリルアミド、アクリルアミド−アクリル酸ソーダ共重合体などが好適である。 The water from the pH adjusting tank 13 is introduced into the coagulation tank 14, the polymer coagulant is added from the coagulant adding means 14a, the coagulation treatment is performed, and then the water is introduced into the settling tank 15 and is subjected to the precipitation treatment. The supernatant water is taken out from the pipe 17 as treated water. A part of the settled sludge is returned to the pH adjusting tank 13 by the return pipe 18, and the rest is discharged by the pipe 19. As the above polymer flocculant, polyacrylamide, acrylamide-sodium acrylate copolymer and the like are suitable.

前記還元塔7では硫化水素を含むガスが発生する。このガスは、塔頂から配管10によって抜き出され、スクラバー11によって硫化水素ガスが吸収処理される。 Gas containing hydrogen sulfide is generated in the reduction tower 7. This gas is extracted from the top of the tower by the pipe 10, and the hydrogen sulfide gas is absorbed and treated by the scrubber 11.

なお、還元塔7の通水条件としては次が好ましい。
通水:上向流
充填層:アルミニウムとチタン(好ましくはスポンジチタン)の混合物
(容積比:Al/Ti=1/4〜4、好ましくは1/2〜2)
通水温度:30〜90℃、好ましくは40〜80℃特に好ましくは50〜65℃
通水速度(SV):1〜20hr−1、好ましくは5〜10hr−1
The following are preferable as the water flow conditions for the reduction tower 7.
Water flow: Upward flow Filling layer: Mixture of aluminum and titanium (preferably titanium sponge)
(Volume ratio: Al / Ti = 1/4 to 4, preferably 1/2 to 2)
Water flow temperature: 30 to 90 ° C, preferably 40 to 80 ° C, particularly preferably 50 to 65 ° C.
Water flow rate (SV): 1 to 20 hr -1, preferably 5 to 10 hr -1

また、この実施の形態では、還元塔7に気体を供給してガス抜き方法Bを行ったり、洗浄水及び空気を供給して洗浄したりするために、配管5に洗浄水及び/又は空気の添加手段6cが接続されている。還元塔7へのセレン含有水の通水を停止した状態で添加手段6cによって洗浄水及び空気を供給し、還元塔7内を洗浄水及び空気の混合流体で洗浄する際の洗浄排水は配管9から洗浄排水処理設備へ送水される。 Further, in this embodiment, in order to supply gas to the reduction tower 7 to perform the degassing method B, or to supply cleaning water and air for cleaning, the cleaning water and / or air is supplied to the pipe 5. The adding means 6c is connected. When the cleaning water and air are supplied by the adding means 6c with the selenium-containing water stopped flowing to the reduction tower 7, and the inside of the reduction tower 7 is cleaned with a mixed fluid of cleaning water and air, the cleaning drainage is pipe 9 Is sent to the washing and wastewater treatment facility.

この実施の形態では、還元塔7の洗浄を開始する前のガス抜き工程(ガス抜き方法A)を行うために、還元塔7内の水を抜き出すための配管20が還元塔7の下部に接続されている。該配管20にバルブ21が設けられている。なお、配管20に吸引ポンプが設けられてもよい。水抜き配管20の接続高さは、塔底や還元体充填層の下部に限定されず、充填層の間でも良い。 In this embodiment, in order to perform the degassing step (degassing method A) before starting the cleaning of the reduction tower 7, the pipe 20 for draining the water in the reduction tower 7 is connected to the lower part of the reduction tower 7. Has been done. A valve 21 is provided in the pipe 20. A suction pump may be provided in the pipe 20. The connection height of the drainage pipe 20 is not limited to the bottom of the tower or the lower part of the reducing body filling layer, and may be between the filling layers.

還元塔7からのガス抜き及び還元塔7の洗浄の好適な方法及び条件は前述の通りである。 Suitable methods and conditions for degassing the reduction tower 7 and cleaning the reduction tower 7 are as described above.

本発明では、還元塔流出ガス中の水素、硫化水素、セレン化水素の濃度をガスセンサーによって測定し、ガス濃度が所定以下になるように通水速度もしくは送風速度を制御してもよい。ガスセンサーの設置位置は、還元塔上部やガス吸引配管中、スクラバー設備などが例示される。 In the present invention, the concentrations of hydrogen, hydrogen sulfide, and hydrogen selenide in the reduction tower outflow gas may be measured by a gas sensor, and the water flow rate or the ventilation rate may be controlled so that the gas concentration becomes a predetermined value or less. Examples of the installation position of the gas sensor include the upper part of the reduction tower, the gas suction pipe, and the scrubber equipment.

以下に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded.

[実施例1(ガス抜き方法Aによるガス抜き)]
φ20×2500mmHの実験カラムに、下記の還元体aと還元体bの混合還元体を嵩容積600mL充填して還元塔を構成し、試験原水として下記の調製排水を96時間、SV10hr−1の速度にて上向流で通水した(通常運転)。
還元体a:粒径2〜4mm、純度99%以上のスポンジチタン300mL
還元体b:粒径2.0mm、純度99.7%の金属アルミニウム300ml
調製排水:Se(VI)2mg/L、NaSO 5,000mg/L
調製排水は、pH4とした後、HClを300mg/L添加したものである。
[Example 1 (degassing by degassing method A)]
An experimental column of φ20 × 2500 mmH was filled with a mixed reducing body of the following reducing body a and reducing body b in a bulk volume of 600 mL to form a reducing tower, and the following prepared wastewater was used as test raw water for 96 hours at a speed of SV10hr-1. Water was passed in the upward flow (normal operation).
Reduced body a: 300 mL of titanium sponge with a particle size of 2 to 4 mm and a purity of 99% or more
Reduced body b: Metallic aluminum 300 ml having a particle size of 2.0 mm and a purity of 99.7%
Prepared wastewater: Se (VI) 2 mg / L, Na 2 SO 4 5,000 mg / L
The prepared wastewater is prepared by adding 300 mg / L of HCl after adjusting the pH to 4.

実験カラムは、下部に調製排水の流入口、水および空気の流入口を有し、上部にガス希釈用の空気流入口、処理水及び気体の流出口を有した構造となっており、出口配管から処理水の採取および出口ガス濃度の測定を行った。ガス希釈用の空気は、3.6L/minの流量で送風した。 The experimental column has a structure with an inlet for prepared wastewater, an inlet for water and air at the bottom, an air inlet for gas dilution, and an outlet for treated water and gas at the upper part. The treated water was collected from the water and the outlet gas concentration was measured. Air for gas dilution was blown at a flow rate of 3.6 L / min.

通常運転後に通水を停止し、ガス抜き及び洗浄を次のようにして行った。即ち、カラム内の水をLV10m/hrで還元体充填層下部まで抜き出し(水抜き)、その後、還元塔下部からLV7m/hrで送水して還元体充填層の上部まで水張りしてガス抜きを行った。その後、還元塔下部から気液混合水(水:空気=1:1.5(容積比))を2分間LV200m/hrで供給して充填材の洗浄を行った。その後、還元塔を満水まで水張りした。 After normal operation, water flow was stopped, and degassing and cleaning were performed as follows. That is, the water in the column is drawn out to the lower part of the reducing body filling layer at LV10 m / hr (drainage), and then water is sent from the lower part of the reducing tower at LV7 m / hr to fill the upper part of the reducing body packed layer with water to degas. rice field. Then, gas-liquid mixed water (water: air = 1: 1.5 (volume ratio)) was supplied from the lower part of the reduction tower at LV 200 m / hr for 2 minutes to wash the filler. After that, the reduction tower was filled with water.

[実施例2](ガス抜き方法B(緩曝気)によるガス抜き)
実施例1において、通常運転後のガス抜き及び洗浄運転を以下のように行った。
[Example 2] (Degassing by degassing method B (slow aeration))
In Example 1, the degassing and cleaning operations after the normal operation were performed as follows.

充填材層上面の少し上位まで水抜きを行った後、還元塔下部から空気をLV0.12Nm/m/minで送風してガス抜きを行った。その後、還元塔下部から実施例1と同様の気液混合水を2分間LV200m/hrで供給して充填材の洗浄を行った。その後、還元塔を満水まで水張りした。 After draining water slightly above the upper surface of the filler layer, air was blown from the lower part of the reduction tower at LV 0.12 Nm 3 / m 2 / min to degas. Then, the same gas-liquid mixed water as in Example 1 was supplied from the lower part of the reduction tower at LV 200 m / hr for 2 minutes to wash the filler. After that, the reduction tower was filled with water.

[比較例1](ガス抜き工程なし)
実施例1において、通常運転後、ガス抜きすることなく、洗浄運転を以下のように行った。充填材層上面の少し上位まで水抜きを行った後、還元塔下部から実施例1と同様の気液混合水を2分間LV200m/hrで供給して充填材の洗浄を行い、還元塔を満水まで水張りした。
[Comparative Example 1] (No degassing step)
In Example 1, after the normal operation, the washing operation was performed as follows without degassing. After draining water slightly above the upper surface of the filler layer, the same gas-liquid mixed water as in Example 1 is supplied from the lower part of the reduction tower at LV 200 m / hr for 2 minutes to wash the filler, and the reduction tower is filled with water. Filled with water.

<結果>
洗浄用開始時における還元塔出口の水素ガス濃度(最大)は次の通りであり、ガス抜き方法A及びBにより、還元塔内からガスが十分に排出されることが認められた。
実施例1:1.3%
実施例2:2.7%
比較例1:58%
<Result>
The hydrogen gas concentration (maximum) at the outlet of the reduction tower at the start of cleaning was as follows, and it was confirmed that the gas was sufficiently discharged from the reduction tower by the degassing methods A and B.
Example 1: 1.3%
Example 2: 2.7%
Comparative Example 1: 58%

7 還元塔
11 スクラバー
7 Reduction tower 11 Scrubber

Claims (6)

セレン含有水を還元塔に通水し、該還元塔に充填された金属チタンとチタンより卑な金属との混合物又は合金(以下、「充填材」と称す。)と接触させて、前記卑な金属の単体の一部を溶出させることにより、該セレン含有水中のセレンを還元処理するセレン含有水の処理方法であって、
該還元塔へのセレン含有水の通水を停止した後、還元塔内を空気及び水で洗浄する洗浄工程を行うセレン含有水の処理方法において、
該還元塔へのセレン含有水の通水を停止した後、該洗浄工程に先立ち、前記還元塔内から前記充填材同士の間隙に存在するガスを排出するガス抜きを行うことを特徴とするセレン含有水の処理方法。
The selenium-containing water is passed through a reduction tower and brought into contact with a mixture or alloy of metallic titanium filled in the reduction tower and a metal lower than titanium (hereinafter referred to as "filler") to bring the selenium-containing water into contact with the base. A method for treating selenium-containing water, which reduces selenium in the selenium-containing water by eluting a part of a single metal.
In a method for treating selenium-containing water, a washing step of washing the inside of the reduction tower with air and water is performed after stopping the flow of selenium-containing water to the reduction tower.
After stopping the flow of selenium-containing water to the reduction tower, selenium is degassed from the inside of the reduction tower to discharge the gas existing in the gap between the fillers, prior to the cleaning step. Method of treating contained water.
請求項1において、前記還元塔内から水を抜き、再度水張りすることにより前記ガス抜きを行うことを特徴とするセレン含有水の処理方法。 The method for treating selenium-containing water according to claim 1, wherein the degassing is performed by draining water from the reduction tower and refilling it with water. 請求項1において、前記還元塔内に空気及び/又は不活性ガスを通気することにより前記ガス抜きを行うことを特徴とするセレン含有水の処理方法。 The method for treating selenium-containing water according to claim 1, wherein the degassing is performed by aerating air and / or an inert gas into the reducing tower. 請求項1において、前記還元塔からのガス抜きを、以下のガス抜き方法A又はBで行うことを特徴とするセレン含有水の処理方法。The method for treating selenium-containing water according to claim 1, wherein the degassing from the reduction tower is performed by the following degassing method A or B.
ガス抜き方法A:還元塔から、全量ないしは充填材層下面まで、LV1〜15m/hrで水を抜いて充填材の全量又は大部分を気相中に露出させた後、充填材層上面の少し上位までLV1.5〜30m/hrで水張りする。Degassing method A: Water is drained from the reduction tower to the entire amount or the lower surface of the filler layer at LV1 to 15 m / hr to expose all or most of the filler in the gas phase, and then a small amount on the upper surface of the filler layer. Fill the upper part with water at LV 1.5 to 30 m / hr.
ガス抜き方法B:充填材層上面の少し上位まで水抜きした後、還元塔下部から空気及び/又は不活性ガスをLV0.025〜0.5NmDegassing method B: After draining water slightly above the upper surface of the filler layer, air and / or the inert gas is discharged from the lower part of the reduction tower at LV 0.025 to 0.5 Nm. 3 /m/ M 2 /minで吹き込んで緩曝気する。Blow at / min for slow aeration.
セレン含有水を、金属チタンとチタンより卑な金属の単体との混合物又は合金(以下、「充填材」と称す。)と接触させて、前記卑な金属の一部を溶出させることにより該セレン含有水中のセレンを還元処理する還元塔と、
該還元塔に空気及び水を供給して洗浄を行う洗浄手段と
を有するセレン含有水の処理装置において、
前記還元塔へのセレン含有水の通水を停止した後、かつ、前記還元塔内に空気及び水を供給して洗浄を行う前に、前記還元塔内から水を抜き再度水張りすることにより還元塔内から前記充填材同士の間隙に存在するガスを排出するガス抜きを行うガス抜き手段を備えたことを特徴とするセレン含有水の処理装置。
The selenium-containing water is brought into contact with a mixture or alloy (hereinafter referred to as "filler") of metallic titanium and a simple substance of a metal less base than titanium, and a part of the base metal is eluted to elute the selenium. A reduction tower that reduces selenium in the contained water,
In a selenium-containing water treatment apparatus having a cleaning means for supplying air and water to the reduction tower for cleaning.
After stopping the flow of selenium-containing water to the reduction tower and before supplying air and water to the reduction tower for cleaning, the reduction is performed by draining water from the reduction tower and refilling it with water. processor of selenium-containing water, characterized in that it comprises a venting means for performing degassing for discharging gas present in the gap between the filler from the tower.
セレン含有水を、金属チタンとチタンより卑な金属の単体との混合物又は合金(以下、「充填材」と称す。)と接触させて、前記卑な金属の一部を溶出させることにより該セレン含有水中のセレンを還元処理する還元塔と、
該還元塔に空気及び水を供給して洗浄を行う洗浄手段と
を有するセレン含有水の処理装置において、
前記還元塔へのセレン含有水の通水を停止した後、かつ、前記還元塔内に空気及び水を供給して洗浄を行う前に、前記還元塔内に空気及び/又は不活性ガスを通気して還元塔内から前記充填材同士の間隙に存在するガスを排出するガス抜きを行うガス抜き手段を備えたことを特徴とするセレン含有水の処理装置。
The selenium-containing water is brought into contact with a mixture or alloy (hereinafter referred to as "filler") of metallic titanium and a simple substance of a metal less base than titanium, and a part of the base metal is eluted to elute the selenium. A reduction tower that reduces selenium in the contained water,
In a selenium-containing water treatment apparatus having a cleaning means for supplying air and water to the reduction tower for cleaning.
After stopping the flow of selenium-containing water to the reduction tower and before supplying air and water to the reduction tower for cleaning , air and / or an inert gas is ventilated in the reduction tower. selenium-containing water treatment apparatus characterized by comprising a venting means for performing degassing for discharging gas present in the gap between the filler from the reducing tower to.
JP2017174989A 2017-09-12 2017-09-12 Treatment method and treatment equipment for selenium-containing water Active JP6939296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017174989A JP6939296B2 (en) 2017-09-12 2017-09-12 Treatment method and treatment equipment for selenium-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017174989A JP6939296B2 (en) 2017-09-12 2017-09-12 Treatment method and treatment equipment for selenium-containing water

Publications (2)

Publication Number Publication Date
JP2019051447A JP2019051447A (en) 2019-04-04
JP6939296B2 true JP6939296B2 (en) 2021-09-22

Family

ID=66013780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017174989A Active JP6939296B2 (en) 2017-09-12 2017-09-12 Treatment method and treatment equipment for selenium-containing water

Country Status (1)

Country Link
JP (1) JP6939296B2 (en)

Also Published As

Publication number Publication date
JP2019051447A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP5261950B2 (en) Method and apparatus for treating selenium-containing wastewater
KR101653129B1 (en) Method of treating coal gasification wastewater
JP4958171B2 (en) Wastewater treatment method
JP2010527287A (en) Wastewater mercury removal method
CN104445733A (en) Technology for removing thallium with lead and zinc smelting flue gas washing waste acid water
CN106630307A (en) System and method for treating coal gasification grey water
JP4877103B2 (en) Method and apparatus for treating selenium-containing wastewater
JP5109505B2 (en) Method and apparatus for treating selenium-containing wastewater
JP6939296B2 (en) Treatment method and treatment equipment for selenium-containing water
JP5911100B2 (en) Wastewater treatment method
JP3945216B2 (en) Waste acid gypsum manufacturing method
JP6213044B2 (en) Method and apparatus for treating selenium-containing water
JP6879801B2 (en) Gypsum recovery system and gypsum recovery method
KR100968952B1 (en) Method and apparatus for purifing drainage of a metal mine using the sludge of a coal mine
JP2010227898A (en) Treatment method and apparatus for solution containing selenium and fluorine
JP4014679B2 (en) Wastewater treatment method
JP2006263703A (en) Treatment method and treatment apparatus of selenium-containing water
JP4041977B2 (en) Method and apparatus for processing solution containing selenium
JP2006218343A (en) Method and apparatus for treating selenium-containing waste water
JP2015039651A (en) Method and apparatus for treating selenium-containing water
JP4771284B2 (en) Method and apparatus for treating selenium-containing wastewater
JP4214326B2 (en) Water treatment equipment
JPS601073B2 (en) Method for removing heavy metals from wastewater
JP5877588B2 (en) Wastewater treatment method
JP2009220102A (en) Method for treating selenium-containing waste water using iron powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R150 Certificate of patent or registration of utility model

Ref document number: 6939296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150