JP2005291906A - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
JP2005291906A
JP2005291906A JP2004106884A JP2004106884A JP2005291906A JP 2005291906 A JP2005291906 A JP 2005291906A JP 2004106884 A JP2004106884 A JP 2004106884A JP 2004106884 A JP2004106884 A JP 2004106884A JP 2005291906 A JP2005291906 A JP 2005291906A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic detection
signal
detection element
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004106884A
Other languages
English (en)
Inventor
Manabu Aizawa
学 相澤
Hiroshi Onuma
博 大沼
Shin Sasaki
伸 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004106884A priority Critical patent/JP2005291906A/ja
Publication of JP2005291906A publication Critical patent/JP2005291906A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 印加されている磁界の強度を方位情報とは別個独立に検出する。
【解決手段】 指向性を有する磁気検出素子により、各方向に印加されている磁気を各方向ごとに検出する磁気検出部2と、磁気検出部2の各磁気検出素子からの電磁変換出力に基づき、所定の信号を生成する信号生成部6と、信号生成部6により生成された信号の振幅を検出する振幅検出部9とを備える。
【選択図】 図2

Description

本発明は、地磁気の印加強度及び方位を測定する磁気センサに関する。
従来、地磁気等の磁界を検出する手段としてフラックスゲート型、MR素子型、Hall素子型、MI素子型等数多くの手段が存在している。これらの手段は、磁界に対し指向性を持つ。つまり、図23(a)に示すように、センサ素子と被測定磁界のなす角度により、磁界検出の感度が異なることとなる。また、図23(b)に示すように、印加される外部磁界とセンサ素子の感度軸のなす角によりセンサ出力は、正弦波状の信号となる。この特性を利用し、地磁気の方向を検出する地磁気方位センサ等が実用化されている(例えば、特許文献1参照。)。
例えば、地磁気等の外部磁界と、磁気センサ装置の間の方位角を得るために、図24に示すように、指向性を持つ磁気センサ素子X161,Y162を、90°の位置関係に配し、これらから検出・増幅回路163を介して得られる二つの出力Xout、Youtを基に方位を求める方法が主に用いられてきた。
つまり、方位角θに対する、個々のセンサの出力(Xout、Yout)は、指向性/位置関係のため、下記(1)、(2)式に示すように90°位相のずれた正弦波状(図25に波形を示す)に変化する。
Xout0=cos(θ) ・・・(1)
Yout0=sin(θ) ・・・(2)
これから、
θ=Tan−1(Yout0/Xout0)=Tan−1(sinθ/cosθ) ・・・(3)
を計算することにより、方位角θが求められる。
ただし、Tan−1は不連続点を持つため、下記の条件に従いθを補正する必要がある。
条件:Xout≧0、Yout0≧0 なら θ=θ
Xout<0 なら θ=θ+180°
Xout≧0、Yout0<0 なら θ=θ+360°
・・・(4)
特開2003−185724号公報
ところで、上述のようなセンサでは、検出した磁界の方向情報に基づいて、外部磁界の強度の計測を行っている。
しかしながら、磁界の印加方向の影響を受けずに、磁界強度のみを検出したいケースが存在する。従来のセンサでは、磁界強度を測定する場合に、磁界の向きとセンサの感度軸とを一致させた上で、測定を行うか、感度軸方向が90度異なる2つのセンサ(X軸とY軸)を用い、磁界をベクトル量として測定し、得られた結果から演算により絶対値を得る等複雑な操作が必要となる。
したがって、従来のセンサでは、磁界の方向を考慮する必要があるため、方向を検出する要部が必須となり装置が複雑化、大型化する問題があった。
本発明は、上記実情に鑑みてなされたものであり、演算手段や回転等のメカ的な動作を不要とし、また簡単な構成で量産性に影響を及ぼすことがなく、さらに高精度に磁界強度を測定することができる磁気センサの提供を目的とする。
本発明に係る磁気センサは、上記課題を解決するために、指向性を有する磁気検出素子により、各方向に印加されている磁気を各方向ごとに検出する磁気検出手段と、上記磁気検出手段の各磁気検出素子からの電磁変換出力に基づき、所定の信号を生成する信号生成手段と、上記信号生成手段により生成された信号の振幅を検出する振幅検出手段とを備える。
本発明の磁気センサによれば、強度情報生成部により方位情報とは別個独立に強度情報SIを算出することができるので、磁界情報のみを求めたい場合に、方向合わせなどの調整作業や、各方向ごとに印加されている磁気を検出した後の演算処理等の複雑な作業を行う必要がなく、磁界の入射方向に寄らず簡便に、磁界強度(絶対値)の検出を行うことができる。
以下、本発明の実施の形態について説明する。この実施の形態は、図1に概略構成を示すように、指向性を有する複数の磁気検出素子からなる磁気検出素子群2を備え、磁気検出素子群2の各磁気検出素子の電磁変換出力を、検出・増幅回路3により順次スイッチングして取り出し、取り出した電磁変換出力に基づき、外部磁界の強度情報SIを生成し、又、該電磁変換出力が所定の条件となったときに、外部磁界の方位情報DIを生成する磁気測定装置1である。
磁気検出素子群2としては、後述するようにフラックスゲート方式、磁気抵抗素子、ホール素子等を用いることができる。この磁気検出素子群2と検出・増幅回路3とが、磁気検出部4を構成している。
制御部5は、磁気検出素子群2の後述する励磁コイルを励磁するための励磁信号や、検出・増幅回路3にて各磁気検出素子の電磁変換出力を取り出し、強度情報SI及び方位情報DIを出力するための制御信号を生成して、各部に供給する。
なお、この実施の形態では、説明の便宜上磁気検出素子の数を16個とするが、2個以上であれば、3,4,5,6,7,・・・15、さらには17,18,19,・・・24・・・30個でもよい。もちろん、31個以上でもよい。また、2個(nは1以上の整数)でもよい。具体的には、2,4,8,16,32,64,128,256個でもよい。磁気検出素子が多くなれば、磁気方位の測定を精細に行うことができる。
磁気検出素子群2内の例えば16個の磁気検出素子は、それらの指向性が異なるように、例えば円周上に一定規則で等間隔に配置される。すなわち、磁気検出素子群2は、磁気検出素子の配置の仕方や、後述する励磁コイルや、検出コイルの巻き方などに特徴がある。なお、この磁気検出素子群2の詳細については後述する。
次に、磁気測定装置1の詳細な構成について図2を参照して説明する。なお、説明の便宜上、地磁気を電気信号に変換する方式として公知技術であるフラックスゲート方式を用い、検出素子数を16個とする。もちろん、磁電変換方式として他の方式(例えば磁気抵抗素子、ホール素子など)を用いることも可能であり、また、検出素子数を16個以外の数とすることも可能である。
図1の検出・増幅回路3に相当する部分は、スイッチング回路6、同期検波回路7、増幅回路8からなる。また、増幅回路8から出力された信号は、外部磁界の強度を表す強度情報SIを生成する強度情報生成部9と、外部磁界の印加方向を表す方位情報DIを生成する方位情報生成部10とに供給される。
また、制御部5に相当する部分は、発振器16、分周回路17、ドライブ回路18からなる。
図2において、磁気検出素子群2の16個の磁気検出素子からの検出出力である誘導電圧信号は、スイッチング回路6の電子スイッチ部6aに供給される。電子スイッチ部6aは、16個の電子スイッチS1・・・,S15,S16からなり、16個の磁気検出素子からの検出出力を受け取る。電子スイッチ部6aの16個の電子スイッチは、スイッチング回路内のエンコーダ6bからのデジタル出力によって順次ある周期毎に切り換わり、切り換えた誘導電圧信号を同期検波回路7に供給する。
同期検波回路7は、誘導電圧信号を励磁信号周波数(f/2)の2倍の周波数(f)で同期検波し、増幅回路8に供給する。増幅回路8は、同期検波された誘導電圧信号を後段回路で信号を処理するに十分なレベルに増幅するとともに、高周波成分をLPF8aにより除去し、条件判断回路14に供給する。
スイッチング回路6と同期検波回路7とは、各磁気検出素子からの電磁変換出力をスイッチングし、さらにスイッチングされた信号を所定の周波数により同期検波して外部磁界強度に応じた電圧変化を取り出す取り出し手段である。
強度情報生成部9は、増幅回路8から出力された信号を整流する半端整流回路で構成さえれている整流部11と、整流部11で整流された信号(正又は負の半周期の信号)をホールドするホールドコンデンサ部12と、ホールドコンデンサ部12の出力信号を増幅する増幅器13とを備える。
整流部11は、半波整流回路又は全波整流回路で構成されており、増幅回路8から供給された信号を半波整流又は全波整流し、ホールドコンデンサ部12に供給する。
ホールドコンデンサ部12は、所定量の電荷を蓄積するコンデンサで構成されており、該コンデンサを整流部11から供給された信号でチャージする。ホールドコンデンサ部12は、コンデンサの時定数を半波整流波形又は全波整流波形の周波数より十分に小さくなるように選び、かつ、後段回路の入力インピーダンスを高くする。
増幅器13は、ホールドコンデンサ部12から出力される信号を増幅し、強度情報SIとして出力する。
また、方位情報生成部10は、増幅回路8から出力された信号を一定条件下にトリガ信号trを発生する条件判断回路14と、条件判断回路14から供給されたトリガ信号trに基づく所定の信号を方位情報DIとして出力する出力インターフェース回路10とを備える。
条件判断回路14は、増幅回路8からの出力波形が一定条件(例えば、最大)となった際に、トリガ信号trを発生し、出力インターフェース回路15へ供給する。なお、一定条件としては、出力波形が最小、又はゼロクロスとなったこととしてもよい。
出力インターフェース回路15は、条件判断回路14が発生したトリガ信号trにより、スイッチング信号(ディジタル)をホールドし、例えばピーク時を検出し、出力することで方位情報DIとする。また、外部機器に対し方位情報DI出力を行うためのタイミング調整などを行う。
発振器16は、磁気検出素子群2の励磁コイルにドライブ回路18を介して供給する信号、スイッチング回路6に供給されて電子スイッチ部6aを切り換えるための信号、同期検波回路7に供給されて同期検波用の制御信号の基になる周波数fの信号を発振する。
分周回路17は、発振器16からの周波数fの信号を、f/2に分周してドライブ回路18に供給する。また、発振器16からの周波数fの信号を、f/2、f/2n+1・・・f/2n+mに分周することにより、例えば16進のカウンタを構成し、数列1,2・・・16をエンコーダ6bを介して電子スイッチ部6aの各電子スイッチS1〜S16へ供給する。
ドライブ回路18は、分周回路17からのf/2の信号を用いて磁気検出素子群2の励磁コイルを駆動する。励磁コイルは、後述するように、磁気検出素子毎に設けられたり、あるいは全ての磁気検出素子に共通に設けられている。
スイッチング回路6は、分周回路17を16進のカウンタとして構成した際に、f/2、f/2n+1・・・f/2n+mの信号に基づいた数列1,2・・・16を受け取り、エンコーダ6bにて電子スイッチ部6aの各電子スイッチを切り換えるためのディジタル出力に変換する。
前記数列1,2・・・16をエンコーダ6bにて変換したデータは、各電子スイッチS1〜S16のセンサ出力に一対一で対応しているので、個々の検出コイルの位置(方向)に対応することになる。つまり、順次スイッチングされたセンサ出力信号が、強度情報生成部9及び方位情報生成部10に供給される。
したがって、強度情報生成部9は、順次スイッチングされたセンサ出力信号が、増幅回路8を介して供給され、供給されたセンサ出力信号に対してピークホールド処理を行うことにより、該信号の振幅を算出し、該振幅の大きさから磁気測定装置1の外部に印加されている磁界強度を知ることができる。
また、方位情報生成部10は、順次スイッチングされたセンサ出力信号が、増幅回路8を介して供給され、供給されたセンサ出力信号に対して、一定条件かどうかの条件判断を行い、条件判断後の信号を所定のタイミングで抽出した信号から、外部磁界が印加されている方位を知ることができる。
次に、磁気検出素子群2の具体例の構成及び動作原理を説明する。
磁気検出素子群2は、図3に示すように、16個の磁気検出素子2a〜2pを、それらの指向性が異なるように一定規則で等間隔で配置してなる。ここでは、特に円周上に等間隔で配置している。各磁気検出素子2a〜2pは、図4に示すように、軟磁性材料からなる磁気コア20と、それを励磁する励磁コイル21と、外部磁界を検出する検出コイル22から構成されるフラックスゲート型のセンサである。
励磁コイル21に電流ieを流すと、磁気コア20内には図5に示すような励磁磁界(磁束)Hieが発生する。励磁電流ieを交流信号とすることにより、磁気コア20内磁束Hieも時間tに対して交流的に変化し、各々の検出コイル22には電磁誘導の法則により誘導電圧eが発生する。励磁電流ieの振幅を大きくし、磁化力をある程度以上に大きくしても磁気コア20の磁束密度Bは図6に示すように増加しなくなり飽和状態となって、検出コイル誘導電圧eが大きく歪むこととなる。ここで、磁気検出素子群2に外部から磁界Hが印加された場合、磁気コア20内磁束は励磁磁束Hieと外部磁界Hによる磁束が加算されたものとなる(Hie+H)。
このため、外部磁界Hの強度に応じ、磁気コア20の飽和点が図7に示すように正または負側にシフトする。これにより、検出コイル誘導電圧eは、正負非対称な波形となる。これは誘導電圧の2次高調波成分が変化することと等価である。このため、誘導電圧信号を励磁信号ieの2倍の周波数で同期検波することにより、外部磁界強度Hに応じた電圧変化を取り出すことが可能となる。なお、磁気検出素子群2は、環状(リング)の磁気コア20に励磁コイル21及び検出コイルが22が巻回されてなる構成であっても良い。
次に、スイッチング回路6の構成について詳細に説明する。前述のようにスイッチング回路6は、16個の磁気検出素子2a〜2pの電磁変換出力の読み出しを電気的に行う16個の電子スイッチS1〜S16を有する電子スイッチ部6aと、電子スイッチ部6aの16個の電子スイッチS1〜S16の切り換えを制御するディジタル出力を生成するエンコーダ6bとを備えてなる。そして、スイッチング回路6は、16個の磁気検出素子2a〜2pの出力を分周回路17から供給されたf/2、f/2n+1・・・f/2n+mよりなる16進カウンタからの数列にしたがったディジタル値に基づいて順次切り換える。
次に、分周回路17の構成について詳細に説明する。分周回路17は、バイナリカウンタにより構成され、発振器16からの周波数fをクロックCLK端子から取り入れて、f/2、f/2、f/2n+1・・・f/2n+mを出力する。f/2の信号は、ドライブ回路18に供給される。また、f/2、f/2n+1・・・f/2n+mの信号に基づいた数列1,2・・・16をスイッチング回路6のエンコーダ6bに供給する。また、この分周回路17は、出力インターフェース回路15にもf/2、f/2n+1・・・f/2n+mの信号に基づいた数列1,2・・・16を選択的に供給する。
次に、出力インターフェース回路15の詳細な構成について説明する。出力インターフェース回路15は、ラッチ15aを有し、条件判断回路14からのトリガ信号trに基づいて、例えばピーク時のスイッチング信号をホールドし、方位情報DIを出力する。
ここで、本実施の形態の磁気測定装置1の動作の詳細を説明する。図8は、磁気検出素子群2の各磁気検出素子2a〜2pを模式的に示している。また、外部磁界Hが矢印の方向から印加されていることを示している。
図4に示したように、外部磁界Hに対する、軟磁性体の磁気コア20内の磁束は、コア接線と外部磁界Hの印加方向の方位角に対し正弦波状の分布となる。つまり、コア接線が外部磁界Hと平行となる近傍で最大値MAX、反平行となる部分で最小値MINとなり、その間の部分では、正弦波状に連続的な変化をする。このような磁束の分布に対し、検出コイルをコアの局部にのみ巻回し、同様の検出コイルを等間隔で16個配置した場合、各検出コイルからの出力は、コイル近傍のコア内磁束分布に従い分布することとなる。
これらの検出コイルからの出力を、スイッチング回路6により、時系列的に順次スイッチングすれば、前記コイル位置(方位)による出力分布に従い、図9に示すように、時間に対し段階的に変化する正弦波状の信号が得られる。
このため、スイッチング回路6は、検出コイルと同期検波回路7の間に配置され、検出コイルの出力を順次スイッチングする。なお、磁気測定装置1では、電気信号によりon/off可能な所定の周期ごとに切換を行っていく方法を採る。これら電子スイッチS1〜S16群は、前述したようにエンコーダ6bからのディジタル信号によって切り換えられる。
ここで、検出コイルの数を、ディジタルで回路を組みやすくすべく2となるよう設定すれば、このスイッチング回路6を容易に形成できる。つまり、励磁信号ieをバイナリカウンタにより分周(f/2、f/2n+1・・・f/2n+mに分周)して個々のスイッチのon/off信号とすることができる。
このスイッチング信号は、個々の検出スイッチ(センサ出力)に一対一で対応している。つまり、個々の検出コイルの位置(方向)に対応することとなる。その為、順次スイッチングされたセンサ出力信号が、ある一定条件となったタイミングの、スイッチング信号は、外部磁界Hの方位をディジタル的に表した値となる。
ここで、例えば、図10に示すように、磁界強度が異なる2つの外部磁界(外部磁界H1と外部磁界H2(H1>H2))が印加された場合における強度情報生成部9の動作について以下に説明する。
外部磁界H1が印加された場合、磁気検出部4は、上述したように各方向ごとに磁気検出素子群2により検出された電磁変換出力を順次スイッチングして、所定の振幅Aを有する信号を生成し、強度情報生成部9に供給する。
強度情報生成部9は、供給された信号に対してピークホールド処理を行い、供給された信号の振幅Aを算出する(図11(a))。なお、図11(a)は、整流部11が半波整流回路で構成されている場合の信号波形であって、全波整流回路で構成されている場合には、図11(c)のような信号波形となる。
また、外部磁界H2が印加された場合、磁気検出部4は、各方向ごとに磁気検出素子群2により検出された電磁変換出力を順次スイッチングして、所定の振幅Bを有する信号を生成し、強度情報生成部9に供給する。
強度情報生成部9は、供給された信号に対してピークホールド処理を行い、供給された信号の振幅Bを算出する(図11(b))。なお、図11(b)は、整流部11が半波整流回路で構成されている場合の信号波形であって、全波整流回路で構成されている場合には、図11(d)のような信号波形となる。
したがって、本実施の形態の磁気測定装置1は、磁気検出素子群2の各磁気検出素子2a〜2pからの電磁変換出力を、取り出し手段となるスイッチング回路6と同期検波回路7が順次スイッチングして取り出し、取り出された電磁変換出力に基づき強度情報生成部9で振幅(強度情報SI)を絶対値で算出するので、方位情報DIとは別個独立に強度情報SIを求めることができ、演算手段や回転等のメカ的な動作を不要とし、また簡単な構成で量産性に影響を及ぼすことがなく、さらに高精度に磁界強度を測定することができる。
つぎに、方位情報生成部10により方位情報DIを算出する具体的な動作について説明する。
条件判断回路14は、磁気検出部4からスイッチングされた出力信号が供給され、該出力信号の振幅が最大値(正のピーク)となったときに、トリガ信号trを発生し、該トリガ信号trを出力インターフェース回路15に供給する。出力インターフェース回路15は、供給されたトリガ信号trにより、スイッチング信号を保持する。この出力インターフェース回路15で、保持されたスイッチング信号は、外部磁界Hに平行な検出コイル位置をディジタル的に表したものである。したがって、センサ素子に対する外部磁界Hの方位を知ることができる。
例えば、図8及び図10においては、磁気検出素子2gの出力が最大MAXとなり、検出素子番号(方位)「7」をダイレクトにディジタル値「0111」として出力する(図9)。
また、例えば、図8においては、磁気検出素子2oの出力が最小MINとなり、検出素子番号「15」をダイレクトにディジタル値「1111」として出力する(図9)。
このように、本実施の形態の磁気測定装置1は、磁気検出素子群2の各磁気検出素子2a〜2pからの電磁変換出力を、取り出し手段となるスイッチング回路6と同期検波回路7が順次スイッチングして取り出し、取り出された電磁変換出力が所定の条件となったか否かを条件判断回路14で判断し、その判断結果に基づいて方位情報出力手段である出力インターフェース回路15で方位情報DIを算出するので、強度情報SIとは別個独立に方位情報DIを求めることができ、演算手段や回転等のメカ的な動作を不要とし、また簡単な構成で量産性に影響を及ぼすことがなく、さらに高精度に方位を測定することができる。
なお、磁気測定装置1が用いる磁気検出素子群2は、図3に示した具体例に限定されるものではなく、他の具体例を用いることもできる。以下には、磁気検出素子群のいくつかの他の具体例について説明する。
第1の他の具体例は、ループ状の一つの磁気コアを16個の磁気検出素子で共通に用いてなる図12に示す磁気検出素子群30である。そして、各励磁コイル32と検出コイル33は等間隔に形成されている。また、磁気コア31は、軟磁性材料からなる。
図12を用いて説明すると、各磁気検出素子30a〜30pは、共通のループ状磁気コア31を16等分割したそれぞれの部分に形成されている。励磁コイル32と検出コイル33は、各磁気検出素子毎に磁気コア31に巻回されており、等価回路は、図13に示すようになる。
また、磁気検出素子群30は、図5〜図7に示したように、磁化力をある程度以上に大きくすれば磁気コア31の磁束密度Bは増加しなくなり飽和状態となって、検出コイル誘導電圧eが大きく歪むこととなる。そして、外部から磁界Hが印加された場合、磁気コア31内磁束は励磁磁束Hieと外部磁界Hによる磁束が加算されたものとなる(Hie+H)。このため、外部磁界Hの強度に応じ、磁気コア31の飽和点が正または負側にシフトし、検出コイル誘導電圧eは、正負非対称な波形となる。
このため、磁気検出素子群30を用いた磁気測定装置1にあっても、誘導電圧信号を励磁信号周波数(f/2)の2倍の周波数(f)で同期検波することにより、外部磁界強度Hに応じた電圧変化を取り出すことが可能となる。
また、第2の他の具体例は、環状(ループ状)の一つの磁気コア41を16個の磁気検出素子で共通に用いてなり、さらに一つの励磁コイルを16個の磁気検出素子で共通に用いてなる図14に外観を示す磁気検出素子群40である。検出コイル43は、各磁気検出素子40a〜40p毎に磁気コア41に巻回されている。
図14及び図15を用いて説明すると、各磁気検出素子40a〜40pは、共通のループ状磁気コア41を16等分割したそれぞれの部分に形成されている。また、励磁コイル42は全ての磁気検出素子40a〜40pで共通に用いられるように磁気コア41全体に連続して巻回されている。等価回路は、図16に示すようになる。なお、この具体例は、薄膜プロセスにより、非磁性基板上に、磁気コア41、励磁コイル42、検出コイル43を薄膜形成することにより構成されてもよい。図15は、薄膜形成された素子の詳細を示す図である。
図15は、薄膜形成された素子の詳細を示す図である。図15(a)は、励磁コイル42の層と検出コイル43の層とからなり、磁気コア41の上側に巻回されている上層コイルを示しており、図15(b)は、上層コイルと下層コイルが巻回される磁気コア41を示しており、図15(c)は、励磁コイル42の層と検出コイル43の層とからなり、磁気コア41の下側に巻き回しされている下層コイルを示している。
また、磁気検出素子群40は、磁化力をある程度以上に大きくすれば磁気コア41の磁束密度Bは増加しなくなり飽和状態となって、検出コイル誘導電圧eが大きく歪むこととなる。そして、外部から磁界Hが印加された場合、磁気コア41内磁束は励磁磁束Hieと外部磁界Hによる磁束が加算されたものとなる(Hie+H)。このため、外部磁界Hの強度に応じ、磁気コア41の飽和点が正または負側にシフトし、検出コイル誘導電圧eは、正負非対称な波形となる。
このため、磁気検出素子群40を用いた磁気測定装置1にあっても、誘導電圧信号を励磁信号周波数(f/2)の2倍の周波数(f)で同期検波することにより、外部磁界強度Hに応じた電圧変化を取り出すことが可能となる。特に、この磁気検出素子群40は、励磁コイル42を共通化することにより、シンプルな構成となる。
また、第3の他の具体例は、環状の一つの磁気コア51を16個の磁気検出素子50a〜50pで共通に用い、また一つの励磁コイル52を16個の磁気検出素子50a〜50pで共通に用いてなり、さらに16個の検出コイル53の一端を共通とした図17に外観を示す磁気検出素子群50である。
図17及び図18を用いて説明すると、各磁気検出素子50a〜50pは、共通の環状磁気コア51を16等分割したそれぞれの部分に形成されている。また、励磁コイル52は全ての磁気検出素子50a〜50pで共通に用いられるように磁気コア51全体に連続して巻回されている。等価回路は、図19に示すようになる。なお、この具体例についても第2の他の実施例同様、非磁性基板上に、磁気コア51、励磁コイル52、検出コイル53を薄膜形成することにより構成されてもよい。
図18は、薄膜形成された素子の詳細を示す図である。図18(a)は、励磁コイル52の層と検出コイル53の層とからなり、磁気コア51の上側に巻回されている上層コイルを示しており、図18(b)は、上層コイルと下層コイルが巻回される磁気コア51を示しており、図18(c)は、励磁コイル52の層からなり、磁気コア51の下側に巻回されている下層コイルを示している。
また、磁気検出素子群50は、磁化力をある程度以上に大きくすれば磁気コア51の磁束密度Bは増加しなくなり飽和状態となって、検出コイル誘導電圧eが大きく歪むこととなる。そして、外部から磁界Hが印加された場合、磁気コア51内磁束は励磁磁束Hieと外部磁界Hによる磁束が加算されたものとなる(Hie+H)。このため、外部磁界Hの強度に応じ、磁気コア51の飽和点が正または負側にシフトし、検出コイル誘導電圧eは、正負非対称な波形となる。
このため、磁気検出素子群50を用いた磁気測定装置1にあっても、この磁気検出素子群50により得られる、誘導電圧信号を励磁信号周波数(f/2)の2倍の周波数(f)で同期検波することにより、外部磁界強度Hに応じた電圧変化を取り出すことが可能となる。特に、この磁気検出素子群50は、励磁コイル52を共通化し、検出コイル53の一方の端子を共通化しているので、さらにシンプルな構成となる。
第2の他の具体例、第3の他の具体例は薄膜プロセスにより形成されるのに適している。この場合の各磁気検出素子の薄膜プロセスについて図20を用いて以下に説明する。
先ず、Si等の非磁性材料よりなる基板上80に、Cuを例えば2μmメッキして下層コイル81を形成する。この下層コイル81は、後述の上層コイル85と接続され、磁気コア83にスパイラル状に巻回されることになる。下層コイル81上と基板80上の一部には、下層コイル81を保護すると共に、この下層コイル81と磁気コア83との絶縁を図るためのコイル絶縁層82を例えばフォトレジストを熱硬化して形成する。
コイル絶縁層82の上には、例えばCo系アモルファス合金をリフトオフしてなる磁気コア83を形成する。このCo系アモルファス合金は、熱処理と磁場によって誘導磁気異方性を付与及び除去できる材料である。
さらに、磁気コア83の上には、磁気コア83と後述する上層コイル85とを絶縁するためのコイル絶縁層84を例えばフォトレジストを熱硬化して形成する。
コイル絶縁層84上には、上層コイル85を前記下層コイル81と同様にCuを例えば2μmメッキして形成する。そして、上層コイル85上とコイル絶縁層84の一部上には、上層コイル85を保護するための保護層86を例えばフォトレジストを熱硬化して形成する。
このように、本発明の実施の形態で用いる磁気検出素子群は、非磁性基板上に薄膜プロセスにより、上記ループ状の磁気コア、励磁用、検出用のコイルを形成して作ることができる。
また、図3に示した磁気検出素子群1は、各磁気検出素子を、円周上に配置して構成したが、多角形の外周上に形成してよいのはもちろんである。例えば、8個の磁気検出素子を8角形の周上に配置したり、16個の磁気検出素子を16角形の周上に配置してもよい。
また、図21に示すように、放射状に8個の磁気検出素子を配置した構成の磁気検出素子群90を用いてもよい。各磁気検出素子91〜98は、図4に示したように磁気コア上に励磁コイルと検出コイルが巻き回されて構成されている。
この磁気検出素子群90によっても、外部磁界と平行な磁気検出素子は、電磁変換出力を最大とするので、図1に示す磁気測定装置1において用いることができる。もちろん、16個の磁気検出素子を放射状に配置すれば、正確な磁気方位を測定することができる。
また、条件判断回路8における、上記一定条件としては、最大値を採る他に、例えば最小値(負のピーク)あるいは、一定電圧値(例えばゼロクロス点)等が使える。
また、磁気測定装置の他の構成例について以下に述べる。なお、上述した磁気測定装置1と同様の構成要素については同じ番号を付し、その説明を省略する。
磁気測定装置100は、図22に示すように、指向性を有し、外部磁界Hを検出する磁気検出素子2aと、該磁気検出素子2aが配設されるターンテーブル101と、ターンテーブル101を所定の速度で回転駆動する回転駆動部102と、磁気検出素子2aの出力信号を発振器16から供給される信号に基づき同期検波する同期検波回路7と、同期検波した信号を増幅する増幅回路8と、増幅後の信号から強度情報SIを算出する強度情報生成部9と、増幅後の信号から方位情報DIを算出する方位情報生成部10と、回転駆動部102と、同期検波回路7と、方位情報生成部10に所定の周波数の信号を供給する発振器16を備える。
磁気測定装置100は、磁気検出素子2aが配設されたターンテーブル101を回転駆動部102により水平方向に所定の速度で回転させることで、各方向に印加されている磁気を検出し、検出した磁気の信号を同期検波回路7及び増幅回路8を介して、強度情報生成部9及び方位情報生成部10に供給する。
なお、回転駆動部102は、各方向ごとに印加されている磁気を磁気検出素子2aにより検出できればどのような構成であっても良く、例えば、ターンテーブル101を静止させずに、所定の速度で連続回転させる構成であっても良いし、また、テーブルを所定の角度ごとに静止させ、角度ごとに回転させる構成であっても良い。
したがって、本実施の形態の磁気測定装置100は、強度情報生成部9により方位情報DIとは別個独立に強度情報SIを算出することができ、また、方位情報生成部10により強度情報SIとは別個独立に方位情報DIを算出することができ、従来必要としていた演算手段を不要とし、また簡単な構成で量産性に影響を及ぼすことがなく、さらに高精度に強度及び方位を測定することができる。
また、上述した磁気検出素子群としては、フラックスゲートを用いる他に、例えば磁気抵抗素子、磁気インピーダンス素子、ホール素子等を用いることができる。
本発明の実施の形態となる、磁気測定装置の概略構成を示すブロック図である。 磁気測定装置の詳細な構成を示す回路図である。 磁気測定装置で用いる磁気検出素子群の配置図である。 磁気検出素子の詳細な構成を示す図である。 励磁磁界の変動を示す図である。 磁気コアのB−H特性図である。 外部磁界の影響を受けた磁気コアのB−H特性図である。 円周状に配置した磁気検出素子を示す図である。 磁気検出素子の出力をスキャンした波形図である。 異なる外部磁界が印加されている様子を示す図である。 磁気測定装置に備えられている磁気検出部から供給された信号に、強度情報生成部でピークホールド処理したときの信号波形を示す図である。 磁気検出素子群の第1の他の具体例の外観図である。 第1の他の具体例の等価回路図である。 磁気検出素子群の第2の他の具他例の外観図である。 第2の他の具体例の分解図である。 第2の他の具体例の等価回路図である。 磁気検出素子群の第3の他の具他例の外観図である。 第3の他の具体例の分解図である。 第3の他の具体例の等価回路図である。 薄膜プロセスによる磁気検出素子の形成を説明するための図である。 磁気検出素子群のさらに他の具体例の模式図である。 磁気測定装置の他の構成例を示すブロック図である。 センサ素子の感度軸と外部磁界とのなす角について説明するための図である。 従来の磁気検出素子を示す図である。 磁気検出素子による方位角−出力特性図である。
符号の説明
1,100 磁気測定装置、2 磁気検出素子群、3 検出・増幅回路、4 磁気検出部、5 制御部、6 スイッチング回路、6a 電子スイッチ部、6b エンコーダ、7 同期検波回路、8 増幅回路、9 強度情報生成部、10 方位情報生成部、11 整流部、12 ホールドコンデンサ部、13 増幅器、14 条件判断回路、15 出力インターフェース回路、16 発振器、17 分周回路、18 ドライブ回路、101 ターンテーブル、102 回転駆動部

Claims (5)

  1. 指向性を有する磁気検出素子により、各方向に印加されている磁気を各方向ごとに検出する磁気検出手段と、
    上記磁気検出手段の各磁気検出素子からの電磁変換出力に基づき、所定の信号を生成する信号生成手段と、
    上記信号生成手段により生成された信号の振幅を検出する振幅検出手段とを備えることを特徴とする磁気センサ。
  2. 上記振幅検出手段は、半波整流回路又は全波整流回路と、ホールドコンデンサにより構成されていることを特徴とする請求項1記載の磁気センサ。
  3. 上記磁気検出手段は、指向性を有する2個以上の磁気検出素子が、それらの指向性が異なるように一定規則で等間隔に配置されてなり、
    上記信号生成手段は、上記磁気検出手段の各磁気検出素子からの電磁変換出力を順次スイッチングして取り出し、所定の信号を生成することを特徴とする請求項1記載の磁気センサ。
  4. 一定規則で回転する回転手段を備え、
    上記磁気検出手段は、指向性を有する磁気検出素子が、上記回転部上に配置され、一定規則で回転させられることにより、各方向に印加されている磁気を各方向ごとに検出し、
    上記信号生成手段は、上記磁気検出手段の磁気検出素子からの電磁変換出力に基づき、所定の信号を生成することを特徴とする請求項1記載の磁気センサ。
  5. 上記信号生成手段により生成された信号が所定の条件となったか否かを判断する条件判断手段と、
    上記条件判断手段の判断結果に基づいて磁気方位情報を出力する方位情報出力手段とを備えることを特徴とする請求項3又は4何れか1項記載の磁気センサ。
JP2004106884A 2004-03-31 2004-03-31 磁気センサ Withdrawn JP2005291906A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106884A JP2005291906A (ja) 2004-03-31 2004-03-31 磁気センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106884A JP2005291906A (ja) 2004-03-31 2004-03-31 磁気センサ

Publications (1)

Publication Number Publication Date
JP2005291906A true JP2005291906A (ja) 2005-10-20

Family

ID=35324995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106884A Withdrawn JP2005291906A (ja) 2004-03-31 2004-03-31 磁気センサ

Country Status (1)

Country Link
JP (1) JP2005291906A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218760A (ja) * 2006-02-17 2007-08-30 Tokai Rika Co Ltd 磁気センサ装置
JP4890533B2 (ja) * 2006-02-27 2012-03-07 京セラ株式会社 携帯機器装置および携帯機器装置の方位処理方法
CN104682945A (zh) * 2013-08-15 2015-06-03 德州仪器德国股份有限公司 磁通门磁传感器读出设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218760A (ja) * 2006-02-17 2007-08-30 Tokai Rika Co Ltd 磁気センサ装置
JP4890533B2 (ja) * 2006-02-27 2012-03-07 京セラ株式会社 携帯機器装置および携帯機器装置の方位処理方法
CN104682945A (zh) * 2013-08-15 2015-06-03 德州仪器德国股份有限公司 磁通门磁传感器读出设备

Similar Documents

Publication Publication Date Title
KR101314365B1 (ko) 자계 센서, 이것을 이용한 자계 측정 방법, 전력 계측 장치 및 전력 계측 방법
JP5620076B2 (ja) 電力計測装置
US11592319B2 (en) Inductive angle sensor
CN104864804A (zh) 一种时栅角位移传感器
US9146279B2 (en) Method for detection of interlaminar sheet short circuits in the stator sheet core of electromachines
JP4209114B2 (ja) 磁界センサ
US7317315B2 (en) Magnetic azimuth measurement apparatus
JP2005291906A (ja) 磁気センサ
US8924179B2 (en) Assembly and method for determining an angular position
JP2005265620A (ja) 磁気検出素子及び磁気方位測定装置
JP6258880B2 (ja) ロータリスケール
JP2018044817A (ja) 位置検出装置
JP2005265621A (ja) 磁気検出素子及び磁気方位測定装置
JP2004239828A (ja) フラックスゲート磁界センサ
TWI444627B (zh) 電力測量裝置以及電力測量方法
JP4665077B2 (ja) アブソリュート位置検出装置
JP5793682B2 (ja) 電力計測装置
JP3942580B2 (ja) 金属検出器および金属検出方法
JP2020537152A5 (ja)
CN116735939A (zh) 一种磁通门电流检测装置和磁通门电流检测方法
JP2005291905A (ja) 磁気測定素子及び磁気方位測定装置
JP2005181348A (ja) 位置検出装置
JP2015190900A (ja) 磁界検出素子および磁界検出方法
JPH09311038A (ja) 多方向傾斜検出装置
JP5600636B2 (ja) 位置検出装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605