JP2005276333A - 光ピックアップ装置 - Google Patents

光ピックアップ装置 Download PDF

Info

Publication number
JP2005276333A
JP2005276333A JP2004088740A JP2004088740A JP2005276333A JP 2005276333 A JP2005276333 A JP 2005276333A JP 2004088740 A JP2004088740 A JP 2004088740A JP 2004088740 A JP2004088740 A JP 2004088740A JP 2005276333 A JP2005276333 A JP 2005276333A
Authority
JP
Japan
Prior art keywords
refractive index
light
optical
laser beam
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004088740A
Other languages
English (en)
Other versions
JP3970254B2 (ja
Inventor
Kenji Nagatomi
謙司 永冨
Seiji Kajiyama
清治 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004088740A priority Critical patent/JP3970254B2/ja
Publication of JP2005276333A publication Critical patent/JP2005276333A/ja
Application granted granted Critical
Publication of JP3970254B2 publication Critical patent/JP3970254B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Abstract

【課題】 複数の光源から射出される光ビームを効率良く活用して、光学式情報記録媒体に記録されている情報を精度良く検知することができる光ピックアップ装置を提供する。
【解決手段】 光ピックアップ装置は、集光レンズ32とフォトダイオード30の間に配置された光軸補正部20を備えている。光軸補正部20は、バイナリー型の回折光学素子と、回折光学素子のバイナリー段部に密着するようにして配置された液晶体とを有している。液晶体の屈折率は、複数の光源から射出されるレーザービームに応じて液晶回路によって調整されている。液晶回路は、回折光学素子におけるレーザービームの回折効率を上げるようにして液晶体の屈折率を調整している。
【選択図】 図3

Description

本発明は、光ピックアップ装置に関し、特に、複数種類の光学式情報記録媒体に対応可能な光ピックアップ装置に関する。
レーザービーム等の光ビームを使用して情報の光学的な読み込みあるいは書き込みが行われる光学式情報記録媒体として、CD(Compact Disc)やDVD(Digital Versatile Disc)が広く普及している。また近年では、「HD DVD(商標)」や「Blu−ray Disc(商標)」に代表されるように、CDやDVDよりも記憶容量が大きい光学式情報記録媒体の開発が進んでおり、今後も様々なタイプの光学式情報記録媒体が開発されていくことが期待されている。
このような光学式情報記録媒体に対して記録情報の読み込みあるいは書き込みを行う際には、光学式情報記録媒体の種類に応じた最適な波長の光ビームを使用する必要がある。このため、複数種類の光学式情報記録媒体に対応可能な光ピックアップ装置では、複数の光源を設けて、波長が異なる複数の光ビームを各光源から射出させることがある。
複数の光源から光ビームを射出させる場合には、通常、各光ビームは光軸が一致しない状態で光源から射出される。光軸が一致していない複数の光ビームを用いて、各種の光学式情報記録媒体に記録されている情報の読み取りを行う場合には、情報の読み取り誤差を生じてしまうことがある。
そのため、複数の光源から光ビームを射出させる場合に、光学式情報記録媒体に記録されている情報の読み取り精度を向上させるための工夫が従来から行われている。例えば、複数の光源から射出された光ビームの光軸を一致させるために、平行な光線として射出された2つのレーザービームを第1の回折格子および第2の回折格子を用いて同じ光軸上に導く技術が知られている(特許文献1参照)。
特開2002−323677号公報
回折格子のような回折光学素子では、回折光学素子自体の特性や入射する光ビームの特性に応じた回折効率に基づいて、光ビームが回折される。入射する光ビームのすべてに対して回折効率を100%に維持することは難しく、回折光学素子において回折させる光ビームはエネルギーロスが生じることとなる。従って、光源から射出された光ビームが、光学式情報記録媒体に照射される前に回折光学素子において回折されることは、エネルギーロスが少ない状態で光ビームを光学式情報記録媒体に照射させる観点からは好ましくない。特に、光学式情報記録媒体に記録されている情報の読み込みだけでなく、新たな情報の書き込みが可能な光ピックアップ装置では、情報の書き込み時に強度の大きい光ビームを使用する必要があるので、光源からは非常に大きな強度を有する光ビームを射出させる必要がある。
また、光学式情報記録媒体に記録されている情報の読み取り精度を向上させるためには、光学式情報記録媒体の情報記録面において反射された光ビームがフォトダイオードのような光情報検知手段に対して適切に照射されることが大切である。特に、光情報検知手段に照射される光ビームの位置が正規の位置から外れてしまうことを防ぐことは、読み取り精度を向上させるうえで非常に重要である。
また、上記の従来技術のように、2つの光源から射出される光ビームに対応可能な光ピックアップ装置は、比較的簡素な構造で実現可能だが、3つ以上の光源から射出される光ビームに対応可能な光ピックアップ装置は、構造が複雑化してしまう。そのため、3つ以上の光源から射出される光ビームに対して適切に対応可能な光ピックアップ装置を簡素な構造で実現する手法の提案が望まれている。特に、CDやDVDに加えて、上述のHD DVDやBlu−ray Discのような今後開発される光学式情報記録媒体に対しても互換性をもった光ピックアップ装置は、今後ますますニーズが高まってくることが予想される。
本発明は上述の事情を鑑みてなされたものであり、その目的は、複数の光源から射出される光ビームを効率良く活用して、光学式情報記録媒体に記録されている情報を精度良く検知することができる光ピックアップ装置を提供することにある。
本発明は光ピックアップ装置に関する。この光ピックアップ装置は、光ビームを射出可能な2以上の光源を含む発光手段と、前記発光手段から射出される光ビームを光学式情報記録媒体に照射する光ビーム照射手段と、前記光学式情報記録媒体によって反射された光ビームの光軸を補正する光軸補正手段と、前記光軸補正手段において光軸が補正された光ビームが照射され、前記光学式情報記録媒体に記録されている情報を照射された光ビームに基づいて検知する光情報検知手段と、を備え、前記光軸補正手段は、前記光学式情報記録媒体によって反射された光ビームが入射する位置に配置され、光ビームが前記光情報検知手段の所定位置に照射されるように、入射した光ビームの光軸を補正する回折光学素子と、前記回折光学素子に密着した状態で配置され、印加される電圧に応じて屈折率を変化させる屈折率可変部材と、前記発光手段から射出される光ビームに応じて、前記屈折率可変部材に対する電圧印加状態を変化させて前記屈折率可変部材の屈折率を調節する屈折率調整手段と、を有する。
当該光ピックアップ装置によれば、発光手段の各光源から射出される光ビームの各々は、光ビームに応じて屈折率可変部材の屈折率が調節され回折光学素子における光ビームの回折効率が調整された状態で、回折光学素子において光軸の方向が補正される。これにより、光ビームは光情報検知手段の所定位置に適切に照射されて、光情報検知手段は、前記光学式情報記録媒体によって反射された光ビームに基づいて記録情報を精度良く読み取ることができる。また、このような作用効果は、主として光軸補正手段を構成する回折光学素子、屈折率可変部材、および屈折率調整手段という、簡素な構成によって達成される。
前記屈折率調整手段は、前記回折光学素子における光ビームの回折効率を上げるようにして、前記屈折率可変部材に対する電圧印加状態を変化させて当該屈折率可変部材の屈折率を調節することもできる。これにより、各光源から射出される光ビームが効率良く活用される。
回折光学素子は、バイナリー型の回折光学素子とすることもできる。バイナリー型の回折光学素子を用いれば、各光源から射出される光ビームの光軸の方向を簡単に補正することができる。
また、回折光学素子は、複数の光源から射出される光ビームの光軸を適切な方向に補正することができるものであって、上記の屈折率可変部材の屈折率に応じて回折効率を調整することができるもの全般を含みうる。
発光手段は、波長が異なる3以上の光ビームを射出可能であり、屈折率調整手段は、発光手段から射出される光ビームに応じて、屈折率可変部材に対する電圧印加状態を変化させて屈折率可変部材の屈折率を調節することもできる。
3以上の光源から光ビームが射出される場合には、単一の回折光学素子によって高い回折効率を保持することが特に難しくなる傾向がある。本発明は、3以上の光源から射出される光ビームを用いる場合であっても十分に対応可能である。従って、発光手段が3以上の光源を含む場合に、本発明の利用意義はとりわけ大きなものとなる。なお、2つの光源を含む場合であっても本発明の利用意義があることはいうまでもない。
発光手段から射出可能な光ビームの各々は、異なる色のスペクトル範囲に属していてもよい。ここでいう「スペクトル範囲」とは、例えば同一色を呈する波長の範囲をいう。
このように、発光手段から射出可能な光ビームの各々が、異なる色のスペクトル範囲に属し、波長が各光ビーム間で大きく異なる場合には、単一の回折光学素子によって高い回折効率を保持することが特に難しくなる傾向がある。本発明は、各光源から射出される光ビーム間の波長が大きく異なる場合であっても十分に対応可能である。従って、各光源から射出される光ビームの各々が異なる色のスペクトル範囲に属し、波長が各光ビーム間で大きく異なる場合に、本発明の利用意義はとりわけ大きなものとなる。
前記光情報検知手段に照射される光ビームの強度を検出する光ビーム強度検出手段、を更に備え、前記屈折率調整手段は、前記光ビーム強度検出手段の検出結果を考慮して、前記屈折率可変部材に対する電圧印加状態を調節してもよい。
この場合には、屈折率調整手段によって調節される屈折率可変部材に対する電圧印加状態が、光ビーム強度検出手段の検出結果に応じてフィードバック的に調整される。
なお、以上の構成要素の任意の組合せや組み替え、本発明を方法として表現したものも、本発明の態様として有効である。
上述のように本発明によれば、複数の光源から射出される光ビームは、回折光学素子、屈折率可変部材、および屈折率調整手段という簡素な構造によって光軸が補正され、光情報検知手段の所定位置に適切に照射される。そのため光情報検知手段は、どの光源から光ビームが射出されたとしても、光学式情報記録媒体によって反射される光ビームから精度良く記録情報を読み取ることができる。
以下、図面を参照して本発明の各実施の形態について説明する。なお、内容の理解を容易なものにするため、各図はイメージ的に表されている部分や等価なものとして表されている部分を含みうる。
(第1の実施の形態)
図1は、本実施の形態の光ピックアップ装置10の全体構成を示す図である。
本実施の形態の光ピックアップ装置10は、光学式情報記録媒体のうちCD、DVD、およびHD DVDを互換的に再生させることができるように設けられている。
この光ピックアップ装置10は、レーザー光源12と、光学式情報記録媒体14が配置される記録媒体配置部16と、レーザー光源12と記録媒体配置部16の間に配置されたコリメータレンズ18と、コリメータレンズ18と記録媒体配置部16の間に配置された偏光ビームスプリッタ22および1/4波長板24と、1/4波長板24と記録媒体配置部16の間に配置された反射鏡26と、反射鏡26と記録媒体配置部16の間に配置された対物レンズ28と、対物レンズ28を駆動するサーボ機構29と、を備えている。また光ピックアップ装置10は、偏光ビームスプリッタ22によって反射されたレーザービームの光路上に配置されたフォトダイオード30と、偏光ビームスプリッタ22とフォトダイオード30の間に配置された集光レンズ32と、集光レンズ32とフォトダイオード30の間に配置された光軸補正部20と、を備えている。
フォトダイオード30には、光学式情報記録媒体14に記録されている情報を再生するための再生回路34と、液晶回路36と、サーボ回路38とが接続されている。液晶回路36は光軸補正部20にも接続されており、サーボ回路38はサーボ機構29にも接続されている。また、レーザー光源12および液晶回路36には、図示しないスイッチ装置が接続されている。
本実施の形態の光ピックアップ装置10で使用されるCD等の光学式情報記録媒体の各々の情報記録面には、平面状のランドと、ランド部分から突出するようにして形成された複数のピットとが形成されている。各ピットは、情報記録面において渦巻き状に配列されており、このピットの配列によってCD等の光学式情報記録媒体14には所定の情報が光学的に記録されている。
レーザー光源12は、図示しないスイッチ装置からの合図に応じて光ビームを射出可能な2以上の光源を含む発光手段として機能する。具体的には、レーザー光源12は、第1の波長λ1を有するP偏光波のレーザービームを射出する第1の光源40と、第2の波長λ2を有するP偏光波のレーザービームを射出する第2の光源42と、第3の波長λ3を有するP偏光波のレーザービームを射出する第3の光源44とを有する、いわゆる1CAN3LD型の光源として構成されている。第1の波長λ1のレーザービームは、DVDに対して好適に用いられる655nmの赤外光であり、第2の波長λ2のレーザービームは、HD DVDに対して好適に用いられる408nmの青色光であり、第3の波長λ3のレーザービームは、CDに対して好適に用いられる780nmの赤色光である。このように、各光源から射出されるレーザービームは異なる色のスペクトル範囲に属している。
第1の光源40〜第3の光源44は、後述する光軸補正部20の回折光学素子において、第1の光源40から射出されるレーザービームが回折次数が−1の−1次回折光として回折され、第2の光源42から射出されるレーザービームが回折次数が0の0次回折光として回折され、第3の光源44から射出されるレーザービームが回折次数が+1の+1次回折光として回折されるように設けられている。具体的には、第2の光源42は、コリメータレンズ18等を含む光学系の中心軸上に配置され、第1の光源40および第3の光源44は、第2の光源42から距離d1およびd2離れた位置に配置されている。なお本実施の形態では、第1の光源40と第2の光源42との距離d1は110μm、第2の光源42と第3の光源44との距離d2は132μmに設定されている。
コリメータレンズ18は、レーザー光源12から射出されたレーザービームを平行光に揃えて、レーザービームの拡散を防止する。
偏光ビームスプリッタ22は、P偏光波のレーザービームを透過させるとともに、S偏光波のレーザービームを反射させる機能を有している。1/4波長板24は、レーザー光源12から出射され入射したP偏光波のレーザービームを円偏光波に変換し、またCD等の光学式情報記録媒体14によって反射され入射した円偏光波をS偏光波に変換する機能を有している。従って、上記のようにして1/4波長板24を2回透過することによりレーザービームはP偏光波からS偏光波に変換されるため、光学式情報記録媒体14からの反射光は偏光ビームスプリッタ22によって反射される。
反射鏡26は、レーザービームを反射する機能を有し、レーザービームの偏光状態によらず反射する。本実施の形態の反射鏡26は、レーザー光源12から射出されて光軸補正部20、コリメータレンズ18、偏光ビームスプリッタ22、および1/4波長板24を経て向かって来るレーザービームを、略90°折り返すように反射して記録媒体配置部16に誘導し、また、記録媒体配置部16に配置された光学式情報記録媒体14によって反射されたレーザービームを、略90°折り返すように反射して1/4波長板24および偏光ビームスプリッタ22に誘導するように配置されている。
対物レンズ28は、光学式情報記録媒体14の情報記録面に対向するようにして配置され、サーボ機構29によって光学式情報記録媒体14の半径方向や回転軸方向へ移動可能なように設けられている。この対物レンズ28は、反射鏡26によって反射されたレーザービームを、記録媒体配置部16に配置された光学式情報記録媒体14の情報記録面上に集光させる。光学式情報記録媒体14の情報記録面で反射されたレーザービームは、進行方向が逆方向に変えられて対物レンズ28および反射鏡26に向かって進行することとなる。
集光レンズ32は、光学式情報記録媒体14、反射鏡26、および偏光ビームスプリッタ22によって反射されたレーザービームを、フォトダイオード30上に集光させる。
光軸補正部20は、光学式情報記録媒体によって反射され、反射鏡26、1/4波長板24、および集光レンズ32を経てやってくるレーザービームの光軸を補正する光軸補正手段として機能する。具体的には、図2に示すような構造を有している。
図2は、光軸補正部20の構成を図示したものである。
光軸補正部20は、集光レンズ32の出射側に設けられており、光学式情報記録媒体14によって反射されたレーザービームが入射する位置に配置されたバイナリー型の回折光学素子46と、回折光学素子46に密着した状態で配置された液晶体48と、を有している。
回折光学素子46は、レーザービームがフォトダイオード30の所定の光検出位置に照射されるように、入射した光ビームの光軸を補正する機能を有する。本実施の形態の回折光学素子46は、3ステップのバイナリー段部50を有しており、バイナリー段部50がレーザー光源12側に配置されるように設けられている。バイナリー段部50の各ステップの高さ(以下「ステップ高さ」と表記する)tは1.71μmとなっている。なお、ここでいうバイナリー段部50のステップ数は、バイナリー段部50の階段部分の段数に基づいて決定される。
一般に、バイナリー型の回折光学素子46は、バイナリー段部50のステップ数mに応じて最大回折効率ηmaxが決定され、具体的には以下の式(1)によって最大回折効率ηmaxが決定される。例えばバイナリー段部50が3ステップの場合には最大回折効率ηmaxは68%となり、3ステップの場合には最大回折効率ηmaxは81%となる。
ηmax = {sin(π/m)/(π/m)}^2 式(1)
回折光学素子46は、第1の光源40から射出されるレーザービームの回折角θ+1が0.38°、第3の光源44から射出されるレーザービームの回折角θ−1が0.45°、格子間隔Λが100μmになるように形成されている。また、回折光学素子46は、各波長のレーザービームに対して以下の式(2)〜式(4)によって表されるような屈折率を有するSK1のガラス材料によって形成されている。
408nmのレーザービームの場合 n1=1.628 式(2)
655nmのレーザービームの場合 n1=1.607 式(3)
785nmのレーザービームの場合 n1=1.603 式(4)
液晶体48は、回折光学素子46のバイナリー段部50に密着するようにして設けられており、印加される電圧に応じて屈折率n0を変化させる屈折率可変部材である。液晶体48の屈折率n0は、後述するように回折光学素子46におけるレーザービームの回折効率を左右する要素の一つである。なお、液晶体48は、印加される電圧に応じて屈折率を変化させることのできる任意の材料によって構成されうる。
フォトダイオード30は、集光レンズ32により集光されるとともに光軸補正部20において光軸が補正されて所定の光検出位置に照射されたレーザービームの光の強度に応じた電圧信号を発生させて、再生回路34、液晶回路36、およびサーボ回路38に送る。このようにして発生される電圧信号は、光学式情報記録媒体14に記録されている情報を示す信号であるとともに、フォトダイオード30に照射されるレーザービームの光の強度等の照射状態を表す信号である。従って、フォトダイオード30は、光学式情報記録媒体14に記録されている情報を検知する光情報検知手段として機能するとともに、フォトダイオード30に照射されるレーザービームの強度を検出するレーザービーム強度検出手段としても機能することとなる。
再生回路34は、フォトダイオード30から送られてくる電圧信号をデジタル信号に変換して、記録媒体配置部16に配置されている光学式情報記録媒体14に記録されている情報を再生する。
サーボ回路38は、フォトダイオード30から送られてくる電圧信号に基づいて、フォトダイオード30に対するレーザービームの照射状態を検知する。そして、サーボ回路38は、検知したレーザービームの照射状態に基づきサーボ機構29を制御して対物レンズ28の位置を調整し、記録媒体配置部16に配置された光学式情報記録媒体14に対してレーザービームが適切に照射されるように調整している。例えば、サーボ回路38は、レーザービームの焦点がボケずに光学式情報記録媒体14の情報記録面上で正しく結ばれるように、対物レンズ28と光学式情報記録媒体14との距離を調整する。また、サーボ回路38は、対物レンズ28によってレーザービームがピット配列の中心に照射されるように、対物レンズ28の位置を調整する。このように、フォトダイオード30からサーボ回路38に送られる電圧信号は、光学式情報記録媒体14に対してレーザービームを適切に照射させるためのフィードバック情報として活用されることとなる。
液晶回路36は、レーザー光源12から射出されるレーザービームの波長および回折次数に応じて、光軸補正部20の液晶体48に対する電圧印加状態を変化させて当該液晶体48の屈折率n0を調節する。具体的には、液晶回路36は、光軸補正部20の回折光学素子46におけるレーザービームの回折効率を上げるように、液晶体48に対する電圧印加状態を変化させる。この時、レーザー光源12から実際に射出されているレーザービームの情報が、図示しないスイッチ装置から液晶回路36に送られており、液晶回路36は、このスイッチ装置からの情報に基づいて液晶体48に対する電圧印加状態を調整する。
また、液晶回路36は、フォトダイオード30におけるレーザービームの光の強度の検出結果を示す電圧信号を考慮して、液晶体48に対する電圧印加状態を調節する。このように、フォトダイオード30から液晶回路36に送られる電圧信号は、回折光学素子46においてレーザービームを効率良く回折させるためのフィードバック情報として活用されることとなる。
次に本実施の形態の光ピックアップ装置10の作用について説明する。
まず、光学式情報記録媒体14に記録されている情報を再生させる際の光ピックアップ装置10の全体の作用について説明する。
使用者等によってCD、DVD、およびHD DVDのうち所望の光学式情報記録媒体14が記録媒体配置部16にセッティングされ、スイッチ装置がONにされると、記録媒体配置部16にセッティングされた光学式情報記録媒体14に応じた波長のレーザービームがレーザー光源12から射出される。
レーザー光源12から射出されたレーザービームは、図1に示すように、コリメータレンズ18によって平行光に変えられ、偏光ビームスプリッタ22を透過して、1/4波長板24でP偏光波から円偏光波に変換される。そして、レーザービームは、反射鏡26により略90°折り返された後に、対物レンズ28によって光学式情報記録媒体14の情報記録面上に集光され、この情報記録面において反射される。
この時、情報記録面のランド部分に照射されたレーザービームは、光の強度を維持した状態で反射されるが、情報記録面のピット部分に照射され反射されたレーザービームは、広がってしまうため光の強度が弱くなる。従って、光学式情報記録媒体14の情報記録面において反射されたレーザービームは、ピットよって光学式情報記録媒体14に記録されている情報を、光の強度の強弱に変換した形で含むこととなる。
そして、光学式情報記録媒体14によって反射されたレーザービームは、対物レンズ28によって平行光に戻され、反射鏡26によって略90°折り返されて1/4波長板24および偏光ビームスプリッタ22に向かって進行する。レーザービームは、1/4波長板24においてS偏光波に変換されるので、偏光ビームスプリッタ22では透過することなく反射する。そして、偏光ビームスプリッタ22によって反射されたレーザービームは、集光レンズ32によって集光されるとともに光軸補正部20において光軸が補正されて、フォトダイオード30の所定の光検出位置に照射される。
図3は、光軸補正部20におけるレーザービームの光軸補正を示す図である。図3には、一例として、第1の光源40から射出されたレーザービームが記載されている。図3において、実線は、レーザービームの実際の光路を示し、点線は、光軸補正部20が配置されていない場合のレーザービームの光路を示し、一点鎖線は、集光レンズ32等の光学系の中心軸を示す。
第2の光源42から射出されるレーザービームは、光軸が光学系の中心軸に略一致した状態で射出され、光学式情報記録媒体14に反射された後に、光軸補正部20に対し入射および出射する。この時、このレーザービームは、光軸補正部20の回折光学素子46によって回折されることなく、0次回折光としてフォトダイオード30の所定の光検出位置に照射される。
一方、第1の光源40あるいは第3の光源44から射出されるレーザービームは、光軸が光学系の中心軸からずれた状態で射出され、光学式情報記録媒体14に反射された後に、光軸補正部20の回折光学素子46において回折される。回折光学素子46において回折されたレーザービームは、−1次回折光あるいは+1次回折光として光軸の方向が補正され、フォトダイオード30の所定の光検出位置30aを中心に照射されることとなる(図3の実線部分参照)。なお、これらのレーザービームは、光軸補正部20において光軸が補正されないと、光軸が光学系の中心軸からずれた状態で光源から射出されているので、フォトダイオード30の所定の光検出位置30aから外れた位置30bを中心に照射されることとなる(図3の点線部分参照)。
このように、レーザー光源12から射出された各レーザビームは、光軸補正部20において光軸が補正されて、フォトダイオード30の所定の光検出位置30aに精度良く照射される。これによりフォトダイオード30は、光学式情報記録媒体14において反射されたレーザービームを適切に検知することができる。
フォトダイオード30では、所定の光検出位置に照射されたレーザービームの光の強度の強弱に応じた電圧信号を発生させる。この電圧信号は、再生回路34に送られるとともに、サーボ回路38および液晶回路36にも送られる。
再生回路34では、フォトダイオード30から送られてくる電圧信号からデジタル信号が作り出されて、光学式情報記録媒体14に記録されている情報が再生される。また、サーボ回路38は、フォトダイオード30から送られてくる電圧信号に基づいてフォトダイオード30に対するレーザービームの照射状態を検知して、対物レンズ28を駆動制御する。また、液晶回路36は、フォトダイオード30から送られてくる電圧信号に基づいてフォトダイオード30に対するレーザービームの照射状態を検知して、光軸補正部20の液晶体48に印加する電圧を調節し回折光学素子46における回折効率を調整する。
このように、コリメータレンズ18、偏光ビームスプリッタ22、1/4波長板24、および反射鏡26を含んで構成される光学系によって、レーザー光源12から射出されるレーザービームがCD等の光学式情報記録媒体14に照射され、また、反射鏡26、1/4波長板24、偏光ビームスプリッタ22、集光レンズ32、光軸補正部20、およびフォトダイオード30を含んで構成される光学系によって、光学式情報記録媒体14において反射されるレーザービームから光学式情報記録媒体14の記録情報が光学的に読み取られる。
次に、光軸補正部20の液晶体48の作用について詳しく説明する。
まず、光軸補正部20に液晶体48が設けられていない例について説明する。この場合、光学式情報記録媒体において反射されたレーザービームは、一定の屈折率n0を有する空気から一定の屈折率n1を有する回折光学素子46に入射して、回折されることとなる。この時、回折光学素子46におけるレーザービームの回折効率は、回折光学素子46のバイナリー段部50のステップ高さtと、バイナリー段部50の凸凹部分に入り込む媒体の屈折率n0と、回折光学素子46の屈折率n1とに基づいて決定されることが理論的に知られている。具体的には、回折光学素子46は、+1次回折光に関しては以下の式(5)で表されるステップ高さt+1、0次回折光に関しては以下の式(6)で表されるステップ高さt、−1次回折光に関しては以下の式(7)で表されるステップ高さt−1をもつ場合に、回折光学素子46におけるレーザービームの回折効率を最大にすることができる。
+1 = (1/3)*λ/(n1−n0) 式(5)
= λ/(n1−n0) 式(6)
−1 = (2/3)*λ/(n1−n0) 式(7)
回折光学素子46の屈折率n1が、−1次回折光として回折される655nmの波長λ1のレーザービームに対してn1=1.46、0次回折光として回折される408nmの波長λ2のレーザービームに対してn1=1.47、+1次回折光として回折される785nmの波長λ3のレーザービームに対してn1=1.45を有し、また、空気の屈折率n0をn0=1とすると、回折効率を最大にするステップ高さt+1、t、t−1は、それぞれ以下の式(8)〜式(10)で表される値となる。
+1 = 0.581μm 式(8)
= 0.868μm 式(9)
−1 = 0.949μm 式(10)
図4は、光軸補正部20に液晶体48が設けられていない場合の回折効率とステップ高さとの関係を、波長が異なるレーザービーム毎に図示したものである。図4には、本実施の形態の光ピックアップ装置10で用いられるレーザービームと同様に、回折光学素子46において+1次回折光として回折される780nmの赤外光、0次回折光として回折される408nmの青色光、−1次回折光として回折される655nmの赤色光のレーザービームに関するデータが表されている。
図4に示すように、波長が異なる複数のレーザービームを使用する場合、波長が異なるレーザービームのすべての回折効率を良好に保つような唯一のステップ高さを選定することは難しく、とりわけ波長が異なるレーザービームが三つ以上の場合には非常に難しくなる。例えば図4において、ステップ高さtを0.815μmとして、他の条件を本実施の形態と同一にした場合、+1次回折光の回折効率η+1、0次回折光の回折効率η、および−1次回折光の回折効率η−1は、以下の式(11)〜式(13)で表される値となる。
η+1 = 40.4% 式(11)
η = 90.5% 式(12)
η−1 = 53.7% 式(13)
このように、回折光学素子46のバイナリー段部50が、屈折率を変えることができない空気のような媒体に晒されている場合には、唯一のステップ高さによって、波長が異なるすべてのレーザービームに関して回折効率を良好に保つことは難しい。バイナリー段部50のステップ数を多くしたり、ステップ高さを大きくしたりする場合には、波長が異なるすべてのレーザービームの回折効率を良好に保持することができる唯一のステップ高さを選定することが可能な場合もある。しかしながら、ステップ数が多くなるほど回折光学素子46の製造コストは高くなり、特に5ステップ以上のステップ数を有する回折光学素子46は非常に高価なものとなる。従って、4ステップ以下のステップ数を有する回折光学素子46により、波長が異なるすべてのレーザービームの回折効率を良好に保持することが好ましい。また、ステップ高さを大きくすると、回折光学素子46の製造精度を一定に保つことが難しくなり、回折光学素子46を精度良く製造することが難しくなる。
そこで本実施の形態では、レーザービームに応じて液晶体48に対する電圧印加状態を変化させることにより、液晶体48の屈折率を調節し、波長が異なるすべてのレーザービームの回折効率を良好に保持している。
本実施の形態では、回折光学素子46が上記の式(2)〜式(4)によって表されるような屈折率n1を有しているので、液晶回路36は、レーザー光源12から実際に射出されるレーザービームに応じて、液晶体48の屈折率n0が以下の式(14)〜式(16)で表される値となるように、液晶体48に印加する電圧を調節する。
408nmのレーザービームの場合 n0=1.39 式(14)
655nmのレーザービームの場合 n0=1.352 式(15)
785nmのレーザービームの場合 n0=1.45 式(16)
この場合、各波長のレーザービームの回折効率とステップ高さとの関係は、図5に示すようになる。
図5は、光軸補正部20に液晶体48が設けられている場合の回折効率とステップ高さとの関係を、波長が異なるレーザービーム毎に図示したものである。この場合、回折格子におけるレーザービームの回折効率ηを最大にするステップ高さt+1、t、t−1は、以下の式(17)〜式(19)で表される値となり、略一致する。
+1 = 1.710μm 式(17)
= 1.714μm 式(18)
−1 = 1.712μm 式(19)
ステップ高さtを、t=1.71μmとして、液晶体48の屈折率を上述のように調節した場合、各波長のレーザービームの回折効率は以下の式(20)〜式(22)で表される値となる。
η+1 = 68% 式(20)
η = 100% 式(21)
η−1 = 68% 式(22)
このように、本実施の形態によれば、式(11)〜式(13)で表される回折効率を有する従来のピックアップ装置に比べて、回折光学素子46におけるレーザービームの回折効率を飛躍的に向上させることができる。
以上説明したように本実施の形態によれば、複数の光源から射出されるレーザービームの各々を、バイナリー型の回折光学素子46および液晶体48を含む光軸補正部20により光軸を補正して、光情報検知手段であるフォトダイオード30に対して適切に照射させることができる。特に、液晶体48の屈折率を光源から射出されるレーザービームに応じて変えることにより、各光源から射出されるいずれのレーザービームに関しても、高い回折効率を確保して、回折光学素子46における光の強度の低下を防いでいる。これにより、各光源から射出されるレーザービームの利用効率を高め、光学式情報記録媒体14に記録されている情報を精度良く読み取ることができる。
また、レーザー光源12から射出されたレーザービームは、回折光学素子46を通過することなく光学式情報記録媒体14に照射されるので、回折光学素子46におけるエネルギーロスの影響は受けずに光学式情報記録媒体14に照射されることとなる。このため、レーザー光源12から射出されたレーザービームが効率良く利用されることとなり、特に光学式情報記録媒体14に対して情報を記録する場合のように、光の強度の強いレーザービームが必要とされる場合には、本実施の形態の光ピックアップ装置10を好適に用いることができる。
このような作用効果は、機構設計上の自由度が制限されやすい1can型のレーザー光源12が用いられる場合であっても、光軸補正部20を構成する液晶体48および回折光学素子46と液晶回路36という簡素な構造によって達成される。
また、複数の光源から射出されるレーザービームの光軸を補正することによって、CD、DVD、およびHD DVDのように異なるタイプの光学式情報記録媒体14の各々に記録されている情報を、単一のフォトダイオード30によって精度良く検知することが可能である。これにより、光ピックアップ装置10の構成を簡素なものにして、部品点数を削減し、小型化を図ることができる。
また、本実施の形態では、液晶体48の屈折率を調節することによって回折光学素子46における回折効率を調整しているので、液晶体48の厚みを厳密に調整することは不要であり、液晶体48の厚みに関する寸法精度や大量生産時の再現精度については厳しくは求められていない。従って、液晶体48を含む光軸補正部20を、比較的容易に製造することができ、製造コストの低減化を図ることもできる。また、液晶体48を比較的薄く形成することも可能である。液晶体48を薄く形成した場合には、屈折率を変える際に応答速度が向上すると共に印加する電圧量を低減化させることが可能である。
次に本実施の形態の一変形例について説明する。
上述の実施の形態では、回折光学素子46として、3ステップのバイナリー段部50を有するバイナリー型の回折光学素子46が用いられている場合について説明したが、他の回折光学素子46を用いることも可能である。以下、4ステップのバイナリー段部50を有するバイナリー型の回折光学素子46が用いられる場合について説明する。
4ステップのバイナリー型の回折光学素子46は、+3次回折光および−1次回折光に関しては以下の式(23)で表されるステップ高さt+3、t−1をもつ場合に、+2次回折光および−2次回折光に関しては以下の式(24)で表されるステップ高さt+2、t−2をもつ場合に、+1次回折光および−3次回折光に関しては以下の式(25)で表されるステップ高さt+1、t−3をもつ場合に、0次回折光に関しては以下の式(26)で表されるステップ高さtをもつ場合に、回折光学素子46におけるレーザービームの回折効率を最大にすることができるということが理論的に知られている。
+3=t−1= 3/4*λ/(n1−n0) 式(23)
+2=t−2= 2/4*λ/(n1−n0) 式(24)
+1=t−3= 1/4*λ/(n1−n0) 式(25)
= λ/(n1−n0) 式(26)
本変形例においても、回折光学素子46は上記の式(2)〜式(4)によって表されるような屈折率n1を有しているので、液晶回路36は、液晶体48の屈折率n0が以下の式(27)〜式(29)で表される値となるように、レーザー光源12から実際に射出されるレーザービームに応じて液晶体48に印加する電圧を調節する。
408nmのレーザービームの場合 n0=1.4 式(27)
655nmのレーザービームの場合 n0=1.332 式(28)
785nmのレーザービームの場合 n0=1.493 式(29)
この場合、各波長のレーザービームの回折効率とステップ高さとの関係は、図6に示すようになる。
図6は、光軸補正部20に液晶体48が設けられている場合の回折効率とステップ高さとの関係を、波長が異なるレーザービーム毎に図示したものである。+3次回折光〜−3次回折光に関して、回折格子におけるレーザービームの回折効率ηを最大にするステップ高さt+1〜t−1は、以下の式(30)〜式(32)で表される値となり、略一致する。
+1 = 1.784μm 式(30)
= 1.789μm 式(31)
−1 = 1.786μm 式(32)
ステップ高さtを、t=1.79μmとして、液晶体48の屈折率を上述のように調節した場合、各波長のレーザービームの回折効率は以下の式(33)〜式(35)で表される値となる。
η+1 = 81.1% 式(33)
η = 100% 式(34)
η−1 = 81% 式(35)
本変形例のように回折光学素子46のバイナリー段部50が様々なステップ数を有する場合であっても、回折光学素子46におけるレーザービームの回折効率を向上させて、レーザー光源12から射出されるレーザービームの利用効率を高めることができる。
(第2の実施の形態)
本実施の形態において、上述の第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
図7は、本実施の形態の光ピックアップ装置10の全体構成を示す図である。
本実施の形態では、光軸補正部20が、集光レンズ32とフォトダイオード30の間に配置される代わりに、偏光ビームスプリッタ22と集光レンズ32の間に配置されている。従って、光軸補正部20は、集光レンズ32の入射側に設けられている。
他の構成は、図1乃至図5に示す第1の実施の形態と略同一である。
本実施の形態の光ピックアップ装置10においても、各光源から射出され光学式情報記録媒体14において反射されたレーザービームは、光軸補正部20において光軸の方向が補正される。この時、各レーザービームは、光軸補正部20の回折光学素子46において回折され、光軸が集光レンズ32等の光学系の中心軸に一致させられる。
そして、光軸が補正されたレーザービームは、集光レンズ32によって集光されて、フォトダイオード30の所定の光検出位置30aに照射される。この時、レーザー光源12から射出されるいずれのレーザービームも、光軸補正部20において光軸が補正されて、光軸と光学系の中心軸とが略一致した状態で集光レンズ32に入射する。従って、集光レンズ32によって集光されてフォトダイオード30に照射されたレーザービームは、精度良く所定の光検出位置30aに照射されることとなる。
また、液晶体48の屈折率を、光源から射出されるレーザービームに応じて変えることにより、各光源から射出されるいずれのレーザービームに関しても、高い回折効率を確保して、回折光学素子46における光の強度の低下を防いでいる。
このようにして本実施の形態においても、各光源から射出されるレーザービームの利用効率が高められており、光学式情報記録媒体14に記録されている情報が精度良く読み取られる。
本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
例えば、上述の各実施の形態および変形例では、バイナリー型の回折光学素子46のバイナリー段部50および液晶体48が、レーザービームの入射側に設けられている場合について説明したが、バイナリー段部50および液晶体48がレーザービームの出射側に設けられている場合にも、上述の各実施の形態および変形例と同様の作用、効果を奏する。
また、上述の各実施の形態および変形例では、偏光ビームスプリッタ22、1/4波長板24等によって、光学式情報記録媒体14にレーザービームを照射するとともに、光学式情報記録媒体14において反射されるレーザービームをフォトダイオード30に誘導しているが、他の機器類を使用することも可能である。例えば、入射したレーザービームのうち一部を透過させるとともに他の部分を反射させる、通常のビームスプリッタを用いたりダイクロイックプリズムを組み合わせたりすることも可能である。
また、上述の各実施の形態および変形例では、CD、DVD、およびHD DVDに使用される780nm、655nm、および408nmの波長のレーザービームを用いる場合について説明したが、他の波長のレーザービームを用いる場合にも本発明に基づく光ピックアップ装置10を応用することができる。この場合、液晶体48には、光ピックアップ装置10で用いられるレーザービームに応じた電圧が印加され、回折光学素子46におけるレーザービームの回折効率が上げられるように調整される。
また、上述の各実施の形態および変形例では、図示しないスイッチ装置から送られる情報に基づいて、液晶回路36は、レーザー光源12から実際に射出されるレーザービームに関する情報を取得し、液晶体48に対する電圧印加状態を調整しているが、液晶回路36は他の手法によってレーザー光源12から射出されるレーザービームの情報を取得することも可能である。例えば、光学式情報記録媒体14で反射されるレーザービーム等を用いて光学式情報記録媒体14の種類を判別する新たな機構を設けることもできる。そして、液晶回路36は、そのような機構の判別結果から光学式情報記録媒体14の種類を特定して、液晶体48に対する電圧印加状態を調整することも可能である。このような機構を用いる場合には、光学式情報記録媒体14の種類を適切に特定することができ、レーザー光源12から射出させる必要のあるレーザービームの選定を簡単に行うことができる。
第1の実施の形態の光ピックアップ装置の全体構成を示す図である。 光軸補正部の構成を示す図である。 光軸補正部におけるレーザービームの光軸補正を示す図である。 光軸補正部に液晶体が設けられていない場合の回折効率とステップ高さとの関係を示す図である。 光軸補正部に液晶体が設けられている場合の回折効率とステップ高さとの関係を示す図である。 第1の実施の形態の変形例において、光軸補正部に液晶体が設けられている場合の回折効率とステップ高さとの関係を示す図である。 第2の実施の形態の光ピックアップ装置の全体構成を示す図である。
符号の説明
10 光ピックアップ装置、 12 レーザー光源、 14 光学式情報記録媒体、 16 記録媒体配置部、 18 コリメータレンズ、 20 光軸補正部、 22 偏光ビームスプリッタ、 24 1/4波長板、 26 反射鏡、 28 対物レンズ、 30 フォトダイオード、 32 集光レンズ、 34 再生回路、 36 液晶回路、 38 サーボ回路、 40 第1の光源、 42 第2の光源、 44 第3の光源、 46 回折光学素子、 48 液晶体、 50 バイナリー段部。

Claims (6)

  1. 光ビームを射出可能な2以上の光源を含む発光手段と、
    前記発光手段から射出される光ビームを光学式情報記録媒体に照射する光ビーム照射手段と、
    前記光学式情報記録媒体によって反射された光ビームの光軸を補正する光軸補正手段と、
    前記光軸補正手段において光軸が補正された光ビームが照射され、前記光学式情報記録媒体に記録されている情報を照射された光ビームに基づいて検知する光情報検知手段と、を備え、
    前記光軸補正手段は、
    前記光学式情報記録媒体によって反射された光ビームが入射する位置に配置され、光ビームが前記光情報検知手段の所定位置に照射されるように、入射した光ビームの光軸を補正する回折光学素子と、
    前記回折光学素子に密着した状態で配置され、印加される電圧に応じて屈折率を変化させる屈折率可変部材と、
    前記発光手段から射出される光ビームに応じて、前記屈折率可変部材に対する電圧印加状態を変化させて前記屈折率可変部材の屈折率を調節する屈折率調整手段と、を有することを特徴とする光ピックアップ装置。
  2. 前記屈折率調整手段は、前記回折光学素子における光ビームの回折効率を上げるようにして、前記屈折率可変部材に対する電圧印加状態を変化させて当該屈折率可変部材の屈折率を調節することを特徴とする請求項1に記載の光ピックアップ装置。
  3. 前記回折光学素子は、バイナリー型の回折光学素子であることを特徴とする請求項1または2に記載の光ピックアップ装置。
  4. 前記発光手段は、3以上の光源を含み、
    前記屈折率調整手段は、前記発光手段から射出される光ビームに応じて、前記屈折率可変部材に対する電圧印加状態を変化させて前記屈折率可変部材の屈折率を調節することを特徴とする請求項1乃至3のいずれかに記載の光ピックアップ装置。
  5. 前記発光手段から射出可能な光ビームの各々は、異なる色のスペクトル範囲に属することを特徴とする請求項1乃至4のいずれかに記載の光ピックアップ装置。
  6. 前記光情報検知手段に照射される光ビームの強度を検出する光ビーム強度検出手段、を更に備え、
    前記屈折率調整手段は、前記光ビーム強度検出手段の検出結果を考慮して、前記屈折率可変部材に対する電圧印加状態を調節することを特徴とする請求項1乃至5のいずれかに記載の光ピックアップ装置。
JP2004088740A 2004-03-25 2004-03-25 光ピックアップ装置 Expired - Fee Related JP3970254B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088740A JP3970254B2 (ja) 2004-03-25 2004-03-25 光ピックアップ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088740A JP3970254B2 (ja) 2004-03-25 2004-03-25 光ピックアップ装置

Publications (2)

Publication Number Publication Date
JP2005276333A true JP2005276333A (ja) 2005-10-06
JP3970254B2 JP3970254B2 (ja) 2007-09-05

Family

ID=35175830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088740A Expired - Fee Related JP3970254B2 (ja) 2004-03-25 2004-03-25 光ピックアップ装置

Country Status (1)

Country Link
JP (1) JP3970254B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117724A1 (en) * 2005-05-03 2006-11-09 Koninklijke Philips Electronics N.V. Multi-radiation beam optical scanning device
JP2009245473A (ja) * 2008-03-28 2009-10-22 Citizen Holdings Co Ltd 液晶光学素子及び光ピックアップ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117724A1 (en) * 2005-05-03 2006-11-09 Koninklijke Philips Electronics N.V. Multi-radiation beam optical scanning device
JP2009245473A (ja) * 2008-03-28 2009-10-22 Citizen Holdings Co Ltd 液晶光学素子及び光ピックアップ装置

Also Published As

Publication number Publication date
JP3970254B2 (ja) 2007-09-05

Similar Documents

Publication Publication Date Title
JP2011096329A (ja) 光ピックアップ装置
US7710849B2 (en) Optical head device and optical information recording or reproducing device
JP4608545B2 (ja) 光ピックアップ装置及び情報記録再生装置
JP4833797B2 (ja) 光ピックアップおよび光情報処理装置
JP2005071462A (ja) 光ピックアップ装置
JP2005327403A (ja) 光ピックアップ及び光学記録媒体記録再生装置
JP2008052888A (ja) 光ピックアップ
JP2006216142A (ja) 光ピックアップ装置
JP2009026348A (ja) 光ピックアップ装置
JP3970254B2 (ja) 光ピックアップ装置
JPWO2007052419A1 (ja) 光ピックアップ装置および光ディスク装置
KR100546351B1 (ko) 호환형 광픽업 및 이를 채용한 광 기록 및/또는 재생기기
KR101041075B1 (ko) 광픽업 장치
JP2008047206A (ja) 光ピックアップ及びこれを用いた光ディスク装置
JPWO2006126357A1 (ja) 光ピックアップ装置及び光ディスク装置
JP3963904B2 (ja) 光ピックアップ装置
JP2005339762A (ja) 光ピックアップ及び光ディスク装置
JP4570992B2 (ja) 光ピックアップ及び光情報記録装置
JP2004279191A (ja) 傾きセンサ、傾き測定装置、光ピックアップ装置及び光ディスク装置
JP2012128898A (ja) 光ピックアップ及び光ディスク装置
JP5072567B2 (ja) 光ピックアップ装置
JP2008108392A (ja) 光ピックアップ装置及び光情報記録再生装置
JP2007200476A (ja) 光ヘッド
JP2007134016A (ja) 光ピックアップ装置
JP2007213651A (ja) 光ピックアップ装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees