JP2005277542A - デジタル放送受信装置及び方法 - Google Patents

デジタル放送受信装置及び方法 Download PDF

Info

Publication number
JP2005277542A
JP2005277542A JP2004084637A JP2004084637A JP2005277542A JP 2005277542 A JP2005277542 A JP 2005277542A JP 2004084637 A JP2004084637 A JP 2004084637A JP 2004084637 A JP2004084637 A JP 2004084637A JP 2005277542 A JP2005277542 A JP 2005277542A
Authority
JP
Japan
Prior art keywords
constellation
signal
error rate
modulation
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004084637A
Other languages
English (en)
Inventor
Minoru Tomita
稔 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004084637A priority Critical patent/JP2005277542A/ja
Publication of JP2005277542A publication Critical patent/JP2005277542A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

【課題】 誤り率の評価を直交変調波を受信するだけで、ビット誤り率を判定することが可能なデジタル放送受信装置を提供する。
【解決手段】 受信したデジタル信号の周波数を中間周波数に変換して中間周波数信号を得る周波数変換回路3と、変換された中間周波数信号をベースバンド信号に直交復調する直交復調回路4と、直交復調したベースバンド信号を高速フーリエ変換処理して受信データを復調するOFDM復調手段5〜8と、復調した受信データの測定コンスタレーションと理論的コンスタレーションとの変調誤差比MERを算出すると共に、算出した変調誤差比に基づいて測定コンスタレーションが理論的コンスタレーションを中心とする所定同心円内であるか否かを判定してエラーフリー状態となるビット誤り率であるか否かを判定する誤り率判定手段10とを備えている。
【選択図】 図1

Description

本発明は、BSデジタル放送、CSデジタル放送、地上波デジタル放送等の直交周波数分割多重方式(OFDM方式)を使用したデジタル放送を受信するデジタル放送受信装置に関する。
この種のデジタル放送受信装置では、受信信号の誤り訂正を行うため、信号の受信品質がある程度以上であれば、全く同等の画質で表示され、これ以下になると、全く表示されなくなり、表示画面状の映像で、伝送路の状態や、受信機の状態を判定することは困難である。
このため、従来、デジタル放送の受信性能を評価するために、可変利得手段と直交復調手段と波形等価手段と符号識別手段とデータ変換手段と誤り訂正手段と、可変利得手段を制御する信号レベル検出手段と、波形等価手段の制御情報から入力状態を判断する波形等価評価手段と波形等価手段の出力信号分布を評価するコンスタレーション評価手段と、符号識別手段の入出力からS/Nを評価するS/N評価手段と、誤り訂正数から誤り率を求める誤り評価手段と、信号レベル検出手段、波形等価評価手段、コンスタレーション評価手段、S/N評価手段及び誤り率評価手段の出力を入力して総合的に評価する入力状態評価手段と、この入力状態評価手段の出力を表示する評価結果表示手段とを備えた直交変調波復調装置および入力評価方法が提案されている(例えば、特許文献1参照)。
特開平11−112592号公報(第1頁、図1)
しかしながら、上記特許文献1に記載された従来例にあっては、コンスタレーション評価手段で、波形等価手段が出力する波形等価された信号の分布から信号の有無を判断し、S/N比評価手段で、符号識別手段での符号識別の前後の信号の差からS/N比を求め、誤り率評価手段で、誤りを訂正した数から誤り率を求め、且つ誤り率から誤り訂正不可能な状態だったか否かを判断し、これら評価手段の評価結果に基づいて信号の有無と、各評価結果を表示することにより、データ出力が誤っている場合に、信号が無いのか、それ以外の部分が悪いのかの判定を容易に行うことができると共に、誤り率やS/N比、信号の分布状態などを表示することで、工場での検査や、フィールドでの保守を容易に行うことができるものであるが、誤り率は誤りを訂正した数から算出するので、送信側で送信した正規の送信信号と受信信号とを比較して真の誤り率を算出することができず、また、コンスタレーション評価手段では信号の有無を判断するために信号の分布を求めており、誤りの可能性の判断には使用しておらず、受信性能評価が甘くなるという未解決の課題がある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、誤り率の評価を直交変調波を受信するだけで、概略のビット誤り率を求めることが可能なデジタル放送受信装置を提供することを目的としている。
第1の発明は、OFDM変調されたデジタル放送信号を受信するデジタル放送受信装置において、受信した前記デジタル信号の周波数を中間周波数に変換して中間周波数信号を得る周波数変換手段と、該周波数変換手段で変換された中間周波数信号をベースバンド信号に直交復調する直交復調手段と、該直交復調手段で復調したベースバンド信号を高速フーリエ変換処理して受信データを復調するOFDM復調手段と、該OFDM復調手段で復調した受信データの測定コンスタレーションと理論的コンスタレーションとの変調誤差比を算出する変調誤差比算出手段と、該変調誤差比算出手段で算出した変調誤差比に基づいて前記測定コンスタレーションが理論的コンスタレーションを中心とする所定同心円内であるか否かを判定して、エラーフリー状態となるビット誤り率であるか否かを判定する誤り率判定手段とを備えている。
この第1の発明では、OFDM復調手段で復調した受信データの測定コンスタレーションを変調誤差比算出手段に供給して、測定コンスタレーションと理論的コンスタレーションとの変調誤差比を算出し、算出した変調誤差比が前記測定コンスタレーションが理論的コンスタレーションを中心とする所定同心円内であるか否かを判定して、エラーフリー状態のビット誤り率であるか否かを判定することにより、送信信号を使用することなく受信信号のみからビット誤り率の判断を行うことができる。
また、第2の発明は、上記第1の発明において、前記誤り率判定手段は、変調誤差比算出手段で算出した変調誤差比に基づいて、測定コンスタレーションが理論的コンスタレーションを中心にして最小コンスタレーション間隔の1/2の半径の判定円内に存在する場合には外符号及び内符号の2つの誤り訂正符号を復号することでエラーフリー状態となるビット誤り率であると判定し、前記測定コンスタレーションが前記判定円に外接すると共に、IQ軸に平行な辺を有する正方形内に属し且つ当該判定円内に属さない場合に、前記エラーフリー状態とならないビット誤り率であると判定するように構成されていることを特徴としている。
この第2の発明では、変調誤差比算出手段で算出した変調誤差比に基づいて、測定コンスタレーションが判定円内に存在すると判断した場合に、外符号及び内符号の2つの誤り訂正符号を復号することでエラーフリー状態となるビット誤り率であると判定するので、実際のビット誤り率より厳しい判定を行うことができる。
さらに、第3の発明は、上記第2の発明において、前記誤り率判定手段は、前記変調誤差比算出手段で算出した変調誤差比が、前記理論的コンスタレーションを中心にして最小コンスタレーション間隔の1/2の半径の判定円の円周点における変調誤差比以上であるときに、前記測定コンスタレーションが理論的コンスタレーションを中心にして最小コンスタレーション間隔の1/2の半径の判定円内にあると判断することを特徴としている。
この第3の発明では、測定した変調誤差比が判定円の円周点の変調誤差比以上であるときにエラーフリー状態となるビット誤り率であると判定するので、正確なビット誤り率判定を行うことができる。
さらにまた、第4の発明は、OFDM変調されたデジタル放送信号を受信するデジタル放送受信方法において、受信した前記デジタル信号の周波数を中間周波数に変換して中間周波数信号を得る周波数変換ステップと、該周波数変換ステップで変換された中間周波数信号をベースバンド信号に直交復調する直交復調ステップと、該直交復調ステップで復調したベースバンド信号を高速フーリエ変換処理して受信データを復調するOFDM復調ステップと、該OFDM復調ステップで復調した受信データの測定コンスタレーションと理論的コンスタレーションとの変調誤差比を算出する変調誤差比算出ステップと、該変調誤差比算出ステップで算出した変調誤差比に基づいて前記測定コンスタレーションが理論的コンスタレーションを中心とする所定同心円内であるか否かを判定して、エラーフリー状態となるビット誤り率であるか否かを判定する誤り率判定ステップとを備えている。
この第3の発明でも、前述した第1の発明と同様の作用効果を得ることができる。
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の一実施形態を示すブロック図であって、図中、1はデジタル放送波としてのOFDM(直交周波数分割多重変調)信号を受信する例えば移動車両に搭載されたデジタル放送受信装置である。
このデジタル放送受信装置RTは、受信アンテナ2を有し、この受信アンテナ2でデジタル放送波としてOFDM信号を受信する。
そして、受信アンテナ2で受信したOFDM信号は周波数変換回路3に供給される。この周波数変換回路3では、入力される無線周波数帯域のOFDM信号の周波数を中間周波数帯域まで周波数変換し、周波数変換した中間周波信号を直交復調回路4へ出力する。
この直交復調回路4は、周波数変換されたOFDM信号を直交復調して、ベースバンドのOFDM信号を生成し、生成したベースバンドのOFDM信号をA/D変換器5でデジタル信号に変換してから高速フーリエ変換器(FFT)6に供給する。この高速フーリエ変換器6では、時間領域のベースバンドのOFDM信号を、有効シンボル長のFFT演算範囲に対してFFT演算を行い、周波数領域のOFDM信号を生成する。生成された周波数領域のFODM信号はイコライザ7に供給され、このイコライザ7で、例えばパイロット信号を用いて、周波数領域のOFDM信号の位相等価及び振幅等価等を施すことで、伝送路の歪み成分の除去等を行って受信データとして受信処理装置9に出力する。
また、A/D変換器5でデジタル値に変換されたベースバンドのOFDM信号がシンボル同期回路8に供給されて、伝送モード及びガードインターバルのガードインターバル長を判定すると共に、OFDM信号の有効シンボル期間の開始位置及び終了位置を表すシンボルタイミング信号STs及びSTeとシステムクロック信号とを発生する。このシンボル同期回路8で発生されたシンボルタイミング信号STs及びSTeは高速フーリエ変換器6に供給されると共に、システムクロック信号はA/D変換器5にサンプリング信号として供給される。
ここで、A/D変換器5、高速フーリエ変換器6、イコライザ7及びシンボル同期回路8でOFDM復調手段を構成している。
また、イコライザ7から出力される受信信号は変調誤差比(MER:Modulation Error Ratio)を演算し、これに基づいてビット誤り率(BER:Bit Error Rate)が正常であるか異常であるかを判定するビット誤り率判定回路10に供給される。
このビット誤り率判定回路10は、例えばマイクロプロセッサユニットを含んで構成され、例えば図3のビット誤り判定処理を実行することにより、イコライザ7から入力される受信データに基づいて測定コンスタレーションの信号点位置と理論的コンスタレーションの信号点位置との変調誤差比MERを演算し、演算した変調誤差比MERに基づいてビット誤り率BERが正常であるか異常であるかを判定し、判定結果であるビット誤り率判定信号SBER を受信処理装置9に出力する。ここで、変調誤差比MERは、位相変調方式がQPSKであるものとしたときに、図2に示すように、理論的コンスタレーションの基準信号点のIQ座標上のベクトルSj =(Ij ,Qj )とその基準信号点からの測定コンスタレーションの信号点の誤差ベクトルdj =(δIj ,δQj )としたとき、下記(1)式の演算を行うことにより算出する。
Figure 2005277542
ビット誤り判定処理は、図3に示すように、先ず、ステップS1で、コンスタレーションの信号点が入力されたか否かを判定し、信号点が入力されていないときにはこれが入力されるまで待機し、信号点が入力されたときには、ステップS2に移行する。
このステップS2では、入力されたコンスタレーションの信号点がIQ座標の第1象限に存在するか否かを判定し、第1象限に存在しない場合には前記ステップS1に戻り、第1象限に存在する場合にはステップS3に移行する。
このステップS3では、前記(1)式における分母に相当する誤差ベクトルの二乗和(δIj 2+δQj 2)を算出し、算出した誤差ベクトルの二乗和をメモリの所定記憶領域に記憶してからステップS4に移行する。
このステップS4では、第1象限におけるコンスタレーションの取得信号点数を表す変数jをインクリメントしてからステップS5に移行し、変数jが設定数Nに達したか否かを判定し、変数jが設定数Nに達していないときには前記ステップS1に戻り、変数jが設定数Nに達したときにはステップS6に移行する。
このステップS6では、前記(1)式における分子に相当する理論的コンスタレーションの信号点ベクトルの二乗和の総和を表す下記(2)式の演算を行ってから演算結果をメモリの所定記憶領域に記憶し、次いでステップS7に移行して、メモリに記憶されている測定コンスタレーションの信号点の誤差ベクトルの二乗和の総和と、理論的コンスタレーションの信号点ベクトルの二乗和の総和とを読出して前記(1)式の演算を行うことにより、変調誤差比MERを算出する。
Figure 2005277542
次いで、ステップS8に移行して、算出した変調誤差比MERが予め設定されたビット誤り率BERが正常であって受信処理装置9でビタビ復号後のビット誤り率が2×10-4以下となり、その後のリードソロモン復号後のビット誤り率が1×10-11 以下となって誤りが全く発生しなくなるエラーフリー状態となるに十分なビット誤り率BER=0.01以下であると判断することができる設定値TH以上であるか否かを判定し、MER≧THであるときにはビット誤り率BERが正常であると判断してステップS9に移行し、論理値“0”のビット誤り率判定信号SBER を受信処理装置9に出力し、次いでステップS10に移行して、変数jを“0”にクリアしてから前記ステップS1に戻る。
また、ステップS8の判定結果がMER<THであるときにはビット誤り率BERが異常であると判断してステップS11に移行して、論理値“1”のビット誤り率判定信号SBER を受信処理装置9に出力してから前記ステップS10に移行する。
この図3の処理において、ステップS1〜S7及びS10の処理が変調誤差比算出手段に対応し、ステップS8,S9及びS11の処理が誤り率判定手段に対応している。
ここで、ステップS8で設定されているリードソロモン復号後にエラーフリー状態となる設定値THは、以下のようにして設定される。
すなわち、変調誤差比MERとビット誤り率BERとの相関関係から、変調誤差率MERを求めることで、概略のビット誤り率BERを得る。例えば、地上デジタル放送の場合に復調信号のビット誤り率BERが0.01であれば、ビットとバイトの誤り訂正符号によって復号の差異にエラーフリーまで訂正可能である。
例えば、変調方式がQPSKである場合においては、このQPSKにおける理論的コンスタレーションは、図4に示すように、IQ座標における原点を中心に半径√2の円を描いたときに、この円上の第1象限から第4象限において45°、135°、225°及び315°の点に存在する。
そして、図5に示すように、第1象限におけるコンスタレーションの信号点の範囲が実線図示の円内であるとすると、円外と円内における第1象限以外が誤り領域であり、その円内における第1象限以外の領域が0.01以下であれば良い。この場合に、分散値が重要になるが、分散値が既知であることによって、その領域の分布がガウス分布により得られるので、それに対応する変調誤差比MERをビット誤り率BERに換算することができる。
しかしながら、受信の場合、第2象限や第4象限に属するポイントとしては第1象限のものであるか否かは判断できないので、変調誤差比MERでの換算で重要になるには、図6に示すように、第1象限内でIQ軸に接する判定円(隣接する理論的コンスタレーション間隔の1/2の半径を有する円)の外側に位置するポイントがビット誤り率(BER:Bit Error rate)を推定するデータとなる。
すなわち、理想ベクトルが“1”の場合、円周に位置するポイント1点での変調誤差比MERは前述した(1)式からMER=10×log10(2/1)≒3[dB]となる。このことから、各ポイント1点における変調誤差MERが常に3[dB]より大きければ、図6の判定円内にプロットされることになり、リードソロモン復号後にビット誤りは生じないことになる。
本来、送信された信号は図5の点P1で表される理論的コンスタレーションの信号点である場合、第1象限以外の場所で受信されれば、他の信号として処理されてしまうので、この場合は変調誤差比MERが3[dB]より小さいにも関わらず、第1象限と判断されることはない。しかし、ある程度の数の信号において、変調誤差比MERが3[dB]より大きいものしか生じなかった場合に、本来第1象限として送信されたポイントが、第2、第3及び第4象限の円内のみにプロットされるとは考え難い。また、第2、第3及び第4象限の円内に入らなかった場合は、各象限で変調誤差比MERが3[dB]未満になることを示すので、その象限においてエラーとカウントされるので、そのポイントに関しては、象限は異なるがエラーと判断されるので、QPSKのトータルで見たビット誤り率BERに対する誤差は生じないことになる。また、100ポイント中に3[dB]未満となるポイントが、多くとも1ポイント存在しても、リードソロモン復号でエラーフリー状態となると考えてよい。実際には、この変調誤差比MERによりビット誤り率BERの換算は送信されたビットと受信したビットとを比較した真のビット誤り率BERより厳しい判断となる。
以上のように、QPSKでは、ほとんどのポイントにおいて変調誤差比MERが3[dB]以上になることでエラーフリー状態となると保証することができ、それ以外のポイント数でビット誤り率BERとの換算をすることができる。ただし、この方法は、ビット誤り率BERがある程度良い状態になった時に有効である。例えば、図7で点線図示のように、理想ベクトルの絶対値と円周が一致する大きさになった場合には、前述した(1)式で算出される変調誤差比MERが0[dB]であるが、この範囲で信号がバラツクことを考えれば、第2象限と第4象限に変調誤差比MERが0〜3[dB]の間で第1象限とならない確率は面積から約36.34%となり、第1象限のみのビット誤り率BERは約36.34%誤ることとなる。したがって、上記換算は、数%程度しか有効でない。しかしながら、復号後のエラーフリー状態を基準に考えれば、この時点での1%以下を判断できれば良いので、1%を超える場合はエラーとして処理することとなる。したがって、設定値THとしては3〔dB〕又は図5における円内で第1象限外の領域が0.01となる円に相当する値に設定すればよいことになる。
次に、上記実施形態の動作を説明する。
今、デジタル地上波放送局からISDB−T規格のOFDM信号が送信されているものとする。
このOFDM信号をデジタル放送受信装置1で受信したものとすると、このデジタル放送受信装置1で、受信アンテナ2で受信したOFDM信号が周波数変換回路3で中間周波数のOFDM信号に変換され、次いで直交復調回路4で直交復調されてベースバンドのOFDM信号に変換されてからA/D変換器5でデジタル信号に変換されて高速フーリエ変換器6及びシンボル同期回路8に入力される。
シンボル同期回路8では、ガードインターバル長を検出すると共に、有効シンボルの終了位置を表すシンボルタイミング信号STeを高速フーリエ変換器6に出力し、この時点でガードインターバル長となったときにタイムアップする計測タイマをスタートさせて、これがタイムアップした時点で有効シンボルの開始位置を表すシンボルタイミング信号STsを高速フーリエ変換器6に出力する。
このため、高速フーリエ変換器6では、シンボル同期回路8から入力されるシンボルタイミング信号STs及びSTeに基づいて高速フーリエ変換器6のFFT時間窓が設定されて、この高速フーリエ変換器6から周波数領域のOFDM信号を生成し、これをイコライザ7に供給することにより、位相等価及び振幅等価等の処理を施すことにより、伝送路の歪成分の除去等を行って受信データとして受信処理装置9に出力する。この受信処理装置9では、入力される受信データをビタビ復号してからリードソロモン復号を行うことにより、符号訂正処理を行って、送信データを再生した再生データが得られる。
また、シンボル同期回路8では、シンボルタイミング信号STeに同期したシステムクロック信号も再生し、これをA/D変換器5にサンプリングクロック信号として供給する。
一方、ビット誤り判定回路10では、イコライザ7から出力される受信データに基づいて図3に示すビット誤り率判定処理を実行することにより、QPSKのIQ座標における第1象限の測定コンスタレーションの信号点に着目し、第1象限の測定コンスタレーションの信号点が入力される毎に、前述した(1)式における分子となる測定コンスタレーションの信号点の理論的コンスタレーションの基準信号点P1に対する誤差ベクトルdj の二乗和を演算してその演算結果をメモリの所定記憶領域に記憶する(ステップS3)。
次いで、ステップS4で、変数jをインクリメントしてからステップS5に移行して、変数jが設定値Nに達したか否かを判定し、変数jが設定値Nに達していないときにはステップS1〜S5の処理を繰り返し、変数jが設定値Nに達したときには、ステップS6に移行して、(2)式の演算を行って(1)式の分子に対応する値を算出し、次いでメモリに記憶されている誤差ベクトルの二乗和の総和を算出し、これとステップS6で算出した理論的コンスタレーションの信号点ベクトルの二乗和の総和とに基づいて前記(1)式の演算を行って変調誤差比MERを算出する(ステップS7)。
そして、算出した変調誤差比MERが最終的なリードソロモン復号を行った後のビット誤り率BERが1×10-14 となってエラーフリー状態となるイコライザ7から出力される復調後のビット誤り率が0.01以下となる設定値TH以上であるか否かを判定し(ステップS8)、変調誤差比MERが設定値TH以上であるときには、正常なビット誤り率BERとなっているものと判断して論理値“0”のビット誤り率判定信号SBER を受信処理装置9に出力し、この受信処理装置9でのビタビ復号及びリードソロモン復号で誤り訂正を行ってデジタル放送の送信信号を再生する。
ところが、変調誤差比MERが設定値TH未満であるときには、最終的なリードソロモン復号後のビット誤り率をエラーフリー状態にまで低下させることができないものと判断してステップS11に移行し、論理値“1”のビット誤り率判定信号SBER を受信処理装置9に出力し、受信処理装置9では、論理値“1”のビット誤り率判定信号SBER が入力されると、変調精度の機器の性質がフィードバックされることになり、再生画像がブラックアウトすることに代えて直前の画像を静止画像として表示装置に出力することにより、画像表示状態を維持することができる。
このように、上記実施形態においては、QPSK変調を行った場合に、第1象限に限定して理論的コンスタレーションの基準信号点について受信データから測定した測定コンスタレーションの信号点における変調誤差比MERが設定値TH以上となるか否かによって最終的なリードソロモン復号後のビット誤り率が1×10-14 以下となってエラーフリー状態となる正常なビット誤り率BERであるか否かを判定することができ、ビット誤り率の判定を簡易に行うことができる。
なお、上記実施形態においては、変調方式がQPSKである場合について説明したが、これに限定されるものではなく、変調方式が16QAM及び64QAMである場合にも本発明を適用することができる。すなわち、16QAMでは、図8に示すように、第1象限の理論的コンスタレーションの基準信号点がP1〜P4の4個であるので、各基準信号点P1〜P4のベクトル絶対値は3種類となり、各ベクトル絶対値の前述した設定値THとなる変調誤差比MERは、小さい順に3、10及び12.6〔dB〕となり、同様に64QAMでは、図9に示すように、理論的コンスタレーションの基準信号点がP1〜P16の16個であるので、ベクトル絶対値は9種類となり、これらについての前述した設定値THとなる変調誤差比MERは3、10、12.6、14.2、15.3、17.0、17.6、18.7及び19.9〔dB〕となる。これらの全ての理論的コンスタレーションについて、これらと測定した測定コンスタレーションとに基づいて算出した変調誤差比MERが前記設定値THとなる各変調誤差比MER以上となるか、若しくは1%以下となる変調誤差比MERを持てば、受信処理装置9での復号後のエラーフリー状態を保証することができる。これら16QAM及び64QAMでは、各理論的コンスタレーションの基準信号点に対する測定コンスタレーションの変調誤差比MERが設定値TH以上となる必要はなく、第1象限の全体の理論的コンスタレーションの基準信号点の所定数以上の信号点で変調誤差比MERが設定値TH以上となっていればよい。この場合も、第1象限の各理論的コンスタレーションを中心とし、各I軸又はQ軸方向に隣接する理論的コンスタレーション間隔の1/2の半径の判定円内に測定コンスタレーションが存在する場合にエラーフリー状態となるビット誤り率と判定することができ、判定円に外接しI軸及びQ軸と平行な辺を有する正方形内に属し、判定円内に属さない測定コンスタレーションについてはエラーフリー状態とならないビット誤り率と判定することができる。
また、上記実施形態においては、測定コンスタレーションの信号点数を任意数Nに設定する場合について説明したが、Nの値が大きい程正確なビット誤り率BERの判定を行うことができ、またN=1に設定することにより、測定コンスタレーションの信号点が入力される毎に変調誤差比MERを算出して、設定値THと比較することにより、ビット誤り率BERの判定を行うようにしてもよく、Nは1以上の任意数に設定することができる。
さらに、上記実施形態においては、理想ベクトルが“1”である場合について説明したが、これに限定されるものではなく、任意の基準ベクトルを設定することができる。
さらにまた、上記実施形態では、IQ座標における第1象限のコンスタレーションに基づいてビット誤り率判定を行う場合について説明したが、他の第2〜第4象限の何れか又は任意の象限を組み合わせてビット誤り判定を行うようにしてもよい。
なおさらに、上記実施形態では、外符号及び内符号としてビタビ符号及びリードソロモン符号を適用した場合について説明したが、これに限定されるものではなく、他の任意の符号を適用することができる。
また、上記実施形態では、デジタル放送受信装置1が移動車両に搭載されている場合について説明したが、これに限定されるものではなく、携帯型のデジタル放送受信装置とすることもでき、その他固定式のデジタル放送受信装置にも本発明を適用することができる。
本発明の一実施形態を示すブロック図である。 QPSKの理論的コンスタレーションと測定コンスタレーションとの関係を示す説明図である。 図1のビット誤り率判定回路で実行するビット誤り判定処理手順の一例を示すフローチャートである。 QPSKの理想的コンスタレーションを示す説明図である。 復調信号の誤り率が0.01%であるときのコンスタレーション範囲を示す説明図である。 理想ベクトルが“1”であるときのコンスタレーション範囲を示す説明図である。 変調誤差比が0〔dB〕及び3〔dB〕であるコンスタレーション範囲を示す説明図である。 16QAMでの理想ベクトルと境界点の変調誤差比MERを示す説明図である。 64QAMでの理想ベクトルと境界点の変調誤差比MERを示す説明図である。
符号の説明
1…デジタル放送受信装置、2…受信アンテナ、3…周波数変換回路、4…直交復調回路、5…A/D変換器、6…高速フーリエ変換器、7…イコライザ、8…シンボル同期回路、9…受信処理装置、10…ビット誤り判定回路

Claims (4)

  1. OFDM変調されたデジタル放送信号を受信するデジタル放送受信装置において、
    受信した前記デジタル信号の周波数を中間周波数に変換して中間周波数信号を得る周波数変換手段と、該周波数変換手段で変換された中間周波数信号をベースバンド信号に直交復調する直交復調手段と、該直交復調手段で復調したベースバンド信号を高速フーリエ変換処理して受信データを復調するOFDM復調手段と、該OFDM復調手段で復調した受信データの測定コンスタレーションと理論的コンスタレーションとの変調誤差比を算出する変調誤差比算出手段と、該変調誤差比算出手段で算出した変調誤差比に基づいて前記測定コンスタレーションが理論的コンスタレーションを中心とする所定同心円内であるか否かを判定して、エラーフリー状態となるビット誤り率であるか否かを判定する誤り率判定手段とを備えたことを特徴とするデジタル放送受信装置。
  2. 前記誤り率判定手段は、前記変調誤差比算出手段で算出した変調誤差比に基づいて、前記測定コンスタレーションが理論的コンスタレーションを中心にして最小コンスタレーション間隔の1/2の半径の判定円内にあると判断した場合に外符号及び内符号の2つの誤り訂正符号を復号することでエラーフリー状態となるビット誤り率であると判定し、前記測定コンスタレーションが前記判定円に外接すると共に、IQ軸に平行な辺を有する正方形内に属し且つ当該判定円内に属さないと判断した場合に、前記エラーフリー状態とならないビット誤り率であると判定するように構成されていることを特徴とする請求項1記載のデジタル放送受信装置。
  3. 前記誤り率判定手段は、前記変調誤差比算出手段で算出した変調誤差比が、前記理論的コンスタレーションを中心にして最小コンスタレーション間隔の1/2の半径の判定円の円周点における変調誤差比以上であるときに、前記測定コンスタレーションが理論的コンスタレーションを中心にして最小コンスタレーション間隔の1/2の半径の判定円内にあると判断することを特徴とする請求項2記載のデジタル放送受信装置。
  4. OFDM変調されたデジタル放送信号を受信するデジタル放送受信方法において、
    受信した前記デジタル信号の周波数を中間周波数に変換して中間周波数信号を得る周波数変換ステップと、該周波数変換ステップで変換された中間周波数信号をベースバンド信号に直交復調する直交復調ステップと、該直交復調ステップで復調したベースバンド信号を高速フーリエ変換処理して受信データを復調するOFDM復調ステップと、該OFDM復調ステップで復調した受信データの測定コンスタレーションと理論的コンスタレーションとの変調誤差比を算出する変調誤差比算出ステップと、該変調誤差比算出ステップで算出した変調誤差比に基づいて前記測定コンスタレーションが理論的コンスタレーションを中心とする所定同心円内であるか否かを判定して、エラーフリー状態となるビット誤り率であるか否かを判定する誤り率判定ステップとを備えたことを特徴とするデジタル放送受信方法。
JP2004084637A 2004-03-23 2004-03-23 デジタル放送受信装置及び方法 Withdrawn JP2005277542A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084637A JP2005277542A (ja) 2004-03-23 2004-03-23 デジタル放送受信装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084637A JP2005277542A (ja) 2004-03-23 2004-03-23 デジタル放送受信装置及び方法

Publications (1)

Publication Number Publication Date
JP2005277542A true JP2005277542A (ja) 2005-10-06

Family

ID=35176776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084637A Withdrawn JP2005277542A (ja) 2004-03-23 2004-03-23 デジタル放送受信装置及び方法

Country Status (1)

Country Link
JP (1) JP2005277542A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325016A (ja) * 2006-06-01 2007-12-13 Matsushita Electric Ind Co Ltd Ofdm通信装置およびofdm信号品質検出器
JP2009239750A (ja) * 2008-03-27 2009-10-15 Nec Corp 変調誤差比測定装置、及び測定方法
CN102355591A (zh) * 2011-08-05 2012-02-15 天津市德力电子仪器有限公司 用于准实时信号分析仪的中国移动数字多媒体广播信号解调分析方法
JP2020080494A (ja) * 2018-11-13 2020-05-28 株式会社東芝 信号品質監視装置および方法
CN112118441A (zh) * 2020-09-22 2020-12-22 中国科学院长春光学精密机械与物理研究所 一种位校正改进的串行cmos图像数据训练方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325016A (ja) * 2006-06-01 2007-12-13 Matsushita Electric Ind Co Ltd Ofdm通信装置およびofdm信号品質検出器
JP2009239750A (ja) * 2008-03-27 2009-10-15 Nec Corp 変調誤差比測定装置、及び測定方法
CN102355591A (zh) * 2011-08-05 2012-02-15 天津市德力电子仪器有限公司 用于准实时信号分析仪的中国移动数字多媒体广播信号解调分析方法
JP2020080494A (ja) * 2018-11-13 2020-05-28 株式会社東芝 信号品質監視装置および方法
JP7254485B2 (ja) 2018-11-13 2023-04-10 株式会社東芝 信号品質監視装置および方法
CN112118441A (zh) * 2020-09-22 2020-12-22 中国科学院长春光学精密机械与物理研究所 一种位校正改进的串行cmos图像数据训练方法

Similar Documents

Publication Publication Date Title
KR100752641B1 (ko) 데이터 서브캐리어를 이용하여 공통 위상을 추정하는ofdm 신호 수신기 및 방법
US7773682B2 (en) OFDM reception apparatus and OFDM reception method
JP4161054B2 (ja) デジタル信号復調装置
US8498349B2 (en) Demodulation and decoding for frequency modulation (FM) receivers with radio data system (RDS) or radio broadcast data system (RBDS)
EP1195960B1 (en) Demapping in a multicarrier receiver
JP2001044965A (ja) 周波数選択性妨害に対応する誤り訂正装置
WO2012137660A1 (ja) 受信装置、受信方法、およびプログラム
JP3701851B2 (ja) ディジタル変調信号受信装置
JP2005277542A (ja) デジタル放送受信装置及び方法
JP4657223B2 (ja) 変調誤差算出装置および方法、デジタル放送受信機ならびにデジタル放送波用測定装置
JP4380407B2 (ja) ブランチメトリック演算方法
US20100275102A1 (en) Signal demodulating device, signal demodulating method, semiconductor integrated circuit, and receiving apparatus
US20090060072A1 (en) Decoding method for receiving ofdm signals, and decoding apparatus and receiving apparatus using the same
JP5682226B2 (ja) 受信装置及び方法、復調装置及び方法、並びにプログラム
US20110243280A1 (en) Receiver and receiving method
JP2013106112A (ja) 妨害波検出回路、受信装置および妨害波検出方法
JP4323347B2 (ja) デジタル変調信号評価装置
JP5199179B2 (ja) 半導体集積回路及び受信信号処理方法
US7664186B2 (en) Channel decoding for multicarrier signal transmission by means of DC-offset and carrier-frequency offset-dependent weighting of reliability information
US11323302B2 (en) Detection and mitigation of oscillator phase hit
JP5278791B2 (ja) 受信装置及びチャネルスキャン方法
JP2009284436A (ja) Ofdm受信装置
JP2011023969A (ja) 周波数補正装置及びその制御方法
JP2008154215A (ja) 受信状態の判定方法およびそれを利用した受信装置
JP2008278089A (ja) 自動チャンネルリスト作成方法、受信装置、映像表示装置、及び音声出力装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605