【0001】
【発明の属する技術分野】
本発明は、新規な中間体化合物、その製造方法またはその中間体化合物を用いる光学活性な化合物の製造方法に関する。
【0002】
さらに詳しくは、(1)一般式(I)
【0003】
【化12】
【0004】
(式中、すべての記号は後記と同じ意味を表わす。)で示される新規な中間体化合物、
(2)それらの製造方法、または
(3)それらの中間体化合物を用いる光学活性な一般式(V)
【0005】
【化13】
【0006】
(式中、すべての記号は後記と同じ意味を表わす。)で示される化合物の製造方法に関する。
【0007】
【発明の背景および従来技術】
本発明で製造される一般式(V)
【0008】
【化14】
【0009】
(式中、すべての記号は後記と同じ意味を表わす。)で示される化合物のうち、(2R)−2−プロピルオクタン酸および(2S)−2−プロピニルヘプタン酸は、医薬品として有用な化合物である。例えば、(2R)−2−プロピルオクタン酸については、そのラセミ化合物がアストロサイトの機能異常による神経性疾患の治療または予防剤として、EP632008号明細書の実施例7(33)に記載されている。また、(2S)−2−プロピニルヘプタン酸については、そのラセミ化合物が神経栄養因子として、US5672746号明細書の実施例2に記載されている。
【0010】
特に、2−プロピルオクタン酸はその後の研究の結果、そのR体が特に作用が強く、毒性も低いことが見出され、そのため光学活性なR体を効率よく得る方法について種々検討が行われた。
【0011】
(2R)−2−プロピルオクタン酸の製造方法として、例えば、(1)特開平8−291106号明細書に、ラセミ体の2−(2−プロピニル)オクタン酸と光学活性なアミンの塩から光学分割により光学活性な塩を分離し、酸処理後、得られた光学活性な(2S)−2−(2−プロピニル)オクタン酸を還元する方法が記載されている。この反応で得られた目的化合物は化学収率(12%)および光学純度(90.0%e.e.)とも悪く、実用的な方法ではなかった。
【0012】
(2)特開平8−295648号明細書には、光学活性なプロリノールを用いる方法が記載されている。この方法で得られた(2R)−2−プロピルオクタン酸の光学純度は96.0%e.e.であったが、目的化合物までに5工程の反応を要し、化学収率が低く(全工程収率20.2%)、実用的な方法ではなかった。
【0013】
(3)WO99/58513号明細書には、オクタン酸とカンファースルタムとを反応させて得られた新規な中間体を経て4工程で、(2R)−2−プロピルオクタン酸を製造する方法が記載されている。新規な中間体であるN−(2S−(2−プロペニル)オクタノイル)−(1S)−(−)−2,10−カンファースルタムから目的である(2R)−2−プロピルオクタン酸を製造する工程には2つあり、それらの反応によって得られる目的化合物の光学純度はそれぞれ95.2%e.e.と99%e.e.とある。しかし、目的化合物を製造するまでの全工程化学収率はそれぞれ53%、42.5%と低かった。さらに、原料として用いるカンファースルタムは高価な試薬である上に、反応途中での回収率が30%以下であり、再利用がほとんど不可能なため無駄が多く、効率が悪かった。
【0014】
また、該明細書にはN−(2S−(2−プロピニル)オクタノイル)−(1S)−(−)−2,10−カンファースルタムから(2R)−2−プロピルオクタン酸を製造する工程も記載されているが、前記と同様の問題点があった。
【0015】
(4)WO00/48982号明細書には、(2S)−2−(2−プロペニル)オクタン酸または(2S)−2−(2−プロピニル)オクタン酸から、白金カーボン触媒を用いた接触還元による(2R)−2−プロピルオクタン酸を製造する方法が記載されている。
【0016】
【発明が解決しようとする課題】
医薬品として有用性が高い一般式(V)で示される化合物を、化学収率および光学純度ともに高く得ることができる製造方法が望まれている。
【0017】
【課題を解決するための手段】
本発明者らは、鋭意検討した結果、光学活性な(R)−(+)−4−ベンジル−2−オキサゾリジノンを用いることにより、一般式(I)
【0018】
【化15】
【0019】
(式中、すべての記号は後記と同じ意味を表わす。)で示される新規な化合物を得ることに成功した。また、その新規な化合物から、化学収率(全合成収率80%以上)および光学純度(97.0%以上)ともに高い光学活性な一般式(V)
【0020】
【化16】
【0021】
(式中、すべての記号は後記と同じ意味を表わす。)で示される化合物を得ることに成功した。
【0022】
さらに、一般式(V)で示される化合物を光学活性なアミン塩と反応させ、再結晶し、次いで酸処理することでより光学純度(99.0%以上)の高い一般式(V)で示される化合物を得ることにも成功し、本発明を完成した。
【0023】
本発明の方法によれば、一般式(V)で示される化合物を高い化学収率および高い光学純度で製造することができる上に、安価に製造することができる。つまり、本発明中で用いる試薬、具体的には(R)−(+)−4−ベンジル−2−オキサゾリジノンは安価である。また、これは反応中に高い回収率で回収できるため、何回でも本発明の工程に再利用することができる。よって、さらに安価に製造することが可能でありかつ無駄がなく、効率よく反応を行うことができる。
【0024】
すなわち、本発明は一般式(I)で示される新規な中間体化合物、その製造方法およびその中間体化合物を用いる光学活性な一般式(V)で示される化合物の製造方法に関する。
【0025】
詳しくは、(1)一般式(I)
【0026】
【化17】
【0027】
(式中、R1はプロピル、2−プロペニルまたは2−プロピニルを表わし、R2はC4〜8アルキルを表わす。)で示される化合物、
(2)一般式(I)中、R1がプロピルであり、R2がヘキシルである(4R)−N−[(2R)−2−プロピルオクタノイル]−4−ベンジル−2−オキサゾリジノン、
(3)一般式(I)中、R1が2−プロペニルであり、R2がヘキシルである(4R)−N−[(2S)−2−(2−プロペニル)オクタノイル]−4−ベンジル−2−オキサゾリジノン、
(4)一般式(I)中、R1が2−プロピニルであり、R2がヘキシルである(4R)−N−[(2S)−2−(2−プロピニル)オクタノイル]−4−ベンジル−2−オキサゾリジノン、
(5)一般式(I)中、R1がプロピルであり、R2がペンチルである(4R)−N−[(2R)−2−プロピルヘプタノイル]−4−ベンジル−2−オキサゾリジノン、
(6)一般式(I)中、R1が2−プロペニルであり、R2がペンチルである(4R)−N−[(2S)−2−(2−プロペニル)ヘプタノイル]−4−ベンジル−2−オキサゾリジノン,
(7)一般式(I)中、R1が2−プロピニルであり、R2がペンチルである(4R)−N−[(2S)−2−(2−プロピニル)ヘプタノイル]−4−ベンジル−2−オキサゾリジノン、
(8)一般式(I)中、R1がプロピルであり、R2がブチルである(4R)−N−[(2R)−2−プロピルヘキサノイル]−4−ベンジル−2−オキサゾリジノン、
(9)一般式(I)中、R1が2−プロペニルであり、R2がブチルである(4R)−N−[(2S)−2−(2−プロペニル)ヘキサノイル]−4−ベンジル−2−オキサゾリジノン、もしくは
(10)一般式(I)中、R1が2−プロピニルであり、R2がブチルである(4R)−N−[(2S)−2−(2−プロピニル)ヘキサノイル]−4−ベンジル−2−オキサゾリジノン、または
(11)一般式(III)
【0028】
【化18】
【0029】
(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物と、一般式(IV)
【0030】
【化19】
【0031】
(式中、R1−1は、2−プロペニルまたは2−プロピニルを表わし、Xはハロゲン原子を表わす。)で示される化合物とを反応させることを特徴とする一般式(I-1)
【0032】
【化20】
【0033】
(式中、全ての記号は前記と同じ意味を表わす。)で示される化合物の製造方法、
(12)一般式(I-1)
【0034】
【化21】
【0035】
(式中、全ての記号は前記と同じ意味を表わす。)で示される化合物を還元反応に付すことを特徴とする一般式(I-2)
【0036】
【化22】
【0037】
(式中、全ての記号は前記と同じ意味を表わす。)で示される化合物の製造方法、
(13)一般式(I-2)
【0038】
【化23】
【0039】
(式中、全ての記号は前記と同じ意味を表わす。)で示される化合物を加水分解することを特徴とする一般式(V-2)
【0040】
【化24】
【0041】
(式中、全ての記号は前記と同じ意味を表わす。)で示される化合物の製造方法、
(14)一般式(I-1)
【0042】
【化25】
【0043】
(式中、全ての記号は前記と同じ意味を表わす。)で示される化合物を加水分解することを特徴とする一般式(V-1)
【0044】
【化26】
【0045】
(式中、全ての記号は前記と同じ意味を表わす。)で示される化合物の製造方法、
(15)一般式(V)
【0046】
【化27】
【0047】
(式中、全ての記号は前記と同じ意味を表わす。)で示される化合物に光学活性なアミンを反応させ、得られた塩を再結晶し、次いで酸処理することを特徴とするより光学純度の高い一般式(V)で示される化合物を製造する方法に関する。
【0048】
本発明中、R1が表わすプロピル、2−プロペニルまたは2−プロピニルはいずれも好ましい。
【0049】
本発明中、R2が表わすC4〜8アルキルとは、ブチル、ペンチル、ヘキシル、ヘプチル、オクチルまたはそれらの異性体が含まれ、そのいずれも好ましい。
【0050】
本発明中、R1とR2が取りうる組合せはいずれも好ましい。具体的には、R1がプロピルおよびR2がブチル、R1がプロピルおよびR2がペンチル、R1がプロピルおよびR2がヘキシル、R1が2−プロペニルおよびR2がブチル、R1が2−プロペニルおよびR2がペンチル、R1が2−プロペニルおよびR2がヘキシル、R1が2−プロピニルおよびR2がブチル、R1が2−プロピニルおよびR2がペンチル、またはR1が2−プロピニルおよびR2がヘキシルが挙げられる。好ましくは、R1がプロピルおよびR2がヘキシル、R1が2−プロペニルおよびR2がヘキシル、R1が2−プロピニルおよびR2がブチル、R1が2−プロピニルおよびR2がペンチルまたはR1が2−プロピニルおよびR2がヘキシルが挙げられる。
【0051】
本発明の一般式(I)で示される新規な中間体、およびそれを用いる一般式(V)で示される化合物の製造方法は、以下の反応工程式(1)および(2)で示される。
【0052】
【化28】
【0053】
【化29】
【0054】
反応工程式中、Bnはベンジルを表わし、NH2−R3は光学活性なアミンを表わす。
【0055】
工程[1]の反応は公知であり、例えば、有機溶媒(テトラヒドロフラン、ジエチルエーテル、N,N−ジメチルホルムアミド、ジメトキシエタン、ジエチレングリコールジメチルエーテル、トルエン等)中、塩基(第3級アミン(トリエチルアミン、ジイソプロピルエチルアミン、4−ジメチルアミノピリジン等)、ブチルリチウム、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラザン、水素化ナトリウム、水素化カリウム、カリウムt−ブトキシド、リチウムt−ブトキシド等)の存在下、−20〜40℃で反応させることにより行われる。
【0056】
工程[2]の反応は公知であり、例えば、有機溶媒(テトラヒドロフラン、ジエチルエーテル、ベンゼン、ジメトキシエタン、ヘキサン、トルエン、1、3-ジメチル-2-イミダゾリジノン、ヘキサメチルリン酸トリアミド等)中、塩基(リチウムヘキサメチルジシラザン、ナトリウムヘキサメチルジシラザン、カリウムヘキサメチルジシラザン、n−ブチルリチウム、s−ブチルリチウム、リチウムジイソプロピルアミド、カリウムt−ブトキシド、リチウムt−ブトキシド等)存在下、−20〜40℃で反応させることにより行われる。この反応で得られた化合物(I−1)は新規な化合物である。
【0057】
工程[3]の還元反応は公知であり、例えば、WO99/58513、およびWO00/48982に接触還元の方法が記載されている。
【0058】
具体的には、例えば、有機溶媒(メタノール、エタノール、イソプロパノール、テトラヒドロフラン、酢酸エチル、テトラヒドロピラン、ジオキサン、ジメトキシエタン、ジエチルエーテル、酢酸またはこれらの混合溶媒等)中、水素雰囲気下、触媒(パラジウムカーボン、パラジウム、白金、白金カーボン、酸化白金、ニッケル、水酸化パラジウム、ロジウム、ロジウムカーボン、ルテニウム、ルテニウムカーボンクロロトリス(トリフェニルホスフィン)ロジウム等)を用いて、0〜60℃で反応させることにより行われる。この反応で得られた化合物(I−2)は新規な化合物である。
【0059】
工程[4]の加水分解反応は公知であり、例えば、有機溶媒(テトラヒドロフラン、エチレングリコールジメチルエーテル等)中、過酸(過酸化水素、t−ブチルヒドロペルオキシドまたはそれらの水溶液等)存在下または非存在下、水酸化テトラアルキルアンモニウム(水酸化ベンジルトリメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトライソプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化テトラオクチルアンモニウムまたはそれらの水溶液等)を用いて、−20〜40℃で反応させることにより行われる。
【0060】
工程[5]は、上記した工程[4]と同様の操作により行われるが、さらに、過剰量の二重結合を有する化合物(2−メチル−2−ブテン等)を用いても構わない。
【0061】
工程[6]は、上記した工程[3]と同様の操作により行われる。
【0062】
上記反応工程式(1)に従って操作することにより、一般式(I-1)で示される新規な化合物および一般式(I-2)で示される新規な化合物を得ることができる。これは、医薬品として有用な(2R)−2−プロピルオクタン酸に代表される一般式(V)で示される化合物を製造するための中間体化合物として大変有用である。
【0063】
工程[7]は、一般式(V)で示される化合物と光学活性なアミン[(R)−(+)−1−フェネチルアミン、(R)−(+)−1−(4−メチルフェニル)エチルアミン、L−アルギニン、2R−アミノブタノール、(S)−(−)−ニコチン、ヒドロキニン、デヒドロアビエチルアミン、(1S,2S)−メチルプセイドエフェドリン、(1R,2S)−(−)−ノルエフェドリン、L−チロシン、(−)−cis−ベンジル−(2−ヒドロキシメチルシクロヘキシル)アミン、(S)−(−)−1−メチル−2−ピロリジンメタノール等]を反応させることにより行われる。
【0064】
該工程中、好ましい光学活性なアミンは(R)−(+)−1−フェネチルアミンである。
【0065】
工程[8]は、前記した工程[7]で得られた結晶を、有機溶媒(n−ヘキサン、n−ヘプタン等)で再結晶し、次いで酸(塩酸、硝酸、臭化水素酸、酢酸、トリフルオロ酢酸、メタンスルホン酸等)で処理することにより行われる。
【0066】
上記反応工程式(2)に従って操作することにより、反応工程式(1)で製造したよりも、さらに光学純度の高い一般式(V)で示される化合物を、高い化学収率で得ることができる。
【0067】
一方、WO99/58513号明細書中には、以下の反応工程式(A)が記載されている。
【0068】
【化30】
【0069】
反応工程式中、YはOHまたはClを表わし、
RAは2−プロペニルまたは2−プロピニルを表わす。
【0070】
しかし、上記工程には以下のような問題点があった。
【0071】
工程[a]中で用いられる式(II)で示されるカンファースルタムは非常に高価である。これに対して、本発明の工程[1]で用いる(R)−(+)−4−ベンジル−2−オキサゾリジノンははるかに安価に入手することができる。
【0072】
工程[b]では、−78℃という条件下で反応を行わなければならなかったが、本発明の工程[2]では、より安全な温度(−20〜40℃)で反応を行うことができる。また、工程[b]では目的化合物の光学純度を上げるには再結晶が必要であった。これに対し、本発明の工程[2]では、再結晶を行わなくても高い光学活性を有する化合物を得ることができる。
【0073】
N−(2S−(2−プロペニル)オクタノイル)−(1S)−(−)−2,10−カンファースルタムを用いて、工程[c]および工程[d]によって得られた(2R)−2−プロピルオクタン酸は、高い光学純度(99%e.e.)を保持しているが、その化学収率は低い(59.3%)。また、工程[e]および工程[f]によって得られた(2R)−2−プロピルオクタン酸は、化学収率は前記工程よりわずかに良いが(74%)、光学純度は低い(95.2%e.e.)。これらに対して、本発明の工程[3]および工程[4]の2工程、および工程[5]および工程[6]の2工程によって得られた目的化合物は化学収率および光学純度とも高く、実施例によると双方とも化学収率95%、光学純度97%である。
【0074】
さらに、工程[d]または工程[e]中で回収される式(II)で示されるカンファースルタムの回収率は大変低く、30%以下であることが解っている。これに対して、本発明の工程[4]および工程[5]で回収される(R)−(+)−4−ベンジル−2−オキサゾリジノンは、それぞれ97%、94%と非常に高い。
【0075】
また、特開平8−291106号明細書には、以下の反応工程式(B)で示される実施例が記載されている。
【0076】
【化31】
【0077】
上記方法では、(2R)−2−プロピルオクタン酸を製造するのに3工程を要する。該方法で得られる目的化合物の化学収率は非常に悪く(12%)、光学純度(90%e.e.)も非常に低い。これに対し、本発明では工程[7]および工程[8]の2工程で、高い化学収率(62%)で、高い光学純度(99.5%e.e.)の(2R)−2−プロピルオクタン酸を得ることができる。
【0078】
また上記明細書には、その発明に対する比較として(2RS)−2−プロピルオクタン酸を出発原料とする製造方法も記載されている。しかし、この反応で得られた目的の(2R)−2−プロピルオクタン酸の光学純度(82.0%e.e.)は非常に低く、かつ化学収率(9%)も非常に悪い。
【0079】
【実施例】
以下、実施例によって本発明を詳述するが、本発明はこれらに限定されるものではない。
【0080】
クロマトグラフィーによる分離の箇所およびTLCに示されるカッコ内の溶媒は、使用した溶出溶媒または展開溶媒を示し、割合は体積比を表わす。
【0081】
NMRの箇所に示されているカッコ内の溶媒は、測定に使用した溶媒を示している。
参考例1
(4R)−N−オクタノイル−4−ベンジル−2−オキサゾリジノン
【0082】
【化32】
【0083】
(R)−(+)−4−ベンジル−2−オキサゾリジノン(0.43g)のテトラヒドロフラン(8.60ml)溶液に、氷冷下でカリウムt−ブトキシド(0.27g)およびオクタノイルクロリド(0.44ml)を順次添加した。混合物を氷冷下で5分間、続いて室温で5分間撹拌した後、水を加えた。溶媒を濃縮し、残渣を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、濃縮して以下の物性値を有する標題化合物を定量的に得た。
TLC:Rf0.34(ヘキサン:酢酸エチル=5:1);
NMR(300 MHz, CDCl3):δ 0.89 (3H, t, J = 6.8 Hz), 1.20-1.45 (8H, m), 1.59-1.76 (2H, m), 2.77 (1H, dd, J = 9.6, 13.6 Hz), 2.81-3.04 (2H, m), 3.31 (1H, dd, J = 3.2, 13.6 Hz), 4.06-4.23 (2H, m), 4.62-4.72 (1H, m), 7.19-7.39 (5H, m)。
実施例1
(4R)−N−[(2S)−2−(2−プロペニル)オクタノイル]−4−ベンジル−2−オキサゾリジノン
【0084】
【化33】
【0085】
アルゴン雰囲気下、参考例1で製造した化合物(419.7mg)を無水テトラヒドロフラン(8.38ml)に溶解した。−15℃でその溶液に、1Mリチウムヘキサメチルジシラザンのテトラヒドロフラン溶液(1.60ml)を徐々に加えた。同温度で30分間撹拌した。反応溶液にヨウ化アリル(310μl)を加え、30分間撹拌した。反応溶液を1N塩酸でpHを1とし、室温まで昇温した後、濃縮し、酢酸エチルで抽出した。有機層を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)で精製して、以下の物性値を有する標題化合物(418.0mg;収率88%)を得た。
TLC:Rf0.54(ヘキサン:酢酸エチル=5:1);
NMR(400 MHz, CDCl3):δ 0.88 (3H, t, J = 6.8 Hz), 1.19-1.36 (8H, brs), 1.43-1.55 (1H, m), 1.66-1.78 (1H, m), 2.27-2.38 (1H, m), 2.41-2.52 (1H, m), 2.66 (1H, dd, J = 10.0, 13.0 Hz), 3.30 (1H, dd, J = 3.0, 13.0 Hz), 3.87-3.96 (1H, m), 4.11-4.21 (2H, m), 4.65-4.73 (1H, m), 5.04 (1H, dd, J = 1.2, 10.0 Hz), 5.08 (1H, dd, J = 1.2, 17.0 Hz), 5.77-5.89 (1H, m), 7.21-7.36 (5H, m)。
実施例2
(4R)−N−[(2R)−2−プロピルオクタノイル]−4−ベンジル−2−オキサゾリジノン
【0086】
【化34】
【0087】
実施例1で製造した化合物(290mg)のエタノール(5.8ml)溶液に、10%パラジウム炭素(29mg)を加え、水素雰囲気下1時間激しく撹拌した。反応溶液を濾過し、ろ液を濃縮して以下の物性値を有する標題化合物を定量的に得た。
TLC:Rf0.60(ヘキサン:酢酸エチル=5:1);
NMR(400 MHz, CDCl3):δ 0.88 (3H, t, J = 6.8 Hz), 0.93 (3H, t, J = 6.8 Hz), 1.20-1.32 (8H, brs), 1.32-1.42 (2H, m), 1.44-1.55 (2H, m), 1.65-1.76 (2H, m), 2.70 (1H, dd J = 9.6, 13.0 Hz), 3.33 (1H, dd, J = 3.6, 13.0 Hz), 3.76-3.85 (1H, m), 4.12-4.21 (2H, m), 4.66-4.73 (1H, m), 7.21-7.37 (5H, m)。
実施例3
(2R)−2−プロピルオクタン酸
【0088】
【化35】
【0089】
実施例2で製造した化合物(145mg)のエチレングリコールジメチルエーテル(2.9ml)溶液に、氷冷下で30%過酸化水素水溶液(72μl)を加え、続いて40%水酸化ベンジルトリメチルアンモニウム水溶液(265μl)を徐々に加え、30分間撹拌した。反応溶液に1.5N亜硫酸ナトリウム水溶液(423μl)を加え、室温まで昇温した。反応溶液を2N塩酸でpHを1とし、酢酸エチルで抽出した。有機層を濃縮し、残渣をカラムクロマトグラフィー(Dowex 1X2 (OH-type) 200-400 mesh 2.1cc)(メタノール:水=1:1→メタノール:1N塩酸=1:1)で精製し、(R)−(+)−4−ベンジル−2−オキサゾリジノン(72.2mg;回収率97%)、および以下の物性値を有する標題化合物(70.7mg;収率95%)を得た。
TLC:Rf0.48(ヘキサン:酢酸エチル=5:1);
光学純度:97.0%e.e.(HPLC);
[α]D −6.6゜(c = 0.78, エタノール);
NMR(400 MHz, CDCl3);δ 0.88 (3H, t, J = 6.8 Hz), 0.93 (3H, t, J = 6.8 Hz), 1.20-1.53 (12H, m), 1.56-1.68 (2H, m), 2.31-2.41 (1H, m)。
実施例4
(2S)−2−プロペニルオクタン酸
【0090】
【化36】
【0091】
実施例1で製造した化合物(165.9mg)のエチレングリコールジメチルエーテル(3.3ml)溶液に、氷冷下で30%過酸化水素水溶液(82μl)を加え、続いて40%水酸化ベンジルトリメチルアンモニウム水溶液(300μl)を徐々に加え、30分間撹拌した。反応溶液に1.5N亜硫酸ナトリウム水溶液(480μl)を加え、室温まで昇温した。反応溶液を2N塩酸でpHを1とし、酢酸エチルで抽出した。有機層を濃縮し、残渣をカラムクロマトグラフィー(Dowex 1X2 (OH-type) 200-400 mesh 2.5cc)(メタノール:水=1:1→メタノール:1N塩酸=1:1)で精製し、(R)−(+)−4−ベンジル−2−オキサゾリジノン(79.1mg;回収率94%)、および以下の物性値を有する標題化合物(84.6mg;収率95%)を得た。
TLC:Rf0.40(ヘキサン:酢酸エチル=5:1);
NMR(400 MHz, CDCl3):δ 0.89 (3H, t, J = 6.8 Hz), 1.29 (8H, brs), 1.46-1.57 (1H, m), 1.57-1.69 (1H, m), 2.20-2.30 (1H, m), 2.33-2.43 (1H, m), 2.41-2.50 (1H, m), 5.04 (1H, dd, J = 1.6, 10.0 Hz), 5.09 (1H, dd, J = 1.6, 16.8 Hz), 5.77 (1H, ddt, J = 6.8, 10.0, 16.8 Hz)。
実施例5
(2R)−2−プロピルオクタン酸
【0092】
【化37】
【0093】
実施例4で製造した化合物(45.0mg)のエタノール(0.90ml)溶液に、10%パラジウム炭素(4.5mg)を加え、水素雰囲気下1時間激しく撹拌した。反応溶液を濾過し、ろ液を濃縮して以下の物性値を有する標題化合物を定量的に得た。
TLC:Rf0.48(ヘキサン:酢酸エチル=5:1);
[α]D −6.4゜(c = 0.90, エタノール);
NMR(400 MHz, CDCl3);δ 0.88 (3H, t, J = 6.8 Hz), 0.93 (3H, t, J = 6.8 Hz), 1.20-1.53 (12H, m), 1.56-1.68 (2H, m), 2.31-2.41 (1H, m)。
実施例6
(2R)−2−プロピルオクタン酸
【0094】
【化38】
【0095】
実施例3で製造した化合物(242.3mg;97.0%e.e.(HPLC))に、(R)−(+)−フェニルエチルアミン(175.3μl)を加えた。析出した針状結晶にn−ヘキサン(0.60ml)を加え、撹拌しながら60℃に加熱し、結晶を溶解した。その後、25℃で1.5時間静置した。析出した結晶をn−ヘキサン(0.4ml)で静かに3回洗浄した。得られた結晶を乾燥して、標題化合物(341.0mg;収率85%)を得た。得られた結晶を前記と同様に、n−ヘキサン(0.6ml)で再結晶した。結晶に1N塩酸を加え酸性とし、n−ヘキサンで抽出した。有機層を無水硫酸マグネシウムで乾燥し、濃縮して以下の物性値を有す得る標題化合物(248.2mg;収率62%)を得た。
光学純度:99.5%e.e.(HPLC)。
【本発明の効果】
本発明の製造方法により、光学純度の高い新規な一般式(I−1)で示される中間体化合物および一般式(I−2)で示される中間体化合物を、安価な試薬を用い、安全な温度で製造することができた。
【0096】
また、本発明では回収率が高い試薬を用いるため無駄なく効率よく、一般式(I−1)で示される新規な中間体化合物から工程[3]および工程[4]、工程[5]、または工程[5]および工程[6]の操作を介して高い化学収率で、かつ高い光学純度で、目的である一般式(V)で示される化合物を製造することできた。
【0097】
さらに、得られた一般式(V)で示される化合物を光学活性なアミン塩にした後、再結晶し、酸処理することにより、さらに高い光学純度の一般式(V)で示される化合物を化学収率よく製造することができた。
【0098】
これらのことより、本発明の製造方法は、高い光学純度を有する光学活性な一般式(V)で示される化合物を合成するのに適した方法であり、工業的な大量合成にも適した方法である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel intermediate compound, a method for producing the same, or a method for producing an optically active compound using the intermediate compound.
[0002]
In more detail, (1) General formula (I)
[0003]
Embedded image
[0004]
(Wherein all symbols have the same meanings as described later),
(2) their manufacturing method, or
(3) Optically active general formula (V) using these intermediate compounds
[0005]
Embedded image
[0006]
(Wherein all symbols have the same meanings as described later).
[0007]
BACKGROUND OF THE INVENTION AND PRIOR ART
Formula (V) produced in the present invention
[0008]
Embedded image
[0009]
(Wherein all symbols have the same meanings as described later), (2R) -2-propyloctanoic acid and (2S) -2-propynylheptanoic acid are compounds useful as pharmaceuticals. is there. For example, (2R) -2-propyloctanoic acid is described in Example 7 (33) of EP 632008 as its racemic compound as a therapeutic or preventive agent for neurological diseases caused by astrocyte dysfunction. . As for (2S) -2-propynylheptanoic acid, its racemic compound is described as a neurotrophic factor in Example 2 of US Pat. No. 5,672,746.
[0010]
In particular, as a result of subsequent studies, 2-propyloctanoic acid was found to have a particularly strong R action and low toxicity, and various studies were thus conducted on methods for efficiently obtaining an optically active R form. .
[0011]
As a method for producing (2R) -2-propyloctanoic acid, for example, (1) In JP-A-8-291106, an optically active salt of racemic 2- (2-propynyl) octanoic acid and an optically active amine is used. A method is described in which an optically active salt is separated by resolution, and the resulting optically active (2S) -2- (2-propynyl) octanoic acid is reduced after acid treatment. The target compound obtained by this reaction was poor in chemical yield (12%) and optical purity (90.0% ee), and was not a practical method.
[0012]
(2) JP-A-8-295648 describes a method using optically active prolinol. Although the optical purity of (2R) -2-propyloctanoic acid obtained by this method was 96.0% ee, 5 steps of reaction were required until the target compound, and the chemical yield was low (total yield 20.2). %) Was not a practical method.
[0013]
(3) WO99 / 58513 discloses a process for producing (2R) -2-propyloctanoic acid in four steps through a novel intermediate obtained by reacting octanoic acid with camphorsultam. Has been described. The desired (2R) -2-propyloctanoic acid is produced from N- (2S- (2-propenyl) octanoyl)-(1S)-(−)-2,10-camphorsultam, which is a novel intermediate. There are two processes, and the optical purity of the target compound obtained by these reactions is 95.2% ee and 99% ee, respectively. However, the overall chemical yields until the target compound was produced were as low as 53% and 42.5%, respectively. Furthermore, camphor sultam used as a raw material is an expensive reagent, and the recovery rate during the reaction is 30% or less, and it is almost impossible to reuse.
[0014]
The specification also includes a step of producing (2R) -2-propyloctanoic acid from N- (2S- (2-propynyl) octanoyl)-(1S)-(−)-2,10-camphorsultam. Although described, there were the same problems as described above.
[0015]
(4) In WO00 / 49882, there is a catalytic reduction from (2S) -2- (2-propenyl) octanoic acid or (2S) -2- (2-propynyl) octanoic acid using a platinum carbon catalyst. A method for producing (2R) -2-propyloctanoic acid is described.
[0016]
[Problems to be solved by the invention]
There is a demand for a production method that can obtain a compound represented by the general formula (V), which is highly useful as a pharmaceutical, with high chemical yield and optical purity.
[0017]
[Means for Solving the Problems]
As a result of intensive investigations, the present inventors have used general formula (I) by using optically active (R)-(+)-4-benzyl-2-oxazolidinone.
[0018]
Embedded image
[0019]
(In the formula, all symbols have the same meanings as described later), a novel compound was successfully obtained. In addition, from the new compound, general formula (V) having high chemical yield (overall synthesis yield of 80% or more) and high optical purity (97.0% or more)
[0020]
Embedded image
[0021]
(Wherein all symbols have the same meaning as described below), and succeeded in obtaining a compound represented by
[0022]
Further, the compound represented by the general formula (V) is reacted with an optically active amine salt, recrystallized, and then treated with an acid, whereby the compound represented by the general formula (V) having higher optical purity (99.0% or more). The present invention has been completed.
[0023]
According to the method of the present invention, the compound represented by the general formula (V) can be produced with high chemical yield and high optical purity, and also can be produced at low cost. That is, the reagent used in the present invention, specifically (R)-(+)-4-benzyl-2-oxazolidinone, is inexpensive. In addition, since it can be recovered at a high recovery rate during the reaction, it can be reused in the process of the present invention any number of times. Therefore, it can be produced at a lower cost, and there is no waste, and the reaction can be performed efficiently.
[0024]
That is, the present invention relates to a novel intermediate compound represented by general formula (I), a process for producing the same, and a process for producing an optically active compound represented by general formula (V) using the intermediate compound.
[0025]
Specifically, (1) General formula (I)
[0026]
Embedded image
[0027]
Wherein R 1 represents propyl, 2-propenyl or 2-propynyl, and R 2 represents C4-8 alkyl,
(2) (4R) -N-[(2R) -2-propyloctanoyl] -4-benzyl-2-oxazolidinone, in which R 1 is propyl and R 2 is hexyl in general formula (I),
(3) (4R) -N-[(2S) -2- (2-propenyl) octanoyl] -4-benzyl- in which R 1 is 2-propenyl and R 2 is hexyl in general formula (I) 2-oxazolidinone,
(4) (4R) -N-[(2S) -2- (2-propynyl) octanoyl] -4-benzyl- in which R 1 is 2-propynyl and R 2 is hexyl in general formula (I) 2-oxazolidinone,
(5) (4R) -N-[(2R) -2-propylheptanoyl] -4-benzyl-2-oxazolidinone, in which R 1 is propyl and R 2 is pentyl in general formula (I),
(6) (4R) -N-[(2S) -2- (2-propenyl) heptanoyl] -4-benzyl- in which R 1 is 2-propenyl and R 2 is pentyl in general formula (I) 2-oxazolidinone,
(7) (4R) -N-[(2S) -2- (2-propynyl) heptanoyl] -4-benzyl- in which R 1 is 2-propynyl and R 2 is pentyl in general formula (I) 2-oxazolidinone,
(8) (4R) -N-[(2R) -2-propylhexanoyl] -4-benzyl-2-oxazolidinone, in which R 1 is propyl and R 2 is butyl in the general formula (I),
(9) (4R) -N-[(2S) -2- (2-propenyl) hexanoyl] -4-benzyl- in which R 1 is 2-propenyl and R 2 is butyl in the general formula (I) 2-oxazolidinone, or
(10) (4R) -N-[(2S) -2- (2-propynyl) hexanoyl] -4-benzyl- in which R 1 is 2-propynyl and R 2 is butyl in general formula (I) 2-oxazolidinone, or
(11) General formula (III)
[0028]
Embedded image
[0029]
(Wherein all symbols have the same meaning as described above), and a compound represented by the general formula (IV)
[0030]
Embedded image
[0031]
Wherein R 1-1 represents 2-propenyl or 2-propynyl, and X represents a halogen atom. The compound represented by the general formula (I-1)
[0032]
Embedded image
[0033]
(Wherein all symbols have the same meaning as described above),
(12) General formula (I-1)
[0034]
Embedded image
[0035]
(Wherein all symbols have the same meaning as described above) a compound represented by the general formula (I-2)
[0036]
Embedded image
[0037]
(Wherein all symbols have the same meaning as described above),
(13) General formula (I-2)
[0038]
Embedded image
[0039]
(Wherein all symbols have the same meaning as described above) hydrolyzing the compound represented by the general formula (V-2)
[0040]
Embedded image
[0041]
(Wherein all symbols have the same meaning as described above),
(14) General formula (I-1)
[0042]
Embedded image
[0043]
(Wherein all symbols have the same meaning as described above) hydrolyzing the compound represented by the general formula (V-1)
[0044]
Embedded image
[0045]
(Wherein all symbols have the same meaning as described above),
(15) General formula (V)
[0046]
Embedded image
[0047]
(Wherein all symbols have the same meanings as described above) An optically active amine is reacted with the compound represented by the following formula, and the resulting salt is recrystallized and then treated with an acid. The present invention relates to a method for producing a compound represented by the general formula (V).
[0048]
In the present invention, any of propyl, 2-propenyl and 2-propynyl represented by R 1 is preferable.
[0049]
In the present invention, C4-8 alkyl represented by R 2 includes butyl, pentyl, hexyl, heptyl, octyl or isomers thereof, and any of them is preferable.
[0050]
In the present invention, any possible combination of R 1 and R 2 is preferred. Specifically, R 1 is propyl and R 2 is butyl, R 1 is propyl and R 2 is pentyl, R 1 is propyl and R 2 is hexyl, R 1 is 2-propenyl and R 2 is butyl, R 1 is 2-propenyl and R 2 are pentyl, R 1 is 2-propenyl and R 2 are hexyl, R 1 is 2-propynyl and R 2 are butyl, R 1 is 2-propynyl and R 2 are pentyl, or R 1 is 2 - propynyl and R 2 is hexyl. Preferably, R 1 is propyl and R 2 is hexyl, R 1 is 2-propenyl and R 2 is hexyl, R 1 is 2-propynyl and R 2 are butyl, R 1 is 2-propynyl and R 2 is pentyl or R 1 is 2-propynyl and R 2 is hexyl.
[0051]
The novel intermediate represented by the general formula (I) of the present invention and the process for producing the compound represented by the general formula (V) using the same are represented by the following reaction process formulas (1) and (2).
[0052]
Embedded image
[0053]
Embedded image
[0054]
In the reaction process formula, Bn represents benzyl and NH 2 —R 3 represents an optically active amine.
[0055]
The reaction of the step [1] is known, for example, a base (tertiary amine (triethylamine, diisopropylethylamine) in an organic solvent (tetrahydrofuran, diethyl ether, N, N-dimethylformamide, dimethoxyethane, diethylene glycol dimethyl ether, toluene, etc.). , 4-dimethylaminopyridine, etc.), butyl lithium, lithium diisopropylamide, lithium hexamethyldisilazane, sodium hydride, potassium hydride, potassium t-butoxide, lithium t-butoxide, etc.) in the presence of −20 to 40 ° C. It is performed by making it react with.
[0056]
The reaction of the step [2] is known, for example, in an organic solvent (tetrahydrofuran, diethyl ether, benzene, dimethoxyethane, hexane, toluene, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphoric triamide, etc.) , In the presence of a base (lithium hexamethyldisilazane, sodium hexamethyldisilazane, potassium hexamethyldisilazane, n-butyllithium, s-butyllithium, lithium diisopropylamide, potassium t-butoxide, lithium t-butoxide, etc.), The reaction is performed at 20 to 40 ° C. Compound (I-1) obtained by this reaction is a novel compound.
[0057]
The reduction reaction in the step [3] is known, and for example, a method for catalytic reduction is described in WO99 / 58513 and WO00 / 49882.
[0058]
Specifically, for example, a catalyst (palladium carbon) in an organic solvent (methanol, ethanol, isopropanol, tetrahydrofuran, ethyl acetate, tetrahydropyran, dioxane, dimethoxyethane, diethyl ether, acetic acid, or a mixed solvent thereof) in a hydrogen atmosphere. , Palladium, platinum, platinum carbon, platinum oxide, nickel, palladium hydroxide, rhodium, rhodium carbon, ruthenium, ruthenium carbon chlorotris (triphenylphosphine) rhodium, etc.) Is called. Compound (I-2) obtained by this reaction is a novel compound.
[0059]
The hydrolysis reaction in the step [4] is known, for example, in the presence or absence of a peracid (hydrogen peroxide, t-butyl hydroperoxide or an aqueous solution thereof) in an organic solvent (tetrahydrofuran, ethylene glycol dimethyl ether, etc.). -20 to 40 using tetraalkylammonium hydroxide (benzyltrimethylammonium hydroxide, tetraethylammonium hydroxide, tetraisopropylammonium hydroxide, tetrabutylammonium hydroxide, tetraoctylammonium hydroxide or an aqueous solution thereof) The reaction is carried out at 0 ° C.
[0060]
The step [5] is performed by the same operation as the above-described step [4], but a compound having an excessive amount of a double bond (such as 2-methyl-2-butene) may be used.
[0061]
Step [6] is performed by the same operation as the above-described step [3].
[0062]
By operating according to the above reaction process formula (1), a novel compound represented by the general formula (I-1) and a novel compound represented by the general formula (I-2) can be obtained. This is very useful as an intermediate compound for producing a compound represented by the general formula (V) represented by (2R) -2-propyloctanoic acid useful as a pharmaceutical product.
[0063]
Step [7] is a compound represented by general formula (V) and an optically active amine [(R)-(+)-1-phenethylamine, (R)-(+)-1- (4-methylphenyl) ethylamine. , L-arginine, 2R-aminobutanol, (S)-(−)-nicotine, hydroquinine, dehydroabiethylamine, (1S, 2S) -methylpseudoephedrine, (1R, 2S)-(−)-norephedrine, L-tyrosine, (−)-cis-benzyl- (2-hydroxymethylcyclohexyl) amine, (S)-(−)-1-methyl-2-pyrrolidinemethanol and the like] are reacted.
[0064]
During the process, the preferred optically active amine is (R)-(+)-1-phenethylamine.
[0065]
In the step [8], the crystals obtained in the above step [7] are recrystallized with an organic solvent (n-hexane, n-heptane, etc.), and then acid (hydrochloric acid, nitric acid, hydrobromic acid, acetic acid, Trifluoroacetic acid, methanesulfonic acid, etc.).
[0066]
By operating according to the above reaction process formula (2), the compound represented by the general formula (V) having higher optical purity than that produced by the reaction process formula (1) can be obtained with high chemical yield. .
[0067]
On the other hand, the following reaction process formula (A) is described in WO99 / 58513.
[0068]
Embedded image
[0069]
In the reaction process formula, Y represents OH or Cl,
R A represents 2-propenyl or 2-propynyl.
[0070]
However, the above process has the following problems.
[0071]
The camphor sultam of formula (II) used in step [a] is very expensive. On the other hand, (R)-(+)-4-benzyl-2-oxazolidinone used in the step [1] of the present invention can be obtained at a much lower price.
[0072]
In the step [b], the reaction had to be performed under the condition of −78 ° C., but in the step [2] of the present invention, the reaction can be performed at a safer temperature (−20 to 40 ° C.). . In step [b], recrystallization was required to increase the optical purity of the target compound. On the other hand, in step [2] of the present invention, a compound having high optical activity can be obtained without recrystallization.
[0073]
(2R) -2 obtained by steps [c] and [d] using N- (2S- (2-propenyl) octanoyl)-(1S)-(−)-2,10-camphorsultam. -Propyloctanoic acid retains high optical purity (99% ee) but its chemical yield is low (59.3%). In addition, (2R) -2-propyloctanoic acid obtained by steps [e] and [f] has a slightly better chemical yield (74%) than the above step, but has a low optical purity (95.2% ee). ). On the other hand, the target compound obtained by the two steps of step [3] and step [4] of the present invention and the two steps of step [5] and step [6] has high chemical yield and optical purity, According to the examples, both have a chemical yield of 95% and an optical purity of 97%.
[0074]
Furthermore, it has been found that the recovery rate of camphor sultam represented by formula (II) recovered in step [d] or step [e] is very low, being 30% or less. On the other hand, (R)-(+)-4-benzyl-2-oxazolidinone recovered in the steps [4] and [5] of the present invention is very high at 97% and 94%, respectively.
[0075]
JP-A-8-291106 describes examples represented by the following reaction process formula (B).
[0076]
Embedded image
[0077]
In the above method, three steps are required to produce (2R) -2-propyloctanoic acid. The chemical yield of the target compound obtained by this method is very poor (12%) and the optical purity (90% ee) is also very low. On the other hand, in the present invention, (2R) -2-propyloctanoic acid having high chemical yield (62%) and high optical purity (99.5% ee) is obtained in two steps [7] and [8]. Can be obtained.
[0078]
Moreover, the said specification also describes the manufacturing method which uses (2RS) -2-propyloctanoic acid as a starting material as a comparison with the invention. However, the optical purity (82.0% ee) of the target (2R) -2-propyloctanoic acid obtained by this reaction is very low, and the chemical yield (9%) is very poor.
[0079]
【Example】
Hereinafter, although an example explains the present invention in detail, the present invention is not limited to these.
[0080]
The point of separation by chromatography and the solvent in parentheses shown in TLC indicate the elution solvent or developing solvent used, and the ratio indicates the volume ratio.
[0081]
The solvent in parentheses shown in the NMR part indicates the solvent used for the measurement.
Reference example 1
(4R) -N-octanoyl-4-benzyl-2-oxazolidinone
Embedded image
[0083]
To a solution of (R)-(+)-4-benzyl-2-oxazolidinone (0.43 g) in tetrahydrofuran (8.60 ml) was added potassium t-butoxide (0.27 g) and octanoyl chloride (0. 44 ml) was added sequentially. The mixture was stirred for 5 minutes under ice-cooling, followed by 5 minutes at room temperature, and then water was added. The solvent was concentrated and the residue was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated to quantitatively obtain the title compound having the following physical properties.
TLC: Rf 0.34 (hexane: ethyl acetate = 5: 1);
NMR (300 MHz, CDCl 3 ): δ 0.89 (3H, t, J = 6.8 Hz), 1.20-1.45 (8H, m), 1.59-1.76 (2H, m), 2.77 (1H, dd, J = 9.6, 13.6 Hz), 2.81-3.04 (2H, m), 3.31 (1H, dd, J = 3.2, 13.6 Hz), 4.06-4.23 (2H, m), 4.62-4.72 (1H, m), 7.19-7.39 (5H , m).
Example 1
(4R) -N-[(2S) -2- (2-propenyl) octanoyl] -4-benzyl-2-oxazolidinone
Embedded image
[0085]
Under an argon atmosphere, the compound prepared in Reference Example 1 (419.7 mg) was dissolved in anhydrous tetrahydrofuran (8.38 ml). To the solution at −15 ° C. was slowly added 1M lithium hexamethyldisilazane in tetrahydrofuran (1.60 ml). Stir at the same temperature for 30 minutes. Allyl iodide (310 μl) was added to the reaction solution and stirred for 30 minutes. The reaction solution was adjusted to pH 1 with 1N hydrochloric acid, warmed to room temperature, concentrated, and extracted with ethyl acetate. The organic layer was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 10: 1) to give the title compound (418.0 mg; yield 88%) having the following physical data.
TLC: Rf 0.54 (hexane: ethyl acetate = 5: 1);
NMR (400 MHz, CDCl 3 ): δ 0.88 (3H, t, J = 6.8 Hz), 1.19-1.36 (8H, brs), 1.43-1.55 (1H, m), 1.66-1.78 (1H, m), 2.27 -2.38 (1H, m), 2.41-2.52 (1H, m), 2.66 (1H, dd, J = 10.0, 13.0 Hz), 3.30 (1H, dd, J = 3.0, 13.0 Hz), 3.87-3.96 (1H , m), 4.11-4.21 (2H, m), 4.65-4.73 (1H, m), 5.04 (1H, dd, J = 1.2, 10.0 Hz), 5.08 (1H, dd, J = 1.2, 17.0 Hz), 5.77-5.89 (1H, m), 7.21-7.36 (5H, m).
Example 2
(4R) -N-[(2R) -2-propyloctanoyl] -4-benzyl-2-oxazolidinone
Embedded image
[0087]
To a solution of the compound prepared in Example 1 (290 mg) in ethanol (5.8 ml) was added 10% palladium carbon (29 mg), and the mixture was vigorously stirred for 1 hour in a hydrogen atmosphere. The reaction solution was filtered, and the filtrate was concentrated to quantitatively obtain the title compound having the following physical property values.
TLC: Rf 0.60 (hexane: ethyl acetate = 5: 1);
NMR (400 MHz, CDCl 3 ): δ 0.88 (3H, t, J = 6.8 Hz), 0.93 (3H, t, J = 6.8 Hz), 1.20-1.32 (8H, brs), 1.32-1.42 (2H, m ), 1.44-1.55 (2H, m), 1.65-1.76 (2H, m), 2.70 (1H, dd J = 9.6, 13.0 Hz), 3.33 (1H, dd, J = 3.6, 13.0 Hz), 3.76-3.85 (1H, m), 4.12-4.21 (2H, m), 4.66-4.73 (1H, m), 7.21-7.37 (5H, m).
Example 3
(2R) -2-propyloctanoic acid
Embedded image
[0089]
To a solution of the compound prepared in Example 2 (145 mg) in ethylene glycol dimethyl ether (2.9 ml) was added 30% aqueous hydrogen peroxide (72 μl) under ice-cooling, followed by 40% aqueous benzyltrimethylammonium hydroxide (265 μl). ) Was gradually added and stirred for 30 minutes. To the reaction solution was added 1.5N aqueous sodium sulfite solution (423 μl), and the temperature was raised to room temperature. The reaction solution was adjusted to pH 1 with 2N hydrochloric acid and extracted with ethyl acetate. The organic layer was concentrated, and the residue was purified by column chromatography (Dowex 1X2 (OH-type) 200-400 mesh 2.1cc) (methanol: water = 1: 1 → methanol: 1N hydrochloric acid = 1: 1) (R )-(+)-4-benzyl-2-oxazolidinone (72.2 mg; recovery rate 97%) and the title compound (70.7 mg; yield 95%) having the following physical properties were obtained.
TLC: Rf 0.48 (hexane: ethyl acetate = 5: 1);
Optical purity: 97.0% ee (HPLC);
[Α] D −6.6 ° (c = 0.78, ethanol);
NMR (400 MHz, CDCl 3 ); δ 0.88 (3H, t, J = 6.8 Hz), 0.93 (3H, t, J = 6.8 Hz), 1.20-1.53 (12H, m), 1.56-1.68 (2H, m ), 2.31-2.41 (1H, m).
Example 4
(2S) -2-propenyloctanoic acid
Embedded image
[0091]
To a solution of the compound prepared in Example 1 (165.9 mg) in ethylene glycol dimethyl ether (3.3 ml) was added 30% aqueous hydrogen peroxide solution (82 μl) under ice cooling, followed by 40% aqueous benzyltrimethylammonium hydroxide solution. (300 μl) was gradually added and stirred for 30 minutes. To the reaction solution was added 1.5N aqueous sodium sulfite solution (480 μl), and the temperature was raised to room temperature. The reaction solution was adjusted to pH 1 with 2N hydrochloric acid and extracted with ethyl acetate. The organic layer was concentrated, and the residue was purified by column chromatography (Dowex 1X2 (OH-type) 200-400 mesh 2.5cc) (methanol: water = 1: 1 → methanol: 1N hydrochloric acid = 1: 1) (R )-(+)-4-benzyl-2-oxazolidinone (79.1 mg; 94% recovery) and the title compound (84.6 mg; 95% yield) having the following physical properties were obtained.
TLC: Rf 0.40 (hexane: ethyl acetate = 5: 1);
NMR (400 MHz, CDCl 3 ): δ 0.89 (3H, t, J = 6.8 Hz), 1.29 (8H, brs), 1.46-1.57 (1H, m), 1.57-1.69 (1H, m), 2.20-2.30 (1H, m), 2.33-2.43 (1H, m), 2.41-2.50 (1H, m), 5.04 (1H, dd, J = 1.6, 10.0 Hz), 5.09 (1H, dd, J = 1.6, 16.8 Hz ), 5.77 (1H, ddt, J = 6.8, 10.0, 16.8 Hz).
Example 5
(2R) -2-propyloctanoic acid
Embedded image
[0093]
To a solution of the compound prepared in Example 4 (45.0 mg) in ethanol (0.90 ml) was added 10% palladium carbon (4.5 mg), and the mixture was vigorously stirred for 1 hour in a hydrogen atmosphere. The reaction solution was filtered, and the filtrate was concentrated to quantitatively obtain the title compound having the following physical property values.
TLC: Rf 0.48 (hexane: ethyl acetate = 5: 1);
[Α] D −6.4 ° (c = 0.90, ethanol);
NMR (400 MHz, CDCl 3 ); δ 0.88 (3H, t, J = 6.8 Hz), 0.93 (3H, t, J = 6.8 Hz), 1.20-1.53 (12H, m), 1.56-1.68 (2H, m ), 2.31-2.41 (1H, m).
Example 6
(2R) -2-propyloctanoic acid
Embedded image
[0095]
(R)-(+)-Phenylethylamine (175.3 μl) was added to the compound prepared in Example 3 (242.3 mg; 97.0% ee (HPLC)). N-Hexane (0.60 ml) was added to the precipitated needle crystals and heated to 60 ° C. with stirring to dissolve the crystals. Then, it left still at 25 degreeC for 1.5 hours. The precipitated crystals were gently washed 3 times with n-hexane (0.4 ml). The obtained crystals were dried to give the title compound (341.0 mg; yield 85%). The obtained crystals were recrystallized with n-hexane (0.6 ml) in the same manner as described above. The crystals were acidified with 1N hydrochloric acid and extracted with n-hexane. The organic layer was dried over anhydrous magnesium sulfate and concentrated to obtain the title compound (248.2 mg; yield 62%) having the following physical properties.
Optical purity: 99.5% ee (HPLC).
[Effect of the present invention]
According to the production method of the present invention, a novel intermediate compound represented by the general formula (I-1) and the intermediate compound represented by the general formula (I-2) having high optical purity can be used safely by using an inexpensive reagent. Could be manufactured at temperature.
[0096]
Further, in the present invention, since a reagent having a high recovery rate is used, the step [3] and the step [4], the step [5], or the novel intermediate compound represented by the general formula (I-1) is efficiently used without waste. Through the operations of Step [5] and Step [6], the target compound represented by the general formula (V) could be produced with high chemical yield and high optical purity.
[0097]
Furthermore, the resulting compound represented by the general formula (V) is converted into an optically active amine salt, and then recrystallized and treated with an acid to chemistry the compound represented by the general formula (V) with higher optical purity. It was possible to produce with good yield.
[0098]
From these facts, the production method of the present invention is a method suitable for synthesizing an optically active compound represented by the general formula (V) having high optical purity, and a method suitable for industrial mass synthesis. It is.