JP2005268312A - レジスト除去方法及びそれを用いて製造した半導体装置 - Google Patents

レジスト除去方法及びそれを用いて製造した半導体装置 Download PDF

Info

Publication number
JP2005268312A
JP2005268312A JP2004074868A JP2004074868A JP2005268312A JP 2005268312 A JP2005268312 A JP 2005268312A JP 2004074868 A JP2004074868 A JP 2004074868A JP 2004074868 A JP2004074868 A JP 2004074868A JP 2005268312 A JP2005268312 A JP 2005268312A
Authority
JP
Japan
Prior art keywords
gas
resist
film
insulating film
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004074868A
Other languages
English (en)
Inventor
Atsushi Matsushita
篤志 松下
Isao Matsumoto
功 松本
Kazuaki Inukai
和明 犬飼
Honje Shin
ホンジェ 慎
Tadashi Ohashi
直史 大橋
Shuji Sone
修次 曽祢
Kaori Misawa
佳居 実沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Leading Edge Technologies Inc
Original Assignee
Semiconductor Leading Edge Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Leading Edge Technologies Inc filed Critical Semiconductor Leading Edge Technologies Inc
Priority to JP2004074868A priority Critical patent/JP2005268312A/ja
Priority to TW093136959A priority patent/TW200532766A/zh
Priority to US11/052,987 priority patent/US7538038B2/en
Publication of JP2005268312A publication Critical patent/JP2005268312A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/427Stripping or agents therefor using plasma means only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/7681Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving one or more buried masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks

Abstract

【課題】 低誘電率絶縁膜の比誘電率の増加を防止すると共にレジスト残渣を生じさせないレジスト除去を可能にする。
【解決手段】 レジストマスク6をエッチングマスクとして、被処理基板表面の層間絶縁膜8を構成する保護絶縁膜5/MSQ膜4/シリコン酸化膜3を順次に反応性イオンエッチング(RIE)でドライエッチングし、シリコン基板1表面の拡散層2に達するヴィアホール9を形成する。そして、レジストマスク6の除去では、はじめに、このドライエッチングでレジストマスク6表面部に形成された変質層6aを、NHガスのプラズマ励起で生成したプラズマガス10によりエッチング除去する。次に、残ったレジストマスク6は水素ラジカル11を照射してエッチング除去する
【選択図】 図1

Description

本発明は、レジスト除去方法及びそれを用いて製造した半導体装置に係り、詳しくは、半導体装置の製造において用いたレジスト膜マスクの除去において、低誘電率の絶縁膜材料で成る層間絶縁膜の誘電率が上昇するのを防止すると共にレジスト残りを生じさせないレジスト除去方法及びそれを用いて製造した半導体装置に関する。
近年の半導体装置、特にシリコン基板上に形成する超LSIの製造においては、半導体素子の微細化と共に素子間を接続する配線の多層化が不可欠である。そして、半導体装置の動作の低電圧化、高速化などに伴い、多層配線間の層間絶縁膜の低誘電率化が必要になってくる。特に、ロジック系の半導体装置では、微細配線による抵抗上昇や配線間の寄生容量の増加が半導体装置の動作速度の低下につながるため、低誘電率の絶縁膜材料を層間絶縁膜に適用した多層配線構造が必須となる。ここで、低誘電率の絶縁膜とは二酸化シリコン膜の比誘電率4以下の絶縁膜のことをいう。
このような低誘電率の絶縁膜として、シロキサン骨格を有する絶縁膜あるいは有機高分子を主骨格とした絶縁膜、更にこれらを多孔質化した絶縁膜がある。上記シロキサン骨格を有する絶縁膜では、シルセスキオキサン類の絶縁膜のようなSi−CH 結合、Si−H結合、Si−F結合のうち少なくとも1つの結合を含むシリカ膜、あるいは炭素含有シリコン酸化膜(SiOC膜)が比誘電率3以下になり、有機高分子を主骨格とした絶縁膜では、有機ポリマーで成るSiLK(登録商標)がよく知られが、全般にシロキサン骨格を有する絶縁膜よりその比誘電率は小さくなる。ここで、シルセスキオキサン類の絶縁膜としてよく知られた絶縁材料には、メチルシルセスキオキサン(MSQ:Methyl Silsesquioxane)、ハイドロゲンシルセスキオキサン(HSQ:Hydrogen Silsesquioxane)、メチレーテッドハイドロゲンシルセスキオキサン(MHSQ:Methylated Hydrogen Silsesquioxane)等がある。なお、上記絶縁膜を多孔質化すればその比誘電率は容易に2〜3程度にできる。
上記低誘電率の絶縁膜材料を層間絶縁膜に適用し半導体装置の多層配線を形成する場合に、レジスト膜マスクを用いた加工は必須である。このような加工としては、例えば、多層配線間を接続するためのヴィアホールの形成あるいは埋め込み配線(ダマシン配線あるいはデュアルダマシン配線)における絶縁膜への配線用溝の形成等がある。以下、図9を参照して上記低誘電率の絶縁膜にヴィアホールを形成する場合の工程について概略説明する。ここで、図9は半導体装置のヴィアホールを有する層間絶縁膜の形成工程順の模式的断面図である。
図9(a)に示すように、例えばp導電型のシリコン基板101の表面部にn導電型の拡散層102を形成し、シリコン基板101表面に例えば50nm厚のシリコン酸化膜103を熱酸化で形成する。そして、シリコン酸化膜103に周知のスピンオン塗布法を用いて膜厚が1.5μm程度のMSQ膜104を形成し、MSQ膜104に積層して保護絶縁膜105を成膜する。ここで、保護絶縁膜105は膜厚が50nm程度の炭化シリコン(SiC)膜である。このようにして、この場合には保護絶縁膜105/MSQ膜104/シリコン酸化膜103の積層膜が層間絶縁膜106を構成するようになる。そして、フォトリソグラフィ技術で保護絶縁膜105上の所定の領域にレジスト開口部107を有するレジストマスク108を形成する。
次に、図9(b)に示すように、レジストマスク108をエッチングマスクとして層間絶縁膜106を反応性イオンエッチング(RIE)でドライエッチングする。はじめに保護絶縁膜105をCFガスのプラズマ励起によるRIEでエッチングし、続いてMSQ膜104とシリコン酸化膜103とをCガスとNガスとArガスの混合ガスのプラズマ励起によるRIEでエッチングし、拡散層102に達するヴィアホール109を形成する。ここで、RIEの条件に依存するが、上記ドライエッチングにおいてレジストマスク108表面部は上記プラズマのイオン衝撃を受けて熱変化し変質層108aが形成される。
続いて、図9(c)に示すように、レジスト除去装置において水素(H)と不活性ガス(He、Ar等)の混合ガスをプラズマ励起し水素の活性種を生成し、水素の活性種のうち水素プラズマを成すプロトン及び水素分子イオンを除いたところの水素原子あるいは水素分子の水素ラジカル111を照射し、上記変質層108aを含めたレジストマスク108のエッチング除去を行う。上述したレジスト除去は、後述する図5に模式的に示すようなレジスト除去装置を用いて行い、そのレジスト除去の時間は30%程度のオーバーエッチング時間を入れて1分〜2分となる。ここで、レジスト除去時間はレジスト膜厚によって変わり、オーバーエッチング時間はレジスト膜下の下地段差によって変わる。
そして、図9(d)に示すように、シリコン基板101表面に形成した拡散層102に達するヴィアホール109を保護絶縁膜105/MSQ膜104/シリコン酸化膜103の積層構造の層間絶縁膜106に形成する。このようにした後、図示しないが、ヴィアホール109に充填する導電体材料(ヴィアプラグ)とそれに接続する配線層を形成することになる。
半導体装置の製造においてエッチングマスクに用いたレジストマスクの除去は、これまで、原料ガスの酸素(O)ガスあるいはハロゲン化合物ガスを添加した混合ガスをプラズマ励起し、そのプラズマアッシングで行ってきた。しかし、膜組成が[CHSiO3/2]nとなるMSQ膜のような有機成分を含有した低誘電率の絶縁膜を層間絶縁膜に用いる場合には、上記原料ガスを用いたプラズマアッシングでは、アッシング後に膜質が変化し、その比誘電率の増大することが生じる。これについて図10を参照して説明する。図10は、酸素プラズマによるアッシングでMSQ膜が変質する様子を示す模式的な構造図である。上記プラズマアッシングにおいて、MSQ膜の表面に酸素イオンあるいは酸素ラジカルのような酸化力の強い活性種がプラズマ照射されると、図10(a)に示したSi−CHの結合が図10(b)に示すようにSi−Oの結合に変わる。このようにして、MSQ膜表面が組成的に変化して二酸化シリコン(SiO)膜が部分的に形成され、膜の比誘電率が大幅に増加する。この酸素プラズマアッシングによる膜変質は、レジストマスクのオーバーエッチング時間において顕著になり、上述した低誘電率の絶縁膜において全般に生じてくる。
そこで、現在では、図9(c)で説明したようにプラズマによるレジスト除去の原料ガスとして酸素ガスに換えて、水素ガスあるいは不活性ガスとの混合ガスを用いることが必須になりつつある。このようなレジスト除去であると上述したようなMSQ膜表面の組成的な変化は無く比誘電率の増加は完全に防止できるからである。
しかし、水素ガスあるいは不活性ガスとの混合ガスを用いた上述したようなレジスト除去では、図9(d)に示すように、レジスト残渣112が層間絶縁膜106表面に形成され、レジストマスク108を除去しきれないという問題があった。このレジスト残渣112の発生は、図9(b)で説明したような被処理基板の加工時のRIE等のドライエッチング条件に依存している。本発明者等の詳細な検討では、レジスト残渣112が形成され易い第1のケースは、RIE等のドライエッチングにおいて層間絶縁膜が厚くエッチング処理の時間が長くなるために、レジストマスク108表面部の上記プラズマイオン衝撃を受ける時間が長くなり、レジストマスクの熱硬化が進行してしまう場合である。そして、その第2のケースは、RIEのプラズマ励起に用いる原料ガスであるハロゲン(弗素、塩素、臭素等)とレジストとの化学反応が進み、異物質がレジストマスク108の表面部に形成される場合である。このように変質層108aには、大きく分けて熱硬化層と異物質層の2つが存在する。
本発明は、上述の事情に鑑みてなされたもので、レジストマスクのプラズマによるレジスト除去において原料ガスに水素を用いる場合に、低誘電率の絶縁膜の比誘電率の増加を防止すると共に、RIEの条件によらずレジスト残渣を生じさせないレジスト除去方法を提供することを主目的としている。
上記課題を解決するために、レジスト除去方法にかかる発明は、被処理基板の加工でマスクとして用いたレジスト膜をエッチング除去するレジスト除去方法において、前記加工で変質した前記レジスト膜の表面部をエッチング除去する工程と、前記表面部をエッチング除去した後に残存するレジスト膜を、水素ガスを含む原料ガスのプラズマ励起により生成した水素活性種を用いてエッチング除去する工程と、を有している。
上記発明において、前記水素活性種は水素ラジカルであり、前記原料ガスは水素ガスと不活性ガスの混合ガスであることが好ましい。また、前記水素活性種を用いるエッチング除去において、前記被処理基板の温度を200℃〜400℃の範囲に設定することが好ましい。
上記発明において、前記加工で変質した前記レジスト膜の表面部のエッチング除去は、アンモニア(NH)ガス、窒素ガス、酸素ガス、四弗化炭素(CF)ガス、水素ガスあるいはこれらの混合ガスのプラズマ励起により生成した活性種を前記表面部に照射して行う。あるいは、前記加工で変質した前記レジスト膜の表面部のエッチング除去は、有機溶剤を含む化学薬液に前記被処理基板を浸漬して行う。
ここで、前記レジスト膜の表面部は、前記被処理基板表面の比誘電率が3以下の低誘電率絶縁膜のエッチング加工によって変質したものである。あるいは、前記レジスト膜の表面部は、前記被処理基板表面の比誘電率が3以下の低誘電率絶縁膜上にある金属膜のエッチング加工によって変質したものである。
上記レジスト除去方法を用いて製造した半導体装置の発明においては、比誘電率が3以下の前記低誘電率の絶縁膜が半導体素子間を接続する多層配線構造の層間絶縁膜となっている。あるいは、比誘電率が3以下の前記低誘電率の絶縁膜が半導体素子間を接続するダマシン配線構造の層間絶縁膜となっている。
本発明のレジスト除去方法により、半導体装置の配線構造に使用する低誘電率の層間絶縁膜が高い再現性の下に簡便にしかも高精度に形成できる。そして、水素ガスを用いたレジスト除去においてレジスト残渣の発生が皆無になり、水素ガスを用いるレジスト除去の方法が、半導体装置の製造において充分に適用できるようになる。
以下に、図面を参照して本発明の実施の形態の幾つかを詳細に説明する。
(実施の形態1)
図1乃至3は、本発明の第1の実施の形態にかかるレジスト除去方法を適用した半導体装置の製造を示す工程別素子断面図である。図4,5は、上記レジスト除去において用いたレジスト除去装置の模式的な略断面図である。
p導電型のシリコン基板1の表面部にn導電型の拡散層2を形成し、シリコン基板1表面に例えば50nm厚のシリコン酸化膜3を熱酸化で形成する。そして、シリコン酸化膜3に周知のスピンオン塗布法を用いて膜厚が1.5μm程度のMSQ膜4を形成し、MSQ膜4上に膜厚50nmのSiC膜を積層して保護絶縁膜5を形成し被処理基板とする。更に、フォトリソグラフィ技術で被処理基板の保護絶縁膜5上にレジストマスク6を形成する。ここで、レジストマスク6にはレジスト開口部7が形成してある(図1(a))。
次に、従来の技術で説明したように、レジストマスク6をエッチングマスクとして被処理基板表面の層間絶縁膜8を構成する保護絶縁膜5/MSQ膜4/シリコン酸化膜3を順次にRIEでドライエッチングする。はじめに保護絶縁膜5をCFガスのプラズマ励起によるRIEでエッチングし、続いてMSQ膜4とシリコン酸化膜3とをCガスとNガスとArガスの混合ガスのプラズマ励起によるRIEでエッチングし、拡散層2に達するヴィアホール9を形成する。上記ドライエッチングによりレジストマスク6表面部に変質層6aが形成される(図1(b))。この変質層6aは、上述した熱硬化層と異物質層が混在したものである。
次に、図4に示すようなレジスト除去装置20を用い、上記変質層6aにプラズマ処理を施しプラズマガス10照射することで変質層6aの除去を行う(図1(c))。このレジスト除去装置20は、その基本構造として、表面がアルマイト処理されたアルミニウムから成る円筒形状に成形されたチャンバ21、チャンバ21内の底部に取り付けられた回転テーブル22、チャンバ21内の上部に取り付けられたプラズマ発生部23、そしてNHガス、Nガス、Hガス、CFガス、Oガス及び不活性ガスのガス供給系24と反応後の処理ガスをチャンバ21外に排出する排気系25を備え、プラズマ発生部23には、ヘリコン波プラズマ源、ECR(Electron Cyclotron Resonance)プラズマ源、ICP(Inductively Coupled Plasma)プラズマ源のような装置が取り付けられて、高密度プラズマ(HDP)を発生させるようになっている。
このレジスト除去装置20の回転テーブル22上にシリコン基板1であるウエハ26を載置し一定速度で回転させ、ガス導入口27より原料ガスとしてNHガスあるいはNHガスと不活性ガスの混合ガスをプラズマ発生部23に導入し、上述したところの高密度プラズマ発生源により上記原料ガスをプラズマ励起させ窒素及び水素の活性種を多量に生成させる。このようにして形成した活性種をチャンバ21内に入れ、図1(c)に示したようなプラズマガス10照射でウエハ26表面の変質層6aを除去しレジストマスク6を残す。この変質層6a除去後の処理ガスはガス排出口28から排気系25によりチャンバ21外に排出する。ここで、回転テーブル22を加熱し温度制御する基板加熱系29によりウエハ26の温度を100℃程度に設定する。この変質層6aの除去時間は、従来の技術で説明したレジスト除去の時間1分〜2分に比べると短時間の15秒程度である。
次に、従来の技術で説明したのと同様に、図5に示すレジスト除去装置を用いて水素ラジカル11を照射しレジストマスク6を除去する(図1(d))。このレジスト除去装置30は、その基本構造として、表面がアルマイト処理されたアルミニウムから成る円筒形状に成形されたレジスト除去を行う処理室のチャンバ31、チャン31内の底部に取り付けられた回転テーブル32、チャンバ31内の上部に取り付けられた活性種輸送管であるガス輸送管33、プラズマ発生部34、そして水素あるいは不活性ガス(He、Ar等)のガス供給系39と反応後の処理ガスをチャンバ31外に排出する排気系40を備えている。
そして、上記プラズマ発生部34は、例えば石英ガラスから成る放電管35の内壁に耐プラズマ部材36を設け、放電管35は、この放電管35の内部にμ波37(例えば周波数;2.45GHz)を供給するための導波管38が接続してある。また、ガス輸送管33の内壁にも耐プラズマ部材36を設けてもよい。ここで、耐プラズマ部材36は水素あるいは不活性ガスのプラズマでスパッタリングされ難いサファイアで構成するのが好ましい。
このレジスト除去装置30の回転テーブル32上にシリコン基板1であるウエハ41を載置し一定速度で回転させ、ガス導入口42より原料ガスとして水素ガスをHeガスで希釈した水素混合ガスを放電管35に導入し、マグネトロンで発生させたμ波37を導波管38を通して放電管35内に供給し、上記混合ガスをプラズマ励起させ水素の活性種を生成する。ここで、水素の活性種には水素プラズマを成すプロトン及び水素分子イオン、そして水素原子あるいは水素分子の中性ラジカル(まとめて水素ラジカルという)がある。この活性種のうち水素ラジカルの寿命は長く、ガス輸送管33を通りチャンバ31内に導入され図1(d)の水素ラジカル11となり、回転テーブル32上に載置したウエハ41表面のレジストマスク6を除去する。ここで、レジストマスクマスク6の除去は30%のオーバーエッチング時間を入れて行う。なお、水素プラズマの一部はガス輸送管33を流れる間に水素ラジカルに変化している。そして、このレジスト除去後の処理ガスはガス排出口43から排気系40によりチャンバ31外に排出される。
ここで、水素混合ガスのプラズマ励起はマイクロ波で行うためにプラズマ密度が高くそれに伴い水素ラジカルの密度も高くなり、レジスト除去速度が増大する。また、回転テーブル32を加熱し温度制御する基板加熱系44によりウエハ41の温度を200℃〜400℃の範囲に設定する。このようなウエハ温度は、従来のプラズマによるレジスト除去におけるウエハ温度が通常で150℃程度あるいはそれ以下になるのと比べると高い温度範囲である。このように従来技術の場合より高いウエハ温度にすることでレジスト除去速度が更に増大するようになる。
次に、層間絶縁膜8に形成したヴィアホール9を充填するように化学気相成長(CVD)法で導電体膜12を堆積させる(図2(a))。ここで、導電体膜12は周知のチタン系のバリアメタルとタングステン等の高融点金属あるいはそのシリサイドとの積層構造となっている。
そして、周知の化学機械研磨(CMP)法を用いて、保護絶縁膜5上の不要な導電体膜12を研磨除去する。このCMPの工程で保護絶縁膜5がCMP用ストッパ膜として機能し、MSQ膜4をCMPから保護する。以上のようにして、拡散層2に接続するヴィアプラグ13を形成する(図2(b))
次に、ヴィアプラグ13に接続する膜厚が1μm程度のアルミ・銅のアルミ合金膜14をスパッタ法で保護絶縁膜5上に成膜し、配線パターンを有するレジストマスク15をアルミ合金膜14表面にフォトリソグラフィ技術で形成する(図2(c))。
次に、レジストマスク15をエッチングマスクとしてアルミ合金膜14をRIEでドライエッチングし配線16を形成する。ここで、アルミ合金膜14のドライエッチングは、原料ガスがClガス、BClガス等の塩素を含む混合ガスをプラズマ励起して行う。このドライエッチングでは、レジストマスク15表面部に熱硬化した塩素を含有する有機ポリマーが変形層15aとして形成される(図3(a))。ここで、変質層15aは、上述した異物質層が主体のものである。
そして、この変質層15aは、図1(c)で説明したように、図4に示したレジスト除去装置20を用い、15秒程度の短時間のプラズマ処理により除去する(図3(b))。ここで、この変質層15aの除去で用いる原料ガスは、CFガスとOガスの混合ガスである。この場合の変質層15aは、異物質層が主体であり、変質層6aの場合よりもプラズマ除去しにくいために上記アッシングガスを用いる。また、この原料ガスであれば、NHガスの場合と異なりSiC膜で成る保護絶縁膜5がエッチング除去されることはない。
次に、図1(d)で説明したのと同様に、図5に示すレジスト除去装置を用いて水素ラジカル11を照射しレジストマスク15を除去する。このようにして、シリコン基板1表面に形成した拡散層2と、層間絶縁膜8に設けたヴィアプラグ13を通して接続する配線16を形成する(図3(c))。
この実施の形態で説明したレジスト除去の方法であると、従来の技術で説明したようなレジスト残渣は、高い再現性の下に安定的に発生しないようにすることができる。但し、このレジスト除去において、レジストマスク表面部の変質層を予め除去するためには、上述したようにRIEの条件によりその膜質が変化するのでその膜質に合わせてプラズマ処理の原料ガスを変える必要がある。通常、金属膜のRIEによるドライエッチングで形成される変質層が最も除去しにくいために、この場合にはアッシングガスを添加して用いるようにする。それ以外の材料膜のエッチングでは、上述したようにNHガス、Nガス、Hガス、CFガスあるいはこれらの混合ガスを用いればよい。ここで、混合ガスとしては、NHガス、NガスあるいはHガスにそれぞれCFガスを添加したもの、NガスとHガスの混合ガス、その他にNHガスにOガスを添加したものが好ましい。
上述したようなレジスト除去方法であると、レジスト除去後の層間絶縁膜の比誘電率は低いままに保持することができる。例えば、図1で説明した層間絶縁膜の形成において比誘電率が2.5の多孔質のMSQ膜4を用いた場合、図3(d)の工程後のMSQ膜4の比誘電率は若干の増加傾向にあるが、測定誤差を考慮しても比誘電率の増加率は1%以下である。この実施の形態では、層間絶縁膜8は、保護絶縁膜5/MSQ膜4/シリコン酸化膜3の積層膜である。保護絶縁膜5を構成するSiC膜の比誘電率を3.5、シリコン酸化膜の比誘電率を4とすると層間絶縁膜8はMSQ膜の換算膜厚で1.6μm弱になり、半導体装置の製造において、配線間の寄生容量を充分に低減した配線構造が形成できることになる。
この実施の形態において、MSQ膜4の比誘電率がほとんど変化しないのは、レジストマスク表面部の変質層のプラズマ照射による除去は短時間であり、この間は、層間絶縁膜8はレジストマスク6に被覆されているからである。そして、残りのレジストマスク6のエッチングにおいて、MSQ膜4がオーバーエッチング時間も含め長時間の水素ラジカル照射を受けても、図6に示すように、MSQ膜4のメチル基(−CH)がそのまま残存しMSQ膜の膜質変化がほとんど生じないからである。ここで、図6は、XPS(X−ray Photoelectron Spectroscopy)の測定結果を参考にしたMSQ膜の模式的な構造図である。
上述したように、この実施の形態の特徴は、低誘電率の絶縁膜を層間絶縁膜に用いる場合に、その加工に用いたレジストマスクの除去において、レジストマスク表面部に形成される変質層を短時間のプラズマ照射で予め除去し、水素活性種により、好ましくは水素含有のガスをリモートプラズマ生成しその中の水素ラジカルにより、残りのレジストマスクを除去するところにある。
この第1の実施の形態では、従来の技術で説明したレジスト残渣の発生は、高い再現性の下に安定的に無くすることができる。そして、レジスト除去後の低誘電率絶縁膜の誘電率が増加をすることもなくなる。このようにして、半導体装置の配線構造において、低誘電率を有する層間絶縁膜が高い再現性の下に簡便にしかも高精度に形成できるようになる。そして、半導体装置において比誘電率が3以下の層間絶縁膜で寄生容量が小さな配線構造が容易に形成できるようになり、高速動作する高性能な半導体装置の実用化が促進される。
(実施の形態2)
図7,8は、本発明の第2の実施の形態にかかるレジスト除去方法を適用した半導体装置の製造を示す工程別素子断面図である。第2の実施の形態はデュアルダマシン配線構造を形成する場合について説明する。
シリコン基板(不図示)上にシリコン酸化膜で成る下層絶縁膜51を形成し、下層絶縁膜51上にチタン系の導電体材料で第1バリア層52、アルミ・銅合金膜による下層配線53、第2バリア層54を積層構造に形成する。そして、スピンオン塗布法によりMSQ膜となる塗布溶液を全面に塗布し、引続いて例えば150℃程度の温度で焼成し、更に拡散炉の中で400℃程度の温度の熱処理を施して、膜厚500nm程度の第1MSQ膜55を形成する。続いて、この第1MSQ膜55表面に膜厚50nmの炭化シリコン膜(SiC膜)から成る第1保護絶縁膜56を成膜し、その一部に選択エッチングで開口部57を形成する。そして、上記スピンオン塗布法を用いて膜厚が1μm程度の第2MSQ膜58および膜厚50nmのSiC膜から成る第2保護絶縁膜59を積層して形成し被処理基板とし、フォトリソグラフィ技術で被処理基板の第2保護絶縁膜59上にレジストマスク60を形成する。ここで、レジストマスク60にはレジスト開口部61が形成してある(図7(a))。
次に、レジストマスク60をエッチングマスクにして、はじめに第2保護絶縁膜59をCFガスのプラズマ励起によるRIEでエッチングし、続いて第2MSQ膜58をCガスとOガスとArガスの混合ガスのプラズマ励起によるRIEでエッチングし、更に第1保護絶縁膜56をエッチングストッパとして開口部57下の第1MSQ膜55をドライエッチングする。このようにして、第2MSQ膜58と第2保護絶縁膜に配線溝62を形成し、第1MSQ膜55と第1保護絶縁膜56にヴィアホール63を形成する。上記ドライエッチングによりレジストマスク60表面部に変質層60aが形成される(図7(b))。ここで、形成される変質層60aは、第1の実施の形態の場合よりも少なくしかもエッチング除去され易いものになる。これは、上記ドライエッチングの原料ガスにOが添加してあるために、このドライエッチング中にレジストマスク60表面も同時にアッシング除去されるからである。
次に、レジストマスク60表面部に形成された上記変質層60aを化学薬液で除去する(図7(c))。ここで、第2バリア層54あるいは下層配線53をエッチングしない化学薬液、例えばキシレン系、ケトン系、アルコール系の有機溶剤を用いるとよい。
このようにして、予め変質層60aを除去した後に、第1の実施の形態で説明した図5に示すレジスト除去装置を用いてレジストマスク60を除去する。ここで、レジストマスク60は主に水素ラジカル64の照射によりエッチング除去されることになる。(図8(a))。
次に、配線溝62およびヴィアホール63の内壁ならびに第2保護絶縁膜59表面に第3バリア層65を例えば膜厚が20nm程度の窒化タンタル(TaN)膜で形成する。そして、膜厚が1μm程度のCu膜66を周知のメッキ法等を用いて形成する(図8(b))。
そして、周知のCMP法を用いて、第2保護絶縁膜59上の不要なCu膜66および第3バリア層65を研磨除去する。このCMPの工程で、第2保護絶縁膜59がCMP用ストッパ膜として機能し、第2MSQ膜58をCMPから保護する。以上のようにして、下層配線53に接続するデュアルダマシン配線67が出来上がる(図8(c))。
上述したように、第2の実施の形態の特徴は、低誘電率の絶縁膜を層間絶縁膜に用いる場合に、その加工に用いたレジストマスクの除去において、予めレジストマスク表面部の変質層を予め化学薬液で除去し、その後に残りのレジストマスクを水素ラジカル照射で除去するところにある。
第2の実施の形態では、変質層の熱変化の程度が小さい場合に有効となり、この場合も従来の技術で説明したようなレジスト残渣は、高い再現性の下に安定的に発生しないようにすることができる。この実施の形態では、上述したように変質層の除去において化学薬液を用いプラズマ照射は行わない。このために、低誘電率の絶縁膜の比誘電率が2程度と小さくなった場合でも、レジストマスク除去後の層間絶縁膜の比誘電率は低いままに保持できる。例えば、図7,8で説明したデュアルダマシン配線構造における層間絶縁膜において、比誘電率が2.0の多孔質のMSQ膜を用いた場合、レジストマスク除去後のその比誘電率は2.0のままである。これに対して、第1の実施の形態では、低誘電率の絶縁膜の比誘電率が2程度と小さくなると、レジストマスク除去後の比誘電率に10%程度の増加が生じる場合がある。
このようにして、第2の実施の形態のレジスト除去の方法も半導体装置の製造において充分に適用できる。そして、この場合も、半導体装置において比誘電率が3以下の層間絶縁膜を用い寄生容量が小さな(デュアル)ダマシン配線構造が容易に形成できるようになり、高速動作し高性能な半導体装置の実用化が促進される。
以上、この発明の実施の形態を図面を参照して詳述してきたが、具体的な構成はこの実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。上述した実施の形態では、低誘電率の絶縁膜である有機成分を含有するシロキサン骨格の絶縁膜の代表例とし、MSQ膜をドライエッチングし配線構造に用いる層間絶縁膜を形成する場合について説明しているが、それ以外のシルセスキオキサン類の絶縁膜あるいはSiOC膜のような無機絶縁膜を用いて半導体装置の層間絶縁膜を形成する場合にも、本発明は全く同様にして適用できるものである。そして、本発明は、有機高分子を主骨格とした低誘電率の絶縁膜を用い層間絶縁膜を形成する場合には更に効果的に適用できる。
また、上記実施の形態では、保護絶縁膜としてSiC膜を用いる場合について説明しているが、これに限定されるものでは全くなく、SiC膜の代わりにSiOC膜を用いても良い。
更に、本発明は、低誘電率の絶縁膜を用いた層間絶縁膜を通してシリコン基板内に不純物イオン注入をする場合に用いたレジストマスクを除去する場合にも、全く同様に適用できる。このイオン注入においても、そのドーズ量が増大するとレジストマスクの表面部に変質層が生じるからである。このような不純物イオン注入に用いるレジストマスクは、例えば一個のMOSFETで構成するROM(含む多値機能)を搭載した半導体装置の製造に頻繁に使用される。
更に、本発明は、シリコン基板上に半導体装置を形成する場合の他に、GaAs基板、GaN基板のような化合物半導体基板上に半導体装置を形成する場合にも同様に適用できる。また、液晶パネル、プラズマディスプレイパネルの配線構造を形成する場合にも同様に適用できる。そして、半導体装置の実装に使用する多層配線基板のプリプレグのような絶縁素材を形成する場合にも適用できる。このように、本発明は、上記の実施の形態に限定されず、本発明の技術思想の範囲内において、実施の形態は適宜に変更されうるものである。
本発明の第1の実施の形態にかかる半導体装置製造でのレジスト除去方法を示す工程別素子断面図である。 図1に示す工程の続きの工程別断面図である。 図2に示す工程の続きの工程別断面図である。 レジストマスク表面部の変質層を除去するレジスト除去装置の模式的な略断面図である。 レジストマスクを除去するためのレジスト除去装置の模式的な略断面図である。 本発明の効果を説明するための低誘電率絶縁膜の構造図である。 本発明の第2の実施の形態にかかる半導体装置製造でのレジスト除去方法を示す工程別素子断面図である。 図7に示す工程の続きの工程別断面図である。 従来の技術を説明する半導体装置製造でのレジスト除去方法を示す工程別素子断面図である。 従来の技術を説明するための低誘電率絶縁膜の構造図である。
符号の説明
1 シリコン基板
2 拡散層
3 シリコン酸化膜
4 MSQ膜
5 保護絶縁膜
6,15,60 レジストマスク
6a,15a,60a 変質層
7,61 レジスト開口部
8 層間絶縁膜
9,63 ヴィアホール
10,17 プラズマガス
11,64 水素ラジカル
12 導電体膜
13 ヴィアプラグ
14 アルミ合金膜
16 配線
20,30 レジスト除去装置
21,31 チャンバ
22,32 回転テーブル
23,34 プラズマ発生部
24,39 ガス供給系
25,40 排気系
26,41 ウエハ
27,42 ガス導入口
28,43 ガス排出口
29,44 基板加熱系
33 ガス輸送管
35 放電管
36 耐プラズマ部材
37 μ波
38 導波管
51 下層絶縁膜
52 第1バリア層
53 下層配線
54 第2バリア層
55 第1MSQ膜
56 第1保護絶縁膜
57 開口部
58 第2MSQ膜
59 第2保護絶縁膜
62 配線溝
65 第3バリア層
66 Cu膜
67 デュアルダマシン配線

Claims (8)

  1. 被処理基板の加工でマスクとして用いたレジスト膜をエッチング除去するレジスト除去方法において、
    前記加工で変質した前記レジスト膜の表面部をエッチング除去する工程と、
    前記表面部をエッチング除去した後に残存するレジスト膜を、水素ガスを含む原料ガスのプラズマ励起により生成した水素活性種を用いてエッチング除去する工程と、
    を有するレジスト除去方法。
  2. 前記水素活性種は水素ラジカルであることを特徴とする請求項1に記載のレジスト除去方法。
  3. 前記原料ガスは水素ガスと不活性ガスの混合ガスであることを特徴とする請求項1又は2に記載のレジスト除去方法。
  4. 前記水素活性種を用いるエッチング除去において、前記被処理基板の温度を200℃〜400℃の範囲に設定することを特徴とする請求項1,2又は3に記載のレジスト除去方法。
  5. 前記加工で変質した前記レジスト膜の表面部のエッチング除去は、アンモニア(NH)ガス、窒素ガス、酸素ガス、四弗化炭素(CF)ガス、水素ガスあるいはこれらの混合ガスのプラズマ励起により生成した活性種を前記表面部に照射して行うことを特徴とする請求項1〜4のいずれか一項に記載のレジスト除去方法。
  6. 前記加工で変質した前記レジスト膜の表面部のエッチング除去は、有機溶剤を含む化学薬液に前記被処理基板を浸漬して行うことを特徴とする請求項1〜4のいずれか一項に記載のレジスト除去方法。
  7. 前記レジスト膜の表面部は、前記被処理基板表面の比誘電率が3以下の低誘電率絶縁膜のエッチング加工によって変質したものである請求項1〜6のいずれか一項に記載のレジスト除去方法。
  8. 前記レジスト膜の表面部は、前記被処理基板表面の比誘電率が3以下の低誘電率絶縁膜上にある金属膜のエッチング加工によって変質したものである請求項1〜6のいずれか一項に記載のレジスト除去方法。

JP2004074868A 2004-03-16 2004-03-16 レジスト除去方法及びそれを用いて製造した半導体装置 Pending JP2005268312A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004074868A JP2005268312A (ja) 2004-03-16 2004-03-16 レジスト除去方法及びそれを用いて製造した半導体装置
TW093136959A TW200532766A (en) 2004-03-16 2004-11-30 Method of removing resist, semiconductor device manufactured by the method
US11/052,987 US7538038B2 (en) 2004-03-16 2005-02-09 Method of removing resist, semiconductor device thereby and method of manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004074868A JP2005268312A (ja) 2004-03-16 2004-03-16 レジスト除去方法及びそれを用いて製造した半導体装置

Publications (1)

Publication Number Publication Date
JP2005268312A true JP2005268312A (ja) 2005-09-29

Family

ID=34986914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004074868A Pending JP2005268312A (ja) 2004-03-16 2004-03-16 レジスト除去方法及びそれを用いて製造した半導体装置

Country Status (3)

Country Link
US (1) US7538038B2 (ja)
JP (1) JP2005268312A (ja)
TW (1) TW200532766A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531053A (ja) * 2009-08-25 2012-12-06 シルバーブルック リサーチ ピーティワイ リミテッド フォトレジストおよびエッチング残留物をビアから除去する方法
JP2013513948A (ja) * 2009-12-11 2013-04-22 ノベルス・システムズ・インコーポレーテッド low−k誘電体について損傷を低く抑えつつフォトレジストをストリッピングする方法
US8440513B2 (en) 2008-06-30 2013-05-14 Hitachi High-Technologies Corporation Method of semiconductor processing
US9173291B2 (en) 2012-12-28 2015-10-27 Samsung Electro-Mechanics Co., Ltd. Circuit board and method for manufacturing the same
US9514954B2 (en) 2014-06-10 2016-12-06 Lam Research Corporation Peroxide-vapor treatment for enhancing photoresist-strip performance and modifying organic films
US9564344B2 (en) 2009-12-11 2017-02-07 Novellus Systems, Inc. Ultra low silicon loss high dose implant strip
US9613825B2 (en) 2011-08-26 2017-04-04 Novellus Systems, Inc. Photoresist strip processes for improved device integrity
US9941108B2 (en) 2004-12-13 2018-04-10 Novellus Systems, Inc. High dose implantation strip (HDIS) in H2 base chemistry

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260060A (ja) * 2004-03-12 2005-09-22 Semiconductor Leading Edge Technologies Inc レジスト除去装置及びレジスト除去方法、並びにそれを用いて製造した半導体装置
US7504643B2 (en) * 2005-12-22 2009-03-17 Asml Netherlands B.V. Method for cleaning a lithographic apparatus module, a cleaning arrangement and a lithographic apparatus comprising the cleaning arrangement
US7495239B2 (en) * 2005-12-22 2009-02-24 Asml Netherlands B.V. Method for cleaning a lithographic apparatus module, a cleaning arrangement and a lithographic apparatus comprising the cleaning arrangement
US20070184666A1 (en) * 2006-02-08 2007-08-09 Texas Instruments Inc. Method for removing residue containing an embedded metal
US7785753B2 (en) * 2006-05-17 2010-08-31 Lam Research Corporation Method and apparatus for providing mask in semiconductor processing
US20080299780A1 (en) * 2007-06-01 2008-12-04 Uv Tech Systems, Inc. Method and apparatus for laser oxidation and reduction
US8280525B2 (en) 2007-11-16 2012-10-02 Vivant Medical, Inc. Dynamically matched microwave antenna for tissue ablation
US8435237B2 (en) 2008-01-29 2013-05-07 Covidien Lp Polyp encapsulation system and method
US20090258487A1 (en) * 2008-04-14 2009-10-15 Keng-Chu Lin Method for Improving the Reliability of Low-k Dielectric Materials
US9991311B2 (en) 2008-12-02 2018-06-05 Arizona Board Of Regents On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
US9601530B2 (en) 2008-12-02 2017-03-21 Arizona Board Of Regents, A Body Corporated Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
US9721825B2 (en) 2008-12-02 2017-08-01 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
WO2010065459A2 (en) * 2008-12-02 2010-06-10 Arizona Board Of Regents, For And On Behalf Of Arizona State University Method of etching organosiloxane dielectric material and semiconductor device thereof
US8202270B2 (en) 2009-02-20 2012-06-19 Vivant Medical, Inc. Leaky-wave antennas for medical applications
US9277969B2 (en) 2009-04-01 2016-03-08 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
US8463396B2 (en) 2009-05-06 2013-06-11 Covidien LLP Power-stage antenna integrated system with high-strength shaft
EP2436029A4 (en) 2009-05-29 2013-04-10 Univ Arizona PROCESS FOR PROVIDING A FLEXIBLE SEMICONDUCTOR DEVICE AT HIGH TEMPERATURES AND FLEXIBLE SEMICONDUCTOR DEVICE THEREFOR
US8235981B2 (en) 2009-06-02 2012-08-07 Vivant Medical, Inc. Electrosurgical devices with directional radiation pattern
US8568401B2 (en) 2009-10-27 2013-10-29 Covidien Lp System for monitoring ablation size
WO2012021196A2 (en) 2010-05-21 2012-02-16 Arizona Board Of Regents, For And On Behalf Of Arizona State University Method for manufacturing electronic devices and electronic devices thereof
WO2012021197A2 (en) 2010-05-21 2012-02-16 Arizona Board Of Regents, For And On Behalf Of Arizona State University Method of manufacturing electronic devices on both sides of a carrier substrate and electronic devices thereof
JP5708071B2 (ja) * 2011-03-11 2015-04-30 富士通株式会社 レジストパターン改善化材料、レジストパターンの形成方法、及び半導体装置の製造方法
US8871639B2 (en) 2013-01-04 2014-10-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
US20140273525A1 (en) * 2013-03-13 2014-09-18 Intermolecular, Inc. Atomic Layer Deposition of Reduced-Leakage Post-Transition Metal Oxide Films
WO2017034645A2 (en) 2015-06-09 2017-03-02 ARIZONA BOARD OF REGENTS, a body corporate for THE STATE OF ARIZONA for and on behalf of ARIZONA STATE UNIVERSITY Method of providing an electronic device and electronic device thereof
WO2015156891A2 (en) 2014-01-23 2015-10-15 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
US10381224B2 (en) 2014-01-23 2019-08-13 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an electronic device and electronic device thereof
EP3143641A4 (en) 2014-05-13 2018-01-17 Arizona Board of Regents, a Body Corporate of the State of Arizona acting for and on behalf of Arizona State University Method of providing an electronic device and electronic device thereof
US10446582B2 (en) 2014-12-22 2019-10-15 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an imaging system and imaging system thereof
US9741742B2 (en) 2014-12-22 2017-08-22 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Deformable electronic device and methods of providing and using deformable electronic device
JP6438831B2 (ja) * 2015-04-20 2018-12-19 東京エレクトロン株式会社 有機膜をエッチングする方法
US9460959B1 (en) * 2015-10-02 2016-10-04 Applied Materials, Inc. Methods for pre-cleaning conductive interconnect structures
US10269574B1 (en) * 2017-10-03 2019-04-23 Mattson Technology, Inc. Surface treatment of carbon containing films using organic radicals
CN109994375A (zh) * 2018-01-03 2019-07-09 联华电子股份有限公司 去除图案化光致抗蚀剂的方法
US10515907B2 (en) 2018-05-17 2019-12-24 Sandisk Technologies Llc Three-dimensional memory device containing hydrogen diffusion blocking structures and method of making the same
US10515897B2 (en) 2018-05-17 2019-12-24 Sandisk Technologies Llc Three-dimensional memory device containing hydrogen diffusion blocking structures and method of making the same
CN110581065A (zh) * 2019-09-25 2019-12-17 上海华力集成电路制造有限公司 光刻胶去除方法及光刻胶重制方法
CN114823297B (zh) * 2022-04-19 2023-01-31 度亘激光技术(苏州)有限公司 光刻胶去除工艺及半导体制造工艺

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226722A (ja) 1989-02-28 1990-09-10 Fujitsu Ltd 有機膜の処理方法
JP3533583B2 (ja) 1994-07-25 2004-05-31 富士通株式会社 水素プラズマダウンフロー装置の洗浄方法
US5792672A (en) * 1996-03-20 1998-08-11 Chartered Semiconductor Manufacturing Ltd. Photoresist strip method
US6379576B2 (en) 1997-11-17 2002-04-30 Mattson Technology, Inc. Systems and methods for variable mode plasma enhanced processing of semiconductor wafers
US6107192A (en) 1997-12-30 2000-08-22 Applied Materials, Inc. Reactive preclean prior to metallization for sub-quarter micron application
US6281135B1 (en) 1999-08-05 2001-08-28 Axcelis Technologies, Inc. Oxygen free plasma stripping process
WO2002001300A1 (fr) * 2000-06-28 2002-01-03 Nec Corporation Composition d'agent de demontage
US6486082B1 (en) 2001-06-18 2002-11-26 Applied Materials, Inc. CVD plasma assisted lower dielectric constant sicoh film
US6635409B1 (en) * 2001-07-12 2003-10-21 Advanced Micro Devices, Inc. Method of strengthening photoresist to prevent pattern collapse
US6583046B1 (en) * 2001-07-13 2003-06-24 Advanced Micro Devices, Inc. Post-treatment of low-k dielectric for prevention of photoresist poisoning
JP2003092287A (ja) * 2001-09-19 2003-03-28 Nec Corp アッシング方法
JP2003188151A (ja) 2001-12-19 2003-07-04 Hitachi Ltd 半導体集積回路装置の製造方法
US6774037B2 (en) * 2002-05-17 2004-08-10 Intel Corporation Method integrating polymeric interlayer dielectric in integrated circuits
JP2004103747A (ja) 2002-09-09 2004-04-02 Renesas Technology Corp 半導体装置の製造方法
US6905333B2 (en) 2002-09-10 2005-06-14 Axcelis Technologies, Inc. Method of heating a substrate in a variable temperature process using a fixed temperature chuck
US20040237997A1 (en) 2003-05-27 2004-12-02 Applied Materials, Inc. ; Method for removal of residue from a substrate
US7029992B2 (en) * 2004-08-17 2006-04-18 Taiwan Semiconductor Manufacturing Company Low oxygen content photoresist stripping process for low dielectric constant materials

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941108B2 (en) 2004-12-13 2018-04-10 Novellus Systems, Inc. High dose implantation strip (HDIS) in H2 base chemistry
US8440513B2 (en) 2008-06-30 2013-05-14 Hitachi High-Technologies Corporation Method of semiconductor processing
TWI485771B (zh) * 2008-06-30 2015-05-21 Hitachi High Tech Corp Semiconductor processing methods
JP2012531053A (ja) * 2009-08-25 2012-12-06 シルバーブルック リサーチ ピーティワイ リミテッド フォトレジストおよびエッチング残留物をビアから除去する方法
JP2013513948A (ja) * 2009-12-11 2013-04-22 ノベルス・システムズ・インコーポレーテッド low−k誘電体について損傷を低く抑えつつフォトレジストをストリッピングする方法
US9564344B2 (en) 2009-12-11 2017-02-07 Novellus Systems, Inc. Ultra low silicon loss high dose implant strip
US9613825B2 (en) 2011-08-26 2017-04-04 Novellus Systems, Inc. Photoresist strip processes for improved device integrity
US9173291B2 (en) 2012-12-28 2015-10-27 Samsung Electro-Mechanics Co., Ltd. Circuit board and method for manufacturing the same
US9514954B2 (en) 2014-06-10 2016-12-06 Lam Research Corporation Peroxide-vapor treatment for enhancing photoresist-strip performance and modifying organic films

Also Published As

Publication number Publication date
US7538038B2 (en) 2009-05-26
US20050208756A1 (en) 2005-09-22
TW200532766A (en) 2005-10-01

Similar Documents

Publication Publication Date Title
JP2005268312A (ja) レジスト除去方法及びそれを用いて製造した半導体装置
US7435685B2 (en) Method of forming a low-K dual damascene interconnect structure
US7115517B2 (en) Method of fabricating a dual damascene interconnect structure
US7977245B2 (en) Methods for etching a dielectric barrier layer with high selectivity
US7851232B2 (en) UV treatment for carbon-containing low-k dielectric repair in semiconductor processing
US7129175B2 (en) Method of manufacturing semiconductor device
KR100392888B1 (ko) 반도체장치의 제조방법
US8383519B2 (en) Etching method and recording medium
US20050199586A1 (en) Resist removal method and semiconductor device manufactured by using the same
US20070224827A1 (en) Methods for etching a bottom anti-reflective coating layer in dual damascene application
JP5261964B2 (ja) 半導体装置の製造方法
US7129171B2 (en) Selective oxygen-free etching process for barrier materials
KR100563610B1 (ko) 반도체소자의제조방법
US7166534B2 (en) Method of dry cleaning photoresist strips after via contact etching
JP2002009058A (ja) エッチング方法
KR100917291B1 (ko) 듀얼 다마신 분야에서 바닥부 무반사 코팅층의 2단계 에칭
US20100043821A1 (en) method of photoresist removal in the presence of a low-k dielectric layer
US20020142104A1 (en) Plasma treatment of organosilicate layers
US7745335B2 (en) Semiconductor device manufactured by reducing hillock formation in metal interconnects
JP2006073612A (ja) レジスト除去方法
US7393795B2 (en) Methods for post-etch deposition of a dielectric film
JP2006059848A (ja) レジスト除去方法及び半導体装置の製造方法
JP3584785B2 (ja) フッ素樹脂膜の形成方法および半導体装置並びにその製造方法
JP2003109955A (ja) 半導体装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050603

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110