JP2005290504A - Coated member - Google Patents

Coated member Download PDF

Info

Publication number
JP2005290504A
JP2005290504A JP2004109539A JP2004109539A JP2005290504A JP 2005290504 A JP2005290504 A JP 2005290504A JP 2004109539 A JP2004109539 A JP 2004109539A JP 2004109539 A JP2004109539 A JP 2004109539A JP 2005290504 A JP2005290504 A JP 2005290504A
Authority
JP
Japan
Prior art keywords
film
titanium
aluminum oxide
oxide film
titanium carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004109539A
Other languages
Japanese (ja)
Other versions
JP4565464B2 (en
Inventor
Toshio Ishii
敏夫 石井
Yuzo Fukunaga
有三 福永
Akira Tanaka
彰 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2004109539A priority Critical patent/JP4565464B2/en
Publication of JP2005290504A publication Critical patent/JP2005290504A/en
Application granted granted Critical
Publication of JP4565464B2 publication Critical patent/JP4565464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated member in which film hardness is high and the outermost layer has satisfactory adhesion with an aluminum film and is smooth, and having excellent slidability and wear resistance. <P>SOLUTION: The coated member is obtained by coating the surface of a substrate with a single layer film of any one kind among the oxide, carbide, nitride, carbonitride, carbooxide, nitrooxide and carbo-nitrooxide of one or more kinds selected from the group 4a, 5a and 6a metals in the Periodic Table or a multilayer film composed of two or more kinds thereof, and an aluminum oxide film of at least one layer. Further, a granular or flat titanium carbide film is provided on the side of the external layer in the aluminum oxide film, and also, at least one kind selected from a titanium carbooxide film and/or a titanium carbo-nitrooxide film are provided. The total of each film thickness of the titanium carbide film, the titanium carbooxide film and the titanium carbo-nitrooxide film is ≥1 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、膜硬度が高く最外層が酸化アルミニウム膜との密着性が良く平滑であり、摺動性及び耐摩耗性の優れた被覆部材であり、特に切削工具等への適用した場合、耐溶着性にも優れた被覆部材に関する。   The present invention is a coating member having a high film hardness and an outermost layer having good adhesion to an aluminum oxide film and smooth, and having excellent slidability and wear resistance, and particularly when applied to a cutting tool or the like. The present invention relates to a covering member excellent in weldability.

硬質皮膜を被覆した被覆部材は超硬合金、高速度鋼又は特殊鋼等よりなる基体表面に硬質皮膜を化学蒸着法又は物理蒸着法等により被覆して作製され、皮膜の耐摩耗性と基体の強靱性とを兼ね備えていることから重用されている。例えば、切削工具等に化学蒸着法により酸化アルミニウム膜を形成すると、酸化アルミニウム膜の結晶粒径が大きいために酸化アルミニウム膜表面の凹凸が大きくなる傾向にある。この酸化アルミニウム膜の外層側に窒化チタン膜や炭窒化チタン膜を形成すると、酸化アルミニウム膜の顕著な凹凸が反映されて、窒化チタン膜や炭窒化チタン膜の表面粗さRaが大きくなり、工具刃先部における切削時の耐衝撃性が低下し、刃先に欠損を生じる等の問題や、窒化チタン膜や炭窒化チタン膜が被削材と反応し、溶着を起こしやすくなる欠点があった。これらの問題を解決するために、特許文献1〜4が開示されている。
特許文献1は、工具刃先部の最外層を酸化アルミニウム膜から構成され、刃先以外の部分の最外層をTiN、Ti(CN)の何れかにより構成したコーティング工具を開示している。特許文献2は、上記問題を解決するため、工具の刃先部の最外層を酸化アルミニウム膜で構成し、刃先部以外の最外層を耐溶着性と摺動性とが優れるジルコニウム化合物で構成する事を開示している。特許文献3は、酸化アルミニウム層の外層側に最外層を有し、該最外層の下地層として、TiOx層を0.1〜3μmの膜厚で形成した後、TiC(O)層を0.05〜2μmを形成することが開示されている。ここで、(O)は最外層を構成する下地層からの拡散酸素を表している。特許文献4は、酸化アルミニウム層や酸化アルミニウムと酸化ジルコニウムとの混合層の外層側に最外層を有し、該最外層の下地層として、TiOx層を形成した後、ZrC1−z(O)やZrN1−z(O)、Zr(CN)1−z(O)層を形成することが開示されている。しかしながら、特許文献1、3、4に開示されている従来技術では、酸化アルミニウム層等の外層側には、TiN、Ti(CN)、TiO層などの窒素や酸素が主に含有されている皮膜が構成されているため、膜硬度が低く、耐摩耗性が劣る欠点を有している。また、最表面層にTiC(O)、ZrC1−z(O)、Zr(CN)1−z(O)を被覆している場合も、これらの皮膜は炭素を含有する皮膜ではあるものの、酸素を必須としているため硬度が低くなり、耐摩耗性が劣る欠点がある。特許文献2は、酸化アルミニウム層の外層側に摺動性の良いジルコニウム化合物膜を被覆する事を開示している。しかし、微結晶粒で硬度の高い炭化チタン皮膜を被覆し、耐摩耗性を改善する技術に関しては具体的に開示していない。
A coated member coated with a hard coating is prepared by coating a hard coating on the surface of a substrate made of cemented carbide, high-speed steel, special steel, or the like by chemical vapor deposition or physical vapor deposition, etc. It is used heavily because it combines toughness. For example, when an aluminum oxide film is formed on a cutting tool or the like by a chemical vapor deposition method, the unevenness of the aluminum oxide film surface tends to increase due to the large crystal grain size of the aluminum oxide film. When a titanium nitride film or a titanium carbonitride film is formed on the outer layer side of the aluminum oxide film, the surface roughness Ra of the titanium nitride film or the titanium carbonitride film increases due to the significant unevenness of the aluminum oxide film being reflected. There were problems such as a reduction in impact resistance at the time of cutting at the cutting edge portion and the occurrence of chipping at the cutting edge, and a defect that the titanium nitride film or titanium carbonitride film easily reacts with the work material to cause welding. In order to solve these problems, Patent Documents 1 to 4 are disclosed.
Patent Document 1 discloses a coating tool in which an outermost layer of a tool blade edge portion is formed of an aluminum oxide film, and an outermost layer of a portion other than the blade edge is formed of either TiN or Ti (CN). In Patent Document 2, in order to solve the above problem, the outermost layer of the cutting edge portion of the tool is made of an aluminum oxide film, and the outermost layer other than the cutting edge portion is made of a zirconium compound having excellent welding resistance and slidability. Is disclosed. Patent Document 3 has an outermost layer on the outer layer side of an aluminum oxide layer, and after forming a TiOx layer with a film thickness of 0.1 to 3 μm as a base layer of the outermost layer, a TiC (O) layer is set to a thickness of 0.03. It is disclosed to form 05-2 μm. Here, (O) represents diffused oxygen from the underlayer constituting the outermost layer. Patent Document 4 has an outermost layer on the outer layer side of an aluminum oxide layer or a mixed layer of aluminum oxide and zirconium oxide, and after forming a TiOx layer as a base layer of the outermost layer, ZrC 1-z (O) It is disclosed that z , ZrN 1-z (O) z , or Zr (CN) 1-z (O) z layer is formed. However, in the prior art disclosed in Patent Documents 1, 3, and 4, nitrogen and oxygen such as TiN, Ti (CN), and TiO x layers are mainly contained on the outer layer side such as an aluminum oxide layer. Since the film is formed, the film hardness is low and the wear resistance is inferior. Further, even when the outermost surface layer is coated with TiC (O), ZrC1 -z (O) z , Zr (CN) 1-z (O) z , these films are films containing carbon. However, since oxygen is essential, the hardness is low and the wear resistance is inferior. Patent Document 2 discloses that a zirconium compound film having good slidability is coated on the outer layer side of an aluminum oxide layer. However, there is no specific disclosure about a technique for coating a titanium carbide film having high hardness with fine crystal grains to improve wear resistance.

特許第2825693号公報Japanese Patent No. 2825693 特開2001−47305号公報JP 2001-47305 A 特開2001−62604号公報JP 2001-62604 A 特開2002−96207号公報JP 2002-96207 A

本発明が解決しようとする課題は、膜硬度が高く最外層が酸化アルミニウム膜との密着性が良く平滑であり、摺動性及び耐摩耗性の優れた被覆部材を提供することである。特に切削工具等へ適用した場合、耐溶着性にも優れた被覆部材を提供することである。   The problem to be solved by the present invention is to provide a covering member having a high film hardness, an outermost layer having good adhesion to an aluminum oxide film and smooth, and having excellent slidability and wear resistance. In particular, when applied to a cutting tool or the like, it is to provide a covering member having excellent welding resistance.

本発明は、基体表面に周期律表の4a、5a、6a族金属の1種又は2種以上からなる酸化物、炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物の何れか1種の単層皮膜又は2種以上の多層皮膜、並びに少なくとも1層の酸化アルミニウム膜を被覆してなる被覆部材であって、酸化アルミニウム膜の外層側に粒状又は扁平な炭化チタン膜を有し、更に炭酸化チタン膜及び/又は炭窒酸化チタン膜の少なくとも1種以上を有し、該炭化チタン膜、該炭酸化チタン膜、該炭窒酸化チタン膜の各膜厚の合計が1μm以上であることを特徴とする被覆部材である。上記構成を採用することによって酸化アルミニウム膜との密着性が優れ、しかも膜硬度が高く膜表面が平滑である最外層を有し、摺動性及び耐摩耗性が格段に優れた被覆部材を得ることができる。特に切削工具等へ適用した場合、耐溶着性にも優れた被覆部材を得ることができる。   The present invention provides oxides, carbides, nitrides, carbonitrides, carbonates, nitrides, carbonitrides of the 4a, 5a, 6a group metals of the periodic table on the substrate surface A coating member formed by coating any one type of single layer coating or two or more types of multilayer coatings and at least one layer of aluminum oxide film, and a granular or flat titanium carbide film on the outer layer side of the aluminum oxide film And at least one of a titanium carbonate film and / or a titanium carbonitride oxide film, and the total thickness of each of the titanium carbide film, the titanium carbonate film, and the titanium carbonitride oxide film is It is a covering member characterized by being 1 μm or more. By adopting the above configuration, a coating member having excellent adhesion to the aluminum oxide film, having an outermost layer with high film hardness and smooth film surface, and outstandingly excellent slidability and wear resistance is obtained. be able to. In particular, when applied to a cutting tool or the like, a covering member having excellent welding resistance can be obtained.

本発明は、該炭化チタン膜の平均結晶粒径が0.2〜1μmであることが好ましい。組織係数TC(hkl)の最大値は2.5以下であることが好ましい。また、本発明の被覆部材は、最外層が実質的にジルコニウム化合物膜により構成されていることが好ましい。更に、本発明の被覆部材は刃先を有し、該刃先部周辺の1部又は全部に酸化アルミニウム膜が露出していることが好ましい。該ジルコニウム化合物膜は酸素を含有していることが好ましい。   In the present invention, the titanium carbide film preferably has an average crystal grain size of 0.2 to 1 μm. The maximum value of the tissue coefficient TC (hkl) is preferably 2.5 or less. In the covering member of the present invention, it is preferable that the outermost layer is substantially composed of a zirconium compound film. Furthermore, it is preferable that the covering member of the present invention has a cutting edge, and the aluminum oxide film is exposed at one part or all of the periphery of the cutting edge. The zirconium compound film preferably contains oxygen.

本発明の被覆部材は、酸化アルミニウム膜の外層側に、膜硬度が高く最外層が酸化アルミニウム膜との密着性が良く平滑であり、摺動性及び耐摩耗性の優れた被覆部材を提供することができる。特に切削工具等へ適用した場合、耐溶着性にも優れた被覆部材を提供することができる。   The covering member of the present invention provides a covering member having a high film hardness, a good adhesion with the aluminum oxide film, and a smooth surface on the outer layer side of the aluminum oxide film, and having excellent slidability and wear resistance. be able to. In particular, when applied to a cutting tool or the like, it is possible to provide a covering member having excellent welding resistance.

本発明の酸化アルミニウム膜は結晶の異方性が大きいため、膜表面の凹凸が大きくなってしまう。そこで、酸化アルミニウム膜の外層側に、酸化アルミニウム膜との密着性が優れ高硬度を有し粒状又は扁平な炭化チタン膜を形成した後、粒状の炭酸化チタン及び/又は炭窒酸化チタン膜を被覆することにより、酸化アルミニウム膜との密着性が優れしかも膜硬度が高く平滑な最外層を有し、摺動性、耐摩耗性及び耐溶着性が格段に優れた被覆部材が実現できる。
本発明の炭化チタン膜の結晶粒は粒状又は扁平である。ここで、結晶粒が粒状又は扁平であることは、皮膜の破断側面を走査電子顕微鏡(以下、SEMと記す。)で観察した時、該炭化チタン膜の膜表面側界面付近を構成する各結晶粒の膜厚方向の寸法Tと、各結晶粒中央部の膜厚方向と垂直な方向の寸法Dの比D/Tを各結晶粒別に求め、その平均値が0.5以上であることにより判別できる。炭化チタン膜の結晶粒が粒状又は扁平でない場合即ち、D/Tの値が0.5未満の時は、該炭化チタン膜の結晶異方性が強く酸化アルミニウム膜表面の凹凸がそのまま該炭化チタン膜の表面により強く反映され、このために皮膜の最外層の平滑性が大きく悪化し不都合である。そこで、炭化チタン膜の結晶粒が粒状又は扁平であることが必要であり、D/Tの値は0.5以上である。炭化チタン膜は主としてチタンと炭素とから成る皮膜であり、20質量%以下の硼素やジルコニウムが含有されていても良い。
最外層を構成する炭化チタン膜、炭酸化チタン膜、炭窒酸化チタン膜の各膜厚の合計が1μm以上とする。より好ましくは、1〜2μmである。この理由は、炭化チタン膜、炭酸化チタン膜、炭窒酸化チタン膜の各膜厚の合計が1μm未満の時は、酸化アルミニウム膜表面の凹凸を十分に平滑化する事が出来ず、平滑性が劣る欠点が現れるからである。また、2μmを超えて大きいと膜剥離を起こすという欠点が現れ易くなるからである。
Since the aluminum oxide film of the present invention has a large crystal anisotropy, the unevenness of the film surface becomes large. Therefore, after forming a granular or flat titanium carbide film having excellent adhesion with the aluminum oxide film and having high hardness on the outer layer side of the aluminum oxide film, the granular titanium carbonate and / or titanium carbonitride oxide film is formed. By coating, it is possible to realize a coated member having excellent adhesion to the aluminum oxide film, having a smooth outermost layer with high film hardness, and excellent slidability, wear resistance and welding resistance.
The crystal grains of the titanium carbide film of the present invention are granular or flat. Here, the crystal grains are granular or flat when the fracture side surface of the film is observed with a scanning electron microscope (hereinafter referred to as SEM), and each crystal constituting the vicinity of the interface on the film surface side of the titanium carbide film. The ratio D / T of the dimension T in the film thickness direction and the dimension D in the direction perpendicular to the film thickness direction at the center of each crystal grain is obtained for each crystal grain, and the average value is 0.5 or more Can be determined. When the crystal grains of the titanium carbide film are not granular or flat, that is, when the value of D / T is less than 0.5, the titanium carbide film has a strong crystal anisotropy and the unevenness of the aluminum oxide film surface remains as it is. This is reflected more strongly on the surface of the film, which is disadvantageous because the smoothness of the outermost layer of the film is greatly deteriorated. Therefore, the crystal grains of the titanium carbide film must be granular or flat, and the value of D / T is 0.5 or more. The titanium carbide film is a film mainly composed of titanium and carbon, and may contain 20% by mass or less of boron and zirconium.
The total thickness of the titanium carbide film, the titanium carbonate film, and the titanium carbonitride oxide film constituting the outermost layer is 1 μm or more. More preferably, it is 1-2 micrometers. The reason for this is that when the total thickness of the titanium carbide film, the titanium carbonate film, and the titanium carbonitride oxide film is less than 1 μm, the unevenness on the surface of the aluminum oxide film cannot be sufficiently smoothed. This is because inferior defects appear. Further, if it exceeds 2 μm, the disadvantage of causing film peeling tends to appear.

本発明の炭化チタン膜の平均結晶粒径に関する数値限定理由について述べる。本発明の被覆部材は酸化アルミニウム膜の外層側に平均結晶粒径が0.2〜1μmの炭化チタン膜を有することが好ましい。該炭化チタン膜の平均結晶粒径が0.2μm未満の時は、結晶性が低下し硬度と耐摩耗性が低下する欠点が現れ、1μmを超えて大きいと膜表面の面粗さが悪くなる欠点が現れ易くなる。例えば、本発明の被覆部材を切削工具に適用した場合、該炭化チタン膜の耐摩耗性低下や切削抵抗の上昇等により工具寿命が短くなる欠点が現れる。そこで、平均結晶粒径は0.2〜1μmが好ましい。ここで、炭化チタン膜の平均結晶粒径は、皮膜の破断面をSEMにより倍率20k倍で撮影し、炭化チタンの各結晶粒の中央部付近でのD値を求め、その平均値を求めることにより算出する。本発明の被覆部材は、炭化チタン膜の組織係数TC(hkl)の最大値が2.5以下であることが好ましい。ここで、炭化チタン膜の結晶配向の強さを定量的に評価するため、組織係数TC(hkl)を(数1)によって定義する。   The reason for the numerical limitation regarding the average crystal grain size of the titanium carbide film of the present invention will be described. The covering member of the present invention preferably has a titanium carbide film having an average crystal grain size of 0.2 to 1 μm on the outer layer side of the aluminum oxide film. When the average crystal grain size of the titanium carbide film is less than 0.2 μm, the crystallinity is lowered and the hardness and wear resistance are lowered, and when it exceeds 1 μm, the surface roughness of the film is deteriorated. Defects are likely to appear. For example, when the covering member of the present invention is applied to a cutting tool, there is a drawback that the tool life is shortened due to a decrease in wear resistance of the titanium carbide film, an increase in cutting resistance, or the like. Therefore, the average crystal grain size is preferably 0.2 to 1 μm. Here, the average crystal grain size of the titanium carbide film is obtained by photographing the fracture surface of the film with SEM at a magnification of 20k, obtaining the D value near the center of each crystal grain of titanium carbide, and obtaining the average value. Calculated by In the covering member of the present invention, the maximum value of the tissue coefficient TC (hkl) of the titanium carbide film is preferably 2.5 or less. Here, in order to quantitatively evaluate the strength of the crystal orientation of the titanium carbide film, the texture coefficient TC (hkl) is defined by (Equation 1).

Figure 2005290504
Figure 2005290504

炭化チタン粉末粒子のX線回折データはJCPDSファイル番号32−1383(Powder Diffraction File Published by JCPDS International Center for Diffraction Data)に記載されている。I0(hkl)はJCPDSファイルに記載された標準X線回折ピーク強度である。TC(hkl)値が大きい程(hkl)面からのX線回折ピーク強度比I(hkl)/I0(hkl)が他の(hkl)面からのX線回折ピーク強度比よりも強く、この事は(hkl)面が膜厚方向に対して垂直な方向即ち基体接線方向により強く配向していることを示す。本発明の炭化チタン膜のTC(hkl)の最大値は2.5以下が好ましく、1以下であることが更に好ましい。この時、結晶粒が粒状又は扁平で、硬度が高く表面がより平滑な炭化チタン膜が得られる。炭酸化チタン膜や炭窒酸化チタン膜の酸素含有量や窒素含有量が少ない時は、X線回折ピークを炭化チタン膜、炭酸化チタン膜、炭窒酸化チタン膜間を明確に分離できない事があるが、この場合は、敢えて分離する必要はなく、そのまま、炭化チタン膜のピークとしてTC(hkl)を計算して良い。   X-ray diffraction data of the titanium carbide powder particles is described in JCPDS file number 32-1383 (Powder Diffraction File Published by JCPDS International Center for Diffraction Data). I0 (hkl) is the standard X-ray diffraction peak intensity described in the JCPDS file. As the TC (hkl) value is larger, the X-ray diffraction peak intensity ratio I (hkl) / I0 (hkl) from the (hkl) plane is stronger than the X-ray diffraction peak intensity ratio from the other (hkl) plane. Indicates that the (hkl) plane is more strongly oriented in the direction perpendicular to the film thickness direction, that is, the substrate tangential direction. The maximum value of TC (hkl) of the titanium carbide film of the present invention is preferably 2.5 or less, and more preferably 1 or less. At this time, a titanium carbide film in which the crystal grains are granular or flat, the hardness is high, and the surface is smoother is obtained. When the oxygen content or the nitrogen content of the titanium carbonate film or titanium carbonitride oxide film is low, the X-ray diffraction peak cannot be clearly separated between the titanium carbide film, the titanium carbonate film, and the titanium carbonitride oxide film. However, in this case, it is not necessary to separate it, and TC (hkl) may be calculated as it is as the peak of the titanium carbide film.

本発明の被覆部材において、最外層がジルコニウム化合物膜により構成されていることにより、摺動性の優れた皮膜を得ることができる。また、本発明の被覆部材を切削工具に適用した場合、少なくとも刃先部周辺に酸化アルミニウム膜が露出していることにより刃先部の耐溶着性が高まる。その結果、摺動性と耐溶着性とが格段に優れる被覆工具が実現できる。そこで、本発明の被覆部材を切削工具に適用した場合は実質的に最外層がジルコニウム化合物膜により構成され、少なくとも刃先部周辺に酸化アルミニウム膜が露出していることが好ましい。また、本発明のジルコニウム化合物膜が酸素を含有している事により、被削材が皮膜に溶着し難くなり、しかも適度の膜硬度が得られ、耐溶着性と摺動性及び耐摩耗性が格段に優れ、工具寿命の長い切削工具を実現出来る。そこで、本発明のジルコニウム化合物膜は酸素を含有していることが好ましい。また、炭化チタン膜と炭酸化チタン膜や炭窒酸化チタン膜の間に炭窒化チタン膜が形成されていても良い。炭窒化チタン膜を挿入することにより炭化チタン膜表面の酸化が防止でき、炭化チタン膜の結晶性と硬度がより高まる利点が現れる。また、上記皮膜には本発明を構成できる範囲内で、WやCo等の不可避の不純物を例えば数質量%まで含むことが許容される。
本発明の被覆部材は、例えば、通常の熱化学蒸着法(以下、熱CVD法と記す。)やプラズマや電子ビームを付加した化学蒸着法等の成膜方法を用いて作製することができる。用途は切削工具に限るものではなく、ジルコニウム化合物膜及び酸化アルミニウム膜を被覆した耐摩耗部材、金型又は溶湯部品等でもよい。
In the covering member of the present invention, since the outermost layer is composed of a zirconium compound film, a film having excellent slidability can be obtained. Further, when the covering member of the present invention is applied to a cutting tool, the welding resistance of the cutting edge portion is enhanced by exposing the aluminum oxide film at least around the cutting edge portion. As a result, it is possible to realize a coated tool that is remarkably excellent in slidability and welding resistance. Therefore, when the covering member of the present invention is applied to a cutting tool, it is preferable that the outermost layer is substantially composed of a zirconium compound film, and the aluminum oxide film is exposed at least around the edge portion. Further, since the zirconium compound film of the present invention contains oxygen, the work material becomes difficult to weld to the film, and an appropriate film hardness is obtained, and the welding resistance, sliding property and wear resistance are improved. A cutting tool with outstandingly long tool life can be realized. Therefore, the zirconium compound film of the present invention preferably contains oxygen. Further, a titanium carbonitride film may be formed between the titanium carbide film and the titanium carbonate film or the titanium carbonitride oxide film. By inserting a titanium carbonitride film, oxidation of the surface of the titanium carbide film can be prevented, and there is an advantage that the crystallinity and hardness of the titanium carbide film are further increased. In addition, the coating film is allowed to contain, for example, several mass% of inevitable impurities such as W and Co within the range in which the present invention can be configured.
The covering member of the present invention can be produced, for example, by using a film forming method such as a normal thermal chemical vapor deposition method (hereinafter referred to as a thermal CVD method) or a chemical vapor deposition method to which plasma or an electron beam is added. The application is not limited to cutting tools, but may be wear-resistant members, molds or molten metal parts coated with a zirconium compound film and an aluminum oxide film.

本発明に用いる酸化アルミニウム膜は、κ型酸化アルミニウム単層膜又はα型酸化アルミニウム単層膜を用いることができる。また、κ型酸化アルミニウムとα型酸化アルミニウムとの混合膜でもよい。また、κ型酸化アルミニウム及び/又はα型酸化アルミニウムと、γ型酸化アルミニウム、θ型酸化アルミニウム、σ型酸化アルミニウム、χ型酸化アルミニウムの少なくとも1種とからなる混合膜でもよい。また、酸化アルミニウムと酸化ジルコニウム等に代表される他の酸化物との混合膜でもよい。本発明において、基体としては周期律表の4a、5a、6a族金属の1種又は2種以上からなる炭化物、窒化物、炭窒化物の少なくとも1種からなる硬質相と、Fe、Co、Ni、W、Mo、Crの少なくとも1種からなる結合相とにより構成された超硬合金を用いることが実用的であり、本発明の被覆部材全体の靱性、硬度及び耐熱性がバランス良く高まり、良好な特性を有する被覆部材を実現することができる。   As the aluminum oxide film used in the present invention, a κ-type aluminum oxide single layer film or an α-type aluminum oxide single layer film can be used. Alternatively, a mixed film of κ-type aluminum oxide and α-type aluminum oxide may be used. Alternatively, a mixed film including κ-type aluminum oxide and / or α-type aluminum oxide and at least one of γ-type aluminum oxide, θ-type aluminum oxide, σ-type aluminum oxide, and χ-type aluminum oxide may be used. Alternatively, a mixed film of aluminum oxide and another oxide typified by zirconium oxide or the like may be used. In the present invention, as the substrate, a hard phase composed of at least one of carbides, nitrides, and carbonitrides of one or more of the 4a, 5a, and 6a group metals of the periodic table, and Fe, Co, Ni It is practical to use a cemented carbide composed of a binder phase composed of at least one of W, Mo and Cr, and the toughness, hardness and heat resistance of the entire coated member of the present invention are improved in a well-balanced manner. A covering member having excellent characteristics can be realized.

組成が質量%で、Co:7%、Cr:0.2%、ZrC:2%、Zr(CN):1.5%、NbC:3%、残WCよりなる混合粉の成形体を、1400〜1450度までは1.3kPaの窒素雰囲気に保った後、1450度の保持時間の最後30分間を真空に保って焼結し、JIS規格CNMG120408の規定形状の切削工具用超硬合金基体を作製した。これらの基体をCVD装置内に設置し、水素キャリヤーガスと四塩化チタンガスと窒素ガスとを原料ガスに用いて0.5μm厚さの窒化チタン膜を950度で形成後、水素キャリヤーガスと四塩化チタンガス、窒素ガス、アセトニトリルガスを原料ガスに用いて7μm厚さの炭窒化チタン膜を750〜980度で形成した。そしてその表面に、炭化チタン膜を950〜1020度で体積比が1:6:190の四塩化チタンガス、メタンガス、水素キャリヤーガスを用いて15分間成膜し、そのまま連続して本構成ガスに二酸化炭素ガスと一酸化炭素ガスとを追加し、炭酸化チタン膜を15分間成膜した。そしてその表面に、α型酸化アルミニウム膜を、水素キャリヤーガスと三塩化アルミニウムガス、二酸化炭素ガスとを原料ガスに用い、1010〜1020度で2〜7μm厚さに形成した。次いで、α型酸化アルミニウム膜の外層側に炭化チタン膜を膜厚0.5μm形成した。ここで、平均結晶粒径が0.2〜1μmで粒状又は扁平の炭化チタン膜を形成するためには、例えば、熱CVD法により、反応ガスとしてCH/TiClガス体積比を1〜4に調節したTiClガスとCHガスとを用い、これらの反応ガス量をキャリヤーガスであるHガスに対してより高濃度に調整し、成膜温度920〜1020度で成膜することにより得た。また、これらのガスに更に二酸化炭素ガスと一酸化炭素ガスとを微少量加えて反応させることにより炭酸化チタン膜、又はこれらのガスに更に窒素ガスを加えて反応させることにより炭窒酸化チタン膜を成膜した。その後、水素キャリヤーガスと四塩化ジルコニウムガスと窒素ガス、及び一酸化炭素と二酸化炭素の混合ガスとを原料ガスに用いて0.5μm厚さの酸窒化ジルコニウム膜を1020度で形成し、室温まで冷却することにより、本発明例1〜27を作製した。そのうち本発明例1〜26は、SiC砥粒付きブラシを用いて工具刃先部を研磨処理することにより、内層の酸化アルミニウム膜を露出させた。本発明例27は未処理とし、露出させなかった。
比較の目的で、上記発明例と同じ膜構成ではあるものの、酸化アルミニウム膜の外層側に炭化チタン膜が形成されていない比較例28、炭化チタン膜が粒状又は扁平のいずれでもない、即ちD/T値が0.3である比較例29、炭化チタン膜の上層側に炭酸化チタン膜や炭窒酸化チタン膜のいずれもが成膜されていない比較例30、炭化チタンと炭酸化チタン及び該炭窒酸化チタンの各膜厚の合計が1μm未満の比較例31を作製した。
Molded product of mixed powder having a composition of mass%, Co: 7%, Cr 3 C 2 : 0.2%, ZrC: 2%, Zr (CN): 1.5%, NbC: 3%, remaining WC Is maintained in a nitrogen atmosphere of 1.3 kPa up to 1400 to 1450 degrees, and then sintered in a vacuum for the last 30 minutes of a holding time of 1450 degrees, and a cemented carbide for cutting tools having a specified shape of JIS standard CNMG120408 A substrate was prepared. These substrates are placed in a CVD apparatus, a 0.5 μm-thick titanium nitride film is formed at 950 ° C. using hydrogen carrier gas, titanium tetrachloride gas, and nitrogen gas as source gases. A titanium carbonitride film having a thickness of 7 μm was formed at 750 to 980 ° C. using titanium chloride gas, nitrogen gas, and acetonitrile gas as raw material gases. Then, a titanium carbide film is formed on the surface for 15 minutes by using titanium tetrachloride gas, methane gas, and hydrogen carrier gas with a volume ratio of 1: 6: 190 at 950 to 1020 degrees, and is continuously used as the constituent gas. Carbon dioxide gas and carbon monoxide gas were added, and a titanium carbonate film was formed for 15 minutes. An α-type aluminum oxide film was formed on the surface to a thickness of 2 to 7 μm at 1010 to 1020 ° C. using hydrogen carrier gas, aluminum trichloride gas, and carbon dioxide gas as source gases. Next, a titanium carbide film having a thickness of 0.5 μm was formed on the outer layer side of the α-type aluminum oxide film. Here, in order to form a granular or flat titanium carbide film having an average crystal grain size of 0.2 to 1 μm, the volume ratio of CH 4 / TiCl 4 gas is set to 1 to 4 as a reaction gas by, for example, a thermal CVD method. By using TiCl 4 gas and CH 4 gas adjusted to be higher, the amount of these reaction gases is adjusted to a higher concentration with respect to H 2 gas as a carrier gas, and film formation is performed at a film formation temperature of 920 to 1020 degrees. Obtained. In addition, carbon dioxide gas and carbon monoxide gas are added to these gases in a small amount and reacted to form a titanium carbonate film, or nitrogen gas is added to these gases and reacted to form a titanium carbonitride oxide film. Was deposited. Thereafter, a hydrogen carrier gas, zirconium tetrachloride gas, nitrogen gas, and a mixed gas of carbon monoxide and carbon dioxide are used as source gases to form a 0.5 μm-thick zirconium oxynitride film at 1020 ° C. until room temperature By cooling, Invention Examples 1 to 27 were produced. Of these, Examples 1 to 26 of the present invention exposed the inner aluminum oxide film by polishing the tool edge using a brush with SiC abrasive grains. Invention Example 27 was not treated and was not exposed.
For the purpose of comparison, although the film configuration is the same as that of the above invention example, Comparative Example 28 in which the titanium carbide film is not formed on the outer layer side of the aluminum oxide film, the titanium carbide film is neither granular nor flat, that is, D / Comparative Example 29 having a T value of 0.3, Comparative Example 30 in which neither a titanium carbonate film nor a titanium carbonitride oxide film is formed on the upper layer side of the titanium carbide film, titanium carbide and titanium carbonate, and The comparative example 31 whose total of each film thickness of titanium carbonitride oxide is less than 1 micrometer was produced.

本発明例及び比較例の特性を評価するため切削工具に適用し、その工具寿命を以下の切削条件で評価した。評価方法は、各切削時間における摩耗量を倍率50倍の工具顕微鏡で観察し、平均逃げ面摩耗量が0.4mm、クレーター摩耗が0.05mmのどちらかに達した時間を連続切削寿命時間とした。上記の条件で切削評価した結果を表1中に併記する。   It applied to the cutting tool in order to evaluate the characteristic of this invention example and a comparative example, The tool life was evaluated on the following cutting conditions. In the evaluation method, the amount of wear at each cutting time was observed with a tool microscope having a magnification of 50 times, and the time when the average flank wear amount reached 0.4 mm or crater wear reached 0.05 mm was defined as the continuous cutting life time. did. The results of cutting evaluation under the above conditions are also shown in Table 1.

Figure 2005290504
Figure 2005290504

(切削条件)
被削材:S53C
切削速度:320m/分
送り:0.2mm/rev
切り込み:2.0mm
切削油:使用せず(乾式切削)
表1において、本発明例1〜5と比較例28、29とを比較する。酸化アルミニウム膜の外層側に炭化チタン膜が形成されていない比較例28は工具寿命が12分であり、また、炭化チタン膜が被覆されているものの、そのD/T値が0.3であり結晶粒の形状が粒状、扁平のいずれでもなく膜厚方向に細長い比較例29は工具寿命が16分であった。これに対して、D/Tの値が0.5以上と結晶粒が粒状又は扁平である炭化チタン膜が酸化アルミニウム膜の外層側に形成されている本発明例1〜5の工具寿命は36分以上と長く、比較例28の3倍以上、比較例29の2.2倍以上であった。酸化アルミニウム膜の外層側に炭化チタン膜が形成されていない比較例28は最外層の密着性が悪く、炭化チタン膜が形成されているもののD/Tの値が0.3である比較例29は皮膜表面の平滑性が悪く、それぞれ工具寿命が劣る結果となった。本発明例8、14と比較例30とを比較する。これらはいずれも炭化チタン膜のD/Tが1.0であり、表1中で炭化チタン膜、炭酸化チタン膜、炭窒酸化チタン膜の合計膜厚を示す総膜厚が1.0μmである。炭化チタン膜、酸化アルミニウム膜の外層側に炭化チタン膜が形成されているものの、炭酸化チタン膜と炭窒酸化チタン膜のいずれもが形成されていない比較例30は、工具寿命が17分であるのに対して、炭化チタン膜の上に炭酸化チタン膜または炭窒酸化チタン膜が形成されている本発明例8、14の工具寿命は42分と40分となり、本発明例8、14は比較例30の2.1倍以上である。本発明例8、14は酸化アルミニウム膜の外層側に酸化アルミニウム膜との密着性が優れ、高硬度で結晶粒形が粒状又は扁平である炭化チタン膜を形成した後、更に炭酸化チタン及び/又は炭窒酸化チタン膜を形成したことにより、酸化アルミニウム膜との密着性が優れると同時に耐溶着性と摺動性、耐摩耗性も優れ、工具の長寿命化を図ることができた。本発明例6〜14と比較例31とを比較する。総膜厚が0.6μmの比較例31は、工具寿命が14分であるのに対して、総膜厚が1μm以上である本発明例6〜14の工具寿命は32分以上となり、比較例30の2.2倍以上であった。
(Cutting conditions)
Work material: S53C
Cutting speed: 320 m / min Feed: 0.2 mm / rev
Cutting depth: 2.0mm
Cutting oil: Not used (dry cutting)
In Table 1, Invention Examples 1 to 5 and Comparative Examples 28 and 29 are compared. Comparative Example 28 in which the titanium carbide film is not formed on the outer layer side of the aluminum oxide film has a tool life of 12 minutes, and the D / T value is 0.3 although the titanium carbide film is coated. The comparative example 29 elongated in the film thickness direction was neither a grain shape nor a flat shape, and the tool life was 16 minutes. On the other hand, the tool life of the inventive examples 1 to 5 in which the titanium carbide film having a D / T value of 0.5 or more and the crystal grains are granular or flat is formed on the outer layer side of the aluminum oxide film is 36. It was as long as min or more, 3 times or more of Comparative Example 28 and 2.2 times or more of Comparative Example 29. Comparative Example 28 in which the titanium carbide film is not formed on the outer layer side of the aluminum oxide film has poor adhesion of the outermost layer, and Comparative Example 29 has a D / T value of 0.3 although the titanium carbide film is formed. Resulted in poor smoothness of the coating surface and inferior tool life. Inventive Examples 8 and 14 and Comparative Example 30 are compared. All of these have a D / T of the titanium carbide film of 1.0. In Table 1, the total film thickness indicating the total film thickness of the titanium carbide film, the titanium carbonate film, and the titanium carbonitride oxide film is 1.0 μm. is there. Although the titanium carbide film is formed on the outer layer side of the titanium carbide film and the aluminum oxide film, the comparative example 30 in which neither the titanium carbonate film nor the titanium carbonitride oxide film is formed has a tool life of 17 minutes. On the other hand, the tool life of the inventive examples 8 and 14 in which the titanium carbonate film or the titanium carbonitride oxide film is formed on the titanium carbide film is 42 minutes and 40 minutes. Is 2.1 times or more that of Comparative Example 30. In Invention Examples 8 and 14, after forming a titanium carbide film having excellent adhesion with the aluminum oxide film on the outer layer side of the aluminum oxide film and having a high hardness and a grain shape or a flat shape, the titanium carbonate and / or Alternatively, by forming a titanium carbonitride oxide film, the adhesion to the aluminum oxide film is excellent, and at the same time, the welding resistance, sliding property, and wear resistance are also excellent, and the tool life can be extended. Invention Examples 6 to 14 and Comparative Example 31 are compared. The comparative example 31 having a total film thickness of 0.6 μm has a tool life of 14 minutes, while the tool life of the inventive examples 6 to 14 having a total film thickness of 1 μm or more is 32 minutes or more. It was 2.2 or more times 30.

これらの比較から、本発明例は酸化アルミニウム膜の外側に、粒状又は扁平の炭化チタン膜を形成した後、炭酸化チタン膜及び/又は炭窒酸化チタン膜の少なくとも1種以上を形成し、総膜厚が1μm以上であることにより、格段に優れた工具寿命を有していることを確認できた。
次に、本発明例16〜20と本発明例15、21とを比較する。炭化チタン膜の平均結晶粒径が0.1μmと1.2μmである本発明例15と21の工具寿命が30分であるのに対して、本発明例16〜20は平均結晶粒径が0.2〜1μmであり工具寿命が44分以上と、本発明例15、21に対して更に1.4倍以上長い。従って、本発明は酸化アルミニウム膜の外側に形成されている炭化チタン膜の平均結晶粒径が0.2〜1μmであることが工具の長寿命化にとって好ましい。本発明例15の炭化チタン膜の平均結晶粒径が0.1μmであったため、結晶性が悪く十分な硬度と耐摩耗性が得られなかった。本発明例21は炭化チタン膜の平均結晶粒径が1.2μmであったため膜表面の面粗さが悪く、切削抵抗が高くなり工具寿命が劣る結果となった。
From these comparisons, the present invention example formed a granular or flat titanium carbide film on the outside of the aluminum oxide film, and then formed at least one kind of a titanium carbonate film and / or a titanium carbonitride oxide film. When the film thickness was 1 μm or more, it was confirmed that the tool life was remarkably excellent.
Next, Invention Examples 16 to 20 and Invention Examples 15 and 21 are compared. While the tool life of Inventive Examples 15 and 21 in which the average crystal grain size of the titanium carbide film is 0.1 μm and 1.2 μm is 30 minutes, the Inventive Examples 16 to 20 have an average crystal grain size of 0. .2 to 1 μm, and the tool life is 44 minutes or more, which is 1.4 times or more longer than Examples 15 and 21 of the present invention. Therefore, in the present invention, the average crystal grain size of the titanium carbide film formed on the outer side of the aluminum oxide film is preferably 0.2 to 1 μm for extending the tool life. Since the average crystal grain size of the titanium carbide film of Invention Example 15 was 0.1 μm, the crystallinity was poor and sufficient hardness and wear resistance could not be obtained. In Invention Example 21, since the average crystal grain size of the titanium carbide film was 1.2 μm, the surface roughness of the film surface was poor, the cutting resistance was increased, and the tool life was inferior.

本発明例22と23とを比較する。本発明例23は炭化チタン膜の組織係数TC(hkl)値が2.7であり、その時の工具寿命は32分であった。これに対して、TC(hkl)値が2.5である本発明例22の工具寿命は42分となり、本発明例23よりも1.3倍以上長い。従って、本発明は酸化アルミニウム膜の外側に形成されている炭化チタン膜の組織係数TC(hkl)値が2.5以下であることが工具の長寿命化にとって好ましい。炭化チタン膜の平均結晶粒径と膜厚、TC(hkl)および炭酸化チタン膜厚がほぼ同じである本発明例18および24〜26を比較する。最外層にTiN膜を被覆した本発明例26の工具寿命が30分であるのに対して、Zr(CNO)やZr(CN)、ZrNを被覆した本発明例18、24、25の工具寿命は38分以上であり、1.2倍以上長い。本発明は、実質的に最外層がジルコニウム化合物膜により構成されていることが好ましい。また、本発明例18、24、25を比較すると、Zr(CNO)を被覆した本発明例18の工具寿命は、Zrの非酸化膜を被覆した本発明例24、25の1.2倍以上長い。従って、最外層がZrの酸化膜で被覆されていることが更に好ましい。本発明例18と27とを比較する。最外層にZr(CNO)膜を被覆しているものの刃先部に酸化アルミニウム膜が露出していない本発明例27の工具寿命は32分であるのに対して、刃先部に酸化アルミニウム膜が露出している本発明例18の工具寿命は48分と1.5倍長い。従って本発明は、刃先部に酸化アルミニウム膜が露出していることが好ましい。   Inventive Examples 22 and 23 are compared. In Invention Example 23, the structure coefficient TC (hkl) value of the titanium carbide film was 2.7, and the tool life at that time was 32 minutes. On the other hand, the tool life of Inventive Example 22 having a TC (hkl) value of 2.5 is 42 minutes, which is 1.3 times longer than that of Inventive Example 23. Therefore, in the present invention, the titanium carbide film formed on the outer side of the aluminum oxide film preferably has a structure coefficient TC (hkl) value of 2.5 or less for extending the tool life. The present invention examples 18 and 24-26, in which the average crystal grain size and film thickness, TC (hkl), and titanium carbonate film thickness of the titanium carbide film are substantially the same, will be compared. The tool life of Inventive Example 26 in which the outermost layer is coated with a TiN film is 30 minutes, whereas the tool life of Inventive Examples 18, 24 and 25 in which Zr (CNO), Zr (CN), and ZrN are coated is 30 minutes. Is 38 minutes or longer, 1.2 times longer. In the present invention, it is preferable that the outermost layer is substantially composed of a zirconium compound film. Further, when the inventive examples 18, 24, and 25 are compared, the tool life of the inventive example 18 coated with Zr (CNO) is 1.2 times or more of the inventive examples 24 and 25 coated with the non-oxide film of Zr. long. Therefore, it is more preferable that the outermost layer is covered with a Zr oxide film. Inventive Examples 18 and 27 are compared. Although the outermost layer is coated with a Zr (CNO) film but the aluminum oxide film is not exposed at the cutting edge, the tool life of Inventive Example 27 is 32 minutes, whereas the aluminum oxide film is exposed at the cutting edge. The tool life of Inventive Example 18 is 48 minutes and 1.5 times longer. Therefore, in the present invention, it is preferable that the aluminum oxide film is exposed at the blade edge portion.

Claims (5)

基体表面に周期律表の4a、5a、6a族金属の1種又は2種以上からなる酸化物、炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物の何れか1種の単層皮膜又は2種以上の多層皮膜、並びに少なくとも1層の酸化アルミニウム膜を被覆してなる被覆部材であって、酸化アルミニウム膜の外層側に粒状又は扁平な炭化チタン膜を有し、更に炭酸化チタン膜及び/又は炭窒酸化チタン膜の少なくとも1種以上を有し、該炭化チタン膜、該炭酸化チタン膜、該炭窒酸化チタン膜の各膜厚の合計が1μm以上であることを特徴とする被覆部材。 Any one of oxides, carbides, nitrides, carbonitrides, carbonates, nitrides and carbonitrides of the group 4a, 5a, and 6a group metals of the periodic table on the substrate surface A coating member formed by coating one kind of single layer film or two or more kinds of multilayer films, and at least one layer of an aluminum oxide film, and having a granular or flat titanium carbide film on the outer layer side of the aluminum oxide film, Furthermore, it has at least one or more of a titanium carbonate film and / or a titanium carbonitride oxide film, and the total thickness of the titanium carbide film, the titanium carbonate film, and the titanium carbonitride oxide film is 1 μm or more. The covering member characterized by the above-mentioned. 請求項1記載の被覆部材において、該炭化チタン膜の平均結晶粒径が0.2〜1μmであることを特徴とする被覆部材。 The covering member according to claim 1, wherein the titanium carbide film has an average crystal grain size of 0.2 to 1 μm. 請求項1又は2記載の被覆部材において、該炭化チタン膜の組織係数TC(hkl)の最大値が2.5以下であることを特徴とする被覆部材。 The covering member according to claim 1 or 2, wherein the maximum value of the tissue coefficient TC (hkl) of the titanium carbide film is 2.5 or less. 請求項1乃至3いずれかに記載の被覆部材において、最外層がジルコニウム化合物膜により構成されていることを特徴とする被覆部材。 4. The covering member according to claim 1, wherein the outermost layer is made of a zirconium compound film. 請求項4記載の被覆部材において、該被覆部材は刃先を有し、該刃先部周辺の1部又は全部に酸化アルミニウム膜が露出していることを特徴とする被覆部材。
5. The covering member according to claim 4, wherein the covering member has a cutting edge, and an aluminum oxide film is exposed at one part or all of the periphery of the cutting edge part.
JP2004109539A 2004-04-02 2004-04-02 Covering member Expired - Fee Related JP4565464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004109539A JP4565464B2 (en) 2004-04-02 2004-04-02 Covering member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004109539A JP4565464B2 (en) 2004-04-02 2004-04-02 Covering member

Publications (2)

Publication Number Publication Date
JP2005290504A true JP2005290504A (en) 2005-10-20
JP4565464B2 JP4565464B2 (en) 2010-10-20

Family

ID=35323769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004109539A Expired - Fee Related JP4565464B2 (en) 2004-04-02 2004-04-02 Covering member

Country Status (1)

Country Link
JP (1) JP4565464B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020062706A (en) * 2018-10-16 2020-04-23 株式会社タンガロイ Coated cutting tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2825693B2 (en) * 1991-08-29 1998-11-18 京セラ株式会社 Coating tool and method of manufacturing the same
JP2001121312A (en) * 1999-10-27 2001-05-08 Mitsubishi Materials Corp Cutting tool of surface-coated cemented carbide excelling in surface lubricity against chip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2825693B2 (en) * 1991-08-29 1998-11-18 京セラ株式会社 Coating tool and method of manufacturing the same
JP2001121312A (en) * 1999-10-27 2001-05-08 Mitsubishi Materials Corp Cutting tool of surface-coated cemented carbide excelling in surface lubricity against chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020062706A (en) * 2018-10-16 2020-04-23 株式会社タンガロイ Coated cutting tool
JP7205153B2 (en) 2018-10-16 2023-01-17 株式会社タンガロイ coated cutting tools

Also Published As

Publication number Publication date
JP4565464B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP3678924B2 (en) Aluminum oxide coated tool
JP5144021B2 (en) Coated cutting tool insert and method for manufacturing the same
JP4593852B2 (en) Coated hard alloy
JP5295325B2 (en) Surface coated cutting tool
JP4004133B2 (en) Titanium carbonitride coated tool
WO2007049785A1 (en) Surface-coated member, method for manufacture thereof, and cutting tool
JP6519057B2 (en) Method of manufacturing surface coated cutting tool
JP2007229821A (en) Surface-coated cutting tool
KR100587965B1 (en) Coating materials for a cutting tool/an abrasion resistance tool
JP3560303B2 (en) Aluminum oxide coated tool and method of manufacturing the same
JP3808648B2 (en) Titanium carbonitride film coating tool
JP3962300B2 (en) Aluminum oxide coated tool
JP3910881B2 (en) Oxide coating tool
US7820308B2 (en) Surface-coated hard material for cutting tools or wear-resistant tools
JP4107433B2 (en) α-type aluminum oxide coated member
JP3678945B2 (en) Titanium carbonitride coated tool
JP4114741B2 (en) Titanium chromium compound coating tool
JP4565464B2 (en) Covering member
JP6039481B2 (en) Surface covering member
JP2001179504A (en) Hard carbon film-coated tool
JP3818961B2 (en) Aluminum oxide coated tools
JP2006334720A (en) Coated tool member
JP6050183B2 (en) Cutting tools
JP5187573B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP6703311B2 (en) Coated cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

R150 Certificate of patent or registration of utility model

Ref document number: 4565464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees