JP4193437B2 - Optically active carboxylic acids - Google Patents

Optically active carboxylic acids Download PDF

Info

Publication number
JP4193437B2
JP4193437B2 JP2002219294A JP2002219294A JP4193437B2 JP 4193437 B2 JP4193437 B2 JP 4193437B2 JP 2002219294 A JP2002219294 A JP 2002219294A JP 2002219294 A JP2002219294 A JP 2002219294A JP 4193437 B2 JP4193437 B2 JP 4193437B2
Authority
JP
Japan
Prior art keywords
phenyl
acid
optically active
tolyl
ethylamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002219294A
Other languages
Japanese (ja)
Other versions
JP2004059491A (en
Inventor
順子 工藤
隆行 東井
雅彦 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002219294A priority Critical patent/JP4193437B2/en
Publication of JP2004059491A publication Critical patent/JP2004059491A/en
Application granted granted Critical
Publication of JP4193437B2 publication Critical patent/JP4193437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学活性カルボン酸類およびその利用に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来、光学活性マンデル酸、リンゴ酸等のα−ヒドロキシカルボン酸類はアミノ基を有する化合物の光学分割剤として知られている(特開2001−2641号公報,特開2001−97933号公報)。本発明者らは、これらの光学活性α−ヒドロキシカルボン酸類の誘導体を種々合成し検討した結果、ヒドロキシ基の水素原子を4−フェニルベンジル基に置き換えた下記一般式(1)で示される光学活性カルボン酸類が、光学分割剤として優れていることを見出し本発明に至った。
【0003】
【課題を解決するための手段】
すなわち、本発明は、一般式(1)

Figure 0004193437
(式中、*印は不斉炭素原子を示し、Rは、フェニル基またはカルボキシメチル基を示し、Aは、4−フェニルベンジル基を示す。)
で示される光学活性カルボン酸類、およびそれを光学分割剤として用いる方法を提供するものである。
【0004】
【発明の実施の形態】
以下本発明について、詳細に説明する。
【0005】
一般式(1)で示される光学活性カルボン酸類は、製法2に従って得ることができる。
【0006】
製法2:
一般式(5)
Figure 0004193437
(式中、*印は不斉炭素原子を示し、Rはフェニル基またはカルボキシメチル基を示し、Rは炭素数1〜3のアルキル基またはアラルキル基を示す。)
で示される光学活性エステル化合物と、一般式(6)
X−A2 (6)
(式中、A2は、4−フェニルベンジル基を示し、Xはハロゲン原子を示す。)
で示されるハロゲン化物を酸化銀の存在下、反応させ一般式(7)
Figure 0004193437
(式中、*、R、A2およびR1は前記と同じ意味を表わす。)
で示される光学活性エステル類を得た後、酸または塩基の存在下、加水分解することにより一般式(1)で示される光学活性カルボン酸類を得ることができる。
【0007】
上記一般式(6)中のXは、通常、フッ素原子、塩素原子、臭素原子、ヨウ素原子を示し、好ましくは、塩素原子または臭素原子を示す。一般式(5)および(7)中のR1としては、通常、メチル基、エチル基、プロピル基等の炭素数1〜3のアルキル基またはベンジル基等のアラルキル基を示し、好ましくは、エチル基、メチル基である。
【0008】
前記製法2の一般式(7)で示される光学活性エステル類を得る工程において、酸化銀の使用量は通常1モル倍以上(対 一般式(5)で示される光学活性エステル化合物)、好ましくは、2モル倍以上である。上限は特に限定されないが、経済的理由より通常10モル倍以下である。
【0009】
一般式(6)で示されるハロゲン化物の使用量は、通常0.1〜50モル倍(対 一般式(5)で示される光学活性エステル化合物)、好ましくは、1〜10モル倍の範囲である。
【0010】
溶媒としては、通常、芳香族類、ケトン類、エーテル類、炭化水素類、エステル類の単独溶媒またはそれらの2種以上の混合溶媒が使用されるが、好ましくはエーテル類の単独溶媒がよい。芳香族類としては、ベンゼン、トルエン、キシレン、メシチレン等が挙げられる。ケトン類としては、例えば、アセトン、4−メチル−2−ペンタノン等が挙げられる。エーテル類としては、例えば、ジ−n−ブチルエーテル、ジエチルエーテル、テトラヒドロフラン、t−ブチルメチルエーテル等が挙げられる。炭化水素類としては、例えば、ヘキサン、ヘプタン等が挙げられる。エステル類としては例えば、酢酸エチル等が挙げられる。使用量は特に限定されない。
【0011】
反応温度は、通常0〜120℃、好ましくは、15〜90℃程度の範囲である。
【0012】
反応終点は、一般式(5)で示される光学活性エステル化合物の消失を確認し、その後、濾過・濃縮・カラム精製等の通常の後処理を行うことにより一般式(7)で示される光学活性エステル類が得られる。
【0013】
一般式(7)で示される光学活性エステル類の加水分解は、通常酸、または塩基存在下行われる。酸としては、通常、塩酸、硫酸、リン酸、硝酸等の無機酸またはp-トルエンスルホン酸、酢酸等の有機酸が使用され、好ましくは、経済的観点等から、塩酸、または硫酸が使用される。塩基としては、通常、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウムが使用され、好ましくは、水酸化リチウムが使用される。酸の使用量は通常、0.1〜50モル倍(対 一般式(7)で示される光学活性エステル類)、好ましくは、3〜6モル倍の範囲である。塩基の使用量は通常、1〜50モル倍(対 一般式(7)で示される光学活性エステル類)、好ましくは、3〜6モル倍の範囲である。
【0014】
溶媒は、通常、水単独溶媒、水とアルコール類の混合溶媒、または水とジオキサンの混合溶媒が使用されるが、好ましくは、水とアルコール類の混合溶媒である。アルコール類としては通常、メタノール、エタノール、2−プロパノール等が挙げられるが、好ましくは、メタノールである。水とアルコール類の比は、通常、水/アルコール類=100/1〜1/100、好ましくは、10/1〜1/10の範囲である。水とジオキサンの比は、通常、水/ジオキサン=100/1〜1/100、好ましくは、10/1〜1/10の範囲である。使用量は特に限定されない。
【0015】
反応温度は、通常−50〜200℃、好ましくは、酸使用の場合50〜150℃程度の範囲、塩基使用の場合−20〜50℃程度の範囲である。
【0016】
一般式(7)で示される光学活性エステル類の消失を確認した後、濃縮・抽出・再結晶濾過等の通常の後処理を行うことにより一般式(1)で示される光学活性カルボン酸類が得られる。
【0017】
光学活性カルボン酸類の具体例としては、(R or S)−2−(4−フェニルベンジルオキシ)−2−フェニル酢酸、(R or S)−3−カルボキシ−2−(4−フェニルベンジルオキシ)プロピオン酸が挙げられる。
【0018】
本発明では、一般式(1)で示される光学活性カルボン酸類を光学分割剤として使用することにより、例えば、不斉炭素を分子内に有するラセミアミン系化合物を光学分割することができる。
以下、光学分割について説明する。
【0019】
不斉炭素を分子内に有するラセミアミン系化合物としては、分子内に不斉炭素を1つ以上有しかつアミノ基を1つ以上有している化合物であれば特に限定されない。不斉炭素を分子内に有するラセミアミン系化合物は、通常、R体とS体の等量混合物であるが、一方の光学異性体を過剰に含む混合物であってもよい。
【0020】
光学分割は、通常、次の2工程により実施できる。
▲1▼塩形成工程
一般式(1)で示される光学活性カルボン酸類と不斉炭素を分子内に有するラセミアミン系化合物を溶媒存在下反応させることにより、光学活性カルボン酸類と不斉炭素を分子内に有するアミン系化合物の一方の光学異性体とのジアステレオマー塩を形成し結晶として析出させ、次いでこれを分離することによる光学活性カルボン酸類と不斉炭素を分子内に有するアミン系化合物の一方の光学異性体とのジアステレオマー塩を得る工程
▲2▼塩分解工程
塩形成工程にて得られたジアステレオマー塩を疎水性溶媒の存在下、酸または塩基により処理することにより不斉炭素を分子内に有するアミン系化合物の一方の光学異性体を得る工程
酸を使用する場合は、ジアステレオマー塩に酸と水を加えて酸性水溶液にし、酸性水溶液を疎水性溶剤で抽出した後、水層に塩基を加えて塩基性化する。塩基性水層を疎水性溶剤で抽出して、その抽出液を濃縮することにより、不斉炭素を分子内に有するアミン系化合物の一方の光学異性体が得られる。
一方、塩基を使用する場合は、ジアステレオマー塩に塩基と水を加えて塩基性水溶液にし、塩基性水溶液を疎水性溶剤で抽出後、抽出液を濃縮することにより、不斉炭素を分子内に有するアミン系化合物の一方の光学異性体が得られる。
【0021】
【発明の効果】
本発明の光学活性カルボン酸類は、アミン類の光学分割剤として優れた性能を発揮する。
【0022】
【実施例】
以下、実施例により本発明を詳細に説明するが、本発明はこれにより限定されるものではない。
【0023】
(実施例1)(S)−2−(4−フェニル)ベンジルオキシ−2−フェニル酢酸エチル
(S)−(+)−マンデル酸エチル8.47g、および4−ブロモメチルビフェニル13.94g、およびジ−n−ブチルエーテル119.52gを室温で混合し、攪拌しながら80℃まで昇温して溶解した。この溶液を遮光して80℃で攪拌下、硫酸マグネシウム20.85gおよび酸化銀39.09gを加え、遮光条件下、80℃で117hr攪拌し、反応させた。次いで、反応液を室温(25℃)まで冷却後濾過し、濾液を濃縮して、粗生成物を得た。粗生成物をシリカゲル60を用いたカラムクロマトグラフィーにより分離精製し、(S)−2−(4−フェニル)ベンジルオキシ−2−フェニル酢酸エチル6.25gを、純度96.9%で取得した(純度はFID検出器を用いるガスクロマトグラフィーで測定した。)。
【0024】
(実施例2)(S)−2−(4−フェニル)ベンジルオキシ−2−フェニル酢酸
実施例1で取得した(S)−2−(4−フェニル)ベンジルオキシ−2−フェニル酢酸エチル3.13gと、1,4−ジオキサン5.8mlを、室温で仕込んで混合、溶解した。そこに、10%硫酸水溶液を16.31g、室温攪拌下仕込み、還流するまで(100℃まで)攪拌下昇温し、還流状態で攪拌保温した。還流25時間目に濃硫酸(含量96%)1.72gと1,4−ジオキサン51.1mlを追加し、35時間目まで還流した。次いで、反応液を室温まで冷却後、イオン交換水100mlとt−ブチルメチルエーテル50mlを加えて振とう、分液し、有機層側に目的物を抽出した。水層をさらに2回、t−ブチルメチルエーテル50mlずつで抽出した。得られた有機層にイオン交換水100mlと10%水酸化ナトリウム水溶液5.25gを加えて、pH9以上のアルカリ性として振とう、分液し、目的物を水層側に移行させ、酸以外の不純物を抽出除去した。水層をさらに2回、t−ブチルメチルエーテル50mlずつで洗浄後、水層に10%塩酸5.43gを加えてpH3以下の酸性とし、t−ブチルメチルエーテル50mlずつで3回、酸析抽出した。有機層側として得られた目的物溶液を、飽和食塩水50mlで洗浄分液し、無水硫酸ナトリウムで乾燥した後濃縮して、(S)−2−(4−フェニル)ベンジルオキシ−2−フェニル酢酸2.95gを、化学純度93.8%、光学純度100%eeで取得した(化学純度はODSカラム、光学純度は光学活性カラムを用いた液体クロマトグラフィーで測定した。)。
融点94〜97℃
NMRスペクトルデータ(δppm、CDCl3)
4.63(q)2H;4.98(s)1H;
7.05〜7.68(m)14H;9.33(b)1H;
【0027】
(実施例5)(S)−3−カルボキシメチル−2−(4−フェニル)ベンジルオキシプロピオン酸メチル
(S)−(−)−リンゴ酸ジメチル7.15g、および4−ブロモメチルビフェニル13.08g、およびジ−n−ブチルエーテル112.14gを室温で混合し、攪拌しながら80℃まで昇温して溶解した。この溶液を遮光して80℃で攪拌下、硫酸マグネシウム19.56gおよび酸化銀36.68gを加え、遮光条件下、80℃で108hr攪拌し、反応させた。次いで、反応液を室温(25℃)まで冷却後濾過し、濾液を濃縮して、粗生成物を得た。粗生成物をシリカゲル60を用いたカラムクロマトグラフィーにより分離精製し、(S)−3−カルボキシメチル−2−(4−フェニル)ベンジルオキシプロピオン酸メチル5.24gを、純度98.4%で取得した(純度はFID検出器を用いるガスクロマトグラフィーで測定した。)。
【0028】
(実施例6)(S)−3−カルボキシ−2−(4−フェニル)ベンジルオキシプロピオン酸
実施例5で取得した(S)−3−カルボキシメチル−2−(4−フェニル)ベンジルオキシプロピオン酸メチル1.50gと、75%メタノール水29.17gを、室温で仕込み混合、攪拌した。それを1℃まで冷却して、水酸化リチウム0.53gおよび75%メタノール水11.52gを攪拌下仕込んだ。1〜5℃で17時間、さらに室温で37時間、原料エステルが消失するまで攪拌した。次いで、反応液に5%塩酸を加えてpH6〜7に中和後、減圧濃縮した。濃縮物にイオン交換水50mlとt−ブチルメチルエーテル50mlを加え、10%水酸化ナトリウムを加えて、pH12.1のアルカリ性として振とう、分液し、目的物を水層側に移行させ、酸以外の不純物を抽出除去した。水層をさらに2回、t−ブチルメチルエーテル50mlずつで洗浄後、水層に5%塩酸を加えてpH6.6〜6.4に調整下、t−ブチルメチルエーテル50mlずつで3回、モノカルボン酸を抽出除去した。次いで、水層にさらに5%塩酸を加えてpH1.9に調整し、t−ブチルメチルエーテル50mlずつで3回、酸析抽出した。有機層側として得られた目的物溶液を、飽和食塩水50mlで洗浄分液し、無水硫酸ナトリウムで乾燥した後濃縮して、(S)−3−カルボキシ−2−(4−フェニル)ベンジルオキシプロピオン酸1.26gを、化学純度99.6%、光学純度95.5%eeで取得した(化学純度はODSカラム、光学純度は光学活性カラムを用いた液体クロマトグラフィーで測定した。)。
融点140.2〜141.1℃
NMRスペクトルデータ(δppm、CDCl3)
0.80(b)1H;1.26(b)1H;2.96(m)2H;
4.43(t)1H;4.76(dd)1H;7.26〜7.61(m)9H;
【0029】
(実施例)(S)−3−カルボキシ−2−(4−フェニル)ベンジルオキシプロピオン酸を分割剤とする、1−フェニル−2−(p−トリル)エチルアミンの光学分割
室温でラセミ1−フェニル−2−(p−トリル)エチルアミン253.9mg(1.2mmol)を2−プロパノール2mlに溶解し、この溶液に、室温で(S)−3−カルボキシ−2−(4−フェニル)ベンジルオキシプロピオン酸87.1mg(0.29mmol)をあらかじめ2−プロパノール2mlに溶解した溶液を加え、攪拌して混合した。室温で結晶の析出を確認後、24時間室温で静置した。析出した結晶を濾別し、2−プロパノール0.4mlずつで2回洗浄後乾燥し、(R)−1−フェニル−2−(p−トリル)エチルアミンの(S)−3−カルボキシ−2−(4−フェニル)ベンジルオキシプロピオン酸塩210.7mg(1−フェニル−2−(p−トリル)エチルアミン回収率49% 対仕込ラセミ1−フェニル−2−(p−トリル)エチルアミン)を得た。
(融点145.7〜149.0℃)
取得塩2.5mgにt−ブチルメチルエーテル1ml及び1%水酸化ナトリウム水溶液1mlを加えて振とうして塩分解、抽出し、油層側として、光学純度90.8%eeの(R)−1−フェニル−2−(p−トリル)エチルアミンを取得した(光学純度は光学活性カラムを用いた液体クロマトグラフィーで測定した。)。
【0030】
(参考例1)
実施例で、(S)−3−カルボキシ−2−(4−フェニル)ベンジルオキシプロピオン酸を使用する替わりに(S)−マンデル酸を使用した以外は、すべて実施例と同様に行った。その結果、光学純度9%eeの(S)−1−フェニル−2−(p−トリル)エチルアミンの(S)−マンデル酸塩を得た(1−フェニル−2−(p−トリル)エチルアミン回収率14% 対仕込ラセミ1−フェニル−2−(p−トリル)エチルアミン)。
【0031】
(参考例2)
実施例で、(S)−3−カルボキシ−2−(4−フェニル)ベンジルオキシプロピオン酸を使用する替わりに(S)−リンゴ酸を使用した以外は、すべて実施例と同様に行った。その結果、光学純度2%eeの(R)−1−フェニル−2−(p−トリル)エチルアミンの(S)−リンゴ酸塩を得た(1−フェニル−2−(p−トリル)エチルアミン回収率33% 対仕込ラセミ1−フェニル−2−(p−トリル)エチルアミン)。
【0032】
(参考例3)
実施例で、(S)−3−カルボキシ−2−(4−フェニル)ベンジルオキシプロピオン酸を使用する替わりに(S)−2−ベンジルオキシ−2−フェニル酢酸を使用した以外は、すべて実施例と同様に行った。その結果、光学純度48%eeの(R)−1−フェニル−2−(p−トリル)エチルアミンの(S)−(S)−2−ベンジルオキシ−2−フェニル酢酸塩を得た(1−フェニル−2−(p−トリル)エチルアミン回収率29% 対仕込ラセミ1−フェニル−2−(p−トリル)エチルアミン)。
【0033】
(参考例4)
実施例で、(S)−3−カルボキシ−2−(4−フェニル)ベンジルオキシプロピオン酸を使用する替わりに(S)−2−フェノキシプロピオン酸を使用した以外は、すべて実施例と同様に行った。その結果、光学純度94%eeの(R)−1−フェニル−2−(p−トリル)エチルアミンの(S)−2−フェノキシプロピオン酸塩を得た(1−フェニル−2−(p−トリル)エチルアミン回収率7% 対仕込ラセミ1−フェニル−2−(p−トリル)エチルアミン)。
【0034】
(参考例5)
実施例で、(S)−3−カルボキシ−2−(4−フェニル)ベンジルオキシプロピオン酸を使用する替わりに(S)−2−ベンジルオキシプロピオン酸を使用した以外は、すべて実施例と同様に行った。その結果、光学純度93%eeの(R)−1−フェニル−2−(p−トリル)エチルアミンの(S)−2−ベンジルオキシプロピオン酸塩を得た(1−フェニル−2−(p−トリル)エチルアミン回収率19% 対仕込ラセミ1−フェニル−2−(p−トリル)エチルアミン)。
【0035】
(参考例6)
実施例で、(S)−3−カルボキシ−2−(4−フェニル)ベンジルオキシプロピオン酸を使用する替わりに(S)−2−(4−フェニルフェノキシ)プロピオン酸を使用した以外は、すべて実施例と同様に行った。その結果、光学純度27%eeの(R)−1−フェニル−2−(p−トリル)エチルアミンの(S)−2−(4−フェニルフェノキシ)プロピオン酸塩を得た(1−フェニル−2−(p−トリル)エチルアミン回収率33% 対仕込ラセミ1−フェニル−2−(p−トリル)エチルアミン)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to optically active carboxylic acids and uses thereof.
[0002]
[Background Art and Problems to be Solved by the Invention]
Conventionally, α-hydroxycarboxylic acids such as optically active mandelic acid and malic acid are known as optical resolution agents for compounds having an amino group (Japanese Patent Laid-Open Nos. 2001-2641 and 2001-97933). As a result of synthesizing and examining various derivatives of these optically active α-hydroxycarboxylic acids, the present inventors have found that the optical activity represented by the following general formula (1) in which the hydrogen atom of the hydroxy group is replaced with a 4- phenylbenzyl group. The present inventors have found that carboxylic acids are excellent as optical resolution agents, and have reached the present invention.
[0003]
[Means for Solving the Problems]
That is, the present invention relates to the general formula (1)
Figure 0004193437
(In the formula, * represents an asymmetric carbon atom, R represents a phenyl group or a carboxymethyl group , and A represents a 4-phenylbenzyl group.)
And a method of using the same as an optical resolution agent.
[0004]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will it described in detail.
[0005]
Optically active carboxylic acids represented by the general formula (1) can be obtained according to manufacturing method 2.
[0006]
Manufacturing method 2:
General formula (5)
Figure 0004193437
(In the formula, * represents an asymmetric carbon atom, R represents a phenyl group or a carboxymethyl group , and R 1 represents an alkyl group having 1 to 3 carbon atoms or an aralkyl group.)
An optically active ester compound represented by formula (6):
X-A 2 (6)
(In the formula, A 2 represents a 4-phenylbenzyl group, and X represents a halogen atom.)
Is reacted in the presence of silver oxide in the general formula (7)
Figure 0004193437
(In the formula, *, R, A 2 and R 1 are as defined above.)
The optically active carboxylic acid represented by the general formula (1) can be obtained by obtaining the optically active ester represented by the formula (1), followed by hydrolysis in the presence of an acid or a base.
[0007]
X in the general formula (6) usually represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom or a bromine atom. R 1 in the general formulas (5) and (7) usually represents an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group or a propyl group, or an aralkyl group such as a benzyl group, preferably ethyl. group, Ru der methyl group.
[0008]
In the step of obtaining the optically active ester represented by the general formula (7) in the production method 2, the amount of silver oxide used is usually 1 mol times or more (vs. the optically active ester compound represented by the general formula (5)), preferably 2 mol times or more. The upper limit is not particularly limited, but is usually 10 mol times or less for economic reasons.
[0009]
The amount of the halide represented by the general formula (6) is usually 0.1 to 50 mol times (vs. the optically active ester compound represented by the general formula (5)), preferably in the range of 1 to 10 mol times. is there.
[0010]
As the solvent, a single solvent of aromatics, ketones, ethers, hydrocarbons, esters, or a mixed solvent of two or more of them is usually used, but a single solvent of ethers is preferable. Examples of aromatics include benzene, toluene, xylene, mesitylene and the like. Examples of ketones include acetone and 4-methyl-2-pentanone. Examples of ethers include di-n-butyl ether, diethyl ether, tetrahydrofuran, t-butyl methyl ether and the like. Examples of the hydrocarbons include hexane and heptane. Examples of esters include ethyl acetate. The amount used is not particularly limited.
[0011]
The reaction temperature is usually in the range of 0 to 120 ° C, preferably about 15 to 90 ° C.
[0012]
The reaction end point is confirmed by disappearance of the optically active ester compound represented by the general formula (5), and then subjected to usual post-treatment such as filtration, concentration, column purification and the like, and the optical activity represented by the general formula (7). Esters are obtained.
[0013]
Hydrolysis of the optically active ester represented by the general formula (7) is usually carried out in the presence of an acid or a base. As the acid, an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid or nitric acid, or an organic acid such as p-toluenesulfonic acid or acetic acid is usually used, and hydrochloric acid or sulfuric acid is preferably used from an economic point of view. The As the base, sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, or potassium carbonate is usually used, and lithium hydroxide is preferably used. The amount of the acid used is usually in the range of 0.1 to 50 mol times (vs. the optically active ester represented by the general formula (7)), preferably 3 to 6 mol times. The amount of the base used is usually in the range of 1 to 50 mol times (vs. the optically active ester represented by the general formula (7)), preferably 3 to 6 mol times.
[0014]
The solvent is usually a water-only solvent, a mixed solvent of water and alcohols, or a mixed solvent of water and dioxane, and is preferably a mixed solvent of water and alcohols. Alcohols usually include methanol, ethanol, 2-propanol, etc., preferably methanol. The ratio of water to alcohols is usually in the range of water / alcohols = 100/1 to 1/100, preferably 10/1 to 1/10. The ratio of water to dioxane is usually in the range of water / dioxane = 100/1 to 1/100, preferably 10/1 to 1/10. The amount used is not particularly limited.
[0015]
The reaction temperature is usually −50 to 200 ° C., preferably about 50 to 150 ° C. when using an acid, and about −20 to 50 ° C. when using a base.
[0016]
After confirming the disappearance of the optically active ester represented by the general formula (7), the optically active carboxylic acid represented by the general formula (1) is obtained by carrying out usual post-treatment such as concentration, extraction and recrystallization filtration. It is done.
[0017]
Specific examples of the optically active carboxylic acids include ( R or S) -2- (4-phenylbenzyloxy) -2-phenylacetic acid , ( R or S) -3-carboxy-2- (4-phenylbenzyloxy) Propionic acid is mentioned.
[0018]
In the present invention, by using the optically active carboxylic acid represented by the general formula (1) as an optical resolution agent, for example, a racemic amine compound having an asymmetric carbon in the molecule can be optically resolved.
Hereinafter, the optical division will be described.
[0019]
The racemic amine compound having an asymmetric carbon in the molecule is not particularly limited as long as it is a compound having at least one asymmetric carbon and at least one amino group in the molecule. The racemic amine compound having an asymmetric carbon in the molecule is usually an equal mixture of R and S isomers, but may be a mixture containing an excess of one optical isomer.
[0020]
The optical resolution can be usually performed by the following two steps.
(1) Salt formation step By reacting an optically active carboxylic acid represented by the general formula (1) with a racemic amine compound having an asymmetric carbon in the molecule in the presence of a solvent, the optically active carboxylic acid and the asymmetric carbon are converted into the molecule. One of the amine compounds having an optically active carboxylic acid and an asymmetric carbon in the molecule by forming a diastereomeric salt with one optical isomer of the amine compound in Of obtaining a diastereomeric salt with the optical isomer of (2) Salt decomposition step Asymmetric carbon obtained by treating the diastereomeric salt obtained in the salt formation step with an acid or a base in the presence of a hydrophobic solvent. In the case of using a process acid to obtain one optical isomer of an amine compound having in the molecule, acid and water are added to the diastereomeric salt to form an acidic aqueous solution. The mixture was extracted with a hydrophobic solvent, basified by adding a base to the aqueous layer. By extracting the basic aqueous layer with a hydrophobic solvent and concentrating the extract, one optical isomer of an amine compound having an asymmetric carbon in the molecule can be obtained.
On the other hand, when a base is used, a base and water are added to a diastereomeric salt to form a basic aqueous solution, the basic aqueous solution is extracted with a hydrophobic solvent, and the extract is concentrated to remove the asymmetric carbon within the molecule. One optical isomer of the amine-based compound is obtained.
[0021]
【The invention's effect】
The optically active carboxylic acids of the present invention exhibit excellent performance as an optical resolution agent for amines.
[0022]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this.
[0023]
Example 1 (S) -2- (4-phenyl) benzyloxy-2-phenylethyl acetate (S)-(+)-mandelate 8.47 g, and 4-bromomethylbiphenyl 13.94 g, and 119.52 g of di-n-butyl ether was mixed at room temperature, and dissolved by heating to 80 ° C. with stirring. This solution was shaded at 80 ° C. with stirring, magnesium sulfate (20.85 g) and silver oxide (39.09 g) were added, and the mixture was stirred at 80 ° C. for 117 hours under a light-shielding condition to be reacted. Next, the reaction solution was cooled to room temperature (25 ° C.) and then filtered, and the filtrate was concentrated to obtain a crude product. The crude product was separated and purified by column chromatography using silica gel 60, and 6.25 g of ethyl (S) -2- (4-phenyl) benzyloxy-2-phenylacetate was obtained with a purity of 96.9% ( Purity was measured by gas chromatography using an FID detector.)
[0024]
(Example 2) (S) -2- (4-phenyl) benzyloxy-2-phenylacetic acid (S) -2- (4-phenyl) benzyloxy-2-phenylacetic acid ethyl ester obtained in Example 1 13 g and 5.8 ml of 1,4-dioxane were charged at room temperature, mixed and dissolved. Thereto, 16.31 g of 10% aqueous sulfuric acid solution was charged with stirring at room temperature, and the temperature was raised with stirring until refluxing (to 100 ° C.). Concentrated sulfuric acid (content 96%) 1.72 g and 1,4-dioxane 51.1 ml were added at 25 hours after reflux, and refluxed until 35 hours. Next, after cooling the reaction solution to room temperature, 100 ml of ion-exchanged water and 50 ml of t-butyl methyl ether were added, shaken and separated, and the target product was extracted on the organic layer side. The aqueous layer was further extracted twice with 50 ml each of t-butyl methyl ether. Add 100 ml of ion-exchanged water and 5.25 g of 10% sodium hydroxide aqueous solution to the obtained organic layer, shake and separate as alkaline with a pH of 9 or higher, transfer the target product to the aqueous layer side, impurities other than acid Was extracted and removed. The aqueous layer was further washed twice with 50 ml each of t-butyl methyl ether, and then acidified to pH 3 or less by adding 5.43 g of 10% hydrochloric acid to the aqueous layer. did. The target product solution obtained as the organic layer side was washed and separated with 50 ml of saturated brine, dried over anhydrous sodium sulfate, concentrated and (S) -2- (4-phenyl) benzyloxy-2-phenyl. 2.95 g of acetic acid was obtained with a chemical purity of 93.8% and an optical purity of 100% ee (chemical purity was measured by liquid chromatography using an ODS column and optical purity was measured using an optically active column).
Melting point 94-97 ° C
NMR spectral data (δppm, CDCl3)
4.63 (q) 2H; 4.98 (s) 1H;
7.05 to 7.68 (m) 14H; 9.33 (b) 1H;
[0027]
(Example 5) Methyl (S) -3-carboxymethyl-2- (4-phenyl) benzyloxypropionate 7.15 g of dimethyl (S)-(-)-malate and 13.08 g of 4-bromomethylbiphenyl , And 112.14 g of di-n-butyl ether were mixed at room temperature, heated to 80 ° C. with stirring, and dissolved. This solution was shaded at 80 ° C. with stirring, 19.56 g of magnesium sulfate and 36.68 g of silver oxide were added, and the mixture was reacted at 80 ° C. for 108 hours under the shielding conditions. Next, the reaction solution was cooled to room temperature (25 ° C.) and then filtered, and the filtrate was concentrated to obtain a crude product. The crude product was separated and purified by column chromatography using silica gel 60 to obtain 5.24 g of methyl (S) -3-carboxymethyl-2- (4-phenyl) benzyloxypropionate with a purity of 98.4%. (Purity was measured by gas chromatography using an FID detector.)
[0028]
(Example 6) (S) -3-Carboxy-2- (4-phenyl) benzyloxypropionic acid (S) -3-Carboxymethyl-2- (4-phenyl) benzyloxypropionic acid obtained in Example 5 1.50 g of methyl and 29.17 g of 75% methanol water were charged at room temperature, mixed and stirred. It was cooled to 1 ° C., and 0.53 g of lithium hydroxide and 11.52 g of 75% aqueous methanol were charged with stirring. The mixture was stirred at 1 to 5 ° C. for 17 hours and further at room temperature for 37 hours until the starting ester disappeared. Then, 5% hydrochloric acid was added to the reaction solution to neutralize to pH 6-7, and then concentrated under reduced pressure. Add 50 ml of ion-exchanged water and 50 ml of t-butyl methyl ether to the concentrate, add 10% sodium hydroxide, shake as pH 12.1 alkaline, separate, transfer the target product to the aqueous layer side, and add acid. Impurities other than those were extracted and removed. The aqueous layer was further washed twice with 50 ml each of t-butyl methyl ether, and 5% hydrochloric acid was added to the aqueous layer to adjust the pH to 6.6 to 6.4. The carboxylic acid was extracted and removed. Subsequently, 5% hydrochloric acid was further added to the aqueous layer to adjust the pH to 1.9, and acid precipitation was performed three times with 50 ml each of t-butyl methyl ether. The target product solution obtained as the organic layer side was washed and separated with 50 ml of saturated brine, dried over anhydrous sodium sulfate and concentrated to give (S) -3-carboxy-2- (4-phenyl) benzyloxy. 1.26 g of propionic acid was obtained with a chemical purity of 99.6% and an optical purity of 95.5% ee (chemical purity was measured by liquid chromatography using an ODS column, and optical purity was measured using an optically active column).
Melting point: 140.2-141.1 ° C
NMR spectral data (δppm, CDCl3)
0.80 (b) 1H; 1.26 (b) 1H; 2.96 (m) 2H;
4.43 (t) 1H; 4.76 (dd) 1H; 7.26-7.61 (m) 9H;
[0029]
(Example 7 ) Optical resolution of 1-phenyl-2- (p-tolyl) ethylamine using (S) -3-carboxy-2- (4-phenyl) benzyloxypropionic acid as a resolving agent 253.9 mg (1.2 mmol) of phenyl-2- (p-tolyl) ethylamine was dissolved in 2 ml of 2-propanol, and (S) -3-carboxy-2- (4-phenyl) benzyloxy was added to this solution at room temperature. A solution in which 87.1 mg (0.29 mmol) of propionic acid was previously dissolved in 2 ml of 2-propanol was added, and the mixture was stirred and mixed. After confirming the precipitation of crystals at room temperature, it was allowed to stand at room temperature for 24 hours. The precipitated crystals were separated by filtration, washed twice with 0.4 ml each of 2-propanol, and dried to give (S) -3-carboxy-2- (R) -1-phenyl-2- (p-tolyl) ethylamine. 210.7 mg of (4-phenyl) benzyloxypropionate (1-phenyl-2- (p-tolyl) ethylamine recovery rate 49% vs. charged racemic 1-phenyl-2- (p-tolyl) ethylamine) was obtained.
(Melting point: 145.7-149.0 ° C.)
To 2.5 mg of the obtained salt, 1 ml of t-butyl methyl ether and 1 ml of 1% aqueous sodium hydroxide solution were added and shaken for salt decomposition and extraction. As the oil layer side, (R) -1 having an optical purity of 90.8% ee -Phenyl-2- (p-tolyl) ethylamine was obtained (optical purity was measured by liquid chromatography using an optically active column).
[0030]
(Reference Example 1)
The same procedure as in Example 7 was conducted except that (S) -mandelic acid was used instead of (S) -3-carboxy-2- (4-phenyl) benzyloxypropionic acid in Example 7 . . As a result, (S) -1-mandelate salt of (S) -1-phenyl-2- (p-tolyl) ethylamine having an optical purity of 9% ee was obtained (1-phenyl-2- (p-tolyl) ethylamine recovery) 14% rate versus racemic 1-phenyl-2- (p-tolyl) ethylamine charged).
[0031]
(Reference Example 2)
The same procedure as in Example 7 was conducted except that (S) -malic acid was used instead of (S) -3-carboxy-2- (4-phenyl) benzyloxypropionic acid in Example 7 . . As a result, (S) -malate of (R) -1-phenyl-2- (p-tolyl) ethylamine having an optical purity of 2% ee was obtained (1-phenyl-2- (p-tolyl) ethylamine recovery) Rate 33% versus charged racemic 1-phenyl-2- (p-tolyl) ethylamine).
[0032]
(Reference Example 3)
In Example 7 , everything was carried out except that (S) -2-benzyloxy-2-phenylacetic acid was used instead of (S) -3-carboxy-2- (4-phenyl) benzyloxypropionic acid. Performed as in Example 7 . As a result, (R) -1-phenyl-2- (p-tolyl) ethylamine (S)-(S) -2-benzyloxy-2-phenylacetate having an optical purity of 48% ee was obtained (1- Phenyl-2- (p-tolyl) ethylamine recovery 29% versus charged racemic 1-phenyl-2- (p-tolyl) ethylamine).
[0033]
(Reference Example 4)
In Example 7, similarly to (S)-3-carboxy-2- (4-phenyl) except for using Instead of using benzyloxy propionic acid (S) -2- phenoxypropionic acid in Example 7 Went to. As a result, (S) -2-phenoxypropionate of (R) -1-phenyl-2- (p-tolyl) ethylamine having an optical purity of 94% ee was obtained (1-phenyl-2- (p-tolyl). ) Ethylamine recovery 7% vs. charged racemic 1-phenyl-2- (p-tolyl) ethylamine).
[0034]
(Reference Example 5)
In Example 7, the (S)-3-carboxy-2- (4-phenyl) except for using Instead of using benzyloxy propionic acid (S) -2- benzyloxy propionic acid, in Example 7 The same was done. As a result, (R) -1-phenyl-2- (p-tolyl) ethylamine (S) -2-benzyloxypropionate having an optical purity of 93% ee was obtained (1-phenyl-2- (p- (Tolyl) ethylamine recovery 19% vs. charged racemic 1-phenyl-2- (p-tolyl) ethylamine).
[0035]
(Reference Example 6)
All in Example 7 , except that (S) -2- (4-phenylphenoxy) propionic acid was used instead of (S) -3-carboxy-2- (4-phenyl) benzyloxypropionic acid. The same operation as in Example 7 was performed. As a result, (S) -2- (4-phenylphenoxy) propionate of (R) -1-phenyl-2- (p-tolyl) ethylamine having an optical purity of 27% ee was obtained (1-phenyl-2 -(P-Tolyl) ethylamine recovery 33% versus charged racemic 1-phenyl-2- (p-tolyl) ethylamine).

Claims (2)

一般式(1)
Figure 0004193437
(式中、*印は不斉炭素原子を示し、Rは、フェニル基またはカルボキシメチル基を示し、Aは、4−フェニルベンジル基を示す。)
で示される光学活性カルボン酸類。
General formula (1)
Figure 0004193437
(In the formula, * represents an asymmetric carbon atom, R represents a phenyl group or a carboxymethyl group , and A represents a 4-phenylbenzyl group.)
An optically active carboxylic acid represented by
前記一般式(1)で示される光学活性カルボン酸類を光学分割剤として使用する方法。A method of using the optically active carboxylic acid represented by the general formula (1) as an optical resolution agent.
JP2002219294A 2002-07-29 2002-07-29 Optically active carboxylic acids Expired - Fee Related JP4193437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219294A JP4193437B2 (en) 2002-07-29 2002-07-29 Optically active carboxylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219294A JP4193437B2 (en) 2002-07-29 2002-07-29 Optically active carboxylic acids

Publications (2)

Publication Number Publication Date
JP2004059491A JP2004059491A (en) 2004-02-26
JP4193437B2 true JP4193437B2 (en) 2008-12-10

Family

ID=31940235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219294A Expired - Fee Related JP4193437B2 (en) 2002-07-29 2002-07-29 Optically active carboxylic acids

Country Status (1)

Country Link
JP (1) JP4193437B2 (en)

Also Published As

Publication number Publication date
JP2004059491A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
EP1907396B1 (en) Method for preparing 4 -amino-4'-demethyl-4-desoxypodophyllotoxin
JP2001048864A (en) COMPOUND FOR PRODUCING beta-ADRENALINE RECEPTOR ANTAGONIST AND METHOD
JPWO2003042180A6 (en) Process for producing optically active oxoheptenoic acid ester
JP4193437B2 (en) Optically active carboxylic acids
EP1698615B1 (en) Method of obtaining tolterodine
JP2000351776A (en) Production of optically active homocysteinethiolactone salt and its intermediate
WO2003051852A1 (en) Intermediate and process for producing optically active compound from the intermediate
EP4103543B1 (en) Process for the synthesis of s-beflubutamid using asymmetric hydrogenation
JP4829418B2 (en) Optically active halohydrin derivative and method of using the same
JP2002332277A (en) Method for manufacturing optically active 2- methylpiperazine
JP2000198779A (en) Purification of 3-alkylflavanol derivative
JPH0827073A (en) Racemization of optically active alpha-aryl alkylamine
JPH10237013A (en) Production of optically active 2-benzylsuccinic acid
JP4314602B2 (en) Process for producing optically active 3-hydroxypyrrolidine derivative
WO2021161101A1 (en) Preparation of s-beflubutamid by resolving 2-(4-fluoro-3-(trifluoromethyl)phenoxy)butanoic acid
EP0837843B1 (en) Method for preparing enantiomeric forms of amino alkylaminophenyl propanoic acid
JP2003137835A (en) Method for producing (r)-3-hydroxy-3-(2-phenyl)hexanoic acid
JP3144920B2 (en) α-Acylaminoketone derivatives, production method thereof and use thereof
JP3144921B2 (en) Benzyl ester derivative and method for producing the same
JP2001213853A (en) Method for optical resolution for (±)-n-formylleucine
JP2001226333A (en) Method for producing optically active aminoindane derivative and its intermediate
JP2004059443A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE 1-PHENYL-2-(p-SUBSTITUTED PHENYL)ETHYLAMINES
JP2004051604A (en) Production method of optically active 2-amino-2-(2-naphthyl)ethanols and intermediate thereof
JPH0717573B2 (en) Process for producing optically active esters of 2-cyclopenten-4-one-1-ol
JP2001139516A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-ALKYL-1- PHENYLACETIC ACIDS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080129

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees