JP3828197B2 - Process for producing optically active alkali metal salt of 3- (p-methoxyphenyl) glycidic acid - Google Patents

Process for producing optically active alkali metal salt of 3- (p-methoxyphenyl) glycidic acid Download PDF

Info

Publication number
JP3828197B2
JP3828197B2 JP09918796A JP9918796A JP3828197B2 JP 3828197 B2 JP3828197 B2 JP 3828197B2 JP 09918796 A JP09918796 A JP 09918796A JP 9918796 A JP9918796 A JP 9918796A JP 3828197 B2 JP3828197 B2 JP 3828197B2
Authority
JP
Japan
Prior art keywords
optically active
alkali metal
methoxyphenyl
metal salt
organic amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09918796A
Other languages
Japanese (ja)
Other versions
JPH09255673A (en
Inventor
至博 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shionogi and Co Ltd
Original Assignee
Shionogi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi and Co Ltd filed Critical Shionogi and Co Ltd
Priority to JP09918796A priority Critical patent/JP3828197B2/en
Publication of JPH09255673A publication Critical patent/JPH09255673A/en
Application granted granted Critical
Publication of JP3828197B2 publication Critical patent/JP3828197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ジルチアゼム(Diltiazem)に代表される血管拡張作用を有する( +)−シス型1,5−ベンゾチアゼピン誘導体の有用な合成中間体である光学活性3−(p−メトキシフェニル)グリシッド酸アルカリ金属塩の製造法に関する。
【0002】
【従来技術】
(+)−シス型の1,5−ベンゾチアゼピン誘導体であるジルチアゼム(4)の一般的な製造法としては、例えば下記の反応式:
【化6】

Figure 0003828197
が知られている(薬学雑誌、1988年、716頁)。ここでは、 o−ニトロ チオフェノール(5)と、(−)−3−(p−メトキシフェニル)グリシッド酸メチルエステル(6)との付加反応を行い、得られたスレオ型中間体のニトロ基を還元後加水分解し、環化、N−アルキル化、アセチル化に付している。
化合物(4)のような、分子内に2つの不斉炭素を有する化合物は、理論上4種類の光学異性体が存在するが、化合物(4)の場合、(+)−シス体のみが強力な薬効を有することが明らかにされている。従って、所望の(+)−シス型1,5−ベンゾチアゼピン誘導体(4)を効率よく製造するために、光学活性体(6)を出発原料としている(前掲)。
【0003】
このように、光学活性化合物(6)の効率よい製造法の開発は、(+)−シス型1,5−ベンゾチアゼピン誘導体のより効率的な製造法につながることが期待される。既に化合物(6)の製造法としては、生化学反応を利用する酵素法と化学合成法が知られており、化学法合成ではさらに光学分割を経る方法と不斉合成法の2つの方法が報告されている。
光学分割を経て光学活性化合物(6)を得る方法としては、ラセミ体の3−(p−メトキシフェニル)グリシッド酸に光学活性アミンを作用させて光学分割した後(収率44%)、エステル化する方法が既知である(特開昭60−13775、特開昭60−13776)。また、ラセミ体の3−(p−メトキシフェニル)グリシッド酸アルカリ金属塩に光学活性な有機アミン類の鉱酸塩を反応させることにより光学分割し(収率71%)、その後エステル化するか、ラセミ体の3−(p−メトキシフェニル)グリシッド酸アルカリ金属塩に光学活性な有機アミンを加えた後、塩酸を滴下することにより光学分割し(収率80%)、その後エステル化する方法も既知である(特公平4−61867および特開平2−17168)。
【0004】
しかしながら、この光学分割を経る方法には以下のような問題点が存在する。すなわち、特開昭60−13775記載の方法では一般に不安定であることが知られている3−(p−メトキシフェニル)グリシッド酸を単離していることから収率が著しく低下しているので、工業化には不適当である。
また特公平4−61867記載の方法では、アミンの鉱酸塩を調製しなければならず、さらに分割の際に生じる無機塩を濾去した後に結晶化しなくてはならないなど操作が煩雑である。
一方、特開平2−17168記載の最後に塩酸を滴下する方法では、特に工業的手法として大量の反応を行う場合、強酸性条件での分解産物の生成を抑制するため、大量の希釈した酸を長時間かけて加える必要がありこれも工業化には不適である。
【0005】
他方、不斉合成を経る方法では、光学活性リチウムアミド化合物とアルキルリチウム存在下でのハロゲノ酢酸エステルとベンズアルデヒドとのカップリング反応を経る方法(特開平1−226881)、および2−ハロゲノ−3−オキソ−3−フェニルプロピオン酸誘導体の不斉還元を経る方法(特開平3−190865)が既知である。しかしこれらの不斉合成を経る方法では、収率および光学収率や、不斉源が無駄になるというコスト的な問題があり、工業化には不適当である。
【0006】
また酵素法では、エステラーゼを用いた方法(特開平4−228070)が既知である。しかし、この方法も特別な装置を使用しなくてはならないことや、後処理が困難である等の問題点が存在する。
このように従来法はいずれも、光学活性化合物(6)の工業生産には多くの問題を有している。
最も工業化に適した光学活性化合物(6)の製造法としては、一般式(3):
【化7】
Figure 0003828197
(式中、M2はアルカリ金属を示し、*は上記と同意義)
で表される光学活性3−(p−メトキシフェニル)グリシッド酸アルカリ金属をエステル化することによる、化学合成法であると考えられる。
【0007】
【課題を解決するための手段】
本発明者は、式(3)で示される(−)−3−(p−メトキシフェニル)グリシッド酸アルカリ金属塩の効率的で安全な製造法を目的として鋭意研究を重ねた結果、式(1)で示されるアルカリ金属塩に光学活性な有機アミンを加えた後、二酸化炭素を通気することにより式(2)で示される化合物とし、さらに塩基で処理することにより式(3)で示されるアルカリ金属塩へと導くことで該目的が達成されることを見いだし、本発明を完成するに至った。
【0008】
即ち、本発明は式(1):
【化8】
Figure 0003828197
(式中M1はアルカリ金属を示す。)
で示される化合物と光学活性なアミンの存在下、二酸化炭素を通気させ、一般式(2):
【化9】
Figure 0003828197
(式中、A+は光学活性な有機アミンの共役酸を示し、*は上記と同意義)
で示される光学活性3−(p−メトキシフェニル)グリシッド酸塩とした後、これを塩基で処理することにより、一般式(3):
【化10】
Figure 0003828197
(式中、M2はアルカリ金属を示し、*は上記と同意義)
で示される光学活性アルカリ金属塩を得ることを特徴とする製造法を提供するものである。
【0009】
本明細書中「ハロゲン」とは、フッ素、塩素、臭素またはヨウ素を意味する。「アルカリ金属」とは、リチウム、ナトリウム、カリウムを意味する。「アルコキシ」とは、アルキル部分が直鎖状または分枝状のC1〜C6アルキルオキシを意味し、例えば、メトキシ、エトキシ、n■プロポキシ、イソプロポキシ、n■ブトキシ、イソブトキシ、sec■ブトキシ、およびtert■ブトキシ等を挙げることができ る。
【0010】
本発明法の出発物質であるラセミ体のアルカリ金属塩(1)は既知であり、例えば特公平4−79346に記載の方法で製造することができる。該ラセミ体アルカリ金属塩の光学分割は、該アルカリ金属塩1重量部を、約0〜50℃、好ましくは室温にて、2〜14容量部、好ましくは7容量部の水に懸濁し、3分〜60分、好ましくは15分撹拌した後冷却し、約0〜25℃、好ましくは0〜5℃にて、1〜7容量部、好ましくは3.5容量部のテトラヒドロフラン、ジオキサ ン、ジメトキシエタン等のエーテル系溶媒、ジクロロメタン等のハロゲン系溶媒、あるいは酢酸エチル、トルエン、アセトニトリル等の有機溶媒、好ましくは酢酸エチル溶媒を加え、さらに、光学活性有機アミン(約1.1当量)を加えた後 、約0〜25℃、好ましくは0〜5℃にて、二酸化炭素を通気し1〜3時間好ましくは、2時間反応させることにより行う。次いで、生じた結晶を濾取することにより、高純度の光学活性な塩(2)を得ることができる。
次いで、得られた塩(2)1当量を約−20〜30℃、好ましくは−5℃にて、メタノール、エタノール等のアルコール系溶媒に溶解し、ナトリウムメトキシド、カリウムエトキシド等のアルカリ金属のアルコキシ体、または水酸化ナトリウム、水酸化カリウムなどのアルカリ金属のヒドロキシ体を1〜5当量、好ましくは3当量加え、約−20〜50℃、好ましくは−5〜30℃にて、1〜3時間、好ましくは1.5時間反応させ、生じた結晶を濾取することにより高純度の光学活性なアルカリ金属塩(3)を得ることができる。
【0011】
このように本発明方法によれば、ラセミ体のアルカリ金属塩(1)を出発原料に用いて、効率よく光学活性なアルカリ金属塩(3)を得ることができる。
上記から明らかなように本発明法によれば、1工程で光学分割を行うことができ、さらに二酸化炭素を通気することから、反応系中の一時的なpHの上昇を防ぐことができ、常にpH7付近で反応が行われるという、工業的に顕著な利点を有する。
次いで、本発明方法で得られた光学活性なアルカリ金属塩(3)を例えば、特願平06−262242の記載に従い、ピバロイルクロライドを用いて酸無水物とした後、アルコールで処理することによりエステル化し、上記反応式において式(5)で表されるニトロチオフェノールと反応させ、最終的に閉環する事により、医薬品であるジルチアゼム(4)を得ることができる。
【0012】
以下の実施例により本発明法を具体的に説明する。
【実施例】
実施例1
(−)−(2R,3S)−3−(p−メトキシフェニル)グリシッド酸アミン塩の合成。
(±)−3−(p−メトキシフェニル)グリシッド酸カリウム塩3.48g(0.015mole)を水15mlに懸濁し15分間室温にて撹拌した後、容器を氷水にて冷却し、0〜5℃で酢酸エチル45mlを加えた。さらに(−)−(S)−α−メチルベンジルアミン1.92g(0.0158mole,1.05当量)を加えた後、0〜5℃で二酸化炭素を通気した。2時間後(この間のpHを測定したとところ、滴下開始時間より2分後までのpHは9.64〜8.0、15分後のpHは7.23、30分後のpHは7.19、2時間後のpHは7.18となっており、ほぼ中性条件で反応が進行していることがわかった。)析出した結晶を濾取し光学活性なアミン塩1.93g(0.012mole)を得た(収率81%)。
mp.128〜129℃;
[α]D 24−109.8゜(c=1.0,メタノール)
1H−NMR(DMSO−d6)δ(ppm):1.46(3H,d,J=4. 5Hz),3.16(1H,d,J=1.0Hz),3.70(1H,d,J=1.0Hz),3.74(3H,s),4.29(1H,q,J=4.5Hz),6.90(2H,d,J=6.0Hz),7.20(2H,d,J=6.0Hz),7.32〜7.41(3H,m),7.48(2H,d,J=5.0Hz)
実施例2
(−)−(2R,3S)−3−(p−メトキシフェニル)グリシッド酸カリウム塩の合成。
水酸化カリウム95.9g(1.71mole)をメタノール1.15Lに溶解して窒素雰囲気下撹拌し、容器を浴温−20℃にて冷却して、(−)−3−(p−メトキシフェニル)グリシッド酸塩159g(0.503mole)を加えた後、0〜−5℃で1時間撹拌した。析出した結晶を濾取し光学活性なカリウム塩113g(0.485mole)を得た(収率97%)。
mp.310℃以上;
[α]D 24−159゜(c=1.0,メタノール)
1H−NMR(DMSO−d6)δ(ppm):2.97(1H,s),3.6 0(1H,s),3.74(3H,s),6.88(2H,d,J=8.5Hz),7.16(2H,d,J=8.5Hz)
【0013】
【発明の効果】
本発明法は、収率よく高純度の光学活性な化合物(3)を製造することができ、ジルチアゼム等の医薬品の製造、開発に貢献しうる。[0001]
[Industrial application fields]
The present invention relates to an optically active 3- (p-methoxyphenyl) glycid which is a useful synthetic intermediate of a (+)-cis 1,5-benzothiazepine derivative having a vasodilatory action represented by Diltiazem. The present invention relates to a method for producing an acid alkali metal salt.
[0002]
[Prior art]
As a general production method of diltiazem (4) which is a (+)-cis type 1,5-benzothiazepine derivative, for example, the following reaction formula:
[Chemical 6]
Figure 0003828197
Is known (Pharmaceutical Journal, 1988, p. 716). Here, an addition reaction between o-nitrothiophenol (5) and (-)-3- (p-methoxyphenyl) glycidic acid methyl ester (6) was performed, and the nitro group of the obtained threo-type intermediate was It is hydrolyzed after reduction and subjected to cyclization, N-alkylation and acetylation.
A compound having two asymmetric carbons in the molecule, such as compound (4), theoretically has four types of optical isomers, but in the case of compound (4), only the (+)-cis isomer is strong. It has been revealed that it has a medicinal effect. Therefore, in order to efficiently produce the desired (+)-cis type 1,5-benzothiazepine derivative (4), the optically active substance (6) is used as a starting material (supra).
[0003]
Thus, the development of an efficient production method of the optically active compound (6) is expected to lead to a more efficient production method of the (+)-cis type 1,5-benzothiazepine derivative. As the production method of compound (6), an enzymatic method using a biochemical reaction and a chemical synthesis method are already known. In chemical synthesis, two methods, a method through optical resolution and an asymmetric synthesis method, have been reported. Has been.
As a method for obtaining an optically active compound (6) through optical resolution, optical resolution is carried out by allowing an optically active amine to act on racemic 3- (p-methoxyphenyl) glycidic acid (yield 44%), followed by esterification. The method to do is known (Japanese Patent Laid-Open Nos. 60-13775 and 60-13776). In addition, optical resolution is carried out by reacting a racemic 3- (p-methoxyphenyl) glycidic acid alkali metal salt with an optically active organic amine mineral salt (yield 71%), and then esterification, Also known is a method in which an optically active organic amine is added to an alkali metal salt of racemic 3- (p-methoxyphenyl) glycidic acid, followed by optical resolution by dropwise addition of hydrochloric acid (yield 80%), followed by esterification. (Japanese Patent Publication No. 4-61867 and Japanese Patent Laid-Open No. 2-17168).
[0004]
However, there are the following problems in the method through this optical division. That is, since the method described in JP-A-60-13775 generally isolates 3- (p-methoxyphenyl) glycidic acid, which is known to be unstable, the yield is significantly reduced. It is unsuitable for industrialization.
Further, in the method described in JP-B-4-61867, an amine mineral salt must be prepared, and the operation is complicated, for example, the inorganic salt generated during the separation must be filtered and then crystallized.
On the other hand, in the method of dropping hydrochloric acid at the end described in JP-A-2-17168, in particular, when a large amount of reaction is carried out as an industrial technique, a large amount of diluted acid is used to suppress the formation of decomposition products under strongly acidic conditions. It must be added over a long time, which is also unsuitable for industrialization.
[0005]
On the other hand, in the method through asymmetric synthesis, a method through a coupling reaction between a halogenoacetate ester and benzaldehyde in the presence of an optically active lithium amide compound and alkyllithium (Japanese Patent Laid-Open No. 1-226881), and 2-halogeno-3- A method of undergoing asymmetric reduction of an oxo-3-phenylpropionic acid derivative (Japanese Patent Laid-Open No. 3-190865) is known. However, these asymmetric synthesis methods are not suitable for industrialization because they have yield and optical yields and cost problems that the asymmetric source is wasted.
[0006]
As the enzyme method, a method using esterase (JP-A-4-228070) is known. However, this method also has problems such as the necessity of using a special apparatus and difficulty in post-processing.
Thus, all the conventional methods have many problems in the industrial production of the optically active compound (6).
As a method for producing the optically active compound (6) most suitable for industrialization, the general formula (3):
[Chemical 7]
Figure 0003828197
(Wherein M 2 represents an alkali metal and * is as defined above)
It is thought that it is a chemical synthesis method by esterifying an optically active 3- (p-methoxyphenyl) glycidic acid alkali metal represented by:
[0007]
[Means for Solving the Problems]
The present inventor conducted extensive research for the purpose of efficient and safe production of the alkali metal salt of (−)-3- (p-methoxyphenyl) glycidic acid represented by the formula (3). After adding an optically active organic amine to the alkali metal salt represented by), the compound represented by the formula (2) is obtained by aeration of carbon dioxide, and further treated with a base to obtain the alkali represented by the formula (3). The inventors have found that the object can be achieved by leading to a metal salt, and have completed the present invention.
[0008]
That is, the present invention provides the formula (1):
[Chemical 8]
Figure 0003828197
(In the formula, M 1 represents an alkali metal.)
In the presence of a compound represented by formula (1) and an optically active amine, carbon dioxide is aerated, and the general formula (2):
[Chemical 9]
Figure 0003828197
(In the formula, A + represents a conjugate acid of an optically active organic amine, and * is as defined above)
An optically active 3- (p-methoxyphenyl) glycidate salt represented by the following formula (3):
[Chemical Formula 10]
Figure 0003828197
(Wherein M 2 represents an alkali metal and * is as defined above)
The production method is characterized by obtaining an optically active alkali metal salt represented by the formula:
[0009]
In the present specification, “halogen” means fluorine, chlorine, bromine or iodine. “Alkali metal” means lithium, sodium, or potassium. “Alkoxy” means C 1 -C 6 alkyloxy in which the alkyl moiety is linear or branched, for example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy And tert-butoxy.
[0010]
The racemic alkali metal salt (1) which is the starting material of the method of the present invention is known and can be produced, for example, by the method described in JP-B-4-79346. The optical resolution of the racemic alkali metal salt is carried out by suspending 1 part by weight of the alkali metal salt in 2 to 14 parts by volume, preferably 7 parts by volume of water at about 0 to 50 ° C., preferably at room temperature. Minutes to 60 minutes, preferably 15 minutes, then cooled and cooled to about 0 to 25 ° C., preferably 0 to 5 ° C., 1 to 7 parts by volume, preferably 3.5 parts by volume of tetrahydrofuran, dioxane, dimethoxy An ether solvent such as ethane, a halogen solvent such as dichloromethane, or an organic solvent such as ethyl acetate, toluene or acetonitrile, preferably an ethyl acetate solvent was added, and an optically active organic amine (about 1.1 equivalents) was further added. Thereafter, carbon dioxide is bubbled at about 0 to 25 ° C., preferably 0 to 5 ° C., and the reaction is performed for 1 to 3 hours, preferably 2 hours. The resulting crystals are then collected by filtration to obtain a highly pure optically active salt (2).
Next, 1 equivalent of the obtained salt (2) is dissolved in an alcohol solvent such as methanol or ethanol at about -20 to 30 ° C, preferably -5 ° C, and an alkali metal such as sodium methoxide or potassium ethoxide. 1 to 5 equivalents, preferably 3 equivalents, of an alkali metal such as sodium hydroxide or potassium hydroxide, and added at about -20 to 50 ° C, preferably -5 to 30 ° C. By reacting for 3 hours, preferably 1.5 hours, and collecting the resulting crystals by filtration, a highly pure optically active alkali metal salt (3) can be obtained.
[0011]
Thus, according to the method of the present invention, an optically active alkali metal salt (3) can be efficiently obtained by using a racemic alkali metal salt (1) as a starting material.
As apparent from the above, according to the method of the present invention, optical resolution can be carried out in one step, and further, since carbon dioxide is aerated, a temporary increase in pH in the reaction system can be prevented. There is an industrially significant advantage that the reaction is carried out in the vicinity of pH 7.
Next, the optically active alkali metal salt (3) obtained by the method of the present invention is treated with an alcohol after being converted into an acid anhydride using pivaloyl chloride, for example, as described in Japanese Patent Application No. 06-262242. The drug diltiazem (4) can be obtained by reacting with nitrothiophenol represented by formula (5) in the above reaction formula and finally ring closure.
[0012]
The following examples illustrate the process of the present invention.
【Example】
Example 1
Synthesis of (−)-(2R, 3S) -3- (p-methoxyphenyl) glycidic acid amine salt.
(±) -3- (p-Methoxyphenyl) glycidic acid potassium salt (3.48 g, 0.015 mole) was suspended in water (15 ml) and stirred for 15 minutes at room temperature. At room temperature 45 ml of ethyl acetate was added. Further, 1.92 g (0.0158 mole, 1.05 equivalent) of (−)-(S) -α-methylbenzylamine was added, and carbon dioxide was bubbled at 0 to 5 ° C. 2 hours later (when the pH was measured during this period, the pH from 9.64 to 8.0 after 2 minutes from the start time of dropping, the pH after 15 minutes was 7.23, and the pH after 30 minutes was 7. 19 and 2 hours later, the pH was 7.18, indicating that the reaction was proceeding under almost neutral conditions.) The precipitated crystals were collected by filtration to obtain 1.93 g (0 0.012 mole) (yield 81%).
mp. 128-129 ° C;
[Α] D 24 -109.8 ° (c = 1.0, methanol)
1 H-NMR (DMSO-d6) δ (ppm): 1.46 (3H, d, J = 4.5 Hz), 3.16 (1H, d, J = 1.0 Hz), 3.70 (1H, d, J = 1.0 Hz), 3.74 (3H, s), 4.29 (1H, q, J = 4.5 Hz), 6.90 (2H, d, J = 6.0 Hz), 7. 20 (2H, d, J = 6.0 Hz), 7.32 to 7.41 (3H, m), 7.48 (2H, d, J = 5.0 Hz)
Example 2
Synthesis of (−)-(2R, 3S) -3- (p-methoxyphenyl) glycidic acid potassium salt.
95.9 g (1.71 mole) of potassium hydroxide was dissolved in 1.15 L of methanol and stirred under a nitrogen atmosphere, and the vessel was cooled at a bath temperature of −20 ° C. to obtain (−)-3- (p-methoxyphenyl). ) After adding 159 g (0.503 mole) of glycidate, the mixture was stirred at 0 to -5 ° C for 1 hour. The precipitated crystals were collected by filtration to obtain 113 g (0.485 mole) of an optically active potassium salt (yield 97%).
mp. 310 ° C or higher;
[Α] D 24 −159 ° (c = 1.0, methanol)
1 H-NMR (DMSO-d6) δ (ppm): 2.97 (1H, s), 3.60 (1H, s), 3.74 (3H, s), 6.88 (2H, d, J = 8.5 Hz), 7.16 (2H, d, J = 8.5 Hz)
[0013]
【The invention's effect】
The method of the present invention can produce a highly pure optically active compound (3) with high yield, and can contribute to the production and development of pharmaceuticals such as diltiazem.

Claims (7)

一般式(1):
Figure 0003828197
(式中、M1はアルカリ金属を示す)
で表される(±)−3−(p−メトキシフェニル)グリシッド酸アルカリ金属塩に光学活性な有機アミンの存在下、二酸化炭素を通気させ、一般式(2):
Figure 0003828197
(式中、A+は光学活性な有機アミンの共役酸を示し、*は不斉炭素を示す)
で表される光学活性3−(p−メトキシフェニル)グリシッド酸塩となし、これを塩基により処理することを特徴とする、一般式(3):
Figure 0003828197
(式中、M2はアルカリ金属を示し、*は上記と同意義)
で表される光学活性3−(p−メトキシフェニル)グリシッド酸アルカリ金属塩の製造法。
General formula (1):
Figure 0003828197
(Wherein M 1 represents an alkali metal)
In the presence of an optically active organic amine, (±) -3- (p-methoxyphenyl) glycidic acid alkali metal salt represented by general formula (2):
Figure 0003828197
(In the formula, A + represents a conjugate acid of an optically active organic amine, and * represents an asymmetric carbon)
An optically active 3- (p-methoxyphenyl) glycidate represented by the formula (3), which is treated with a base:
Figure 0003828197
(Wherein M 2 represents an alkali metal and * is as defined above)
The manufacturing method of the optically active 3- (p-methoxyphenyl) glycidic acid alkali metal salt represented by these.
該光学活性な有機アミンが光学活性なα−メチルベンジルアミン、1−(1−ナフチル)エチルアミン、ノルエフェドリン、またはエフェドリンである請求項1記載の製造法。The process according to claim 1, wherein the optically active organic amine is optically active α-methylbenzylamine, 1- (1-naphthyl) ethylamine, norephedrine, or ephedrine. 該光学活性な有機アミンが(−)−(S)−α−メチルベンジルアミンまたは(+)−(R)−α−メチルベンジルアミンである請求項1記載の製造法。The process according to claim 1, wherein the optically active organic amine is (-)-(S) -α-methylbenzylamine or (+)-(R) -α-methylbenzylamine. 塩基がアルカリ金属のアルコキシ体またはヒドロキシ体である請求項1記載の製造法。The process according to claim 1, wherein the base is an alkali metal alkoxy form or hydroxy form. 一般式(1):
Figure 0003828197
(式中、M1はアルカリ金属を示す)
で表される(±)−3−(p−メトキシフェニル)グリシッド酸アルカリ金属塩に光学活性な有機アミンの存在下、二酸化炭素を通気させることを特徴とする、一般式(2):
Figure 0003828197
(式中、A+は光学活性な有機アミンの共役酸を示し、*は上記と同意義)
で表される光学活性3−(p−メトキシフェニル)グリシッド酸塩の製造法。
General formula (1):
Figure 0003828197
(Wherein M 1 represents an alkali metal)
(±) -3- (p-methoxyphenyl) glycidic acid alkali metal salt represented by the formula (2), wherein carbon dioxide is bubbled in the presence of an optically active organic amine:
Figure 0003828197
(In the formula, A + represents a conjugate acid of an optically active organic amine, and * is as defined above)
The manufacturing method of optically active 3- (p-methoxyphenyl) glycidate represented by these.
該光学活性な有機アミンが光学活性なα−メチルベンジルアミン、1−(1−ナフチル)エチルアミン、ノルエフェドリン、またはエフェドリンである請求項5記載の製造法。6. The process according to claim 5, wherein the optically active organic amine is optically active α-methylbenzylamine, 1- (1-naphthyl) ethylamine, norephedrine, or ephedrine. 該光学活性な有機アミンが(−)−(S)−α−メチルベンジルアミンまたは(+)−(R)−α−メチルベンジルアミンである請求項5記載の製造法。6. The process according to claim 5, wherein the optically active organic amine is (−)-(S) -α-methylbenzylamine or (+)-(R) -α-methylbenzylamine.
JP09918796A 1996-03-27 1996-03-27 Process for producing optically active alkali metal salt of 3- (p-methoxyphenyl) glycidic acid Expired - Fee Related JP3828197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09918796A JP3828197B2 (en) 1996-03-27 1996-03-27 Process for producing optically active alkali metal salt of 3- (p-methoxyphenyl) glycidic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09918796A JP3828197B2 (en) 1996-03-27 1996-03-27 Process for producing optically active alkali metal salt of 3- (p-methoxyphenyl) glycidic acid

Publications (2)

Publication Number Publication Date
JPH09255673A JPH09255673A (en) 1997-09-30
JP3828197B2 true JP3828197B2 (en) 2006-10-04

Family

ID=14240653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09918796A Expired - Fee Related JP3828197B2 (en) 1996-03-27 1996-03-27 Process for producing optically active alkali metal salt of 3- (p-methoxyphenyl) glycidic acid

Country Status (1)

Country Link
JP (1) JP3828197B2 (en)

Also Published As

Publication number Publication date
JPH09255673A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
RU2140909C1 (en) Method of synthesis of leukotriene antagonists, dicyclohexyl-amine salt, methods of preparing crystalline sodium salt and 1-(mercaptomethyl)-cyclopropane acetic acid, crystalline compounds
JPH08504819A (en) Asymmetric production method for florfenicol, thianphenicol, chloramphenicol and oxazoline intermediate
EP1138677B1 (en) Process for the preparation of 11-amino-3-chloro-6,11-dihydro-5,5-dioxo-6-methyl-dibenzo[c,f][1,2]-thiazepine and application to the synthesis of tianeptine
JP2010229157A (en) Method for preparing r-(-)-carnitine from s-(-)-chlorosuccinic acid or derivative thereof
JPH0461867B2 (en)
JP2005120024A (en) Method for producing 4'-cyano-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-methyl-3'-trifluoromethylpropionanilide
JP3828197B2 (en) Process for producing optically active alkali metal salt of 3- (p-methoxyphenyl) glycidic acid
JP2011098975A (en) Chiral pure n-(trans-4-isopropyl-cyclohexylcarbonyl)-d-phenylalanine and method for producing crystal structure transformation product thereof
JP2019199446A (en) Method of producing s-ica ribosylhomocysteine
JP2005298334A (en) Novel intermediate compound and method for manufacturing compound by using the same
EP3260442B1 (en) Process for preparation of optically pure n-substituted-3-methoxypropionic acid derivatives
JP2002505317A (en) Synthesis of chiral β-amino acids
US7375245B2 (en) N-(4-oxo-butanoic acid) -L-amino acid-ester derivatives and methods of preparation thereof
WO2001074795A1 (en) Process for preparing amic acid esters
EP1341762A1 (en) Process for resolving racemic mixtures of piperidine derivatives
JPH09255672A (en) Production of optically active 3-(para-methoxyphenyl) glycidic acid alkali metal salt
JP3673603B2 (en) Process for producing optically active 2,4,4-trimethyl-2-cyclohexen-1-ol and esters thereof
KR100472048B1 (en) Novel method for producing Aztreonam
JP2002536426A (en) Process for producing symmetric and asymmetric carbonates
US20040039206A1 (en) Process for resolving racemic mixtures of piperidine derivatives
JP3518627B2 (en) Method for producing optically active 5-hydroxymethyloxazolidinone derivative
JP2005298337A (en) METHOD FOR PRODUCING beta-HYDROXYAMINO ACID DERIVATIVE AND INTERMEDIATE OF THE SAME
JP3669398B2 (en) Reducing reagent
KR100255040B1 (en) Process for preparing D-(-)-pantolacton with amino acid silyl ester
KR0140323B1 (en) PROCESS FOR PREPARING OPTICAL ACTIVE Ñß-AMINOACID

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees