JP2005281997A - Deep foundation excavator of base rock and deep foundation construction method using this excavator - Google Patents

Deep foundation excavator of base rock and deep foundation construction method using this excavator Download PDF

Info

Publication number
JP2005281997A
JP2005281997A JP2004094033A JP2004094033A JP2005281997A JP 2005281997 A JP2005281997 A JP 2005281997A JP 2004094033 A JP2004094033 A JP 2004094033A JP 2004094033 A JP2004094033 A JP 2004094033A JP 2005281997 A JP2005281997 A JP 2005281997A
Authority
JP
Japan
Prior art keywords
rock
excavator
shaft
reaction force
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004094033A
Other languages
Japanese (ja)
Other versions
JP4642367B2 (en
Inventor
Tatsuro Muro
達朗 室
Youichi Sakuhara
陽一 作原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Engineering Corp
Original Assignee
Okumura Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Engineering Corp filed Critical Okumura Engineering Corp
Priority to JP2004094033A priority Critical patent/JP4642367B2/en
Publication of JP2005281997A publication Critical patent/JP2005281997A/en
Application granted granted Critical
Publication of JP4642367B2 publication Critical patent/JP4642367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce propulsion and torque; to prevent the abrasive deterioration; to increase an excavation earth quantity per unit time; and to improve working efficiency, by installing a base rock cutting bit in spiral arrangement or stepped arrangement on a peripheral surface of a base rock excavator body of an inverse conical shape, by using the principle of crushing an end surface instead of a conventional collapse, in a base rock excavator and a deep foundation construction method using this excavator. <P>SOLUTION: This base rock excavator excavates a shaft and a deep foundation in base rock. The base rock cutting bit 8 is installed at a predetermined interval in the spiral arrangement or the stepped arrangement on a peripheral surface of the base rock excavator body 6 of the inverse conical shape of downward turning the apex rotatingly driven so as to be freely vertically movable. An end surface of the base rock 1 is crushed by rotating while pressing the base rock cutting bit 8 from above to a base rock end surface part near an upper end part of a free surface of a vertical advanced heading 3 prearranged in a position for excavating the shaft and the deep foundation. Excavation is performed while downward jacking the base rock excavator body 6 having the base rock cutting bit 8 of the spiral arrangement or the stepped arrangement with the vertical advanced heading 3 as the center. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、岩盤の深礎掘削機及びそれを用いた深礎工法に関するものである。   The present invention relates to a rock foundation deep excavator and a deep foundation construction method using the same.

近年、橋梁基礎や杭基礎工事、および立坑掘削工事では、深礎工法が有効な手段である
が、従来の深礎工法は、人力施工によるところが多く、狭隘な孔内での苦渋作業であり、
また落下物や坑壁の崩落、有毒ガスの発生、酸欠状態に曝されるなどの危険を伴うため、
より安全な機械化施工技術の開発が、早急に解決すべき重要な課題とされてきた。
In recent years, the deep foundation method is an effective means for bridge foundations, pile foundation work, and shaft excavation work, but the conventional deep foundation method is mostly manual work, and it is a painful work in a narrow hole,
In addition, there are dangers such as falling objects, collapse of the mine wall, generation of toxic gas, exposure to oxygen deficiency,
The development of safer mechanized construction techniques has become an important issue that should be solved as soon as possible.

硬質の岩盤に深礎を掘削する技術は、従来、人力掘削が主流であったが、近年、自動化
された立坑穿孔機などで穿孔した後、ダイナマイト等の発破を用いて岩盤を爆破する工法
を採用しているが、振動や騒音等の公害が大であり、周辺住民や既設の構造物にまで多大
なる影響を及ぼしていた。
Conventionally, the technique of drilling deep foundations in hard rock has been the mainstream, but in recent years, after drilling with an automated shaft drilling machine, etc., a method of blasting the rock using blasting with dynamite etc. Although it is adopted, pollution such as vibration and noise is large, and it has had a great influence on the surrounding residents and existing structures.

深礎工事中に出現した巨大な転石について、穿孔機械で削孔した穴に膨張材などの静的
破砕材を充填して静的に破砕する方法や、差し矢をボーリング孔内に油圧で貫入する割岩
工法があるが、小規模で作業能力が低いという欠点がある。
For a huge boulder that appeared during deep foundation work, a static crushing material such as expansion material is filled into the hole drilled by a drilling machine and statically crushed, or an arrow is inserted into the borehole hydraulically. However, there is a drawback that the work capacity is small and the work capacity is low.

大口径の立坑掘削では、大型の油圧ハンマーやブレーカを用いて岩盤を破砕する工法が
採用されているが、効率が小さく、かつ騒音による難聴や粉塵による塵肺、振動による白
蝋病等の労働災害を発生せしめている。
Large-diameter shaft excavation employs a method of crushing the rock mass using a large hydraulic hammer or breaker, but it is less efficient and causes occupational accidents such as deafness due to noise, pneumoconiosis due to dust, and white wax disease due to vibration. Is generated.

また、従来のクラムシェルバケットやグラブバケットによる掘削工法やハンマーグラブ
を用いるベノト工法などは軟岩では有効であるが、硬岩には適しない。
The conventional excavation method using clamshell buckets and grab buckets and the Benoto method using hammer grabs are effective for soft rocks, but not suitable for hard rocks.

また従来、岩盤掘削専用のトンネルボーリングマシンを鉛直下方に移動させて深礎を掘
削する深礎ボーリングマシンにおいては、切り羽を掘削する円形面盤上には多数の円盤型
圧壊破砕刃が回転自在に取り付けられており、円形面盤を地山(岩盤)に当接回転させる
ことにより、円盤型圧壊破砕刃が大きな推進力を受けて岩盤を円形軌道に沿って筋状に圧
壊し、隣接する円盤型圧壊破砕刃の円形軌道上に形成された圧壊溝との間に隣接引張り破
砕を引き起こさせる圧壊破砕工法が考案されている。しかし、この工法では、大きな推進
力と回転力を必要とし、かつ、作業能力である破砕効率が小さいばかりでなく、円盤型圧
壊破砕刃の摩耗寿命が短く、交換頻度が高いという欠点がある。
Conventionally, in a deep foundation boring machine that excavates a deep foundation by moving a tunnel boring machine dedicated to rock excavation vertically downward, a large number of disk-type crushing and crushing blades are freely rotatable on a circular face plate for excavating the face. The disk-shaped crushing crushing blade receives a large driving force by crushing and rotating the circular face plate against the ground (rock), and crushes the bedrock into a streak shape along the circular track. A crushing and crushing method has been devised that causes adjacent tensile crushing between crushing grooves formed on a circular track of a disk-type crushing and crushing blade. However, this construction method has the disadvantages that it requires a large propulsive force and rotational force and has not only low crushing efficiency, which is a work capability, but also a short wear life of the disk-type crushing crushing blade and high replacement frequency.

ところで、例えば図10に示すように、岩盤面31にローラビット30を押し付けつつ
回転させることで、岩盤31を圧壊する回転掘削装置は、すでに知られている。このよう
な従来の硬岩層の回転掘削装置に関わる先行特許文献には、つぎのようなものがある。
特開平10−18744号公報 この特許文献1に記載の発明は、鉛直性を確保しながら掘削できる回転掘削装置に関するもので、回転掘削装置は、地中に貫入されたケーシングチューブの上端に固定可能な装置本体を備えている。また、ケーシングチューブ内に挿入される掘削具が先端に取り付けられ、ロッドを継ぎ足して延長が可能なドリルと、ドリルを着脱可能なドリル回転機構とを備えている。そして、装置本体に立設された支柱に沿ってドリル回転機構を昇降させる昇降機構と、ドリル回転機構をケーシングチューブ上から退出位置に移動させる移動機構とを設けたことを特徴とするものであった。
By the way, as shown in FIG. 10, for example, a rotary excavator for crushing the rock mass 31 by rotating the rock bit 30 against the rock mass surface 31 is already known. Prior patent documents relating to such a conventional hard rock layer rotary excavator include the following.
The invention described in Japanese Patent Laid-Open No. 10-18744 relates to a rotary excavator that can excavate while ensuring verticality, and the rotary excavator can be fixed to the upper end of a casing tube penetrating into the ground. Equipped with a simple device body. In addition, a drilling tool to be inserted into the casing tube is attached to the tip, and includes a drill that can be extended by adding a rod, and a drill rotation mechanism that can be attached to and detached from the drill. An elevating mechanism that elevates and lowers the drill rotating mechanism along a column that is erected on the apparatus main body and a moving mechanism that moves the drill rotating mechanism from the casing tube to the retracted position are provided. It was.

しかしながら、上記の従来技術によれば、人力施工による苦渋作業や発破工法による騒
音や振動による労働災害を減少するために、機械化掘削工法に切り替える必要がある。そ
のために開発された静的破砕材や油圧による割岩工法、油圧ハンマーやブレーカなどは、
作業能力が著しく低いという課題を残している。また、作業性能の向上を目指して開発さ
れたバケット式掘削工法やベノト工法なども作業効率が比較的低く、硬質の岩盤に対して
は掘削不能となるばかりでなく、カッタ刃先の摩耗による損傷が極端に増加するという課
題を解決していく必要がある。さらに、立坑穿孔機を用いた発破工法を使用した場合には
、所定の深礎断面周辺の岩盤まで余分に破砕してしまうという課題がある。
However, according to the above-described conventional technology, it is necessary to switch to the mechanized excavation method in order to reduce labor troubles caused by noise and vibration caused by labor-intensive work and blasting methods. For this purpose, the static crushed material, hydraulic split rock method, hydraulic hammer and breaker,
The problem remains that work capacity is extremely low. In addition, the bucket-type excavation method and Benoto method, which were developed with the aim of improving the work performance, have relatively low work efficiency, and not only can not be excavated for hard rock mass, but also damage due to wear of the cutter blade edge. It is necessary to solve the problem of increasing extremely. Furthermore, when the blasting method using a shaft drilling machine is used, there is a problem that the rock around the predetermined deep foundation section is excessively crushed.

深礎ボーリングマシンで使用されている切り羽面を圧壊破砕する円盤型圧壊破砕刃には
、大きな推進力と回転力を必要とするばかりでなく、そのために円盤型圧壊破砕刃の摩耗
寿命が短く、また、岩盤の破砕効率として単位仕事量当たりの掘削土量が小さいという課
題がある。
The disk-type crushing crushing blade that crushes and crushes the cutting face used in deep foundation boring machines not only requires a large driving force and rotational force, but also the disc-type crushing crushing blade has a short wear life. Moreover, there is a problem that the amount of excavated soil per unit work is small as the crushing efficiency of the rock mass.

また、上記の特許文献1に記載の回転掘削装置によれば、岩盤面にローラビットを押し
付けつつ回転させることで岩盤を圧壊するため、効率が悪いという問題があった。
Moreover, according to the rotary excavation device described in Patent Document 1 described above, the rock mass is crushed by rotating the rock bit while pressing the roller bit against the rock surface, which has a problem of poor efficiency.

本発明は、上記各項の課題を勘案し、作業能力を一段と向上させるために、掘削原理と
して、従来の圧壊に代え、端面破砕の原理を用い、頂点を下向きにした逆円錐形の岩盤掘
削機本体の周面に、岩盤切削ビットを所定の間隔で螺旋状配置または階段状配置に取り付
け、その結果、推進力および回転力の軽減、摩耗劣化の防止、単位切削仕事当たりの掘削
土量を増加させることにより、作業効率を向上させる好適な岩盤掘削機、およびこれを用
いた深礎工法を提供することを目的としている。
In consideration of the problems in the above items, the present invention uses a reverse crushing principle instead of conventional crushing as an excavation principle in order to further improve work capacity, and an inverted conical rock excavation with the apex facing downward A rock cutting bit is attached to the peripheral surface of the machine body in a spiral or staircase arrangement at predetermined intervals, resulting in reduced propulsion and rotational forces, prevention of wear deterioration, and the amount of excavated soil per unit cutting work. It aims at providing the suitable rock excavator which improves work efficiency by increasing, and the deep foundation construction method using the same.

上記の目的を達成するために、本発明の請求項1記載の発明は、岩盤に立坑や深礎の掘
削を行なう岩盤掘削機であって、上下動自在かつ回転駆動する頂点を下向きにした逆円錐
形の岩盤掘削機本体の周面に、岩盤切削ビットが所定の間隔で螺旋状配置または階段状配
置に取り付けられ、予め立坑や深礎を掘削する位置に設けられた鉛直先進導坑の自由面の
上端部近くの岩盤端面部分に、岩盤切削ビットを上から押し付けつつ回転させることで岩
盤を端面破砕し、鉛直先進導坑を中心として上記螺旋状配置または階段状配置の岩盤切削
ビットを具備する岩盤掘削機本体を下方に推進させつつ掘削を行なうことを特徴としてい
る。
In order to achieve the above object, an invention according to claim 1 of the present invention is a rock excavator for excavating a vertical shaft or a deep foundation in a rock, and is an upside-down movable and reversely driven vertex. Freely of the vertical advanced guide shaft provided in the position where the rock cutting bits are installed in a spiral arrangement or stepped arrangement at a predetermined interval on the peripheral surface of the main body of the conical rock excavator and drilled in the shaft or deep foundation beforehand. The rock surface is crushed by pressing the rock cutting bit from above onto the rock end surface near the upper end of the surface, and the rock cutting bit with the above spiral arrangement or stepped arrangement is provided around the vertical advanced shaft It is characterized by excavating while the rock excavator body propelled downward.

本発明の請求項2記載の発明は、上記請求項1記載の岩盤掘削機であって、予め立坑や
深礎を掘削する位置に鉛直先進導坑を設けて最初の端面掘削盤が形成され、上下動自在か
つ回転駆動する頂点を下向きにした逆円錐形の岩盤掘削機本体が、その上部に構築された
反力受け材から反力を取って、掘削時に岩盤掘削機本体を下方に推進させる推進手段、お
よび岩盤掘削機本体自体を回転運動させる回転手段を備えていることを特徴としている。
The invention according to claim 2 of the present invention is the rock excavator according to claim 1, wherein the first end face excavator is formed by providing a vertical advanced guide shaft at a position where a vertical shaft or a deep foundation is excavated in advance. The inverted cone rock excavator body, which can move up and down and rotate downward, takes the reaction force from the reaction force receiving material built at the top, and propels the rock excavator body downward during excavation A propulsion means and a rotation means for rotating the rock excavator body itself are provided.

本発明の請求項3記載の発明は、上記請求項1または2記載の岩盤掘削機であって、岩
盤掘削機本体に、ビット部分に振動を与えつつ端面破砕する振動付与手段がさらに設けら
れていることを特徴としている。
The invention according to claim 3 of the present invention is the rock excavator according to claim 1 or 2, wherein the rock excavator main body is further provided with vibration applying means for crushing the end face while applying vibration to the bit portion. It is characterized by being.

本発明の請求項4記載の発明は、上記請求項1〜3のうちのいずれか一項記載の岩盤掘
削機であって、頂点を下向きにした逆円錐形の岩盤掘削機本体の周面に所定の間隔で螺旋
状配置または階段状配置に取り付けられた各岩盤切削ビットの左右両側に、岩塊衝突防止
用スクレーパが設けられていることを特徴としている。
Invention of Claim 4 of this invention is a rock excavator as described in any one of the said Claims 1-3, Comprising: On the peripheral surface of the rock cone excavator main body of the inverted cone shape which made the vertex downward. A rock mass collision preventing scraper is provided on both the left and right sides of each rock cutting bit attached in a spiral arrangement or a stepped arrangement at a predetermined interval.

本発明の請求項5記載の発明は、上記請求項1〜4のうちのいずれか一項記載の岩盤掘
削機であって、さらに、岩盤掘削部を貫通する筒形ケーシング中にスクリューコンベヤが
配置され、筒形ケーシングの下端は、最下段のビットの下方に突き出て鉛直先進導坑内に
あり、かつ筒形ケーシングの上部はグリッパ部の上部に突出していて、掘削された岩屑が
スクリューコンベヤの作動により筒形ケーシング内を上昇して地上へ搬出されるようにな
されていることを特徴としている。
Invention of Claim 5 of this invention is a rock excavator as described in any one of the said Claims 1-4, Comprising: Furthermore, a screw conveyor is arrange | positioned in the cylindrical casing which penetrates a rock excavation part. The lower end of the cylindrical casing protrudes below the lowest bit in the vertical advanced guide shaft, and the upper part of the cylindrical casing protrudes above the gripper, and the excavated debris is It is characterized by being raised in the cylindrical casing by operation and being carried out to the ground.

本発明の請求項6記載の発明は、上記請求項5記載の岩盤掘削機であって、さらに、開
脚によって鉛直先進導坑の内側面に押圧される下部反力受け部材としての開脚アンカーを
有する下部反力受け装置が設けられていることを特徴としている。
A sixth aspect of the present invention is the rock excavator according to the fifth aspect, further comprising an open leg anchor as a lower reaction force receiving member pressed against the inner side surface of the vertical advanced guiding shaft by the open leg. A lower reaction force receiving device is provided.

本発明の請求項7記載の発明は、上記請求項6記載の岩盤掘削機であって、下部反力受
け装置が、スクリューコンベヤの回転軸を貫通する貫通軸と、これの下端部に取り付けら
れかつ開脚によって鉛直先進導坑の内側面に押圧される下部反力受け部材としての開脚ア
ンカーと、貫通軸の上端雄ねじ部に取り付けられた締付ナットとにより構成されることを
特徴としている。
The invention according to claim 7 of the present invention is the rock excavator according to claim 6, wherein the lower reaction force receiving device is attached to the through shaft passing through the rotating shaft of the screw conveyor and the lower end portion thereof. And it is characterized by comprising an open leg anchor as a lower reaction force receiving member pressed against the inner surface of the vertical advanced guide shaft by an open leg, and a tightening nut attached to the upper end male thread portion of the through shaft .

本発明の請求項8記載の発明は、上記請求項1〜7のうちのいずれか一項記載の岩盤掘
削機を用いた深礎工法であって、予め立坑や深礎を掘削する位置にボーリングにより鉛直
先進導坑を設けて、最初の円形の端面掘削盤を形成した後、つづいて頂点を下向きにした
逆円錐形の岩盤掘削機本体の周面に所定の間隔で螺旋状に設置された円盤型岩盤切削ビッ
トが順次地山(岩盤)に露出した円錐型で階段状の自由面に当接し、その内側部分を剥離
破砕して、下方へ掘削していくことを特徴としている。
Invention of Claim 8 of this invention is a deep foundation method using the rock excavator as described in any one of the said Claims 1-7, Comprising: Boring in the position which excavates a shaft and a deep foundation beforehand After installing the vertical advanced guide shaft and forming the first circular end face excavator, it was installed spirally at predetermined intervals on the peripheral surface of the inverted conical rock excavator body with the apex facing downward The disk-type rock cutting bit is a conical shape that is exposed on the ground (rock) in sequence and abuts against a step-like free surface. The inner part is peeled and crushed and drilled downward.

本発明の請求項9記載の発明は、上記請求項5記載の岩盤掘削機を用いた深礎工法であ
って、立坑や深礎を掘削する位置に、ボーリングを行なって鉛直先進導坑を形成した後、
反力受け材を掘削された縦坑内面に設置する工程、反力受け材から反力を取って逆円錐形
の岩盤掘削機本体を下方に所定距離だけ推進させながら岩盤掘削機本体を回転させ、その
下側の岩盤を端面破砕により掘削する掘削工程、および掘削された岩屑をスクリューコン
ベヤの作動により筒形ケーシング内を上昇させて地上へ搬出する排土工程を備えることを
特徴としている。
The invention according to claim 9 of the present invention is a deep foundation method using the rock excavator according to claim 5, wherein a vertical advanced guide shaft is formed by drilling at a position where a shaft or a deep foundation is excavated. After
The process of installing the reaction force receiving material on the inner surface of the excavated vertical shaft, taking the reaction force from the reaction force receiving material and rotating the rock cone excavator body while propelling the inverted cone rock excavator body downward by a predetermined distance The excavation step of excavating the lower rock by end face crushing, and the soil removal step of lifting the excavated debris inside the cylindrical casing by the operation of the screw conveyor and carrying it out to the ground are provided.

本発明の請求項10記載の発明は、上記請求項6または7記載の岩盤掘削機を用いた深
礎工法であって、立坑や深礎を掘削する位置に、ボーリングを行なって鉛直先進導坑を形
成した後、上部反力受け材を掘削された縦坑内面に設置するとともに、下部反力受け装置
の開脚アンカーを開脚させて鉛直先進導坑の内側面に押圧させ設置する工程、上部反力受
け材および下部反力受け部材から反力を取って逆円錐形の岩盤掘削機本体を下方に所定距
離だけ推進させながら岩盤掘削機本体を回転させ、その下側の岩盤を端面破砕により掘削
する掘削工程、および掘削された岩屑をスクリューコンベヤの作動により筒形ケーシング
内を上昇させて地上へ搬出する排土工程を備えることを特徴としている。
The invention according to claim 10 of the present invention is a deep foundation method using the rock excavator according to claim 6 or 7, wherein the vertical advanced guide shaft is drilled at a position where a shaft or a deep foundation is excavated. After forming the upper reaction force receiving material is installed on the inner surface of the excavated vertical shaft, and the open reaction anchor of the lower reaction force receiving device is opened and pressed against the inner side surface of the vertical advanced guiding shaft, The reaction force from the upper reaction force receiving member and the lower reaction force receiving member is taken and the rock cone excavator body is rotated while propelling the inverted conical rock excavator body downward by a predetermined distance. And a soil removal step of lifting the excavated debris inside the cylindrical casing by the operation of the screw conveyor and carrying it out to the ground.

本発明の請求項11記載の発明は、上記請求項8〜10のうちのいずれか一項記載の岩
盤掘削機を用いた深礎工法であって、岩盤に鉛直先進導坑を設け、該鉛直先進導坑の内面
を自由面として、周面に螺旋状配置または階段状配置の岩盤切削ビットを有する逆円錐形
の岩盤掘削機本体の作動により、岩盤を端面破砕する際、ビット部分に振動を与えつつ岩
盤の端面破砕を行なうことを特徴としている。
Invention of Claim 11 of this invention is a deep foundation method using the rock excavator as described in any one of the said Claims 8-10, Comprising: A vertical advanced guiding shaft is provided in a rock, The vertical When crushing the end face of the rock mass, the bit portion vibrates when the rock cone excavator body has a rock cutting bit with a spiral or stepped arrangement on the peripheral surface with the inner surface of the advanced shaft as a free surface. It is characterized by crushing the end face of the bedrock.

上記のように、本発明によれば、新しい機械化施工技術を導入した岩盤掘削機およびこ
の岩盤掘削機を用いた深礎工法を開発するものである。
As described above, according to the present invention, a rock excavator incorporating a new mechanized construction technique and a deep foundation method using the rock excavator are developed.

一般に、岩盤の強度は、岩石の圧縮強度、せん断強度及び引張り強度の大きさによって
決まる。岩石の引張り強度は、圧縮強度の十数分の一程度であり、本発明では、岩盤に多
くの亀裂を発生せしめ、自由面を多くして、岩石の引張り破壊を誘発する岩盤の剥離破砕
を主たる手段としている。予め、ボーリングによって形成された円形の2自由面をもつ端
面掘削盤内面を剥離破砕し、つづいて所定の間隔で螺旋状に配置した多数の円盤型剥離破
砕刃を装着した逆円錐形の岩盤掘削機を所定の推進力で中心軸シャフトまわりを回転させ
、円盤型剥離破砕刃が順次露出した円錐型で階段状の自由面で構成される地山(岩盤)に
当接し、その内側部分を剥離破砕して下方向へ掘削を進めて、深礎を形成することを特徴
としている。
In general, the strength of a rock mass is determined by the magnitude of compressive strength, shear strength and tensile strength of the rock. The tensile strength of rock is about one-tenth of the compressive strength.In the present invention, many cracks are generated in the rock mass, and the free surface is increased, and the delamination fracture of the rock mass that induces tensile fracture of the rock is performed. It is the main means. Drilling and crushing the inner surface of an end face excavator with two circular free surfaces formed by boring in advance, followed by inverted conical rock excavation equipped with a number of disc-type exfoliation crushing blades arranged in a spiral at predetermined intervals Rotate the machine around the central shaft with a predetermined thrust, and the disk-type peeling crushing blades are in contact with a conical ground (rock) composed of a stepped free surface, and the inner part is peeled off. It is characterized by crushing and drilling downward to form a deep foundation.

その結果、剥離破砕刃に作用する切削力の減少にともなって地山(岩盤)に余分な損傷
を発生させることなく、また、円盤型剥離破砕刃に衝撃力による衝撃摩耗や引っ掻き摩耗
を引き起こさせず、該破砕刃の摩耗劣化を極力低下せしめることができる。さらに、切削
ドラムの回転に必要な回転トルクも減少するために、単位仕事当たりの切削土量である作
業能力が一段と向上するだけでなく、岩盤掘削機本体が発生する騒音・振動を許容値以内
に抑えることができる好適な手段である。
As a result, there is no excessive damage to the ground (rock) due to a decrease in the cutting force acting on the peeling crushing blade, and the disc-type peeling crushing blade causes impact wear or scratch wear due to impact force. Therefore, the wear deterioration of the crushing blade can be reduced as much as possible. In addition, since the rotational torque required to rotate the cutting drum is reduced, not only the work capacity, which is the amount of soil cut per unit work, is further improved, but also the noise and vibration generated by the rock excavator body are within allowable values. It is a suitable means that can be suppressed to.

本発明の岩盤掘削機およびそれを用いた深礎工法の掘削原理は、従来の圧壊に代え、端
面破砕の原理を用いており、岩盤面に岩盤切削ビット(ローラビット)を押し付けつつ回
転させることで、岩盤を圧壊する従来法に比べ、岩盤破砕の効率が良いという効果を奏す
る。
The excavation principle of the rock excavator of the present invention and the deep foundation method using the excavator is based on the principle of crushing the end face instead of the conventional crushing, and the rock excavation bit (roller bit) is pressed against the rock surface and rotated. Thus, compared to the conventional method of crushing the rock mass, there is an effect that the efficiency of rock crushing is good.

岩盤切削ビットは、ローラビットの他に、コニカルビット等を使用してもよく、端面破
砕の効率は、従来法による圧壊破砕よりも効率が良い。さらに、ローラビット部分に振動
を与えつつ回転させることで、効率よく破砕することが可能である。
As the rock cutting bit, a conical bit or the like may be used in addition to the roller bit, and the crushing efficiency of the end face is higher than the crushing crushing by the conventional method. Furthermore, it can be efficiently crushed by rotating the roller bit portion while applying vibration.

また、本発明における逆円錐形の岩盤掘削機本体は、岩盤の剥離破砕に必要な押圧力が
、岩石の引張り強度に依存し、岩石の圧縮強度に依存する従来の深礎ボーリングマシンに
おける岩盤の圧壊破砕に要する押圧力の十数分の一程度であることに着目してなされたも
のである。
In addition, the inverted conical rock excavator body according to the present invention has a structure in which the pressing force required for delamination of the rock depends on the tensile strength of the rock and on the conventional deep foundation boring machine that depends on the compressive strength of the rock. It was made paying attention to the fact that it is about one-tenth of the pressing force required for crushing and crushing.

これに基づいて、本発明では、鉛直先進導坑の掘削により岩盤に自由面を構築し、その
後、多数の円盤型剥離破砕刃を配設した逆円錐形の岩盤掘削機本体に、反力受け材より推
進力と回転動力を与え、中心軸シャフトに沿って鉛直下方へ回転掘削させるものであり、
主として岩盤の剥離破砕に重点をおいており、単位切削仕事当たりの掘削土量である作業
能力を増加させることが可能である。さらに、破砕刃の耐摩耗性能を一段と向上させてい
る。
Based on this, in the present invention, a free surface is constructed in the rock by excavating a vertical advanced guiding shaft, and then a reverse cone shaped rock excavator body provided with a large number of disc-shaped peeling crushing blades receives a reaction force. Propulsive force and rotational power are given from the material, and it is rotated and excavated vertically downward along the central shaft.
The emphasis is mainly on exfoliation and crushing of rock mass, and it is possible to increase work capacity, which is the amount of excavated soil per unit cutting work. Furthermore, the wear resistance performance of the crushing blade is further improved.

なお、岩盤掘削機を用いた深礎工法に対する総合自動制御システムを構築することによ
り、従来の人力施工に伴う苦渋作業や労働災害を軽減するための掘削効率の高い新しい機
械化施工技術の開発が可能となる。
In addition, by building a comprehensive automatic control system for the deep foundation method using a rock excavator, it is possible to develop new mechanized construction technology with high excavation efficiency to reduce laborious work and labor accidents associated with conventional manual work It becomes.

予めダウンザホールハンマで大口径の鉛直先進導坑を掘削する。その後、反力受け材の
深礎側壁への固定作業、逆円錐形の岩盤掘削機本体の設営作業、および岩屑の排出作業シ
ステムの構築を自動制御によって準備完了する。掘削開始に当たっては、ピストンロッド
の変位および荷重制御、駆動モータの回転速度制御を例えば単位時間当たりの掘削土量をベースに実施していくことにより、より安定した掘削作業が可能であり、1リング毎の繰り返し掘削作業を無人化施工とすることを保証するものである。
Drill a large-diameter vertical shaft with a down-the-hole hammer beforehand. After that, the work of fixing the reaction force receiving material to the deep side wall, the installation work of the inverted conical rock excavator body, and the construction of the debris discharge work system are completed by automatic control. At the start of excavation, displacement and load control of the piston rod and rotation speed control of the drive motor are performed based on the amount of excavated soil per unit time, for example, and more stable excavation work is possible. It guarantees that every repeated excavation work is unmanned construction.

つぎに、本発明の実施の形態を、図面を参照して説明するが、本発明はこれらに限定さ
れるものではない。
Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

図1は、深礎を掘削する地山(岩盤)1に予め逆円錐形の岩盤掘削機本体を設置するた
めに掘削した鉛直先進導坑3を示し、図2は、露出した地山(岩盤)2の底部に大口径の
ダウンザホールハンマによって所定の深さまでボーリングを実施して構築した鉛直先進導
坑3を示している。
FIG. 1 shows a vertical advanced guiding shaft 3 excavated in advance to install an inverted conical rock excavator body in a natural ground (rock) 1 for excavating a deep foundation, and FIG. 2 shows an exposed natural ground (rock) ) Shows a vertical advanced guiding shaft 3 constructed by boring to a predetermined depth with a large-diameter down-the-hole hammer at the bottom of 2).

図3〜図5に詳細に示すように、本発明による岩盤に立坑や深礎の掘削を行なう岩盤掘
削機5は、上下動自在かつ回転駆動する頂点を下向きにした逆円錐形の岩盤掘削機本体6
の周面に、岩盤切削ビット8が所定の間隔で螺旋状配置または階段状配置に取り付けられ
ているものである。
As shown in detail in FIG. 3 to FIG. 5, the rock excavator 5 for excavating a shaft or a deep foundation in the rock according to the present invention is an inverted conical rock excavator having a vertically movable apex that faces downward. Body 6
The rock cutting bits 8 are attached in a spiral arrangement or a staircase arrangement at a predetermined interval.

岩盤掘削機5の逆円錐形の岩盤掘削機本体6には、外側表面に位置する各母線に沿って
所定の間隔で螺旋状または階段状に回転自在に配設された複数の円盤型剥離破砕刃8を具
備している。その中、岩盤掘削機本体6の筒形ケーシング15に最も近い円盤型剥離破砕
刃8が、地山(岩盤)2に当接し、岩盤を剥離破砕する。その後、岩盤掘削機本体6の下
方への推進にともなって、円盤型剥離破砕刃8がつぎつぎと地山(岩盤)2に当接し、地
山(岩盤)2に自由面の卓越した円錐型で階段状の溝が形成される。
The inverted conical rock excavator body 6 of the rock excavator 5 includes a plurality of disc-type exfoliating crushers arranged in a spiral or stepwise manner at predetermined intervals along each generatrix located on the outer surface. A blade 8 is provided. Among them, the disk-type exfoliation crushing blade 8 closest to the cylindrical casing 15 of the rock excavator main body 6 abuts on the natural ground (rock mass) 2 and exfoliates and crushes the rock mass. After that, as the rock drilling machine body 6 is propelled downward, the disk-type peeling crushing blade 8 is brought into contact with the natural ground (rock) 2 one after another, and the natural rock (rock) 2 has a free-form conical shape. A step-like groove is formed.

岩盤掘削機5には、これの逆円錐形の岩盤掘削機本体6を予め掘削された鉛直先進導坑
3の底部に位置する露出した地山(岩盤)2に当接させ設置する手段、および岩盤掘削機
本体6の上方にそれを稼働するための反力を支持する反力受け材7を深礎側壁に固定して
設置する手段が備えられている。岩盤掘削機本体6は、筒形ケーシング15をガイドとし
て上下方向の移動および水平方向の回転を可能とし、また、反力受け材7は筒形ケーシン
グ15をガイドとして任意の位置に設定可能としている。鉛直先進導坑3に所定の長さの
中空鋼管で製作された筒形ケーシング15を建て込み、地山(岩盤)1に設置した反力受
け材7(梁)によって筒形ケーシング15を鉛直に保持する。
The rock excavator 5 is provided with means for placing the inverted conical rock excavator body 6 in contact with the exposed ground (rock) 2 located at the bottom of the vertical advanced guiding shaft 3 excavated in advance, and A means for fixing the reaction force receiving member 7 supporting the reaction force for operating the rock excavator main body 6 to the deep foundation side wall is provided above the rock excavator body 6. The rock excavator body 6 can move in the vertical direction and rotate in the horizontal direction using the cylindrical casing 15 as a guide, and the reaction force receiving member 7 can be set at an arbitrary position using the cylindrical casing 15 as a guide. . A cylindrical casing 15 made of a hollow steel pipe having a predetermined length is built in the vertical advanced guiding shaft 3 and the cylindrical casing 15 is vertically made by the reaction force receiving material 7 (beam) installed in the natural ground (rock mass) 1. Hold.

本発明による岩盤掘削機5では、頂点を下向きにした逆円錐形の岩盤掘削機本体6が、
下方に至るほど半径が小さいものとなされた3段の円形水平梁10a,10b,10cと
、最上段の円形水平梁10aおよびこれの内側の円形水平内部梁10dを連結しかつ相互
に60°の間隔をあけて配置された6本の半径方向梁11と、上下に隣り合う段の円形水
平梁10aおよび10b同士、10bおよび10c同士をそれぞれ連結する縦方向の連結
部材12とによって構成されている。
In the rock excavator 5 according to the present invention, an inverted conical rock excavator body 6 with the apex facing downward is provided.
The three-stage circular horizontal beams 10a, 10b, and 10c whose radius becomes smaller toward the bottom are connected to the uppermost circular horizontal beam 10a and the inner circular horizontal inner beam 10d, and are mutually 60 °. It is comprised by the six radial direction beams 11 arrange | positioned at intervals, and the vertical direction connection member 12 which connects the circular horizontal beams 10a and 10b of the step which adjoins up and down, 10b and 10c, respectively. .

そして、最下段の円形水平梁10cに2つの岩盤切削ビット8が相互に180°の間隔
をあけて取り付けられるとともに、中段の円形水平梁10bに4つの岩盤切削ビット8が
相互に90°の間隔をあけて取り付けられ、また最上段の円形水平梁10aに4つの岩盤
切削ビット8が相互に90°の間隔をあけて取り付けられている。全体として、頂点を下
向きにした逆円錐形の岩盤掘削機本体6の周面に岩盤切削ビット8が、所定の間隔あけた
状態に螺旋状配置、または階段状配置に取り付けられている。
The two rock cutting bits 8 are attached to the lowermost circular horizontal beam 10c with an interval of 180 ° from each other, and the four rock cutting bits 8 are spaced from each other by 90 ° to the middle circular horizontal beam 10b. In addition, four rock cutting bits 8 are attached to the uppermost circular horizontal beam 10a at intervals of 90 °. As a whole, a rock cutting bit 8 is attached to the peripheral surface of the inverted conical rock excavator main body 6 with the apex facing downward in a spiral arrangement or a stepped arrangement at a predetermined interval.

また、各段の岩盤切削ビット8の左右両側には、岩塊衝突防止用スクレーパ13がそれ
ぞれ設けられている。
Also, rock mass collision preventing scrapers 13 are respectively provided on the left and right sides of the rock cutting bits 8 of each stage.

さらに、逆円錐形の岩盤掘削機本体6の円形水平内部梁10dの内側に、岩盤掘削部を
貫通する鋼管よりなる筒形ケーシング15が取り付けられ、この鋼管よりなる筒形ケーシ
ング15中に、スクリューコンベヤ14が配置されている。
Further, a cylindrical casing 15 made of a steel pipe penetrating the rock excavation part is attached to the inside of the circular horizontal internal beam 10d of the inverted conical rock excavator main body 6, and a screw is inserted into the cylindrical casing 15 made of this steel pipe. A conveyor 14 is arranged.

本発明の岩盤掘削機5において、頂点を下向きにした逆円錐形の岩盤掘削機本体6は、
その上部に構築された反力受け材7から反力を取って、下方へ掘削推進することができる
In the rock excavator 5 of the present invention, the inverted conical rock excavator body 6 with the apex facing downward is
It is possible to take the reaction force from the reaction force receiving member 7 constructed on the upper part and to excavate it downward.

本発明において、この上部反力受け材7の構造は、対角線状に配置された4本の水平梁
によって構成され、反力受け材7を深礎側壁に固定して設置するために、各対角線梁の両
端にグリッパ装置19が設けられている。各グリッパ装置19にはグリッパ部材(図示略
)が設けられており、グリッパ部材は、グリッパ装置19に内蔵してある油圧シリンダー
等の駆動手段を操作することにより、突出または没入させることができる。グリッパ部材
に作用する荷重および変位量を自動制御することにより、反力受け材7のセンターリング
作業をはじめ、所定の反力を得るのに十分な反力受け材として使用することができる。
In the present invention, the structure of the upper reaction force receiving member 7 is composed of four horizontal beams arranged diagonally, and each diagonal line is used to fix and install the reaction force receiving member 7 on the deep foundation side wall. Gripper devices 19 are provided at both ends of the beam. Each gripper device 19 is provided with a gripper member (not shown), and the gripper member can be protruded or immersed by operating a driving means such as a hydraulic cylinder incorporated in the gripper device 19. By automatically controlling the load and the amount of displacement acting on the gripper member, the reaction force receiving member 7 can be used as a reaction force receiving member sufficient for obtaining a predetermined reaction force, including centering work of the reaction force receiving member 7.

また、各グリッパ装置19の下側に、掘削時に岩盤掘削機本体6を下方に推進させる推
進手段としての掘進ジャッキ22が設けられるとともに、岩盤掘削機本体6自体を回転運
動させる回転手段としての旋回ベアリング装置20および掘削機本体回転駆動用モータ2
1が設けられている。
Further, an excavation jack 22 as a propulsion means for propelling the rock excavator main body 6 downward during excavation is provided below each gripper device 19 and turning as a rotating means for rotating the rock excavator main body 6 itself. Bearing device 20 and excavator body rotation drive motor 2
1 is provided.

スクリューコンベヤ14は、鋼管よりなる筒形ケーシング15の中心部に配置された回
転軸16と、これに取り付けられた螺旋形羽根17とで構成され、スクリューコンベヤ1
4の回転軸16は、筒形ケーシング15の上端部に設置された岩塊排出装置23の上側に
設けられたスクリューコンベヤ用モータ18および回転駆動チェーン9によって駆動するようになされている。
The screw conveyor 14 includes a rotating shaft 16 disposed at the center of a cylindrical casing 15 made of a steel pipe, and a helical blade 17 attached to the rotating shaft 16.
The rotary shaft 16 is driven by a screw conveyor motor 18 and a rotary drive chain 9 provided on the upper side of the rock mass discharge device 23 installed at the upper end of the cylindrical casing 15.

鋼管よりなる筒形ケーシング15の下端は、岩盤掘削機本体6の最下段のビット8の下
方に突き出て若干鉛直先進導坑3内にあり、かつ鋼管よりなる筒形ケーシング15の上部はグ
リッパ装置19の上部に突出している。
The lower end of the cylindrical casing 15 made of steel pipe protrudes below the lowermost bit 8 of the rock excavator main body 6 and is slightly in the vertical advanced guiding shaft 3, and the upper part of the cylindrical casing 15 made of steel pipe is a gripper device. 19 protrudes from the top.

スクリューコンベヤ14は、岩盤掘削部を貫通する鋼管15中に配置され、下端は、最
下段のビット8の下1〜2m程度突き出て先行ボーリング孔(鉛直先進導坑)3内にある
。スクリューコンベヤ14の径は、先行ボーリング孔(鉛直先進導坑)3の径に沿う程度
である。
The screw conveyor 14 is disposed in a steel pipe 15 penetrating the rock excavation part, and the lower end protrudes about 1 to 2 m below the lowermost bit 8 and is in the preceding boring hole (vertical advanced guiding shaft) 3. The diameter of the screw conveyor 14 is only about the diameter of the preceding boring hole (vertical advanced guide shaft) 3.

本発明の実施形態においては、さらに、開脚によって鉛直先進導坑の内側面に押圧され
る下部反力受け部材としての開脚アンカー26を有する下部反力受け装置25が設けられ
ている。
In the embodiment of the present invention, there is further provided a lower reaction force receiving device 25 having an open leg anchor 26 as a lower reaction force receiving member that is pressed against the inner side surface of the vertical advanced guide shaft by an opening leg.

この下部反力受け装置25は、スクリューコンベヤ14の回転軸16の軸心を貫通する
貫通軸27と、これの下端部に取り付けられかつ開脚によって鉛直先進導坑3の内側面に
押圧される下部反力受け部材としての開脚アンカー26と、貫通軸27の上端雄ねじ部2
7aに取り付けられた締付ナット28とにより構成されている。下部反力受け装置25の
貫通軸27は、上端部にねじ加工により雄ねじ部27aが設けられた棒鋼よりなり、その
上端雄ねじ部27aが、スクリューコンベヤ14の回転軸16の上端より上方に突出して
いて、この雄ねじ部27aに締付ナット28を締め付けることで、上部反力受け部材7と
連結された筒形ケーシング15を固定する。
The lower reaction force receiving device 25 is attached to a through shaft 27 penetrating the shaft center of the rotating shaft 16 of the screw conveyor 14 and a lower end portion thereof, and is pressed against an inner surface of the vertical advanced guiding shaft 3 by an open leg. An open leg anchor 26 as a lower reaction force receiving member, and an upper end male thread portion 2 of the through shaft 27
It is comprised by the clamping nut 28 attached to 7a. The through-shaft 27 of the lower reaction force receiving device 25 is made of a steel bar having a male threaded portion 27a provided at the upper end by screwing, and the upper male threaded portion 27a projects upward from the upper end of the rotary shaft 16 of the screw conveyor 14. The cylindrical casing 15 connected to the upper reaction force receiving member 7 is fixed by tightening the tightening nut 28 on the male threaded portion 27a.

本発明の岩盤掘削機を用いた深礎工法では、深礎を掘削する位置に、ボーリングを行な
って鉛直先進導坑3を形成した後、反力受け材7を掘削された縦坑内面に設置する工程、
反力受け材7から反力を取って逆円錐形の岩盤掘削機本体6を下方に所定距離だけ推進さ
せながら岩盤掘削機本体6を回転させ、その下側の岩盤1を端面破砕により掘削する掘削
工程、および掘削された岩屑をスクリューコンベヤ14の作動により鋼管よりなる筒形ケ
ーシング15内を上昇させて地上へ搬出する排土工程を備えることを特徴としている。
In the deep foundation method using the rock excavator of the present invention, the vertical advanced guiding shaft 3 is formed by drilling at the position where the deep foundation is excavated, and then the reaction force receiving material 7 is installed on the inner surface of the excavated vertical shaft The process of
While taking the reaction force from the reaction force receiving member 7 and propelling the inverted conical rock excavator main body 6 downward by a predetermined distance, the rock excavator main body 6 is rotated and the lower rock 1 is excavated by end face crushing. The excavation process includes a soil removal process in which the excavated debris is lifted in the cylindrical casing 15 made of a steel pipe by the operation of the screw conveyor 14 and carried to the ground.

本発明による岩盤掘削機5を用いた深礎工法では、深礎を掘削する位置に、ボーリング
を行なって鉛直先進導坑3を形成した後、上部反力受け材7を掘削された縦坑内面に設置
するとともに、下部反力受け装置(アンカー装置)25の貫通軸27を引き上げて開脚ア
ンカー26を開脚させ、開脚アンカー26の先端部を鉛直先進導坑3の内壁に押圧させて
突っ張らせ、この状態でスクリューコンベヤ14の回転軸16の上端より上方に突出して
いる雄ねじ部27aに締付ナット28を締め付けて設置する工程、上部反力受け材7およ
び下部反力受け部材26から反力を取って逆円錐形の岩盤掘削機本体6を下方に所定距離
だけ推進させながら岩盤掘削機本体6を回転させ、その下側の岩盤1を端面破砕により掘
削する掘削工程、および掘削された岩屑をスクリューコンベヤ14の作動により筒形ケー
シング15内を上昇させて地上へ搬出する排土工程を備えることを特徴としている。
In the deep foundation method using the rock excavator 5 according to the present invention, a vertical advanced guiding shaft 3 is formed by boring at a position where the deep foundation is excavated, and then the upper reaction force receiving material 7 is excavated. In addition, the through shaft 27 of the lower reaction force receiving device (anchor device) 25 is pulled up to open the leg anchor 26, and the tip of the leg anchor 26 is pressed against the inner wall of the vertical advanced guiding shaft 3. In this state, from the upper reaction force receiving member 7 and the lower reaction force receiving member 26, the step of tightening and installing the tightening nut 28 on the male screw portion 27a protruding upward from the upper end of the rotating shaft 16 of the screw conveyor 14 An excavation process in which the rock excavator body 6 is rotated while the reverse cone shaped rock excavator body 6 is propelled downward by a predetermined distance by taking the reaction force, and the lower rock 1 is excavated by end face crushing, and Was debris raises the tubular casing 15 by the operation of the screw conveyor 14 is characterized in that it comprises a soil discharge step of unloading to the ground.

図6は、本発明による岩盤掘削機5を用いた深礎工法において、ローラビット8を用い
た場合での説明図である。すなわち、本発明による岩盤掘削機5を用いて、ローラビット
8を、鉛直先進導坑3の自由面の上端部近くの岩盤端面部分に上から押し付けつつ回転さ
せることで岩盤1を端面破砕する。図7は、同ローラビット8により、岩盤1を端面破砕
し、岩塊1Aが生じた状態を示している。
FIG. 6 is an explanatory diagram in the case where the roller bit 8 is used in the deep foundation method using the rock excavator 5 according to the present invention. That is, by using the rock excavator 5 according to the present invention, the rock bit 1 is crushed by rotating the rock bit 8 while pressing the roller bit 8 against the rock end surface near the upper end of the free surface of the vertical advanced guiding shaft 3 from above. FIG. 7 shows a state in which the rock mass 1 is crushed by the roller bit 8 and a rock mass 1A is generated.

なお、岩盤1の予め立坑や深礎を掘削する位置に鉛直先進導坑3を設けて最初の端面掘
削盤が形成される場合の自由面は、例えば大口径では、岩盤1の杭基礎工事に用いるダウ
ンザホールや、小口径では、ボーリングマシンなどが用いられる。
In addition, the free surface in the case where the first end face excavator is formed by providing the vertical advanced guiding shaft 3 in the position where the vertical shaft or the deep foundation is excavated in advance in the bedrock 1 is, for example, in the large diameter, the pile foundation work of the bedrock 1 A boring machine or the like is used for the down-the-hole or small diameter used.

図8は、本発明による岩盤掘削機5の頂点を下向きにした逆円錐形の岩盤掘削機本体6
の周面に螺旋状配置または階段状配置に取り付けられた岩盤切削ビット8により、岩盤1
を端面破砕する場合の説明図である。
FIG. 8 shows an inverted conical rock excavator body 6 with the apex of the rock excavator 5 according to the present invention facing downward.
The rock mass 1 by a rock mass cutting bit 8 attached in a spiral arrangement or a stair arrangement on the circumferential surface of
It is explanatory drawing in the case of crushing an end surface.

図8aは、岩盤1の予め立坑や深礎を掘削する位置にボーリングにより鉛直先進導坑3
を設けて、最初の円形の端面掘削盤を形成した後、つづいて頂点を下向きにした逆円錐形
の岩盤掘削機本体6の最下段のローラビット8aを、鉛直先進導坑3の自由面の上端部近
くの岩盤端面部分に上から押し付けつつ回転させた状態を示している。図8bは、同最下
段のローラビット8aにより岩盤1を端面破砕して、岩塊1Aが生じた状態を示している
。図8cは、引き続いて、最下段のローラビット8aにより岩盤1を端面破砕して、岩塊
1Bが生じるとともに、下から2段目のローラビット8bを、鉛直先進導坑3の自由面の
上端部近くの岩盤1の端面部分に上から押し付けた状態を示している。さらに、図8dは
、最下段のローラビット8aにより岩盤を引き続いて端面破砕して、岩塊1Bが生じると
ともに、下から2段目のローラビット8bにより、順次地山(岩盤)1に露出した円錐型
で階段状の自由面2に当接し、その内側部分を剥離破砕して、岩塊1Aが生じ、さらに下
方へ掘削していく状態を示している。
FIG. 8a shows that the vertical advanced guide shaft 3 is drilled at the position where the vertical rock or deep foundation is excavated in advance.
After forming the first circular end face excavator, the roller bit 8a at the lowest stage of the inverted conical rock excavator body 6 with the apex facing downward is connected to the free surface of the vertical advanced guiding shaft 3. It shows the state of rotating while pressing from above the rock end face near the upper end. FIG. 8b shows a state where the rock mass 1A is generated by crushing the end face of the rock mass 1 with the roller bit 8a at the lowest stage. FIG. 8 c shows that the rock 1 is crushed by the lowermost roller bit 8 a to form a rock lump 1 B, and the second roller bit 8 b from the bottom is connected to the upper end of the free surface of the vertical advanced guide 3. The state which pressed from the top to the end surface part of the bedrock 1 near the part is shown. Further, in FIG. 8d, the rock mass is successively crushed by the lowermost roller bit 8a, and a rock lump 1B is generated, and the rock bit 1b from the bottom is sequentially exposed to the ground (rock mass) 1. The figure shows a state in which the cone-shaped stepped free surface 2 is abutted and the inner part thereof is peeled and crushed to generate a rock mass 1A, which is further excavated downward.

本発明による岩盤掘削機5においては、逆円錐形の岩盤掘削機本体6には、外側表面に
位置する各母線に沿って所定の間隔で螺旋状または階段状に回転自在に配設された複数の
円盤型剥離破砕刃8を具備している。その中、岩盤掘削機本体6の筒形ケーシング15に
最も近い円盤型剥離破砕刃8が、地山(岩盤)2に当接し、岩盤を剥離破砕する。その後
、岩盤掘削機本体6の下方への推進にともなって、円盤型剥離破砕刃8がつぎつぎと地山
(岩盤)2に当接し、地山(岩盤)2に自由面の卓越した円錐型で階段状の溝が形成され
る。
In the rock excavator 5 according to the present invention, the inverted conical rock excavator main body 6 is provided with a plurality of spirally or stepwise rotatable elements at predetermined intervals along each bus line located on the outer surface. The disc-type peeling crushing blade 8 is provided. Among them, the disk-type exfoliation crushing blade 8 closest to the cylindrical casing 15 of the rock excavator main body 6 abuts on the natural ground (rock mass) 2 and exfoliates and crushes the rock mass. After that, as the rock drilling machine body 6 is propelled downward, the disk-type peeling crushing blade 8 is brought into contact with the natural ground (rock) 2 one after another, and the natural rock (rock) 2 has a free-form conical shape. A step-like groove is formed.

ここで、本発明の岩盤掘削機の作動状態を示す図9を参照すると、個々の円盤型剥離破
砕刃8が地山(岩盤)2に当接する位置、すなわち切り込み幅「a」は、地山(岩盤)2
の岩盤の種類によって、先行する溝の端部から十数cm〜数十cmとなるように設定する
。片側を先鋭に形成された円盤型剥離破砕刃8の刃先が「φ」なる逃げ角を取って岩盤表
面に切り込んだとき、刃先の貫入力は、該円盤型剥離破砕刃8の地山(岩盤)2に当接す
る位置より先行している溝の端部までの距離である切り込み幅「a」に対応する岩盤を、
先行する溝の内側に引き剥がす引張り力として作用する。地山(岩盤)2の切り込み幅a
と切り込み深さ「b」の比率:a/bは、岩盤の種類によって異なり、軟質な岩盤では1
程度、硬質な岩盤では1以下にとることができる。
Here, referring to FIG. 9 showing the operating state of the rock excavator of the present invention, the position where each disc-type exfoliation crushing blade 8 abuts the ground (rock) 2, that is, the cutting width “a” is the natural ground. (Bedrock) 2
Depending on the type of bedrock, it is set to be several tens of centimeters to several tens of centimeters from the end of the preceding groove. When the cutting edge of the disc-type peeling crushing blade 8 formed sharply on one side takes a clearance angle of “φ” and cuts into the rock surface, the penetrating input of the cutting edge is the ground of the disc-type peeling crushing blade 8 (bedrock ) The bedrock corresponding to the cutting width “a”, which is the distance from the position contacting 2 to the end of the preceding groove,
Acts as a pulling force to peel inside the leading groove. Cut width a of natural ground (bedrock) 2
And the ratio of the depth of cut “b”: a / b varies depending on the type of rock, and is 1 for soft rock
It can be taken to be 1 or less for hard rock.

このように、岩盤の剥離破砕に必要な押圧力は岩石の引張り強度に依存するので、深礎
ボーリングマシンのように岩石の圧縮強度に依存する岩盤の圧壊破砕に要する押圧力の十
数分の一程度である。その結果、逆円錐形の岩盤掘削機本体6を稼働するのに必要な推進
力および回転力を軽減することができ、単位切削仕事当たりの掘削土量を増加させること
ができる。従って、円盤型剥離破砕刃8の耐摩耗性は向上し、また円盤型剥離破砕刃8の
ベアリングの負荷容量を小さくすることができ、直径も小さくすることができるので、数
多くの該円盤型剥離破砕刃8の取り付けに空間的制約の多い狭隘な逆円錐形の岩盤掘削機
本体6の表面にも適切に配置することができる。
In this way, the pressing force required for delamination and crushing of rock depends on the tensile strength of the rock, so it is a tenth of the pressing force required for crushing and crushing of rock that depends on the compressive strength of the rock, such as a deep foundation boring machine It is about one. As a result, it is possible to reduce the propulsive force and the rotational force necessary to operate the inverted cone rock excavator body 6 and to increase the amount of excavated soil per unit cutting work. Accordingly, the wear resistance of the disc-type peeling crushing blade 8 is improved, the load capacity of the bearing of the disc-type peeling crushing blade 8 can be reduced, and the diameter can be reduced. The crushing blade 8 can be appropriately disposed also on the surface of the rock cone excavator body 6 having a narrow inverted cone shape with many spatial restrictions.

逆円錐形の岩盤掘削機本体6の最外周部位に設置される円盤型剥離破砕刃であるゲージ
カッタは、岩盤掘削機本体6の上部に位置する筒体と深礎側壁との間の摩擦抵抗を軽減す
るために、切り込み幅aを大きくする必要があり、該ゲージカッタの直径を、他の円盤型
剥離破砕刃8の直径より大きくするのが、好ましい。
The gauge cutter, which is a disc-type peeling crushing blade installed at the outermost peripheral part of the inverted conical rock excavator main body 6, has a frictional resistance between the cylindrical body located on the upper part of the rock excavator main body 6 and the deep foundation side wall. In order to reduce this, it is necessary to increase the cut width a, and it is preferable to make the diameter of the gauge cutter larger than the diameter of the other disc-type peeling crushing blade 8.

なお、本発明の実施形態においては、鉛直先進導坑3の内面を自由面として、周面に螺
旋状配置または階段状配置の岩盤切削ビットを有する逆円錐形の岩盤掘削機本体6の作動
により、岩盤を端面破砕する際、ビット部分に振動を与えつつ岩盤の端面破砕を行なうこ
とが、好ましい。
In the embodiment of the present invention, the operation of the inverted conical rock excavator main body 6 having a rock cutting bit arranged in a spiral or stepped manner on the peripheral surface with the inner surface of the vertical advanced guiding shaft 3 as a free surface. When crushing the rock surface, it is preferable to crush the rock surface while applying vibration to the bit portion.

ローラビット8部分に振動を与えつつ回転させることで、効率よく破砕することが可能
である。すなわち、振動を切削刃(ローラビット)8に与えることにより、岩種により例
えば振動周波数40Hzの時に切削抵抗が35%減少することが実験により分かっている
By rotating the roller bit 8 while applying vibration, the roller bit 8 can be efficiently crushed. That is, by applying vibration to the cutting blade (roller bit) 8, it has been experimentally known that the cutting resistance is reduced by 35% when the vibration frequency is 40 Hz, for example, depending on the rock type.

切削刃(ローラビット)8の両側に配置されたスクレーパ13は、岩盤掘削機本体6の
上段部より端面破砕され下方にずり落ちた岩塊が、下方のローラビット8に当たらないよ
うに岩塊を下方に強制的に落とし、ローラビット8が常に岩盤に押し付けられるようにす
るためのものである。
The scrapers 13 disposed on both sides of the cutting blade (roller bit) 8 are arranged so that the rock block that has been crushed from the upper stage of the rock excavator body 6 and slid downwards does not hit the roller bit 8 below. Is forcibly dropped downward so that the roller bit 8 is always pressed against the rock.

剥離破砕された岩塊は、鉛直先進導坑3の下方の中心部に落ち集まり、岩盤掘削部の中
心部にあるスクリューコンベヤ14の作動により鋼管15内を上昇して地上のグリッパジ
ャッキ19の上部へと搬出される。
The separated and crushed rock mass gathers in the central part below the vertical advanced shaft 3 and rises in the steel pipe 15 by the operation of the screw conveyor 14 in the central part of the rock excavation part, and the upper part of the gripper jack 19 on the ground. It is carried out to.

上部に搬出された岩塊は、鋼管15上端に設けられた岩塊排出装置23の岩塊搬出口よ
りあふれ、ガラバケット24内に落とされる。ガラバケット24は、ウインチ等で適宜坑
外に搬出する。
The rock mass carried out to the upper part overflows from the rock mass discharge port of the rock mass discharge device 23 provided at the upper end of the steel pipe 15 and is dropped into the gala bucket 24. The glass bucket 24 is appropriately carried out of the mine by a winch or the like.

なお、本発明の岩盤掘削機において、逆円錐形の岩盤掘削機本体6の周面に取り付ける
岩盤切削ビット8の数は、これらをいわば高さ違いに、階段状配置に取り付ける場合は、
取付スペースおよび装置の製造価格との関係もあるが、例えば逆円錐形の岩盤掘削機本体
6の周面のうち、最下段のレベルに2〜3個、下から2段目のレベルに3〜6個、下から
3段目のレベルに4〜8個、これより上の段のレベルに4〜10個程度、取り付けるのが
、好ましい。
In addition, in the rock excavator of the present invention, the number of rock cutting bits 8 attached to the peripheral surface of the inverted conical rock excavator body 6 is different from each other in the case of attaching them in a step-like arrangement.
Although there is a relationship between the installation space and the manufacturing price of the apparatus, for example, 2 to 3 at the lowest level of the peripheral surface of the inverted cone rock excavator body 6 and 3 to the second level from the bottom It is preferable to attach six, four to eight on the third level from the bottom, and about 4 to 10 on the upper level.

また、本発明の岩盤掘削機において、逆円錐形の岩盤掘削機本体6の周面に取り付ける
岩盤切削ビット8の数は、これらをいわば高さ違いに、螺旋状配置に取り付ける場合は、
取付スペースおよび装置の製造価格との関係もあるが、例えば逆円錐形の岩盤掘削機本体
6の周面に、岩盤切削ビット8を螺旋状配置となるように、合計で4〜20個程度取り付
けるのが、好ましい。
Moreover, in the rock excavator of the present invention, the number of the rock cutting bits 8 attached to the peripheral surface of the inverted conical rock excavator main body 6 is different from each other in the case of attaching them in a spiral arrangement.
Although there is a relationship between the installation space and the manufacturing price of the apparatus, for example, a total of about 4 to 20 rock cutting bits 8 are attached to the peripheral surface of the inverted cone rock excavator main body 6 so as to have a spiral arrangement. Is preferred.

本発明による岩盤掘削機5において、逆円錐形の岩盤掘削機本体6が筒形ケーシング1
5に沿って下方に所定距離だけ地山(岩盤)2を掘進した後、次のストロークを掘進する
作業を繰り返し実施するために、反力受け材7を逐次下方に固定していく動作を自動制御
するシステムを構築する必要がある。例えば、最初の掘削が完了した後、反力受け材7の
グリッパ装置19に内蔵したグリッパ部材を没入させ、次に該反力受け材7を下方に移動
させ、所定の距離進んだことを確認し、再び深礎側面に該反力受け材7を水平面上に精度
高く固定する動作を完全自動化することができる。
In a rock excavator 5 according to the present invention, an inverted conical rock excavator main body 6 is a cylindrical casing 1.
After the excavation of the natural ground (bedrock) 2 for a predetermined distance downward along the line 5, in order to repeatedly carry out the work of excavating the next stroke, the operation of sequentially fixing the reaction force receiving material 7 downward is automatically performed. It is necessary to build a system to control. For example, after the first excavation is completed, the gripper member built in the gripper device 19 of the reaction force receiving member 7 is immersed, and then the reaction force receiving member 7 is moved downward to confirm that the predetermined distance has been reached. Then, the operation of fixing the reaction force receiving member 7 on the horizontal surface with high accuracy can be completely automated again.

なお、図示は省略したが、本発明による岩盤掘削機5を用いた深礎工法に対する総合自
動制御システムについて説明すると、まず、反力受け材7、逆円錐形の岩盤掘削機本体6
および排土設備等から構成される岩盤掘削機5をクレーン等で吊り上げ、筒形ケーシング
15に沿って、予め掘削された鉛直先進導坑3の位置に設置する。
In addition, although illustration is abbreviate | omitted, when describing the comprehensive automatic control system with respect to the deep foundation method using the rock excavator 5 by this invention, first, the reaction force receiving material 7, the inverted cone rock excavator main body 6
Then, the rock excavator 5 composed of a soil removal facility and the like is lifted by a crane or the like, and installed along the cylindrical casing 15 at the position of the vertical advanced guiding shaft 3 excavated in advance.

岩盤掘削機5を設置した後、反力受け材7を水平に保持する。そのために、該反力受け
材7に設置した左右水平方向および前後水平方向の水準を計測する傾斜センサ(図示略)
を使用し、該反力受け材7の水準調整を行なう。この作業を繰り返し実施し、該反力受け
材7の水準度が許容範囲に収まるまで自動制御するものである。その後、反力受け材7の
端部に設置したグリッパ装置19に内蔵したグリッパ部材の位置を調整し、該反力受け材
7のセンタリングを行なうと同時に所定の推力に達するまで油圧を載荷し、深礎側壁に該
反力受け材7を固定する。
After installing the rock excavator 5, the reaction force receiving member 7 is held horizontally. Therefore, an inclination sensor (not shown) that measures the horizontal and horizontal levels installed in the reaction force receiving member 7.
To adjust the level of the reaction force receiving member 7. This operation is repeated and automatically controlled until the level of the reaction force receiving member 7 falls within an allowable range. Thereafter, the position of the gripper member built in the gripper device 19 installed at the end of the reaction force receiving member 7 is adjusted, and the reaction force receiving member 7 is centered and simultaneously loaded with hydraulic pressure until a predetermined thrust is reached, The reaction force receiving member 7 is fixed to the deep foundation side wall.

次に、逆円錐形の岩盤掘削機本体6の回転軸が鉛直であることを確認する必要があるが
、そのために、岩盤掘削機本体6が回転しているとき、例えば固定梁に設置した左右水平
方向の水準を計測する傾斜センサ(図示略)を使用し、該岩盤掘削機本体6の水準調整を
行なう。この作業を繰り返し実施し、該岩盤掘削機本体6の回転中の水準度が許容範囲に
収まるまで自動制御する。
Next, it is necessary to confirm that the rotation axis of the inverted conical rock excavator body 6 is vertical. For this reason, when the rock excavator body 6 is rotating, for example, left and right installed on a fixed beam A tilt sensor (not shown) that measures the level in the horizontal direction is used to adjust the level of the rock excavator body 6. This operation is repeatedly performed and automatically controlled until the level level during rotation of the rock excavator body 6 falls within an allowable range.

掘削開始に当たっては、自動制御できるシステムを使用し、対象掘削岩盤の特性に対応
させて、荷重制御をはじめ回転速度制御を行なう。適切な掘削を保持するために、許容範
囲内の推進力において自動制御し、また回転速度を回転トルクセンサによって許容範囲内
の回転力において自動制御することができる。
At the start of excavation, a system that can be controlled automatically is used, and the rotational speed control including load control is performed according to the characteristics of the target excavated rock mass. In order to maintain proper excavation, the propulsive force within the allowable range can be automatically controlled, and the rotational speed can be automatically controlled with the rotational torque sensor within the allowable range.

岩盤掘削機5による1ストロークの掘削が終了したとき、反力受け材7のグリッパ部材
をグリッパ装置19に引き込んだ後、次のステップに向かって、深礎側壁に改めて反力受
け材7を固定して、同様の作業を繰り返していく自動制御へと自動的に切り替えていくこ
とができる。また、円盤型剥離破砕刃8が摩耗劣化し、部品交換する時期に達したとき、
改めて岩盤掘削機5をクレーン等で吊り上げて、部品を交換した後、最初から岩盤掘削機
5を筒形ケーシング15に沿って設置し、同様の作業を繰り返し実施していくための自動
制御装置へと移行することができる。深礎建設の全工程を終了することをもって掘削完了
とする。
When the excavation of one stroke by the rock excavator 5 is completed, the gripper member of the reaction force receiving member 7 is pulled into the gripper device 19 and then the reaction force receiving member 7 is fixed to the deep foundation side wall again for the next step. Thus, it is possible to automatically switch to automatic control that repeats the same work. Also, when the disk-type peeling crushing blade 8 is worn out and it is time to replace the parts,
Once the rock excavator 5 is lifted with a crane or the like and the parts are exchanged, the rock excavator 5 is installed along the cylindrical casing 15 from the beginning, and the automatic control device for repeatedly performing the same operation. And can be migrated. The excavation is completed when all the processes of deep foundation construction are completed.

深礎を掘削する地山(岩盤)に設けた鉛直先進導坑を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vertical advanced guiding shaft provided in the natural ground (bedrock) which excavates a deep foundation. 露出した地山の底部に大口径のダウンザホールハンマによって所定の深さまでボーリングを実施して構築した鉛直先進導坑を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vertical advanced guiding shaft constructed by boring to the predetermined depth by the down-hole hole hammer with a large diameter at the bottom of the exposed natural ground. 本発明による岩盤掘削機の部分切欠き拡大斜視図である。It is a partial notch expansion perspective view of the rock excavator by this invention. 同岩盤掘削機の拡大底面図である。It is an enlarged bottom view of the rock excavator. 同岩盤掘削機の作動状態を示す拡大側面図である。It is an enlarged side view which shows the operating state of the rock excavator. 本発明の岩盤掘削機を用いた深礎工法における説明図で、ローラビットを、鉛直先進導坑の自由面の上端部近くの岩盤端面部分に上から押し付けつつ回転させることで岩盤を端面破砕している状態を示している。In the explanatory drawing in the deep foundation method using the rock excavator of the present invention, the rock bit is crushed by crushing the rock by pressing the roller bit against the end of the rock near the upper end of the free surface of the vertical advanced guide shaft. It shows the state. 同ローラビットにより、岩盤を端面破砕した状態を示す説明図である。It is explanatory drawing which shows the state which crushed the rock surface by the roller bit. 頂点を下向きにした逆円錐形の岩盤掘削機本体の周面に螺旋状配置または階段状配置に取り付けられた岩盤切削ビットにより、岩盤を端面破砕する状態を示す説明図で、図8aは、最下段のローラビットを、鉛直先進導坑の自由面の上端部近くの岩盤端面部分に上から押し付けつつ回転させた状態を示している。図8bは、同最下段のローラビットにより岩盤を端面破砕した状態を示している。図8cは、引き続いて、最下段のローラビットにより岩盤を端面破砕するとともに、下から2段目のローラビットを、鉛直先進導坑の自由面の上端部近くの岩盤端面部分に上から押し付けた状態を示している。さらに、図8dは、最下段のローラビットにより岩盤を引き続いて端面破砕するとともに、下から2段目のローラビットにより岩盤を端面破砕した状態を示している。FIG. It shows a state where the lower roller bit is rotated while pressing from above the rock end face near the upper end of the free surface of the vertical advanced guide shaft. FIG. 8 b shows a state in which the rock is crushed by the end using the roller bit at the lowermost stage. In FIG. 8c, the rock surface was crushed by the bottom roller bit, and the second roller bit from the bottom was pressed from above onto the rock surface near the top of the free surface of the vertical advanced shaft. Indicates the state. Further, FIG. 8d shows a state in which the rock surface is continuously crushed by the lowermost roller bit and the rock surface is crushed by the second roller bit from the bottom. 本発明の岩盤掘削機の作動状態を示す拡大縦断面図で、岩盤切削ビットによる掘削状況を示している。It is an expanded vertical sectional view which shows the operating state of the rock excavator of this invention, and has shown the excavation condition by a rock cutting bit. 従来の岩盤掘削機を用いた工法における説明図で、岩盤面にローラビットを押し付けて、岩盤を圧壊している状態を示している。It is explanatory drawing in the construction method using the conventional rock excavator, The state which is pressing the roller bit against the rock surface and crushing the rock is shown.

符号の説明Explanation of symbols

1 :地山(岩盤)
2 :露出した地山(岩盤)
3 :鉛直先進導坑
4 :傾斜面
5 :岩盤掘削機
6 :岩盤掘削機本体
7 :反力受け材
8 :円盤型剥離破砕刃(岩盤切削ビット)
10:円形水平梁
11:半径方向梁
12:連結部材
13:スクレーパ
14:スクリューコンベヤ
15:筒形ケーシング(鋼管)
16:回転軸
17:螺旋形羽根
18:スクリューコンベヤ用モータ
19:グリッパ装置
20:旋回ベアリング装置
21:掘削機本体回転駆動用モータ
22:掘進ジャッキ
23:岩塊排出装置
24:ガラバスケット
25:下部反力受け部材
26:開脚アンカー
27:貫通軸
27a:上端雄ねじ部
28:締付ナット
1: Ground (rock)
2: Exposed ground (rock)
3: Vertical advanced shaft 4: Inclined surface 5: Rock excavator 6: Rock excavator body 7: Reaction force receiving material 8: Disc-type peeling crushing blade (rock cutting bit)
10: Circular horizontal beam 11: Radial beam 12: Connecting member 13: Scraper 14: Screw conveyor 15: Cylindrical casing (steel pipe)
16: Rotating shaft 17: Spiral blade 18: Screw conveyor motor 19: Gripper device 20: Swivel bearing device 21: Excavator main body rotation driving motor 22: Digging jack 23: Rock mass discharging device 24: Glass basket 25: Lower part Reaction force receiving member 26: open leg anchor 27: penetrating shaft 27a: upper end male thread portion 28: tightening nut

Claims (11)

岩盤に立坑や深礎の掘削を行なう岩盤掘削機であって、上下動自在かつ回転駆動する頂
点を下向きにした逆円錐形の岩盤掘削機本体の周面に、岩盤切削ビットが所定の間隔で螺
旋状配置または階段状配置に取り付けられ、予め立坑や深礎を掘削する位置に設けられた
鉛直先進導坑の自由面の上端部近くの岩盤端面部分に、岩盤切削ビットを上から押し付け
つつ回転させることで岩盤を端面破砕し、鉛直先進導坑を中心として上記螺旋状配置また
は階段状配置の岩盤切削ビットを具備する岩盤掘削機本体を下方に推進させつつ掘削を行
なうことを特徴とする、岩盤掘削機。
A rock excavator that excavates vertical shafts and deep foundations in the rock, and the rock cutting bits are spaced at predetermined intervals on the circumference of the inverted conical rock excavator body with its top and bottom being pivotable and rotating. Rotating while pressing the rock cutting bit from above on the rock end face near the free edge of the vertical advanced guide shaft, which is installed in a spiral or stepped arrangement and is pre-excavated at the position where the shaft or deep foundation is excavated. By crushing the end face of the rock mass, the rock excavator body equipped with the rock cutting bit of the above spiral arrangement or stepwise arrangement around the vertical advanced guide shaft is excavated while propelled downward, Rock excavator.
岩盤に立坑や深礎の掘削を行なう岩盤掘削機であって、予め立坑や深礎を掘削する位置
に鉛直先進導坑を設けて最初の端面掘削盤が形成され、上下動自在かつ回転駆動する頂点
を下向きにした逆円錐形の岩盤掘削機本体が、その上部に構築された反力受け材から反力
を取って、掘削時に岩盤掘削機本体を下方に推進させる推進手段、および岩盤掘削機本体
自体を回転運動させる回転手段を備えていることを特徴とする、請求項1記載の岩盤掘削
機。
It is a rock excavator that excavates shafts and deep foundations in the rock, and the first end face excavator is formed by pre-establishing the vertical advanced guide shaft at the position where the shafts and deep foundations are excavated in advance, and it can move up and down and rotate. The rock cone excavator with the inverted cone-shaped rock excavator body with the apex facing downward takes the reaction force from the reaction force receiving material constructed at the top thereof, and propels the rock excavator body downward during excavation, and the rock excavator 2. The rock excavator according to claim 1, further comprising a rotating means for rotating the main body itself.
岩盤掘削機本体に、ビット部分に振動を与えつつ端面破砕する振動付与手段がさらに設
けられていることを特徴とする、請求項1または2記載の岩盤掘削機。
The rock excavator according to claim 1 or 2, wherein the rock excavator main body is further provided with vibration imparting means for crushing the end face while applying vibration to the bit portion.
頂点を下向きにした逆円錐形の岩盤掘削機本体の周面に所定の間隔で螺旋状配置または
階段状配置に取り付けられた各岩盤切削ビットの左右両側に、岩塊衝突防止用スクレーパ
が設けられていることを特徴とする、請求項1〜3のうちのいずれか一項記載の岩盤掘削
機。
Scrapers for rock mass collision prevention are provided on the left and right sides of each rock cutting bit attached in a spiral or stepped arrangement at a predetermined interval on the peripheral surface of the inverted conical rock excavator body with the apex facing downward The rock drilling machine according to any one of claims 1 to 3, wherein the rock drilling machine is provided.
さらに、岩盤掘削部を貫通する筒形ケーシング中にスクリューコンベヤが配置され、筒
形ケーシングの下端は、最下段のビットの下方に突き出て鉛直先進導坑内にあり、かつ筒
形ケーシングの上部はグリッパ部の上部に突出していて、掘削された岩屑がスクリューコ
ンベヤの作動により筒形ケーシング内を上昇して地上へ搬出されるようになされているこ
とを特徴とする、請求項1〜4のうちのいずれか一項記載の岩盤掘削機。
Furthermore, a screw conveyor is disposed in a cylindrical casing penetrating the rock excavation part, the lower end of the cylindrical casing protrudes below the lowest bit and is in the vertical advanced guide shaft, and the upper portion of the cylindrical casing is a gripper. The upper part of the part protrudes and the excavated debris rises in the cylindrical casing by the operation of the screw conveyor and is carried out to the ground. The rock excavator according to any one of the above.
さらに、開脚によって鉛直先進導坑の内側面に押圧される下部反力受け部材としての開
脚アンカーを有する下部反力受け装置が設けられていることを特徴とする、請求項5記載
の岩盤掘削機。
6. The bedrock according to claim 5, further comprising a lower reaction force receiving device having an open leg anchor as a lower reaction force receiving member pressed against an inner surface of the vertical advanced guide shaft by an open leg. Excavator.
下部反力受け装置が、スクリューコンベヤの回転軸を貫通する貫通軸と、これの下端部
に取り付けられかつ開脚によって鉛直先進導坑の内側面に押圧される下部反力受け部材と
しての開脚アンカーと、貫通軸の上端雄ねじ部に取り付けられた締付ナットとにより構成
されることを特徴とする、請求項6記載の岩盤掘削機。
The lower reaction force receiving device is a penetrating shaft that penetrates the rotating shaft of the screw conveyor, and an open leg as a lower reaction force receiving member that is attached to the lower end of the screw shaft and pressed against the inner surface of the vertical advanced guide shaft by the opening leg The rock excavator according to claim 6, comprising an anchor and a tightening nut attached to an upper end male thread portion of the penetrating shaft.
予め立坑や深礎を掘削する位置にボーリングにより鉛直先進導坑を設けて、最初の円形
の端面掘削盤を形成した後、つづいて頂点を下向きにした逆円錐形の岩盤掘削機本体の周
面に所定の間隔で螺旋状に設置された円盤型岩盤切削ビットが順次地山(岩盤)に露出し
た円錐型で階段状の自由面に当接し、その内側部分を剥離破砕して、下方へ掘削していく
ことを特徴とする、請求項1〜7のうちのいずれか一項記載の岩盤掘削機を用いた岩盤掘
削工法。
A vertical advanced guide pit is drilled at a position where a shaft or deep foundation is excavated in advance to form the first circular end face excavator, and then the peripheral surface of the inverted conical rock excavator body with the apex facing downward Disc-shaped rock cutting bits installed in a spiral shape at predetermined intervals in contact with the conical stepped free surface exposed to the ground (rock) in sequence, peeling and crushing the inner part, excavating downward A rock excavation method using the rock excavator according to claim 1, wherein the excavation method is performed.
請求項5記載の岩盤掘削機を用いた岩盤掘削工法であって、立坑や深礎を掘削する位置
に、ボーリングを行なって鉛直先進導坑を形成した後、反力受け材を掘削された縦坑内面
に設置する工程、反力受け材から反力を取って逆円錐形の岩盤掘削機本体を下方に所定距
離だけ推進させながら岩盤掘削機本体を回転させ、その下側の岩盤を端面破砕により掘削
する掘削工程、および掘削された岩屑をスクリューコンベヤの作動により筒形ケーシング
内を上昇させて地上へ搬出する排土工程を備えることを特徴とする、岩盤掘削機を用いた
岩盤掘削工法。
A rock excavation method using the rock excavator according to claim 5, wherein a vertical advanced guide pit is formed by drilling at a position where a vertical shaft or a deep foundation is excavated, and a reaction force receiving material is excavated. The process of installing on the inner surface of the mine, removing the reaction force from the reaction force receiving material, rotating the rock cone excavator body while propelling the inverted cone rock excavator body downward by a predetermined distance, and crushing the rock surface below it A rock excavation method using a rock excavator, comprising: a drilling process for excavating by a rock excavation; and a soil removal process for lifting the excavated debris in a cylindrical casing by an operation of a screw conveyor and carrying it to the ground .
請求項6または7記載の岩盤掘削機を用いた岩盤掘削工法であって、立坑や深礎を掘削
する位置に、ボーリングを行なって鉛直先進導坑を形成した後、上部反力受け材を掘削さ
れた縦坑内面に設置するとともに、下部反力受け装置の開脚アンカーを開脚させて鉛直先
進導坑の内側面に押圧させ設置する工程、上部反力受け材および下部反力受け部材から反
力を取って逆円錐形の岩盤掘削機本体を下方に所定距離だけ推進させながら岩盤掘削機本
体を回転させ、その下側の岩盤を端面破砕により掘削する掘削工程、および掘削された岩
屑をスクリューコンベヤの作動により筒形ケーシング内を上昇させて地上へ搬出する排土
工程を備えることを特徴とする、岩盤掘削機を用いた岩盤掘削工法。
A rock excavation method using the rock excavator according to claim 6 or 7, wherein after drilling a shaft or deep foundation to form a vertical advanced guide shaft, excavating the upper reaction force receiving material From the upper reaction force receiving material and the lower reaction force receiving member, the step is installed on the inner surface of the vertical shaft and the leg anchor of the lower reaction force receiving device is opened and pressed against the inner surface of the vertical advanced guiding shaft. The excavation process in which the rock excavator body is rotated while the inverted conical rock excavator body is propelled downward by a predetermined distance and the lower rock is excavated by end face crushing, and the excavated debris A rock excavation method using a rock excavator, comprising a soil removal step of lifting the inside of a cylindrical casing by an operation of a screw conveyor and carrying it out to the ground.
岩盤に鉛直先進導坑を設け、該鉛直先進導坑の内面を自由面として、周面に螺旋状配置
または階段状配置の岩盤切削ビットを有する逆円錐形の岩盤掘削機本体の作動により、岩
盤を端面破砕する際、ビット部分に振動を与えつつ岩盤の端面破砕を行なうことを特徴と
する、請求項8〜10のうちのいずれか一項記載の岩盤掘削機を用いた岩盤掘削工法。
Vertical rockheads are provided on the rock mass, and the rock cone is operated by the operation of the inverted conical rock excavator body having the rock cutting bits arranged in a spiral or stepped shape on the circumferential surface with the inner surface of the vertical rockwell as a free surface. The rock excavation method using a rock excavator according to any one of claims 8 to 10, wherein when crushing the end face, the end face of the rock is crushed while vibrating the bit portion.
JP2004094033A 2004-03-29 2004-03-29 Deep foundation excavator for rock and deep foundation construction method using it Expired - Fee Related JP4642367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004094033A JP4642367B2 (en) 2004-03-29 2004-03-29 Deep foundation excavator for rock and deep foundation construction method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004094033A JP4642367B2 (en) 2004-03-29 2004-03-29 Deep foundation excavator for rock and deep foundation construction method using it

Publications (2)

Publication Number Publication Date
JP2005281997A true JP2005281997A (en) 2005-10-13
JP4642367B2 JP4642367B2 (en) 2011-03-02

Family

ID=35180695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004094033A Expired - Fee Related JP4642367B2 (en) 2004-03-29 2004-03-29 Deep foundation excavator for rock and deep foundation construction method using it

Country Status (1)

Country Link
JP (1) JP4642367B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540152A (en) * 2006-06-09 2009-11-19 ユニヴァーシティ コート オブ ザ ユニヴァーシテイ オブ アバディーン Resonance-enhanced excavation method and apparatus
CN101806196A (en) * 2010-03-26 2010-08-18 毛杰 Compound rotary drilling rig drilling mechanism
CN110748346A (en) * 2019-12-25 2020-02-04 中国铁建重工集团股份有限公司 Full-section large-diameter shaft heading machine and heading device thereof
CN117248902A (en) * 2023-11-17 2023-12-19 乐山市通达交通勘察设计有限责任公司 Tunnel harmful gas while-drilling detection advanced detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494739B1 (en) * 1964-11-05 1974-02-02
JPS58165093U (en) * 1982-04-29 1983-11-02 川崎重工業株式会社 Tunnel excavator roller cutter
JPH057788U (en) * 1991-07-12 1993-02-02 清水建設株式会社 Vertical shaft excavator
JP2000204874A (en) * 1999-01-14 2000-07-25 Komatsu Ltd Excavator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494739B1 (en) * 1964-11-05 1974-02-02
JPS58165093U (en) * 1982-04-29 1983-11-02 川崎重工業株式会社 Tunnel excavator roller cutter
JPH057788U (en) * 1991-07-12 1993-02-02 清水建設株式会社 Vertical shaft excavator
JP2000204874A (en) * 1999-01-14 2000-07-25 Komatsu Ltd Excavator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540152A (en) * 2006-06-09 2009-11-19 ユニヴァーシティ コート オブ ザ ユニヴァーシテイ オブ アバディーン Resonance-enhanced excavation method and apparatus
CN101806196A (en) * 2010-03-26 2010-08-18 毛杰 Compound rotary drilling rig drilling mechanism
CN110748346A (en) * 2019-12-25 2020-02-04 中国铁建重工集团股份有限公司 Full-section large-diameter shaft heading machine and heading device thereof
CN117248902A (en) * 2023-11-17 2023-12-19 乐山市通达交通勘察设计有限责任公司 Tunnel harmful gas while-drilling detection advanced detection device
CN117248902B (en) * 2023-11-17 2024-02-06 乐山市通达交通勘察设计有限责任公司 Tunnel harmful gas while-drilling detection advanced detection device

Also Published As

Publication number Publication date
JP4642367B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
US3379264A (en) Earth boring machine
EP3247862B1 (en) Shaft enlargement arrangement for a boring system
CN109653682B (en) Drill bit with adjustable drill diameter and hole digging machine
US5823276A (en) Diamond-tipped core barrel and method of using same
US5590724A (en) Underreaming method
JP5700611B1 (en) Underground pile removal method and underground pile removal device
JP4642367B2 (en) Deep foundation excavator for rock and deep foundation construction method using it
CN217712553U (en) Shaft drilling machine
CN112901074A (en) Rock-socketed drilling pore-forming process of marine large-diameter inclined pile rotary excavator
CN112211566A (en) Manual hole digging pile hole forming method for tunneling large-particle-size moderately weathered nuclei
US5431238A (en) Drilling tool for use in constructing large diameter piles, ventilating shafts and other similar mining works
CN114278227B (en) Construction method of lower pile casing of cast-in-place pile
JP3683229B2 (en) Existing pile removal method and equipment
JP2004308362A (en) Deep foundation construction method using bedrock excavator
US1826087A (en) Apparatus for drilling wells
CN113047843B (en) Soil body excavation device for large-diameter pile or vertical shaft hole forming
CN114277797A (en) Steel-pipe pile sinking device
CN216586520U (en) A protect a section of thick bamboo for digging rig construction forms bored concrete pile soon
CN216586507U (en) A protect a section of thick bamboo boots for digging rig construction soon and forming bored concrete pile
JP6972460B1 (en) Existing pile cutting and removing device
CN113006067B (en) Bored concrete pile drilling sediment clearing device
JP2006057258A (en) Removal method for foundation pile
JP2005314871A (en) Removing device for underground obstacle and removing method for underground obstacle
JP5917265B2 (en) Continuous excavation and earthing device and method
JPH09273373A (en) Excavation device for earth drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100515

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees