JP2004308362A - Deep foundation construction method using bedrock excavator - Google Patents

Deep foundation construction method using bedrock excavator Download PDF

Info

Publication number
JP2004308362A
JP2004308362A JP2003106486A JP2003106486A JP2004308362A JP 2004308362 A JP2004308362 A JP 2004308362A JP 2003106486 A JP2003106486 A JP 2003106486A JP 2003106486 A JP2003106486 A JP 2003106486A JP 2004308362 A JP2004308362 A JP 2004308362A
Authority
JP
Japan
Prior art keywords
rock
deep foundation
reaction force
cutting machine
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003106486A
Other languages
Japanese (ja)
Inventor
Tatsuro Muro
達朗 室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003106486A priority Critical patent/JP2004308362A/en
Publication of JP2004308362A publication Critical patent/JP2004308362A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for constructing a deep foundation pile by using a bedrock excavator operating by automatic control, when the deep foundation pile such as a shaft is constructed in a bed rock. <P>SOLUTION: In this method for constructing the deep foundation pile, a vertical advancing drift with a large diameter is pre-excavated by means of a down-the-hole hammer, so as to enhance the efficiency of the excavation of the bedrock; a central-axis shaft is erected in the vertical advancing drift; a bottom part is subjected to foot protection; and after that, the bedrock excavator, which is composed of a cone wherein many rotatable disc-shaped peeling and crushing blades are spirally arranged, is used. An end-surface excavating plate with many free surfaces is formed; a reaction bearing material for propelling and rotating a bedrock excavator body downward along the central-axis shaft of the pile is constructed; and efficient cutting and earth-removing work, using the bedrock excavator, is performed in an unmanned manner by using an integrated automatic control system which performs the control of the displacement and load of a piston cylinder, and the control of a rotational speed of a drive motor, on the basis of a reference soil concentration of slurry. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は,複数の回転する円盤型剥離破砕刃が円錐体の岩盤切削機に回転自在に取り付けられ,該破砕刃が地山に当接して転動する過程で地山を破砕するようにした岩盤掘削機を用いた深礎工法に関するものである。
【0002】
【従来の技術】橋梁基礎や杭基礎工事、および立坑掘削工事では、深礎工法が有効な手段であるが、従来の深礎工法は、人力施工によるところが多く、狭隘な孔内での苦渋作業であり、また落下物や坑壁の崩落、有毒ガスの発生、酸欠状態に曝されるなどの危険を伴うため、より安全な機械化施工技術の開発が、早急に解決すべき重要な課題とされてきた。
【0003】硬質の岩盤に深礎を掘削する技術は、従来、人力掘削が主流であったが、近年、自動化された立坑穿孔機などで穿孔した後、ダイナマイト等の発破を用いて岩盤を爆破する工法を採用しているが、振動や騒音等の公害が大であり、周辺住民や既設の構造物にまで多大なる影響を及ぼしていた。
【0004】深礎工事中に出現した巨大な転石について、穿孔機械で削孔した穴に膨張材などの静的破砕材を充填して静的に破砕する方法や、差し矢をボーリング孔内に油圧で貫入する割岩工法があるが、小規模で作業能力が低いという欠点がある。
【0005】大口径の立坑掘削では、大型の油圧ハンマーやブレーカを用いて岩盤を破砕する工法が採用されているが、効率が小さく、かつ騒音による難聴や粉塵による塵肺、振動による白蝋病等の労働災害を発生せしめている。また、クラムシェルバケットやグラブバケットによる掘削工法やハンマーグラブを用いるベノト工法などは軟岩では有効であるが、硬岩には適しない。
【0006】岩盤掘削専用のトンネルボーリングマシンを鉛直下方に移動させて深礎を掘削する深礎ボーリングマシンにおいて、切り羽を掘削する円形面盤上には多数の円盤型圧壊破砕刃が回転自在に取り付けられており、前記円形面盤を地山に当接回転させることにより、前記円盤型圧壊破砕刃が大きな推進力を受けて岩盤を円形軌道に沿って筋状に圧壊し、隣接する前記円盤型圧壊破砕刃の円形軌道上に形成された圧壊溝との間に隣接引張り破砕を引き起こさせる圧壊破砕工法が考案されている。しかし、この工法では、大きな推進力と回転力を必要とし、かつ、作業能力である破砕効率が小さいばかりでなく、円盤型圧壊破砕刃の摩耗寿命が短く、交換頻度が高いという欠点がある。
【0007】
【発明が解決しようとする課題】以上の従来技術によれば、人力施工による苦渋作業や発破工法による騒音や振動による労働災害を減少するために、機械化掘削工法に切り替える必要がある。そのために開発された静的破砕材や油圧による割岩工法、油圧ハンマーやブレーカなどは、作業能力が著しく低いという課題を残している。また、作業性能の向上を目指して開発されたバケット式掘削工法やベノト工法なども作業効率が比較的低く、硬質の岩盤に対しては掘削不能となるばかりでなく、カッタ刃先の摩耗による損傷が極端に増加するという課題を解決していく必要がある。さらに、立坑穿孔機を用いた発破工法を使用した場合には、所定の深礎断面周辺の岩盤まで余分に破砕してしまうという課題がある。
【0008】前記深礎ボーリングマシンで使用されている切り羽面を圧壊破砕する円盤型圧壊破砕刃には、大きな推進力と回転力を必要とするばかりでなく、そのために前記円盤型圧壊破砕刃の摩耗寿命が短く、また、岩盤の破砕効率として単位仕事量当たりの掘削土量が小さいという課題がある。
【0009】本発明は、上記各項の課題を勘案し、作業能力を一段と向上させるために、円錐体の岩盤切削機に円盤型剥離破砕刃を多数配置し、その結果、推進力および回転力の軽減、摩耗劣化の防止、単位切削仕事当たりの掘削土量を増加させることにより、作業効率を向上させる好適な岩盤掘削機を用いた深礎工法を提供することを目的としている。
【0010】
【課題を解決するための手段】上記課題の解決、及び発明の目的を達成するために、新しい機械化施工技術を導入した岩盤掘削機を用いた深礎工法を開発する。これは、予め深礎を施工する位置で大口径のダウンザホールハンマによって所定の深さまでボーリングを実施し、鉛直先進導坑を構築する。ボーリングされた穴に中心軸シャフトを建て込み、前記鉛直先進導坑の底部に前記中心軸シャフトをコンクリートで根固めする。前記中心軸シャフトに沿って上下方向に移動する円錐体の岩盤切削機本体が、その上方に構築されたグリッパ装置を設置した反力受け材から反力を取って前記岩盤切削機本体を下方に推進させる推進手段および前記中心軸シャフトの周りを回転運動させる回転手段を兼ね備えており、該岩盤を切削する岩盤掘削機を用いた深礎工法であることを特徴としている(請求項1)。
【0011】一般に、岩盤の強度は、岩石の圧縮強度、せん断強度及び引張り強度の大きさによって決まる。岩石の引張り強度は、圧縮強度の十数分の一程度であり、本発明では、岩盤に多くの亀裂を発生せしめ、自由面を多くして、岩石の引張り破壊を誘発する岩盤の剥離破砕を主たる手段としている。予め、ボーリングによって形成された円形の2自由面をもつ端面掘削盤内面を剥離破砕し、つづいて所定の間隔で螺旋状に配置した多数の円盤型剥離破砕刃を装着した円錐体の岩盤切削機を所定の推進力で中心軸シャフトまわりを回転させ、前記円盤型剥離破砕刃が順次露出した円錐型で階段状の自由面で構成される地山に当接し、その内側部分を剥離破砕して下方向へ掘削を進めて、深礎を形成することを特徴としている(請求項2)。
【0012】その結果、剥離破砕刃に作用する切削力の減少にともなって地山に余分な損傷を発生させることなく、また、円盤型剥離破砕刃に衝撃力による衝撃摩耗や引っ掻き摩耗を引き起こさせず、該破砕刃の摩耗劣化を極力低下せしめることができる。さらに、切削ドラムの回転に必要な回転トルクも減少するために、単位仕事当たりの切削土量である作業能力が一段と向上するだけでなく、岩盤切削機本体が発生する騒音・振動を許容値以内に抑えることができる好適な手段である。
【0013】本発明の深礎工法は、大口径のダウンザホールハンマでボーリングした穴の底部に中心軸シャフトを根固めする施工手段、および自動制御システムを導入した反力受け材を深礎内壁にグリッパ装置によって固定する設置手段、円錐体の岩盤切削機本体が前記反力受け材から推進および回転反力を取って、前記中心軸シャフトに沿って下方に所定距離推進させながら前記岩盤切削機本体を回転させその下側を掘削し、その繰り返し工程を自動制御する掘削手段、および掘削された岩屑を前記中心軸シャフトの最下部に設置した開口より供給されるベントナイト溶液に混入して、前記反力受け材に設置したスラリーポンプを経由してスラリーとして地上へ排出する工程を自動制御した排土手段をもって構成されることを特徴とする(請求項3)。
【0014】
【発明の実施の形態】以下、図面に基づいて、本発明の実施形態を説明する。図1は、深礎を施工する地山1に予め円錐体の岩盤切削機本体を設置するための穴を掘削し、露出した底部の地山2に大口径のダウンザホールハンマによって所定の深さまでボーリングを実施して構築した鉛直先進導坑3を示している。
【0015】鉛直先進導坑3に所定の長さの中空鋼管で製作された中心軸シャフト4を建て込み、鉛直先進導坑の底部において、コンクリート根固め5を施工する。図2は底部を根固めされた中心軸シャフトであり、地山1に設置した梁6によって前記中心軸シャフト4を鉛直に保持する。
【0016】図3は、円錐体の岩盤切削機本体7を予め掘削された穴の底部に位置する露出した地山2に当接させ設置する手段、および前記岩盤切削機本体7の上方にそれを稼働するための反力を支持する反力受け材8を深礎側壁9に固定して設置する手段を示したものである。前記岩盤切削機本体7は中心軸シャフト4をガイドとして上下方向の移動および水平方向の回転を可能とし、また、前記反力受け材8は前記中心軸シャフト4をガイドとして任意の位置に設定可能としている。
【0017】反力受け材8の構造は、例えば、図4の平面図に示すように、正四辺形の4本の枠組梁10と2本の対角線梁11から成り立っている。前記反力受け材8を深礎側壁9に固定して設置するために、前記対角線梁11の両端にグリッパ装置12を配置する。2本の対角線梁11には、計4個のグリッパ装置12に内蔵したグリッパ部材13を突出させる開口部が形成されている。図5の反力受け材8の立面図に示すように、前記グリッパ部材13は、前記グリッパ装置12に内蔵してある油圧シリンダー等の駆動手段を操作することにより、突出または没入させることができる。前記グリッパ部材13に作用する荷重および変位量を自動制御することにより、前記反力受け材8のセンターリング作業をはじめ、所定の反力を得るのに十分な反力受け材として使用することができる。
【0018】図6は、円錐体の岩盤切削機本体7の平面図であり、外側表面に位置する各母線に沿って所定の間隔で螺旋状に回転自在に配設された複数の円盤型剥離破砕刃14を示したものである。その中、前記岩盤切削機本体7の中心軸シャフト4に最も近い円盤型剥離破砕刃14が、図7の立面図に示すように、地山2に当接し、岩盤を剥離破砕する。その後、前記岩盤切削機本体7の下方への推進にともなって、前記円盤型剥離破砕刃14がつぎつぎと地山2に当接し、地山2に自由面の卓越した円錐型で階段状の溝が形成される。
【0019】図8に示すように、個々の円盤型剥離破砕刃14が地山2に当接する位置、すなわち切り込み幅aは、地山2の岩盤の種類によって、先行する溝の端部から十数mm〜数十mmとなるように設定する。片側を先鋭に形成された円盤型剥離破砕刃14の刃先がφなる逃げ角を取って岩盤表面に切り込んだとき、刃先の貫入力は、該円盤型剥離破砕刃14の地山2に当接する位置より先行している溝の端部までの距離である切り込み幅aに対応する岩盤を、先行する溝の内側に引き剥がす引張り力として作用する。地山2の切り込み幅aと切り込み深さbの比率a/bは、岩盤の種類によってことなり、軟質な岩盤では1程度、硬質な岩盤では1以下にとることができる。
【0020】このように、岩盤の剥離破砕に必要な押圧力は岩石の引張り強度に依存するので、深礎ボーリングマシンのように岩石の圧縮強度に依存する岩盤の圧壊破砕に要する押圧力の十数分の一程度である。その結果、円錐体の岩盤切削機本体7を稼働するのに必要な推進力および回転力を軽減することができ、単位切削仕事当たりの掘削土量を増加させることができる。従って、円盤型剥離破砕刃14の耐摩耗性は向上し、また前記円盤型剥離破砕刃14のベアリングの負荷容量を小さくすることができ、直径も小さくすることができるので、数多くの該円盤型剥離破砕刃14の取り付けに空間的制約の多い狭隘な円錐体の岩盤切削機本体7の表面にも適切に配置することができる。
【0021】円錐体の岩盤切削機本体7の最外周部位に設置される円盤型剥離破砕刃であるゲージカッタ15は、前記岩盤切削機本体7の上部に位置する筒体16と深礎側壁9との間の摩擦抵抗を軽減するために、切り込み幅aを大きくする必要があり、図6に示すように、該ゲージカッタ15の直径を他の円盤型剥離破砕刃14の直径より大きくする。
【0022】図9は、円錐体の岩盤切削機本体7と反力受け材8との間の連接構造の横断面図を示したものである。前記連接構造は、前記岩盤切削機本体7を稼働させるための推進手段であるピストンシリンダー17と回転手段である駆動モータ18およびスプロケット22から成り立っており、それぞれ、深礎側壁9にグリッパ部材13によって水平面上にX−XおよびY−Y方向に固定された前記反力受け材8に連接されている。前記ピストンシリンダー17は、前記反力受け材8の端部4カ所に設置され、前記駆動モータ18およびスプロケット22はR−R方向に反力受け材の枠組み梁10上の計4カ所に設置されている。
【0023】円錐体の岩盤切削機本体7を稼働させるための推進手段であるピストンシリンダー17は、図10のX−XおよびY−Y断面図に示すように、前記岩盤切削機本体7の筒体16の最上部に設置した円環状の溝型レール19を転動走行する片側支持の車輪20を経て推進力を伝達する。ピストンロッド21のストロークは約1メートルとし、深礎の掘進長1リングを達成できるものとする。計4個のピストンシリンダーは相互に自動制御され、前記岩盤切削機本体7が中心軸シャフト4に沿って鉛直方向に正確に移動できるように、許容推進力の範囲内で変位制御される。
【0024】円錐体の岩盤切削機本体7を稼働させるための回転手段である駆動モータ18は、図11のR−R断面図に示すように、前記岩盤切削機本体7の筒体16の内側を転動するスプロケット22を経て回転力を伝達する。計4台の前記駆動モータ18は、それぞれの回転速度が同一となるように同期制御される。前記岩盤切削機本体7の回転軸が常に鉛直となるように、前記スプロケット22の位置を調整しておくことが必要である。
【0025】中心軸シャフト4に沿って、円錐体の岩盤切削機本体7が下方にピストンシリンダー17の1ストロークに相当する距離だけ地山2を掘進した後、次のストロークを掘進する作業を繰り返し実施するために、反力受け材8を逐次下方に固定していく動作を自動制御するシステムを構築する必要がある。例えば、最初の掘削が完了した後、前記反力受け材8のグリッパ装置12に内蔵したグリッパ部材13を没入させ、次にピストンロッド21を前記ピストンシリンダー17に没入させると同時に該反力受け材8を下方に移動させ、所定の距離進んだことを確認し、再び深礎側面9に該反力受け材8を水平面上に精度高く固定する動作を完全自動化することができる。
【0026】円盤型剥離破砕刃14によって切削された岩屑は、ベントナイト溶液に混入してスラリーとして地上に排出させる。そのために、中空鋼管で製作された中心軸シャフト4をベントナイト溶液の供給パイプとして使用し、図12の岩盤掘削機を用いた深礎工法における岩屑排出システムに示すように、ベントナイト溶液を供給する供給ポンプ23から供給弁24を経て、ベントナイト溶液が前記中心軸シャフト4を流下し、鉛直先進導坑3を上昇するため、コンクリート根固め5の上部近傍よりベントナイト溶液を供給するための複数の開口25を該中心軸シャフト4に設置する。
【0027】中心軸シャフト4の底部に位置する開口25より供給されるベントナイト溶液は鉛直先進導坑3を図12に示す矢印方向に上昇する。その後、円錐体の岩盤切削機本体7の底部より排出される岩屑と混入し、スラリーとして該岩盤切削機本体7内側の下方に向かって鉛直方向に設置された2本のスラリーホース26によって矢印方向に吸い取られる。さらに、スラリーは反力受け材8の上部Y−Y方向に設置した2台のスラリーポンプ27、および合流排出弁28を経て地上に設置した排出ポンプ29より排出される。排出されたスラリーは、岩屑とベントナイト溶液に分離され、含泥率を調整して精製されたベントナイト溶液は、再度供給ポンプ23を経て循環して使用される。
【0028】2本のスラリーホース26の吸い込み口を常に円錐体の岩盤切削機本体7内側で底部の定位置に設置するため、図10に示すように、前記岩盤切削機本体7とともに移動する片側支持の車輪20の支持枠にX−X方向に設置したスラリーホース固定梁30でスラリーホース26を支持する。従って、前記スラリーホース固定梁30と吸い込み口までの該スラリーホース26の長さを常に一定に保持することができるので、該スラリーホース26の吸い込み口を定位置に固定することができる。
【0029】円盤型剥離破砕刃14の摩耗劣化にともなう部品交換作業を実施するためには、反力受け材8、円錐体の岩盤切削機本体7およびスラリーポンプ27を含む排土設備等から構成される岩盤掘削機を前記反力受け材8に設置した4カ所の把持装置31をワイヤロープ等で結合し、クレーン等で地上へ回収する必要がある。そのためには、全ての構成部品が一体構造となる必要があり、図10に示すように、とくに反力受け材8に固定されたピストンシリンダー17、ピストンロッド21、片側支持の車輪20と円錐体の岩盤切削機本体7との連接のため、車輪が転動走行するレールとして円環状の溝型レール19を採用し、前記岩盤切削機本体を吊り上げるときのフックの役目をもたせることとした。
【0030】図13は岩盤掘削機を用いた深礎工法に対する総合自動制御システムのフローチャートを示したものである。まず、反力受け材8、円錐体の岩盤切削機本体7およびスラリーポンプ27を含む排土設備等から構成される岩盤掘削機をクレーン等で吊り上げ、中心軸シャフト4に沿って、予め掘削された穴の底部に設置する(S1)。
【0031】岩盤掘削機を設置した後、反力受け材8に固定した4個のピストンシリンダー17に内蔵したピストンロッド21の変位を調整し、前記反力受け材8を水平に保持する(S2)。そのために、該反力受け材8に設置したX−XおよびY−Y方向の水準を計測する2個の傾斜センサ32を使用し、該反力受け材8の水準調整を行う。この作業を繰り返し実施し、該反力受け材8の水準度が許容範囲に収まるまで自動制御する。その後、前記反力受け材8の端部に設置したグリッパ装置12に内蔵したグリッパ部材13の位置を調整し、該反力受け材8のセンタリングを行うと同時に所定の推力に達するまで油圧を載荷し、深礎側壁9に該反力受け材8を固定する。
【0032】次に、反力受け材8に固定した4個の駆動モータ18の出力軸であるスプロケット22の回転軸の位置を調整し、またそれぞれの回転速度を同期させて、円錐体の岩盤切削機本体7の回転軸が鉛直であることを確認する必要がある(S3)。そのために、前記岩盤切削機本体7が回転しているとき、スラリーホース固定梁30に設置したX−X方向の水準を計測する傾斜センサ32を使用し、該岩盤切削機本体7の水準調整を行う。この作業を繰り返し実施し、該岩盤切削機本体7の回転中の水準度が許容範囲に収まるまで自動制御する。
【0033】円盤型剥離破砕刃14によって破砕された岩屑を地上に排出するために、ベントナイト溶液と岩屑を混合させてスラリー輸送するとき、円錐体の岩盤切削機本体7の内側に発生する岩屑を含んだベントナイト溶液であるスラリーの水面が片側支持の車輪20やスプロケット22の転動部位に達しないように、ベントナイト溶液の単位時間当たりの供給量とスラリーとして排出される単位時間当たりの排土量を等しくし、水位を一定にするための自動制御が必要である(S4)。
【0034】掘削開始に当たっては、油圧ユニットから供給される油圧をサーボ弁によって自動制御できるシステムを使用し、対象掘削岩盤の特性に対応させて、ピストンロッド21の変位および荷重制御をはじめ駆動モータ18の回転速度制御を行う(S5)。単位時間当たりに発生する岩屑の量は、スラリーの含泥率センサで計測されるので、スラリーホースの含泥率調整(S6)を実施することにより、適切な含泥率を保持するために前記ピストンロッド21の変位速度を変位センサやロードセンサによって許容範囲内の推進力において自動制御し、また前記駆動モータ18の回転速度を回転トルクセンサによって許容範囲内の回転力において自動制御することができる。
【0035】ピストンロッド21の変位が1リングに達したとき、1ストロークの掘削は終了する(S7)。このとき、反力受け材8のグリッパ部材13をグリッパ装置12に引き込んだ後、次のステップに向かって、深礎側壁9に改めて前記反力受け材8を固定して、同様の作業を繰り返していく自動制御へと自動的に切り替えていくことができる。また、円盤型剥離破砕刃14が摩耗劣化し、部品交換する時期に達したとき、改めて岩盤掘削機をクレーン等で吊り上げて、部品を交換した後、最初から岩盤掘削機を中心軸シャフト4に沿って設置し、同様の作業を繰り返し実施していくための自動制御装置へと移行することができる。深礎建設の全工程を終了することをもって掘削完了とする(S8)。
【0036】
【発明の効果】以上説明したように、本発明における円錐体の岩盤切削機本体7は、岩盤の剥離破砕に必要な押圧力が、岩石の引張り強度に依存し、岩石の圧縮強度に依存する従来の深礎ボーリングマシンにおける岩盤の圧壊破砕に要する押圧力の十数分の一程度であることに着目してなされたものである。これに基づいて、請求項1及び2に記載の発明では、鉛直先進導坑3の掘削により岩盤に自由面を構築し、その後多数の円盤型剥離破砕刃14を配設した円錐体の岩盤切削機本体7に、反力受け材8より推進力と回転動力を与え、中心軸シャフト4に沿って鉛直下方へ回転掘削させるものであり、主として、岩盤の剥離破砕に重点をおいており、単位切削仕事当たりの掘削土量である作業能力を増加させることが可能である。さらに、破砕刃の耐摩耗性能を一段と向上させている。
【0037】請求項3に記載の発明では、岩盤掘削機を用いた深礎工法に対する総合自動制御システムを構築することにより、従来の人力施工に伴う苦渋作業や労働災害を軽減するための掘削効率の高い新しい機械化施工技術の開発が可能となる。予めダウンザホールハンマで大口径の鉛直先進導坑3を掘削し、その中に中心軸シャフト4を建て込み、その底部をコンクリート根固めする。その後、反力受け材8の深礎側壁9への固定作業、円錐体の岩盤切削機本体7の設営作業、および岩屑の排出作業システムの構築を自動制御によって準備完了する。掘削開始に当たっては、ピストンロッド21の変位および荷重制御、駆動モータ18の回転速度制御方針をスラリーの基準含泥率をベースに実施していくことにより、より安定した掘削作業が可能であり、1リング毎の繰り返し掘削作業を無人化施工とすることを保証するものである。
【図面の簡単な説明】
【図1】鉛直先進導坑
【図2】中心軸シャフトの根固め工
【図3】岩盤切削機おおび反力受け材の建て込み
【図4】反力受け材の平面図
【図5】反力受け材の立面図
【図6】円錐体の岩盤切削機平面図
【図7】円錐体の岩盤切削機立面図
【図8】片側支持の円盤型剥離破砕刃の側面図および岩盤の切削状況
【図9】円錐体の岩盤切削機本体と反力受け材の連接構造(横断面図)
【図10】円錐体の岩盤切削機本体と反力受け材の連接構造(X−XおよびY−Y断面図)
【図11】円錐体の岩盤切削機本体と反力受け材の連接構造(R−R断面図)
【図12】岩盤掘削機を用いた深礎工法
【図13】総合自動制御システムのフローチャート
【符号の説明】
1 地山
2 露出した地山
3 鉛直先進導坑
4 中心軸シャフト
5 コンクリート根固め
6 梁
7 円錐体の岩盤切削機本体
8 反力受け材
9 深礎側壁
10反力受け材の枠組み梁
11反力受け材の対角線梁
12グリッパ装置
13グリッパ部材
14円盤型剥離破砕刃
15ゲージカッタ
16岩盤切削機筒体
17ピストンシリンダー
18駆動モータ
19溝型レール
20片側支持の車輪
21ピストンロッド
22スプロケット
23供給ポンプ
24供給弁
25開口
26スラリーホース
27スラリーポンプ
28合流排出弁
29排出ポンプ
30スラリーホース固定梁
31把持装置
32傾斜センサ
a切り込み幅
b切り込み深さ
φ円盤型剥離破砕刃の逃げ角
[0001]
BACKGROUND OF THE INVENTION The present invention relates to a disk-shaped peeling and crushing blade, which is rotatably mounted on a cone-shaped rock cutting machine, and in which the crushing blade abuts against the ground and rolls. The present invention relates to a deep foundation method using a rock excavator that crushes a mountain.
[0002]
2. Description of the Related Art The deep foundation method is an effective means for bridge foundation, pile foundation work and shaft excavation work, but the conventional deep foundation method is often performed by manual work, and it is difficult work in narrow holes. In addition, the development of safer mechanized construction technology is an important issue that needs to be resolved as soon as possible, because of the dangers of falling objects, collapse of mine walls, generation of toxic gases, and exposure to oxygen deficiency. It has been.
Conventionally, the manual excavation technique for excavating a deep foundation in hard rock has been the mainstream. However, in recent years, after drilling with an automated shaft drilling machine, the rock is blasted using blasting of dynamite or the like. Although the construction method was adopted, the pollution such as vibration and noise was large, and had a great influence on the local residents and existing structures.
[0004] For a huge boulder that has appeared during the deep foundation work, a method of statically crushing by filling a hole drilled with a drilling machine with a static crushing material such as an expansive material, or placing a pointing arrow in a boring hole There is a rock splitting method that can be penetrated by hydraulic pressure, but it has the drawback of small scale and low working capacity.
[0005] In the excavation of large-diameter shafts, a method of crushing rock using a large hydraulic hammer or breaker is employed. However, the efficiency is low, and hearing loss due to noise, pneumoconiosis due to dust, white wax disease due to vibration, etc. Have caused occupational accidents. The excavation method using a clamshell bucket or a grab bucket or the Venoto method using a hammer grab are effective for soft rock, but are not suitable for hard rock.
In a deep corner boring machine for excavating a deep foundation by moving a tunnel boring machine dedicated to rock excavation vertically downward, a large number of disk-type crushing and crushing blades are rotatable on a circular face for excavating a face. The disk-type crushing and crushing blade receives a large propulsion force and crushes the rock in a streak shape along a circular orbit by rotating the circular face disk in contact with the ground. A crushing crushing method has been devised which causes adjacent tensile crushing between a crushing groove formed on a circular orbit of a mold crushing crushing blade. However, this method requires a large propulsive force and a rotating force, and has a disadvantage that not only the crushing efficiency, which is a work capability, is small, but also the wear life of the disk-type crushing and crushing blade is short and the frequency of replacement is high.
[0007]
According to the prior art described above, it is necessary to switch to the mechanized excavation method in order to reduce labor-related work due to labor and labor and noise and vibration caused by the blasting method. The static crushed materials and hydraulic rock splitting method, hydraulic hammers and breakers developed for that purpose have the problem that the working capacity is extremely low. In addition, bucket-type excavation methods and Benoto methods developed with the aim of improving work performance have relatively low work efficiency. Not only can hard rock be excavated, but also damage due to wear of the cutting edge of the cutter. It is necessary to solve the problem of extreme increase. Further, when a blasting method using a shaft drilling machine is used, there is a problem that rocks around a predetermined deep foundation section are additionally crushed.
[0008] The disk-type crushing and crushing blade used for the deep foundation boring machine for crushing and crushing the cutting face not only requires a large propulsive force and a rotating force but also requires the disk-type crushing and crushing blade. There is a problem that the wear life of the rock is short and the amount of excavated soil per unit work is small as the rock crushing efficiency.
In view of the above-mentioned problems, in order to further improve the working ability, the present invention arranges a large number of disk-type peeling and crushing blades in a cone rock cutting machine, and as a result, the propulsion force and the rotational force It is an object of the present invention to provide a deep foundation method using a rock excavator suitable for improving work efficiency by reducing the amount of wear, preventing wear deterioration, and increasing the amount of excavated soil per unit cutting work.
[0010]
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems and to achieve the object of the invention, a deep foundation method using a rock excavator that introduces a new mechanized construction technique is developed. In this method, drilling is performed to a predetermined depth by a large-diameter down-the-hole hammer at a position where a deep foundation is to be constructed in advance, thereby constructing a vertical advanced shaft. A central shaft is erected in the bored hole, and the central shaft is reinforced with concrete at the bottom of the vertical shaft. A cone-shaped rock cutting machine main body that moves vertically along the central axis shaft takes a reaction force from a reaction force receiving material provided with a gripper device constructed above and moves the rock cutting machine body downward. It has a propulsion means for propelling and a rotating means for rotating about the central shaft, and is a deep foundation method using a rock excavator for cutting the rock (claim 1).
Generally, the strength of a rock is determined by the magnitude of the compressive strength, shear strength and tensile strength of a rock. The tensile strength of rock is about one tenth of the compressive strength.In the present invention, many cracks are generated in the rock, the free surface is increased, and the peeling and fracture of the rock which induces the tensile fracture of the rock is prevented. The main means. A cone rock cutting machine in which an inner surface of an end face excavator having two circular free surfaces formed in advance by boring is peeled and crushed, and subsequently, a large number of disk-shaped peeling and crushing blades arranged spirally at predetermined intervals are mounted. Rotate around the central axis shaft with a predetermined propulsion force, the disc-shaped peeling and crushing blade comes into contact with the ground formed of a conical and stepped free surface which is sequentially exposed, and the inner part thereof is peeled and crushed. The excavation is advanced downward to form a deep foundation (claim 2).
As a result, the cutting force acting on the peeling and crushing blade is not reduced, so that the ground is not excessively damaged, and the disk type peeling and crushing blade is caused to undergo impact wear and scratch wear due to the impact force. In addition, the wear deterioration of the crushing blade can be reduced as much as possible. In addition, since the rotating torque required to rotate the cutting drum is also reduced, not only is the working capacity, which is the amount of cutting soil per unit work, further improved, but also the noise and vibration generated by the rock cutting machine body is within an allowable value. It is a suitable means that can be suppressed to
According to the deep foundation method of the present invention, there is provided a construction means for securing a central shaft to the bottom of a hole bored by a large-diameter down-the-hole hammer, and a reaction force receiving material having an automatic control system introduced to a gripper inner wall. The installation means to be fixed by the device, the cone rock cutting machine body takes propulsion and rotational reaction force from the reaction force receiving material, and propels the rock cutting machine body downward by a predetermined distance along the central axis shaft. Excavating means for rotating and excavating the lower side thereof and automatically controlling the repetition process, and excavated debris mixed with bentonite solution supplied from an opening provided at the lowermost portion of the central shaft, and It is characterized by comprising a soil discharging means that automatically controls the process of discharging the slurry to the ground via the slurry pump installed on the force receiving material ( Motomeko 3).
[0014]
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows that a hole for installing a cone rock cutting machine body is excavated in advance in a ground 1 where a deep foundation is to be constructed, and a large diameter down-the-hole hammer is used for boring to a predetermined depth in an exposed bottom ground 2. The vertical advanced shaft 3 constructed by performing the above is shown.
A central shaft 4 made of a hollow steel pipe having a predetermined length is erected in the vertical advanced shaft 3, and a concrete foundation 5 is installed at the bottom of the vertical advanced shaft. FIG. 2 shows a central shaft whose root is solidified. The central shaft 4 is held vertically by a beam 6 installed on the ground 1.
FIG. 3 shows means for placing the cone-shaped rock cutting machine body 7 in contact with the exposed ground 2 located at the bottom of the pre-drilled hole, and displacing it above the rock cutting machine body 7. 2 shows a means for fixing and installing a reaction force receiving material 8 for supporting a reaction force for operating the deep foundation wall 9. The rock cutting machine main body 7 can move vertically and rotate in the horizontal direction using the central shaft 4 as a guide, and the reaction force receiving member 8 can be set at an arbitrary position using the central shaft 4 as a guide. And
As shown in the plan view of FIG. 4, for example, the structure of the reaction force receiving member 8 is composed of four regular frame-shaped four frame beams 10 and two diagonal beams 11. In order to fix and install the reaction force receiving member 8 on the deep foundation side wall 9, gripper devices 12 are arranged at both ends of the diagonal beam 11. The two diagonal beams 11 are formed with openings for projecting the gripper members 13 incorporated in the four gripper devices 12 in total. As shown in the elevation view of the reaction force receiving member 8 in FIG. 5, the gripper member 13 can be protruded or retracted by operating a driving means such as a hydraulic cylinder built in the gripper device 12. it can. By automatically controlling the load and the amount of displacement acting on the gripper member 13, the centering work of the reaction force receiving member 8 can be used as a reaction force receiving member sufficient to obtain a predetermined reaction force. it can.
FIG. 6 is a plan view of the cone-shaped rock cutting machine main body 7, and includes a plurality of disk-shaped exfoliators helically rotatably arranged at predetermined intervals along respective generatrixes located on the outer surface. 1 shows a crushing blade 14. Among them, the disk-type peeling and crushing blade 14 closest to the central shaft 4 of the rock cutting machine body 7 comes into contact with the ground 2 as shown in the elevation view of FIG. Thereafter, as the rock cutting machine body 7 is propelled downward, the disc-shaped peeling and crushing blade 14 comes into contact with the ground 2 one after another, and the ground 2 has an excellent conical and step-shaped groove with a free surface. Is formed.
As shown in FIG. 8, the position at which each of the disk-type peeling and crushing blades 14 abuts on the ground 2, that is, the cut width a, is 10 degrees from the end of the preceding groove depending on the type of the bedrock of the ground 2. It is set to be several mm to several tens mm. When the cutting edge of the disk-type peeling and crushing blade 14 having a sharp edge on one side cuts into the rock surface at a clearance angle of φ, the penetration force of the blade comes into contact with the ground 2 of the disk-type peeling and crushing blade 14. The rock corresponding to the cut width a, which is the distance from the position to the end of the preceding groove, acts as a pulling force to peel off the rock inside the preceding groove. The ratio a / b of the cut width a and the cut depth b of the ground 2 differs depending on the type of the rock, and can be about 1 for soft rock and 1 or less for hard rock.
As described above, the pressing force required for the separation and crushing of the rock depends on the tensile strength of the rock. Therefore, as in the case of a deep foundation boring machine, the pressing force required for the crushing and crushing of the rock which depends on the compressive strength of the rock. It is about a fraction of a second. As a result, it is possible to reduce the propulsive force and the rotational force required to operate the cone-shaped rock cutting machine body 7, and to increase the amount of excavated soil per unit cutting work. Therefore, the wear resistance of the disk-type peeling and crushing blade 14 is improved, and the load capacity of the bearing of the disk-type peeling and crushing blade 14 can be reduced, and the diameter can also be reduced. The peeling and crushing blade 14 can be appropriately arranged on the surface of the rock cutting machine main body 7 having a narrow conical shape with many spatial restrictions for mounting.
A gauge cutter 15, which is a disc-shaped peeling and crushing blade installed at the outermost periphery of the cone-shaped rock cutting machine main body 7, comprises a cylindrical body 16 and a deep foundation side wall 9 located above the rock cutting machine main body 7. In order to reduce the frictional resistance between them, it is necessary to increase the cut width a. As shown in FIG. 6, the diameter of the gauge cutter 15 is made larger than the diameter of the other disk-type peeling and crushing blade 14.
FIG. 9 is a cross-sectional view of a connecting structure between the cone-shaped rock cutting machine main body 7 and the reaction force receiving member 8. The connecting structure is composed of a piston cylinder 17 which is a propulsion means for operating the rock cutting machine main body 7, a drive motor 18 which is a rotating means, and a sprocket 22. It is connected to the reaction force receiving member 8 fixed on the horizontal plane in the XX and YY directions. The piston cylinder 17 is installed at four places at the end of the reaction force receiving member 8, and the drive motor 18 and the sprocket 22 are installed at a total of four places on the frame 10 of the reaction force receiving material in the RR direction. ing.
The piston cylinder 17 which is a propulsion means for operating the cone-shaped rock cutting machine main body 7 is provided with a cylinder of the rock cutting machine main body 7 as shown in a sectional view taken along line XX and YY of FIG. Propulsion force is transmitted through a single-sided support wheel 20 that rolls and runs on an annular grooved rail 19 installed on the uppermost part of the body 16. It is assumed that the stroke of the piston rod 21 is about 1 meter, and that a digging length 1 ring of a deep foundation can be achieved. A total of four piston cylinders are automatically controlled with each other, and the displacement is controlled within a range of allowable propulsion so that the rock cutting machine main body 7 can move accurately in the vertical direction along the central shaft 4.
The drive motor 18 which is a rotating means for operating the cone-shaped rock cutting machine main body 7 is provided inside the cylindrical body 16 of the rock cutting machine main body 7 as shown in the RR sectional view of FIG. The rotational force is transmitted through a sprocket 22 that rolls. The four drive motors 18 are controlled synchronously so that their rotational speeds are the same. It is necessary to adjust the position of the sprocket 22 so that the rotation axis of the rock cutting machine body 7 is always vertical.
After the cone rock cutting machine body 7 digs down the ground 2 along the central shaft 4 by a distance corresponding to one stroke of the piston cylinder 17, the work of digging for the next stroke is repeated. In order to implement, it is necessary to construct a system for automatically controlling the operation of sequentially fixing the reaction force receiving member 8 downward. For example, after the first excavation is completed, the gripper member 13 built in the gripper device 12 of the reaction force receiving material 8 is immersed, and then the piston rod 21 is immersed in the piston cylinder 17 and at the same time, the reaction force receiving material is 8 is moved downward, it is confirmed that it has advanced a predetermined distance, and the operation of fixing the reaction force receiving member 8 on the deep foundation side 9 with high accuracy on a horizontal plane can be completely automated.
The debris cut by the disk-type peeling and crushing blade 14 is mixed into a bentonite solution and discharged as slurry to the ground. For this purpose, the central shaft 4 made of a hollow steel pipe is used as a supply pipe for the bentonite solution, and the bentonite solution is supplied as shown in the debris discharge system in the deep foundation method using the rock excavator in FIG. A plurality of openings for supplying the bentonite solution from near the upper part of the concrete compaction 5 in order to allow the bentonite solution to flow down the central shaft 4 from the supply pump 23 through the supply valve 24 and to ascend the vertical advanced shaft 3. 25 is mounted on the central shaft 4.
The bentonite solution supplied from the opening 25 located at the bottom of the central shaft 4 rises in the vertical shaft 3 in the direction of the arrow shown in FIG. Thereafter, it is mixed with debris discharged from the bottom of the rock cutting machine body 7 in the form of a cone, and is turned into an arrow by two slurry hoses 26 installed vertically downward as slurry inside the rock cutting machine body 7. Sucked in the direction. Further, the slurry is discharged from two slurry pumps 27 installed in the upper Y-Y direction of the reaction force receiving member 8 and a discharge pump 29 installed on the ground via a merge discharge valve 28. The discharged slurry is separated into debris and bentonite solution, and the bentonite solution purified by adjusting the mud content is circulated again through the supply pump 23 for use.
In order to always install the suction ports of the two slurry hoses 26 at the fixed positions on the bottom inside the cone-shaped rock cutting machine body 7, one side moving together with the rock cutting machine body 7 as shown in FIG. A slurry hose 26 is supported by a slurry hose fixing beam 30 installed in the support frame of the supporting wheel 20 in the XX direction. Therefore, the length of the slurry hose 26 between the slurry hose fixing beam 30 and the suction port can be kept constant, so that the suction port of the slurry hose 26 can be fixed at a fixed position.
In order to carry out the part replacement work accompanying the deterioration of the wear of the disk-type peeling and crushing blade 14, the apparatus comprises a reaction force receiving material 8, a cone-shaped rock cutting machine main body 7, a soil discharging facility including a slurry pump 27, and the like. It is necessary to connect the rocking excavators to be mounted on the reaction force receiving member 8 with four gripping devices 31 by wire ropes or the like and recover them to the ground by a crane or the like. For this purpose, all the components must be integrated, and as shown in FIG. 10, a piston cylinder 17, a piston rod 21, a wheel 20 supported on one side, and a cone In order to connect with the rock cutting machine main body 7, an annular groove-shaped rail 19 is adopted as a rail on which wheels roll and run, and a role of a hook for lifting the rock cutting machine main body is adopted.
FIG. 13 shows a flowchart of an integrated automatic control system for the deep foundation method using a rock excavator. First, a rock excavator including a reaction force receiving material 8, a cone-shaped rock cutting machine body 7, and a soil discharging facility including a slurry pump 27 is lifted by a crane or the like, and excavated in advance along the central shaft 4. It is installed at the bottom of the hole (S1).
After the rock excavator is installed, the displacement of the piston rods 21 built in the four piston cylinders 17 fixed to the reaction force receiving material 8 is adjusted, and the reaction force receiving material 8 is held horizontally (S2). ). For this purpose, the level of the reaction force receiving member 8 is adjusted using two inclination sensors 32 installed on the reaction force receiving member 8 and measuring the levels in the XX and YY directions. This operation is repeatedly performed, and automatic control is performed until the level of the reaction force receiving member 8 falls within an allowable range. Thereafter, the position of the gripper member 13 built in the gripper device 12 installed at the end of the reaction force receiving material 8 is adjusted, and the centering of the reaction force receiving material 8 is performed, and at the same time, the hydraulic pressure is applied until a predetermined thrust is reached. Then, the reaction force receiving member 8 is fixed to the deep foundation side wall 9.
Next, the position of the rotation shaft of the sprocket 22, which is the output shaft of the four drive motors 18 fixed to the reaction force receiving member 8, is adjusted, and the respective rotation speeds are synchronized to form a cone rock. It is necessary to confirm that the rotation axis of the cutting machine body 7 is vertical (S3). Therefore, when the rock cutting machine body 7 is rotating, the inclination sensor 32 that measures the level in the XX direction installed on the slurry hose fixing beam 30 is used to adjust the level of the rock cutting machine body 7. Do. This operation is repeatedly performed, and automatic control is performed until the level during rotation of the rock cutting machine main body 7 falls within an allowable range.
When the bentonite solution and the debris are mixed and the slurry is transported in order to discharge the debris crushed by the disk-type peeling and crushing blade 14 to the ground, the debris is generated inside the cone-shaped rock cutting machine body 7. The supply amount of the bentonite solution per unit time and the unit time per unit time discharged as slurry so that the water surface of the slurry as the bentonite solution containing debris does not reach the rolling portion of the wheel 20 or the sprocket 22 supported on one side. Automatic control for equalizing the earth removal amount and keeping the water level constant is required (S4).
At the start of excavation, a system capable of automatically controlling the hydraulic pressure supplied from the hydraulic unit by a servo valve is used, and the drive motor 18 including displacement and load control of the piston rod 21 is controlled in accordance with the characteristics of the target excavated rock. Is performed (S5). Since the amount of debris generated per unit time is measured by the slurry mud content sensor, the slurry mud content adjustment (S6) is performed to maintain an appropriate mud content. The displacement speed of the piston rod 21 is automatically controlled by a displacement sensor or a load sensor at a propulsive force within an allowable range, and the rotational speed of the drive motor 18 is automatically controlled by a rotational torque sensor at a rotational force within an allowable range. it can.
When the displacement of the piston rod 21 reaches one ring, one-stroke excavation ends (S7). At this time, after pulling the gripper member 13 of the reaction force receiving member 8 into the gripper device 12, the reaction force receiving member 8 is fixed to the deep foundation side wall 9 again in the next step, and the same operation is repeated. It can automatically switch to automatic control. Further, when the disc-type peeling and crushing blade 14 wears and deteriorates, and it is time to replace parts, the rock excavator is lifted again by a crane or the like, and the parts are replaced. Along with the automatic control device to repeat the same work. Excavation is completed when all steps of the deep foundation construction are completed (S8).
[0036]
As described above, in the cone rock cutting machine body 7 according to the present invention, the pressing force required for the separation and crushing of the rock depends on the tensile strength of the rock and on the compressive strength of the rock. It was made by focusing on the fact that the pressing force required for crushing and crushing rock in a conventional deep foundation boring machine is about one-tenth of the pressing force. Based on this, in the invention according to claims 1 and 2, rock cutting of a cone in which a free surface is constructed on the rock by excavating the vertical advanced shaft 3 and then a number of disc-shaped peeling and crushing blades 14 are disposed. The propulsion force and the rotational power are given to the machine body 7 from the reaction force receiving member 8 and the excavation is performed vertically downward along the central shaft 4. The emphasis is mainly on the separation and crushing of the bedrock. It is possible to increase the work capacity, which is the amount of excavated soil per cutting work. Further, the wear resistance of the crushing blade is further improved.
According to the third aspect of the present invention, by constructing a comprehensive automatic control system for a deep foundation method using a rock excavator, the excavation efficiency for reducing the labor and labor accidents associated with the conventional manual construction. The development of new mechanized construction technology with high quality is possible. A large-diameter vertical advanced shaft 3 is excavated in advance with a down-the-hole hammer, a central shaft 4 is erected therein, and the bottom thereof is reinforced with concrete. After that, the preparation of the work for fixing the reaction force receiving member 8 to the deep foundation side wall 9, the work for setting the cone rock cutting machine main body 7, and the construction of the work for discharging the debris are completed by automatic control. At the start of excavation, more stable excavation work is possible by implementing the displacement and load control of the piston rod 21 and the rotation speed control policy of the drive motor 18 based on the reference mud content of the slurry. This guarantees that the excavation work for each ring is unmanned.
[Brief description of the drawings]
[Fig. 1] Vertical advanced shaft [Fig. 2] Consolidation of center shaft [Fig. 3] Rock cutting machine and installation of reaction force receiving material [Fig. 4] Plan view of reaction force receiving material [Fig. 5] Elevation view of reaction force receiving material [Fig. 6] Top view of cone rock cutting machine [Fig. 7] Elevation view of cone rock cutting machine [Fig. 8] Side view of disk-type peeling and crushing blade supported on one side and rock [Fig. 9] Articulated structure of cone rock cutting machine body and reaction force receiving material (cross-sectional view)
FIG. 10 is a cross-sectional structure of a cone-shaped rock cutting machine body and a reaction force receiving member (cross-sectional view taken along line XX and YY).
FIG. 11 is an articulated structure of a cone rock cutting machine body and a reaction receiving member (a cross-sectional view taken along the line RR).
FIG. 12: Deep foundation method using a rock excavator [FIG. 13] Flow chart of an integrated automatic control system [Description of reference numerals]
DESCRIPTION OF SYMBOLS 1 Ground 2 Exposed ground 3 Vertical advanced shaft 4 Central shaft 5 Concrete rooting 6 Beam 7 Conical rock cutting machine main body 8 Reaction force receiving material 9 Deep foundation side wall 10 Reaction force receiving material frame beam 11 Diagonal beam of force receiving material 12 Gripper device 13 Gripper member 14 Disk-type peeling and crushing blade 15 Gauge cutter 16 Rock cutting machine cylinder 17 Piston cylinder 18 Drive motor 19 Groove rail 20 One-side supported wheel 21 Piston rod 22 Sprocket 23 Supply pump 24 supply valve 25 opening 26 slurry hose 27 slurry pump 28 merge discharge valve 29 discharge pump 30 slurry hose fixing beam 31 gripping device 32 inclination sensor a cut width b cut depth φ clearance angle of disk-type peeling and crushing blade

Claims (3)

岩盤に立坑等の深礎の掘削を行う岩盤掘削機であって、予め深礎を施工する位置で大口径のボーリングを行って最初の端面掘削盤を形成すると共に、ボーリングされた穴の底部に中心軸シャフトを根固めした状態で、前記中心軸シャフトに沿って上下移動する円錐体の岩盤切削機本体がその上部に構築された反力受け材から反力を取って、掘削時に前記岩盤切削機本体を下方に推進させる推進手段および前記中心軸シャフトの周りを回転運動させる回転手段を兼ね備えていることを特徴とする岩盤掘削機を用いた深礎工法。A rock excavator that excavates a deep foundation such as a shaft, etc., on a bedrock. In a state where the central shaft is fixed, a cone-shaped rock cutting machine body that moves up and down along the central shaft takes a reaction force from a reaction force receiving material constructed on the upper part thereof, and performs the rock cutting during excavation. A deep foundation method using a rock excavator, comprising a propulsion means for propelling the machine body downward and a rotating means for rotating around the central shaft. 請求項1記載の円錐体の岩盤切削機本体であって、ボーリングによる最初の円形の端面掘削盤を形成した後、つづいて該円錐体に所定の間隔で螺旋状に設置された多数の円盤型剥離破砕刃が順次地山に露出した円錐型で階段状の自由面に当接し、その内側部分を剥離破砕して、下方へ掘削していくことを特徴とする円錐体の岩盤切削機本体。The cone rock cutting machine body according to claim 1, wherein after forming the first circular end face excavator by boring, a plurality of disk dies are spirally installed at predetermined intervals in the cone. A cone-shaped rock cutting machine body characterized in that a peeling and crushing blade abuts on a conical, step-shaped free surface that is sequentially exposed to the ground, peels and crushes an inner portion thereof, and excavates downward. 請求項1記載の深礎工法であって、深礎を施工する位置に、大口径のボーリングを行うとともに、ボーリングされた穴の底部に請求項1記載の中心軸シャフトを根固めして設置する工程、および請求項1記載の反力受け材を掘削された深礎内面に設置する工程、前記反力受け材から反力を取って請求項2記載の円錐体の岩盤切削機本体を前記中心軸シャフトに沿って、下方に所定距離だけ推進させながら前記岩盤切削機本体を回転させ、その下側を掘削する掘削工程、および掘削された岩屑を前記中心軸シャフトの最下部に設置した開口より供給されるベントナイト溶液に混入して、前記反力受け材に設置したスラリーホースを経て地上へ搬出する排土工程に対する自動制御システムを備えることを特徴とする深礎工法。The deep foundation method according to claim 1, wherein a large-diameter boring is performed at a position where the deep foundation is to be constructed, and the center shaft according to claim 1 is solidified and installed at the bottom of the bored hole. 3. The step of installing the reaction force receiving material according to claim 1 on an inner surface of the excavated deep foundation, and taking a reaction force from the reaction force receiving material to move the cone rock cutting machine body according to claim 2 into the center. An excavation step of rotating the rock cutting machine body while propelling downward by a predetermined distance along the shaft shaft, excavating the lower side thereof, and opening the excavated debris at the bottom of the central shaft shaft. A deep foundation method, comprising: an automatic control system for a soil discharging step of mixing the bentonite solution supplied from the reactor with a slurry hose installed in the reaction force receiving material and carrying it out to the ground.
JP2003106486A 2003-04-10 2003-04-10 Deep foundation construction method using bedrock excavator Pending JP2004308362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106486A JP2004308362A (en) 2003-04-10 2003-04-10 Deep foundation construction method using bedrock excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106486A JP2004308362A (en) 2003-04-10 2003-04-10 Deep foundation construction method using bedrock excavator

Publications (1)

Publication Number Publication Date
JP2004308362A true JP2004308362A (en) 2004-11-04

Family

ID=33468660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106486A Pending JP2004308362A (en) 2003-04-10 2003-04-10 Deep foundation construction method using bedrock excavator

Country Status (1)

Country Link
JP (1) JP2004308362A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322217A (en) * 2011-07-23 2012-01-18 中铁十七局集团第五工程有限公司 Larger-diameter bored pile stratum section secondary pore-forming method
CN103256004A (en) * 2013-05-15 2013-08-21 河北建设勘察研究院有限公司 Downward driving slurry-free bed rock mechanical drilling construction method
CN105672877A (en) * 2016-03-24 2016-06-15 天津市勘察院 Underwater drilling rig used for direct circulation slag removal and hole forming technique
CN106339554A (en) * 2016-08-29 2017-01-18 浙江大学城市学院 Method for caculating displacement of nearby existing subway tunnel due to foundation pit excavation
CN112228091A (en) * 2020-12-14 2021-01-15 北京建工土木工程有限公司 Bottom sealing method for mechanical construction vertical shaft in tunnel
CN117703363A (en) * 2024-02-06 2024-03-15 山东三矿地质勘查有限公司 Drilling device for soft soil geological investigation
CN117703363B (en) * 2024-02-06 2024-04-30 山东三矿地质勘查有限公司 Drilling device for soft soil geological investigation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322217A (en) * 2011-07-23 2012-01-18 中铁十七局集团第五工程有限公司 Larger-diameter bored pile stratum section secondary pore-forming method
CN103256004A (en) * 2013-05-15 2013-08-21 河北建设勘察研究院有限公司 Downward driving slurry-free bed rock mechanical drilling construction method
CN105672877A (en) * 2016-03-24 2016-06-15 天津市勘察院 Underwater drilling rig used for direct circulation slag removal and hole forming technique
CN106339554A (en) * 2016-08-29 2017-01-18 浙江大学城市学院 Method for caculating displacement of nearby existing subway tunnel due to foundation pit excavation
CN106339554B (en) * 2016-08-29 2019-06-25 浙江大学城市学院 A kind of excavation of foundation pit causes the calculation method of neighbouring existing Subway Tunnel Displacement
CN112228091A (en) * 2020-12-14 2021-01-15 北京建工土木工程有限公司 Bottom sealing method for mechanical construction vertical shaft in tunnel
CN112228091B (en) * 2020-12-14 2021-03-12 北京建工土木工程有限公司 Bottom sealing method for mechanical construction vertical shaft in tunnel
CN117703363A (en) * 2024-02-06 2024-03-15 山东三矿地质勘查有限公司 Drilling device for soft soil geological investigation
CN117703363B (en) * 2024-02-06 2024-04-30 山东三矿地质勘查有限公司 Drilling device for soft soil geological investigation

Similar Documents

Publication Publication Date Title
US5056242A (en) Underground wall construction method and apparatus
CN109487843B (en) Underwater open caisson heading machine and construction method thereof
CN106149679A (en) The construction technology of diaphram wall built by slotter
CN108194022B (en) Dual-drive drilling machine
CN109763765B (en) Sinking swing type vertical shaft heading machine
CN111594041A (en) Rapid hole forming construction method for large-diameter deep hole pile foundation under karst geology
CN105780837B (en) The continuous method for digging and its excavating gear of diaphram wall
CN112196494B (en) Construction process and construction equipment for geological pipeline jointed between rock and soil layer
WO2018166522A1 (en) Construction device for revetment and construction method therefor
JP2004308362A (en) Deep foundation construction method using bedrock excavator
CN217712553U (en) Shaft drilling machine
CN112901074A (en) Rock-socketed drilling pore-forming process of marine large-diameter inclined pile rotary excavator
CN110331936B (en) Combined drilling bottom-expanding pile-planting construction method
CN117145383A (en) Rectangular slide-resistant pile mechanical hole forming method capable of reaming and synchronously drilling horizontal cantilever
JP4642367B2 (en) Deep foundation excavator for rock and deep foundation construction method using it
CN214886883U (en) Manual hole digging mechanical auxiliary device
CN114278227B (en) Construction method of lower pile casing of cast-in-place pile
CN113047843B (en) Soil body excavation device for large-diameter pile or vertical shaft hole forming
CN114277797A (en) Steel-pipe pile sinking device
JP3042002U (en) Underground ground improvement device with co-rotation prevention
CN205742317U (en) The continuous excavating gear of diaphram wall
CN113006067B (en) Bored concrete pile drilling sediment clearing device
CN220469800U (en) Long spiral high-pressure jet grouting staggered tooth drill bit
CN113152561B (en) Manual hole digging mechanical auxiliary device and using method
CN216586520U (en) A protect a section of thick bamboo for digging rig construction forms bored concrete pile soon

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Effective date: 20051220

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060606

Free format text: JAPANESE INTERMEDIATE CODE: A02