JP2005293096A - 特定領域検出方法、特定領域検出装置、およびプログラム - Google Patents

特定領域検出方法、特定領域検出装置、およびプログラム Download PDF

Info

Publication number
JP2005293096A
JP2005293096A JP2004105711A JP2004105711A JP2005293096A JP 2005293096 A JP2005293096 A JP 2005293096A JP 2004105711 A JP2004105711 A JP 2004105711A JP 2004105711 A JP2004105711 A JP 2004105711A JP 2005293096 A JP2005293096 A JP 2005293096A
Authority
JP
Japan
Prior art keywords
detection
red
area
face
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004105711A
Other languages
English (en)
Other versions
JP4320272B2 (ja
Inventor
Atsushi Enomoto
淳 榎本
Hisafumi Matsushita
尚史 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004105711A priority Critical patent/JP4320272B2/ja
Priority to US11/094,239 priority patent/US7613332B2/en
Publication of JP2005293096A publication Critical patent/JP2005293096A/ja
Application granted granted Critical
Publication of JP4320272B2 publication Critical patent/JP4320272B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/77Retouching; Inpainting; Scratch removal
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/165Detection; Localisation; Normalisation using facial parts and geometric relationships
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/193Preprocessing; Feature extraction
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20132Image cropping
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30216Redeye defect

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Geometry (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

【課題】写真画像中から赤目等の特定領域を高速で検出できる検出方法および装置、これら実行するプログラムをを提供する。
【解決手段】画像中から赤目候補を検出し、この赤目候補に対応して顔検出を行って赤目を特定すると共に、主要部領域と非主要部領域とで、赤目候補検出および顔検出の条件を変えることにより、前記課題を解決する。
【選択図】図3

Description

本発明は、写真フィルムに撮影された画像やデジタルカメラによって撮影された画像から、赤目等の画像中の顔領域に存在し得る特定領域を検出する画像処理の技術分野に属し、詳しくは、画像からの赤目検出等を高速に行うことを可能にする特定領域検出方法および特定領域検出装置、ならびに、これらを実行させるプログラムに関する。
近年、フィルムに記録された画像を光電的に読み取って、読み取った画像をデジタル信号とした後、種々の画像処理を施して記録用の画像データとし、この画像データに応じて変調した記録光によって感光材料を露光してプリントとして出力するデジタルフォトプリンタが実用化されている。
デジタルフォトプリンタでは、フィルムに撮影された画像を光電的に読み取って、画像をデジタルの画像データとして、画像の処理や感光材料の露光を行う。そのため、フィルムに撮影された画像のみならず、デジタルカメラ等で撮影された画像(画像データ)からも、プリントの作成を行うことができる。
また、近年のパーソナルコンピュータ(PC)やデジタルカメラ、さらにはインクジェットプリンタなどの安価なカラープリンタの普及に伴い、デジタルカメラで撮影した画像をPCに取り込み、画像処理を施してプリンタで出力するユーザも多い。
さらに、近年では、デジタルカメラで撮影した画像を記憶した光磁気記録媒体(MOなど)、小型半導体記憶メディア(スマートメディアTMやコンパクトフラッシュTMなど)、磁気記録メディア(フレキシブルディスクなど)、光ディスク(CDやCD−Rなど)等の記憶媒体から、直接的に画像データを読み取り、所定の画像処理を施して、プリント(ハードコピー)を出力するプリンタも実用化されている。
ところで、ポートレート等の人物を含む画像において、画質を左右する最も重要な要素は人物の仕上りである。従って、撮影時のストロボ発光の影響によって、人物の目(瞳)が赤くなる赤目現象は、重大な問題となる。
従来のフィルムから直接的に露光を行うフォトプリンタでは、赤目の補正は非常に困難である。しかしながら、デジタルフォトプリンタ等のデジタルの画像処理であれば、画像処理(画像解析)によって赤目を検出し、この赤目領域の輝度や彩度を補正することによって、赤目の補正を行うことができる。
このような赤目補正処理を行うに際し、画像中から赤目を検出する方法としては、例えば、画像データの解析によって画像中から顔を検出し、次いで、検出した顔の中から目の検出や赤い丸の検出を行う方法が例示される。また、このような赤目検出に利用される顔検出の方法も各種提案されている。
例えば、特許文献1には、画像から人物の顔に相当すると推定される候補領域を検出し、この候補領域を所定数の小領域に分割して、小領域毎に濃度や輝度の変化の頻度および大きさ関連する特徴量を求め、予め作成した人物の顔に相当する領域を前記所定数に分割した際における各小領域の特徴量の関係を表すパターンと、前記特徴量とを照合することにより、顔候補領域の角度を評価して、顔検出の精度を向上する方法が開示されている。
また、特許文献2には、画像から人物の顔に相当すると推定される候補領域を検出し、この顔候補領域の濃度が所定範囲で有る場合に、この顔候補領域を基準として胴体と推定される領域を設定し、設定した胴体領域と顔候補領域との濃度差が所定値以下の領域の有無に基づいて、もしくは、顔候補領域および胴体候補領域の濃度や彩度のコントラストに基づいて、顔候補領域の検出結果の確度を評価して、顔検出の精度を向上する方法が開示されている。
さらに、特許文献3には、画像から人物の顔に相当すると推定される候補領域を検出し、検出した候補領域のうち、画像中で他の候補領域と重複している候補領域について重複度を求め、この重複度が高い領域ほど顔領域である確度を高いと評価することにより、顔検出の精度を向上する方法が開示されている。
特開2000−137788号公報 特開2000−148980号公報 特開2000−149018号公報
このような顔検出は、精度を要求され、かつ、様々な解析が必要であるため、通常、プリントの出力等に用いられる高解像度の画像データ(フィルムを読み取った画像データであれば、いわゆるファインスキャンデータで、デジタルカメラであれば撮影画像データ)で行う必要があり、処理に時間がかかる。
しかも、撮影画像中における顔の向きは、基本的に、撮影時におけるカメラの向き(横位置や縦位置など)によって4方向が有り得る。ここで、顔の向きが異なれば、当然、画面の天地方向や左右方向における目や鼻などの配列方向が異なるため、確実に顔を検出するためには、4つの全ての方向に対応して顔検出を行う必要がある。
また、画像中における顔のサイズ(大きさ)も、撮影距離等に応じて様々であり、画像中における顔のサイズが異なれば、当然、画像中の目や鼻などの位置関係(間隔)が異なるため、確実に顔を検出するためには、やはり、各種の顔のサイズに対応して顔検出を行う必要がある。
そのため赤目補正処理は、赤目検出、特に顔検出が律速となって非常に時間のかかる処理となってしまい、例えば、前述のデジタルフォトプリンタであれば、赤目の無い高画質な画像を安定して出力できる反面、生産性を低下させる大きな要因となっている。
本発明の目的は、前記従来技術の問題点を解決することにあり、画像中の赤目や目じりなど、画像中の顔領域に存在し得る特定領域の検出を検出を高速で行うことができ、例えば、赤目の無い高画質画像を安定して出力することを可能とし、かつ、プリンタの生産性を大幅に向上させることができる特定領域検出方法、この特定領域検出方法を実行する特定領域検出装置、および、これらを実行するためのプログラムを提供することにある。
前記目的を達成するために、本発明の特定領域検出方法は、画像中の特定領域候補を検出し、次いで、検出した特定領域候補を含む領域において顔検出を行って、顔が検出できた領域に含まれる特定領域候補を検出対象である特定領域として特定すると共に、前記画像の主要部領域と非主要部領域とで、前記特定領域候補検出および顔検出の少なくとも一方における検出条件を変更することを特徴とする特定領域検出方法を提供する。
また、本発明の特定領域検出装置は、供給された画像データの画像から特定領域候補を検出する候補検出手段と、前記候補検出手段が検出した前記特定領域候補を含む領域において顔検出を行う顔検出手段と、前記顔検出手段によって顔が検出できた領域に含まれる特定領域候補を検出対象である特定領域として特定する特定手段とを有し、かつ、前記候補検出手段および顔検出手段の少なくとも一方は、画像の主要部領域と非主要部領域とで、検出対象の検出条件を変更することを特徴とする特定領域検出装置を提供する。
さらに、本発明のプログラムは、供給された画像データの画像から特定領域候補を検出する候補検出手段、前記候補検出手段が検出した前記特定領域候補を含む領域において顔検出を行う顔検出手段、および、前記顔検出手段によって顔が検出できた領域に含まれる特定領域候補を検出対象である特定領域として特定する特定手段を実行させ、かつ、候補検出手段および前記顔検出手段の少なくとも一方においては、主要部領域と非主要部領域とで、検出対象の検出条件を変更することを特徴とするプログラムを提供する。
このような本発明の特定領域検出方法、特定領域処理装置、およびプログラムにおいて、前記特定領域が赤目であるのが好ましく、また、前記主要部領域が、予め設定された画像の中心領域であるのが好ましく、さらに、前記顔検出の際に、特定領域候補が集中している領域を主要部領域とするのが好ましい。
本発明は、上記構成を有することにより、赤目やニキビなどの画像中の顔領域に存在する特定領域を検出するに際し、特定領域の存在しない領域での顔検出を不要とし、かつ、特定領域が存在する可能性が有っても、その可能性が低い領域での処理時間を短縮することができ、これにより高速で赤目等の顔領域中の特定領域の検出を行うことができる。
従って、本発明の特定領域検出方法によれば、例えば、高速で赤目検出を行うことによる迅速な赤目補正が可能となり、例えば、写真フィルムを光電的に読み取って得られた画像データや、デジタルカメラで撮影された画像データ等から写真プリントを作成するフォトプリンタにおいて、生産性の低下を最小限に押さえて、赤目の無い高画質なプリントを安定して出力することができる。
以下、本発明の特定領域検出方法、特定領域検出装置、およびプログラムについて、添付の図面に示される好適実施例を基に、詳細に説明する。
なお、以下の説明は、画像中の顔領域に存在し得る特定領域として、赤目を検出する場合を例に説明するが、本発明は、これに限定されない。
図1(A)に、本発明を特定領域検出方法および特定領域検出装置を利用する赤目検出装置の一例をブロック図で概念的に示す。また、本発明のプログラムは、以下に説明する処理を実行させるプログラムである。
図1(A)に示す赤目検出装置10(以下、検出装置10とする)は、入力された処理対象画像(その画像データ)から特定領域として赤目を検出して、赤目補正手段20に出力するもので、領域検出手段12と、赤目候補検出手段14と、顔検出手段16と、赤目特定手段18とを有して構成される。このような画像検出装置10は、一例として、パーソナルコンピュータ、ワークステーションなどのコンピュータや、DSP(Digital Signal Processor)等を利用して構成される。
なお、検出装置10と赤目補正手段20とは、一体的に構成されていてもよく、あるいは、検出装置10(あるいはさらに、赤目補正手段20)は、色/濃度補正、階調補正、電子変倍処理、シャープネス処理等の各種の画像処理を行う画像処理装置(手段)に組み込まれるものであってもよい。
本発明の検出装置10において、赤目検出を行う処理対象画像(以下、対象画像とする)は、カラー画像であれば特に限定はなく、例えば、カメラによって写真フィルムに撮影された画像(画像を撮影された写真フィルムを光電的に読み取って得られた画像データ)や、デジタルカメラで撮影された画像(画像データ)であってもよい。また、対象画像は、撮影された画像そのものではなく、必要に応じて各種の画像処理を施された画像(画像データ)であってもよいのは、もちろんである。
対象画像は、まず、領域検出手段12および赤目候補検出手段14に供給される。
領域設定手段12は、供給された対象画像において、主要部領域と非主要部領域とを設定して、その設定結果(例えば、画素番号や領域を示す座標データ等)を赤目候補検出手段14および顔検出手段16に供給するものである。
図示例においては、一例として、領域設定手段12は、図1(B)や図1(C)に示すような、領域設定のためのテンプレートを有しており、必要に応じてテンプレート(もしくは対象画像)の拡大/縮小を行って、対象画像にこのテンプレートをあてはめ、画像の中央領域((B)であれば中央の楕円領域、(C)であれば中央の長方形領域)を主要部領域と設定し、それ以外の領域を非主要部領域と設定して、その設定結果を赤目候補検出手段14および顔検出手段16に送る。
なお、テンプレートの拡大/縮小ではなく、想定される対象画像のサイズに応じた複数サイズのテンプレートを有してもよく、また、複数サイズのテンプレートと拡大/縮小とを併用してもよい。
主要部領域とする画像中央領域の決定方法には、特に限定はなく、検出装置10に要求される適正に応じて、適宜、決定すればよい。例えば、主要部領域が大きくなるほど、赤目検出の処理時間は遅くなるが、画像全体で見た際の赤目検出の精度は高くなるので、検出装置10に要求される処理時間や処理精度に応じて、主要部領域とする画像中央領域を、適宜、決定する方法が例示される。
また、主要部領域とする画像中央領域の大きさが異なるテンプレートを複数用意しておいて選択可能にしてもよく、および/または、所定のテンプレートにおいて、主要部領域とする画像中央領域を任意に設定可能にしてもよい。
本発明において、主要部領域および非主要部領域の設定方法は、このように画像の中央領域と周辺領域とで設定する方法に限定はされず、各種の方法が利用可能である。
例えば、画像解析を行って、焦点(ピント)が合っている領域を主要部領域とし、それ以外の領域を非主要部領域とする方法が例示される。なお、画像中の合焦領域の抽出は、公知の方法で行えばよい。
また、一般的に、ストロボ撮影を含めて、画像中の主要部に相当する領域は、背景領域に比して高輝度になる場合が多い。それを利用して、画像中において閾値を超えた高輝度領域を主要部領域とし、それ以外の領域を非主要部領域としてもよい。あるいは、画像ファイルに記録された各種の情報や、APSであればフィルムに記録された磁気情報から、ストロボのガイドナンバー、照射領域、焦点距離、測離情報を求め、ストロボが照射された領域を主要部領域とし、それ以外のストロボが照射されなかった領域を非主要部領域としてもよい。
さらに、後述する顔検出に対応して、赤目候補検出手段14が検出した赤目候補領域が集中する領域を主要部領域としてもよい。この点に関しては、後に詳述する。
赤目候補検出手段14は、対象画像中から、赤目である可能性のある領域すなわち赤目候補を検出し、赤目候補の位置情報(中心の座標位置情報)、領域情報、個数の情報等を、赤目候補の情報として顔検出手段16および赤目特定手段18に供給するものである。
一例として、図1(D)に示すように、背景に3つの赤ランプを有するシーンで人物を撮影し、この人物に赤目現象が生じた画像(シーン)であれば、赤ランプに対応するa、b、およびc、ならびに、赤目に対応するdおよびeで示す領域を赤目候補として検出し、顔検出手段16および赤目特定手段18に供給する。
赤目候補の検出方法には、特に限定はなく、公知の各種の方法が利用可能である。
一例として、赤色の色相で、かつ、所定画素数以上が集まっている領域を抽出し、予め多数の赤目の画像サンプルから設定した、赤目度(どの程度赤目らしい色か)および円形度(どの程度丸いか)を用い、赤目度および円形度が閾値を超えた領域を、赤目である可能性を有する赤目候補として検出する方法が例示される。
ここで、図示例の検出装置10においては、先に領域設定手段12によって設定された主要部領域と非主要部領域とで、赤目候補検出の条件を変える。
一例として、主要部領域では赤目である可能性が低くても赤目候補として検出し、非主要部では、赤目である可能性が高い領域のみを赤目候補として検出する。具体的には、前述のように、赤目度および円形度が閾値を超えた領域を赤目候補として検出する際には、主要部領域では閾値を低くして赤目候補検出を行う。あるいは逆に、非主要部領域の閾値を高くして赤目候補検出を行ってもよい。従って、例えば、図1(D)に示す例であれば、主要部領域の赤目候補dおよびeは、非主要部領域の赤目候補a〜cよりも低い閾値で検出された赤目候補である。
後述する顔検出手段16では、赤目候補の周辺のみで顔検出を行う。従って、これにより、重要度の低い非主要部領域での顔検出処理を少なくし、すなわち顔検出手段16において行う顔検出処理量を低減して、赤目検出の処理時間を短縮することができる。
赤目候補検出手段14による赤目候補の検出結果、ならびに、領域設定手段12による主要部領域および非主要部領域の設定結果は、顔検出手段16に送られる。
顔検出手段16は、赤目の検出結果(例えば前記位置情報)を用いて、赤目候補検出手段14が検出した赤目候補を含む周辺において、顔検出を行い、自身を含む領域で顔が検出できた赤目候補の情報、あるいはさらに顔の検出結果を赤目特定手段18に供給するものである。
例えば、図1(D)に示す例であれば、前記a、b、c、d、およびeの各赤目候補に対応して、各赤目候補を含む所定領域において、順次、顔検出を行う。従って、顔領域として例えば点線で囲まれた領域が検出され、これに応じて、顔検出手段16は、赤目候補dおよびeが顔領域に含まれる赤目候補であるとの情報、あるいはさらに、検出した顔領域の情報を赤目特定手段18に供給する。
前述のように、顔検出は、非常に時間のかかる処理であるが、従来の赤目検出では、顔検出を行った後に、検出された顔領域内で赤目検出を行っているため、赤目の存在しない領域でも顔検出を行っており、その結果、顔検出に非常に時間がかかる。
これに対し、本発明においては、このように、赤目候補を検出した後に、この赤目候補を含む所定領域でのみ顔検出を行うことにより、赤目が存在しない領域での無駄な顔検出を無くして、赤目検出において、顔検出にかかる時間を大幅に短縮することができる。
顔検出手段16による顔検出の方法には、特に限定はなく、公知の各種の方法が利用可能である。
一例として、多数の顔の画像サンプルから予め作成した平均的な顔画像いわゆる顔のテンプレート(以下、顔テンプレートとする)を用いて、顔検出を行う方法が例示される。
この方法では、一例として、縦位置(縦撮影)/横位置(横撮影)などの撮影時のカメラの向きに応じて、図2(A)に示すように顔テンプレート(もしくは対象画像)を天地および左右方向に回転(画像面において0°→90°→180°→270°と回転)して顔の向きを変え、かつ、画像中の顔のサイズ(解像度)に応じて、図2(B)に示すような顔テンプレート(同前)の顔サイズの変更(拡大/縮小=解像度変換)を行って、各種の顔の向きおよび顔サイズの組み合わせの顔テンプレートと、画像中の顔候補領域とのマッチング(一致度の確認)を、順次、行って、顔検出を行う。
なお、顔テンプレートの回転および拡大/縮小に変えて、回転した顔テンプレートや拡大/縮小した顔テンプレートを予め作成しておいて、これを用いてマッチングを行ってもよい。また、顔候補領域野検出は、例えば、肌色抽出や輪郭抽出等の手段で行えばよい。
また、学習手法を使用した顔検出も好適に例示される。
この方法では、多数の顔画像と非顔画像とを用意して、それぞれの特徴量の抽出を行って、その結果から、適宜選択した学習手法(例えば、Boostong等)を利用して、顔か非顔かを分離する関数や閾値を算出する、事前学習を行う。顔検出を行う際には、対象画像に対して、事前学習と同様にして特徴量の抽出を行って、事前学習で得られた関数や閾値を用いて顔か非顔かを判別して、顔検出を行う。
また、特開平8−184925号や特開平9−138471号の各公報に開示される、エッジ(輪郭)抽出やエッジ方向の抽出による形状認識、肌色抽出や黒抽出等の色抽出を組み合わせた方法や、前記特許文献1〜3において、顔テンプレートを用いたマッチング以外の顔候補の検出方法として例示されている各方法も、利用可能である。
ここで、本発明においては、顔検出手段16においても、領域設定手段12が設定した主要部領域と非主要部領域とで、異なる条件で顔検出を行う。例えば、図1(D)の例であれば、主要部領域に位置する赤目候補dおよびeに対しては、処理時間がかかっても誤検出や見落としの無い高精度な顔検出を行い、非主要部領域に位置するa〜cの赤目候補では、高速で処理が行えるように顔検出を行う。
もしくは、顔検出は主要部領域のみで行い、非主要部領域での顔検出は行わない方法も利用可能である。
このように、主要部領域では高精度な顔検出を行い、非主要部領域では高速での顔検出を行う、もしくは非部主要部領域では顔検出を行わないことにより、前述の主要部領域と非主要部領域とで条件を変えた赤目候補検出の効果と相俟って、非常に高速に、かつ、重要である主要部領域では高精度な赤目検出を行うことが可能となる。
なお、この赤目検出では、非主要部領域とされた周辺領域では赤目を適正に検出できない可能性があるが、通常、主要な被写体は画像の中央に存在しているので、画像品質的には問題となることは少ない。
主要部領域と非主要部領域における顔検出の条件の違いには、特に限定はなく、各種の態様が利用可能である。
例えば、非主要部領域においては、肌色度、円形度、顔テンプレートとの一致度などにおいて、顔では無いと判断する閾値を高くする方法(あるいは、主要部領域では閾値を低くする方法)が例示される。この方法によれば、主要部領域においては高精度に顔抽出を行い、非主要部領域での顔検出時間を短縮することができる。
また、前述の顔テンプレートを用いたマッチングによる顔検出等であれば、主要部領域では全ての顔サイズに対応した顔検出を行い、非主要部領域では、例えば、標準の顔サイズのみの顔検出を行う、所定の顔サイズ以上のみの顔検出を行う等、所定の顔サイズのみでしか顔検出を行わない方法も好適である。
また、主要部領域と非主要部領域とで、顔検出の方法を変えるのも好適である。
例えば、主要部領域では、高精度な顔検出を行うことができる前記顔テンプレートを用いたマッチングによる顔検出や、学習手法を利用した顔検出を行い、非主要部領域では、前記特開平8−184925号や特開平9−138471号の各公報等に開示される、短時間での処理が可能な肌色抽出、エッジ抽出による形状認識、肌色抽出等による顔検出を行う方法も例示される。あるいは、非主要部領域では、エッジ抽出による形状認識のみでの顔検出や、肌色検出のみでの顔検出を行うようにしてもよい。
前述のように、赤目候補検出手段14による赤目候補の検出結果、および、顔検出手段16で顔が検出できた赤目候補は、赤目特定手段18に供給される。
赤目特定手段18は、これらの情報を用いて、周囲に顔が検出できた赤目候補を赤目と特定し、対象画像における赤目の検出結果として、各赤目の位置情報および領域の情報、赤目の個数の情報等を赤目補正手段20に供給する。
赤目補正手段20は、赤目特定手段18から供給された赤目の検出結果に応じて、対象画像の赤目領域の画像処理を行って、対象画像の赤目補正をなう。
赤目補正の方法には、特に限定はなく、公知の方法が各種利用可能である。例えば、赤目や赤目周囲(顔の周囲を含んでもよい)の画像特徴量等に応じて赤目領域の彩度、明度、色相等をコントロールして赤目を補正する補正処理や、単純に赤目領域の色を黒に変換する補正処理等が例示される。
以下、図3のフローチャートを参照して、この赤目検出について詳細に説明することにより、本発明を、より詳細に説明する。
対象画像が供給され、赤目検出が開始されると、まず、領域設定手段12が前述のように画像のどの領域が主要部領域で、どの領域が非主要部領域かを設定し、赤目候補検出手段14および顔検出手段16に設定結果を供給する。

次いで、赤目候補検出手段14による赤目候補の検出が開始される。赤目候補検出は、領域設定手段12による領域設定に応じて、主要部領域では前述のように低閾値での赤目候補検出を行って、赤目の可能性が低い領域でも赤目候補領域として検出し、非主要部領域では、高閾値での赤目候補検出を行って、赤目の可能性が高い領域のみを赤目候補領域として検出する。
全部でm個の赤目候補が検出できたとして、赤目候補検出手段14は、画像の中央に近い赤目候補領域から、順次、番号付け(ナンバリング)を行い、赤目候補検出結果を顔検出手段16および赤目特定手段18に送る。
赤目候補の検出結果を受けた顔検出手段16は、先の領域設定手段12による領域設定に応じて、最初(n=1)の赤目候補(A点)が主要部領域か非主要部領域かを判定し、一例として、主要部領域である場合には、高精度な顔検出が可能な前記顔テンプレートを用いたマッチングによる顔検出を行い、非主要部領域である場合には、高速処理が可能な肌色抽出およびエッジ抽出による形状認識での顔検出を行う。
A点で顔検出を行った顔検出手段16は、A点で顔が検出できたか否かの情報を赤目特定手段18に送る。
赤目特定手段18は、顔検出結果に応じて、A点で顔が検出できた場合には、この赤目候補を赤目と特定し、A点で顔が検出できなかった場合には、この赤目候補は赤目ではないと特定する。
A点が赤目であるか否かの特定を終了したら、A点をn+1とし、A>mであれば次のA点(赤目候補)について、顔検出を行い、以下同様にして、これ以降の赤目候補における顔検出を、順次、行い、A>mとなった時点、すなわち、全ての赤目候補についての顔検出を終了したら、赤目検出を終了する。
以上の例では、赤目候補検出手段14と顔検出手段16(赤目候補検出と顔検出)は、同じ主要部領域および非主要部領域に応じて赤目検出および顔検出を行っている。しかしながら、本発明は、これに限定はされず、赤目候補検出手段14と顔検出手段16とで、位置や大きさが異なる主要部領域および非主要部領域を設定してもよい。
例えば、赤目候補手段14では、図1(B)や(C)に示されるテンプレートを用いて画像中央を主要部領域として赤目候補検出を行い、あるいは、主要部を設定せずに全域で同条件で赤目候補検出を行う。次いで、赤目候補の検出結果に応じて、図4に示すように、赤目候補rが集中している領域を含む周辺領域xを主要部領域、それ以外を非主要部領域として、顔検出手段16で顔検出を行ってもよい。
なお、この際には、例えば、赤目候補検出手段14が赤目候補検出結果を領域設定手段12供給し、領域設定手段12において、赤目候補が集中している領域を含む領域を含む円形や楕円計や矩形の領域を主要部領域として設定すればよい。
また、赤目候補検出手段14では画像全体で同条件で赤目候補検出を行い(すなわち主要部領域の設定をしない)、顔検出手段16では設定した主要部領域と非主要部領域とで顔検出の条件を変えてもよく、あるいは逆に、赤目候補検出手段14では設定した主要部領域と非主要部領域とで赤目候補検出の条件を変え、顔検出手段16では、検出された赤目候補に対して領域によらず同条件で顔検出を行ってもよい。
以上、本発明の特定領域検出方法、特定領域検出装置、およびプログラムについて詳細に説明したが、本発明は上記実施例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
例えば、以上の例は、本発明の検出方法を赤目検出に利用した例であるが、本発明は、これに限定はされず、目、目じり、眉毛、口、鼻、眼鏡、ニキビ、ホクロ、しわ等、画像中の顔領域に存在し得る各種の物を特定領域として、画像中から例えばニキビ候補を検出して、その周辺で顔検出を行い、顔が検出できたニキビ候補をニキビと特定してもよい。
この際における特定領域候補の検出方法は、例えば、検出対象となる特定領域に固有の色や形状を有する領域を画像中から検出する方法が例示される。また、顔検出と同様に、検出対象となる特定領域の多数の画像サンプルから、予め作成した平均的な特定領域の画像(テンプレート)を用いて、マッチングを行う方法も好適である。例えば、多数の目じりの画像サンプルから予め作成した平均的な目じりの画像すなわち目じりのテンプレートを用い、マッチングを行って目じりを検出する方法が例示される。
(A)は、本発明の特定領域検出装置を赤目検出装置に利用した一例を概念的に示すブロック図であり、(B),(C)および(D)は、本発明の赤目検出を説明するための概念図である。 (A)および(B)は、顔検出方法を説明するための概念図である。 図1に示す赤目検出装置における赤目検出の一例のフローチャートである。 本発明による赤目検出の別の例を説明するための概念図である。
符号の説明
10 (赤目)検出装置
12 領域設定手段
14 赤目候補検出手段
16 顔検出手段
18 赤目特定手段
20 赤目補正手段

Claims (8)

  1. 画像中の特定領域候補を検出し、次いで、検出した特定領域候補を含む領域において顔検出を行って、顔が検出できた領域に含まれる特定領域候補を検出対象である特定領域として特定すると共に、
    前記画像の主要部領域と非主要部領域とで、前記特定領域候補検出および顔検出の少なくとも一方における検出条件を変更することを特徴とする特定領域検出方法。
  2. 前記特定領域が赤目である請求項1に記載の特定領域検出方法。
  3. 前記主要部領域が、予め設定された画像の中心領域である請求項1または2に記載の特定領域検出方法。
  4. 前記顔検出の際に、特定領域候補が集中している領域を主要部領域とする請求項1〜3のいずれかに記載の特定領域検出方法。
  5. 供給された画像データの画像から特定領域候補を検出する候補検出手段と、前記候補検出手段が検出した前記特定領域候補を含む領域において顔検出を行う顔検出手段と、前記顔検出手段によって顔が検出できた領域に含まれる特定領域候補を検出対象である特定領域として特定する特定手段とを有し、
    かつ、候補検出手段および前記顔検出手段の少なくとも一方は、画像の主要部領域と非主要部領域とで、検出対象の検出条件を変更することを特徴とする特定領域検出装置。
  6. 前記特定領域が赤目である請求項5に記載の特定領域検出装置。
  7. 供給された画像データの画像から特定領域候補を検出する候補検出手段、前記候補検出手段が検出した前記特定領域候補を含む領域において顔検出を行う顔検出手段、および、前記顔検出手段によって顔が検出できた領域に含まれる特定領域候補を検出対象である特定領域として特定する特定手段を実行させ、
    かつ、前記候補検出手段および顔検出手段の少なくとも一方においては、主要部領域と非主要部領域とで、検出対象の検出条件を変更することを特徴とするプログラム。
  8. 前記特定領域が赤目である請求項7に記載のプログラム。
JP2004105711A 2004-03-31 2004-03-31 特定領域検出方法、特定領域検出装置、およびプログラム Expired - Fee Related JP4320272B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004105711A JP4320272B2 (ja) 2004-03-31 2004-03-31 特定領域検出方法、特定領域検出装置、およびプログラム
US11/094,239 US7613332B2 (en) 2004-03-31 2005-03-31 Particular-region detection method and apparatus, and program therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105711A JP4320272B2 (ja) 2004-03-31 2004-03-31 特定領域検出方法、特定領域検出装置、およびプログラム

Publications (2)

Publication Number Publication Date
JP2005293096A true JP2005293096A (ja) 2005-10-20
JP4320272B2 JP4320272B2 (ja) 2009-08-26

Family

ID=35054328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105711A Expired - Fee Related JP4320272B2 (ja) 2004-03-31 2004-03-31 特定領域検出方法、特定領域検出装置、およびプログラム

Country Status (2)

Country Link
US (1) US7613332B2 (ja)
JP (1) JP4320272B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239871A (ja) * 2008-03-28 2009-10-15 Canon Inc 物体検知方法及びその装置
JP2009237661A (ja) * 2008-03-26 2009-10-15 Seiko Epson Corp 画像処理装置、画像処理方法、画像処理のためのコンピュータプログラム
JP2010003165A (ja) * 2008-06-20 2010-01-07 Canon Inc 画像処理装置及び画像処理方法、コンピュータプログラム及び記録媒体
JP2011511358A (ja) * 2008-02-01 2011-04-07 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 自動赤目検出
JP2012230501A (ja) * 2011-04-25 2012-11-22 Canon Inc 画像処理装置、画像処理方法
JP2014016821A (ja) * 2012-07-09 2014-01-30 Canon Inc 画像処理装置、画像処理方法およびプログラム
JP2014232370A (ja) * 2013-05-28 2014-12-11 東芝テック株式会社 認識辞書作成装置及び認識辞書作成プログラム

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630006B2 (en) 1997-10-09 2009-12-08 Fotonation Ireland Limited Detecting red eye filter and apparatus using meta-data
US7738015B2 (en) 1997-10-09 2010-06-15 Fotonation Vision Limited Red-eye filter method and apparatus
US7042505B1 (en) 1997-10-09 2006-05-09 Fotonation Ireland Ltd. Red-eye filter method and apparatus
US8254674B2 (en) 2004-10-28 2012-08-28 DigitalOptics Corporation Europe Limited Analyzing partial face regions for red-eye detection in acquired digital images
US7970182B2 (en) 2005-11-18 2011-06-28 Tessera Technologies Ireland Limited Two stage detection for photographic eye artifacts
US7920723B2 (en) 2005-11-18 2011-04-05 Tessera Technologies Ireland Limited Two stage detection for photographic eye artifacts
US7792970B2 (en) 2005-06-17 2010-09-07 Fotonation Vision Limited Method for establishing a paired connection between media devices
US7336821B2 (en) 2006-02-14 2008-02-26 Fotonation Vision Limited Automatic detection and correction of non-red eye flash defects
US7587085B2 (en) 2004-10-28 2009-09-08 Fotonation Vision Limited Method and apparatus for red-eye detection in an acquired digital image
US8036458B2 (en) 2007-11-08 2011-10-11 DigitalOptics Corporation Europe Limited Detecting redeye defects in digital images
US7574016B2 (en) 2003-06-26 2009-08-11 Fotonation Vision Limited Digital image processing using face detection information
US7689009B2 (en) 2005-11-18 2010-03-30 Fotonation Vision Ltd. Two stage detection for photographic eye artifacts
US7536036B2 (en) 2004-10-28 2009-05-19 Fotonation Vision Limited Method and apparatus for red-eye detection in an acquired digital image
US8170294B2 (en) * 2006-11-10 2012-05-01 DigitalOptics Corporation Europe Limited Method of detecting redeye in a digital image
US8520093B2 (en) 2003-08-05 2013-08-27 DigitalOptics Corporation Europe Limited Face tracker and partial face tracker for red-eye filter method and apparatus
US9412007B2 (en) 2003-08-05 2016-08-09 Fotonation Limited Partial face detector red-eye filter method and apparatus
US8320641B2 (en) 2004-10-28 2012-11-27 DigitalOptics Corporation Europe Limited Method and apparatus for red-eye detection using preview or other reference images
US7869630B2 (en) * 2005-03-29 2011-01-11 Seiko Epson Corporation Apparatus and method for processing image
US7599577B2 (en) 2005-11-18 2009-10-06 Fotonation Vision Limited Method and apparatus of correcting hybrid flash artifacts in digital images
JP4549997B2 (ja) * 2006-03-30 2010-09-22 富士フイルム株式会社 赤目検出装置、赤目検出方法、および赤目検出プログラム
JP4910462B2 (ja) * 2006-04-14 2012-04-04 株式会社ニコン カメラ
IES20060564A2 (en) * 2006-05-03 2006-11-01 Fotonation Vision Ltd Improved foreground / background separation
DE602007012246D1 (de) 2006-06-12 2011-03-10 Tessera Tech Ireland Ltd Fortschritte bei der erweiterung der aam-techniken aus grauskalen- zu farbbildern
US8055067B2 (en) 2007-01-18 2011-11-08 DigitalOptics Corporation Europe Limited Color segmentation
EP2145288A4 (en) 2007-03-05 2013-09-04 Digitaloptics Corp Europe Ltd FILTERING OF POSITIVE FALSE OF RED EYES USING A LOCATION AND FACE ORIENTATION
US20080309785A1 (en) * 2007-06-14 2008-12-18 Masahiko Sugimoto Photographing apparatus
US8159716B2 (en) 2007-08-31 2012-04-17 Brother Kogyo Kabushiki Kaisha Image processing device performing image correction by using a plurality of sample images
JP4793356B2 (ja) * 2007-08-31 2011-10-12 ブラザー工業株式会社 画像処理装置及び画像処理プログラム
JP4433017B2 (ja) * 2007-08-31 2010-03-17 ブラザー工業株式会社 画像処理装置及び画像処理プログラム
US8174731B2 (en) 2007-08-31 2012-05-08 Brother Kogyo Kabushiki Kaisha Image processing device outputting image for selecting sample image for image correction
US8094343B2 (en) 2007-08-31 2012-01-10 Brother Kogyo Kabushiki Kaisha Image processor
JP4442664B2 (ja) * 2007-08-31 2010-03-31 ブラザー工業株式会社 画像処理装置、画像処理方法、画像処理プログラム
US8503818B2 (en) * 2007-09-25 2013-08-06 DigitalOptics Corporation Europe Limited Eye defect detection in international standards organization images
US9721148B2 (en) 2007-12-31 2017-08-01 Applied Recognition Inc. Face detection and recognition
US9639740B2 (en) 2007-12-31 2017-05-02 Applied Recognition Inc. Face detection and recognition
CA2897227C (en) * 2007-12-31 2017-01-10 Applied Recognition Inc. Method, system, and computer program for identification and sharing of digital images with face signatures
JP5089405B2 (ja) * 2008-01-17 2012-12-05 キヤノン株式会社 画像処理装置及び画像処理方法並びに撮像装置
US8212864B2 (en) 2008-01-30 2012-07-03 DigitalOptics Corporation Europe Limited Methods and apparatuses for using image acquisition data to detect and correct image defects
US8081254B2 (en) 2008-08-14 2011-12-20 DigitalOptics Corporation Europe Limited In-camera based method of detecting defect eye with high accuracy
US8170332B2 (en) * 2009-10-07 2012-05-01 Seiko Epson Corporation Automatic red-eye object classification in digital images using a boosting-based framework
US8929614B2 (en) * 2009-10-19 2015-01-06 Hewlett-Packard Development Company, L.P. Red eye detection aided by face detection
JP5924977B2 (ja) * 2011-03-18 2016-05-25 キヤノン株式会社 画像処理装置および画像処理方法
US8532566B2 (en) 2011-06-08 2013-09-10 Andrew Llc System and method for reducing desensitization of a base station transceiver for mobile wireless repeater systems
US9552376B2 (en) 2011-06-09 2017-01-24 MemoryWeb, LLC Method and apparatus for managing digital files
US9111130B2 (en) * 2011-07-08 2015-08-18 Microsoft Technology Licensing, Llc Facilitating face detection with user input
US8548207B2 (en) 2011-08-15 2013-10-01 Daon Holdings Limited Method of host-directed illumination and system for conducting host-directed illumination
JP2013045316A (ja) * 2011-08-25 2013-03-04 Sanyo Electric Co Ltd 画像処理装置及び画像処理方法
US9202105B1 (en) 2012-01-13 2015-12-01 Amazon Technologies, Inc. Image analysis for user authentication
JP6098133B2 (ja) * 2012-11-21 2017-03-22 カシオ計算機株式会社 顔構成部抽出装置、顔構成部抽出方法及びプログラム
US10915618B2 (en) 2014-08-28 2021-02-09 Facetec, Inc. Method to add remotely collected biometric images / templates to a database record of personal information
US10698995B2 (en) 2014-08-28 2020-06-30 Facetec, Inc. Method to verify identity using a previously collected biometric image/data
US10614204B2 (en) 2014-08-28 2020-04-07 Facetec, Inc. Facial recognition authentication system including path parameters
US12130900B2 (en) 2014-08-28 2024-10-29 Facetec, Inc. Method and apparatus to dynamically control facial illumination
US10803160B2 (en) 2014-08-28 2020-10-13 Facetec, Inc. Method to verify and identify blockchain with user question data
US11256792B2 (en) 2014-08-28 2022-02-22 Facetec, Inc. Method and apparatus for creation and use of digital identification
CA3186147A1 (en) 2014-08-28 2016-02-28 Kevin Alan Tussy Facial recognition authentication system including path parameters
USD1074689S1 (en) 2016-04-26 2025-05-13 Facetec, Inc. Display screen or portion thereof with animated graphical user interface
USD987653S1 (en) 2016-04-26 2023-05-30 Facetec, Inc. Display screen or portion thereof with graphical user interface
US10936178B2 (en) 2019-01-07 2021-03-02 MemoryWeb, LLC Systems and methods for analyzing and organizing digital photos and videos
CN113449542B (zh) * 2020-03-24 2023-04-07 浙江宇视科技有限公司 一种换脸识别方法、装置、设备和介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629752A (en) 1994-10-28 1997-05-13 Fuji Photo Film Co., Ltd. Method of determining an exposure amount using optical recognition of facial features
JP3576654B2 (ja) 1994-10-31 2004-10-13 富士写真フイルム株式会社 露光量決定方法、図形抽出方法及び顔領域判断方法
JPH09138471A (ja) 1995-09-13 1997-05-27 Fuji Photo Film Co Ltd 特定形状領域の抽出方法、特定領域の抽出方法及び複写条件決定方法
JP3506958B2 (ja) 1998-09-10 2004-03-15 富士写真フイルム株式会社 画像処理方法、画像処理装置及び記録媒体
US6445819B1 (en) * 1998-09-10 2002-09-03 Fuji Photo Film Co., Ltd. Image processing method, image processing device, and recording medium
JP4153108B2 (ja) 1998-10-29 2008-09-17 富士フイルム株式会社 画像処理方法、画像処理装置及び記録媒体
JP2000148980A (ja) 1998-11-12 2000-05-30 Fuji Photo Film Co Ltd 画像処理方法、画像処理装置及び記録媒体
JP4526639B2 (ja) * 2000-03-02 2010-08-18 本田技研工業株式会社 顔認識装置およびその方法
EP1288858A1 (de) * 2001-09-03 2003-03-05 Agfa-Gevaert AG Verfahren zum automatischen Erkennen von rote-Augen-Defekten in fotographischen Bilddaten
KR100455294B1 (ko) * 2002-12-06 2004-11-06 삼성전자주식회사 감시 시스템에서의 사용자 검출 방법, 움직임 검출 방법및 사용자 검출 장치
US7116820B2 (en) 2003-04-28 2006-10-03 Hewlett-Packard Development Company, Lp. Detecting and correcting red-eye in a digital image
US7343028B2 (en) * 2003-05-19 2008-03-11 Fujifilm Corporation Method and apparatus for red-eye detection

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511358A (ja) * 2008-02-01 2011-04-07 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 自動赤目検出
JP2009237661A (ja) * 2008-03-26 2009-10-15 Seiko Epson Corp 画像処理装置、画像処理方法、画像処理のためのコンピュータプログラム
JP2009239871A (ja) * 2008-03-28 2009-10-15 Canon Inc 物体検知方法及びその装置
JP2010003165A (ja) * 2008-06-20 2010-01-07 Canon Inc 画像処理装置及び画像処理方法、コンピュータプログラム及び記録媒体
JP2012230501A (ja) * 2011-04-25 2012-11-22 Canon Inc 画像処理装置、画像処理方法
JP2014016821A (ja) * 2012-07-09 2014-01-30 Canon Inc 画像処理装置、画像処理方法およびプログラム
US9501688B2 (en) 2012-07-09 2016-11-22 Canon Kabushiki Kaisha Apparatus, processing method and storage medium storing program
JP2014232370A (ja) * 2013-05-28 2014-12-11 東芝テック株式会社 認識辞書作成装置及び認識辞書作成プログラム

Also Published As

Publication number Publication date
JP4320272B2 (ja) 2009-08-26
US20050220347A1 (en) 2005-10-06
US7613332B2 (en) 2009-11-03

Similar Documents

Publication Publication Date Title
JP4320272B2 (ja) 特定領域検出方法、特定領域検出装置、およびプログラム
JP4373828B2 (ja) 特定領域検出方法、特定領域検出装置、およびプログラム
US7620242B2 (en) Particular-region detection method and apparatus, and program therefor
US20050276481A1 (en) Particular-region detection method and apparatus, and program therefor
US8391595B2 (en) Image processing method and image processing apparatus
US7756343B2 (en) Image processing method, image processing apparatus, and computer-readable recording medium storing image processing program
US7920725B2 (en) Apparatus, method, and program for discriminating subjects
JP2005092759A (ja) 画像処理装置、画像処理方法、および赤目検出方法ならびにプログラム
JP2003344021A (ja) 画像中の人の顔の寸法を計算する方法及び顔を検出する方法
US10455163B2 (en) Image processing apparatus that generates a combined image, control method, and storage medium
JP2007066199A (ja) 画像処理装置及び画像処理方法
JP2005286830A (ja) 画像処理方法、画像処理装置、およびプログラム
JP2005322220A (ja) 特定領域検出方法、特定領域検出装置、およびプログラム
US20050094894A1 (en) Image processing device, image processing method, and program therefor
JP2005202477A (ja) 顔画像の天地方向判定方法、画像記録装置および画像再生装置
JP2004145287A (ja) 赤目補正方法、画像処理方法、プリント方法およびプリンタ
JP2007094840A (ja) 画像処理装置、及び画像処理方法
JP2006018805A (ja) 特定領域検出方法、特定領域検出装置、およびプログラム
JP2006344166A (ja) 画像処理装置及び方法
JP2003187257A (ja) 画像作成システム
JP2006092162A (ja) 画像処理システムおよび画像処理方法
JP2006092153A (ja) 画像処理システムおよび画像処理方法
JP5336798B2 (ja) 画像処理装置および画像処理方法、プログラム
JP2010074312A (ja) 画像処理装置および画像処理方法、プログラム
JP2006059162A (ja) 歯画像補正方法及び装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4320272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees