JP2005254141A - Hydrodesulfurization catalyst of petroleum hydrocarbon oil and its hydrodesulfurization method - Google Patents

Hydrodesulfurization catalyst of petroleum hydrocarbon oil and its hydrodesulfurization method Download PDF

Info

Publication number
JP2005254141A
JP2005254141A JP2004069503A JP2004069503A JP2005254141A JP 2005254141 A JP2005254141 A JP 2005254141A JP 2004069503 A JP2004069503 A JP 2004069503A JP 2004069503 A JP2004069503 A JP 2004069503A JP 2005254141 A JP2005254141 A JP 2005254141A
Authority
JP
Japan
Prior art keywords
catalyst
hydrodesulfurization
oil
mass
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004069503A
Other languages
Japanese (ja)
Other versions
JP5013658B2 (en
Inventor
Suguru Iki
英 壱岐
Kazuaki Hayasaka
和章 早坂
Kazuo Fukazawa
和男 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2004069503A priority Critical patent/JP5013658B2/en
Publication of JP2005254141A publication Critical patent/JP2005254141A/en
Application granted granted Critical
Publication of JP5013658B2 publication Critical patent/JP5013658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrodesulfurization catalyst of a petroleum hydrocarbon oil which has high desulfurization activities and is capable of stably performing the long term operation at a reduced deterioration rate. <P>SOLUTION: The hydrodesulfurization catalyst is characterized by containing 20-25 mass% of molybdenum calculated in terms of the oxide and 55 mass% or more of alumina from the weight of the catalyst in the catalyst carrier comprised of alumina as a main component and further containing at least one selected from silica, titania, zirconia and boria. The hydrodesulfurization catalyst is further characterized by satisfying the relation: A/(A+B+C)≤0.3, and 0.25≤B/(B+C)≤0.55, wherein the peak area having the peak top in a range of 232-233.5 eV of the binding energy is designated as A, the peak area having the peak top in a range of 230-231.5 eV is designated as B and the peak area having the peak top in a range of 228-230 eV is designated as C among the peaks attributing to the orbit 3d5/2 of molybdenum obtained by X-ray photoelectron spectroscopy of the sulfurized catalyst. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、石油系炭化水素油の水素化脱硫に有効な水素化脱硫触媒及び該触媒を用いた水素化脱硫方法に関する。   The present invention relates to a hydrodesulfurization catalyst effective for hydrodesulfurization of petroleum hydrocarbon oils and a hydrodesulfurization method using the catalyst.

近年、環境問題、大気汚染に対する意識が高くなりつつあり、輸送用燃料油に含まれる硫黄分は特に注目を集めている。特に、軽油を燃料として用いるディーゼル車から排出される排気ガス中にはSOx、NOxといった化学物質のほかにパティキュレートと呼ばれる微細粒子が含まれており、健康への被害が懸念されている。このため、パティキュレートの除去対策としてエンジン後段にDPFなどのパティキュレート除去フィルターやパティキュレート燃焼除去機能をもつ装置を装着することが提案されており、ディーゼルエンジン車への適用が検討されている。また、NOxについては還元除去触媒などが開発されつつある状況にある。しかしながら、これらの装置や触媒は、燃料油中の硫黄分が変化して生成するSOxなどにより被毒や劣化などの影響を受ける。ガソリン車に比べ走行距離の多い輸送用トラックなどのディーゼル車では、これらの排ガス清浄装置の劣化や触媒の被毒はより深刻な問題である。このような問題を解決するためにも軽油中の硫黄含有量を極力下げることが強く望まれている。このとき、ディーゼル燃料として使用される軽油には沸点範囲として灯油留分に区分される留分も、製品性状を最適に維持するためにある一定の割合で混合されており、燃料としての軽油の硫黄分を下げるためには灯油留分、軽油留分のいずれについても低硫黄化が必要となる。さらには低硫黄化により、ストーブなどの暖房器具燃料として用いる際に、有害な硫黄酸化物等の発生を低減できる。これらの暖房器具は、場合によっては室内で使用されており、有害物質の発生は直接人体に及ぼす影響が大きいことも考えられる。   In recent years, awareness of environmental problems and air pollution is increasing, and the sulfur content in transportation fuel oil has attracted particular attention. In particular, exhaust gas discharged from diesel vehicles using light oil as fuel contains fine particles called particulates in addition to chemical substances such as SOx and NOx, and there is concern about damage to health. For this reason, it has been proposed to install a particulate removal filter such as DPF or a device having a particulate combustion removal function at the rear stage of the engine as a measure for removing particulates, and application to diesel engine vehicles is being studied. Further, for NOx, a reduction removal catalyst or the like is being developed. However, these devices and catalysts are affected by poisoning, deterioration, and the like due to SOx generated by changing the sulfur content in the fuel oil. In diesel vehicles such as transport trucks, which have a longer mileage than gasoline vehicles, deterioration of these exhaust gas purifiers and catalyst poisoning are more serious problems. In order to solve such problems, it is strongly desired to reduce the sulfur content in light oil as much as possible. At this time, the light oil used as diesel fuel is also mixed with a fraction that is classified into kerosene fraction as the boiling range in order to maintain the product properties optimally. In order to lower the sulfur content, it is necessary to reduce the sulfur content in both the kerosene fraction and the light oil fraction. Furthermore, by using low sulfur, generation of harmful sulfur oxides and the like can be reduced when used as a heating appliance fuel such as a stove. These heating appliances are used indoors in some cases, and the generation of harmful substances may have a great influence directly on the human body.

原油の蒸留あるいは重油分解反応で得られる残さ油以外の石油系炭化水素留分には0.1〜3質量%程度の硫黄分が含有されているため、通常、水素化脱硫処理を実施した後に燃料基材として使用される。これらの石油系炭化水素留分に存在する主な硫黄化合物は、チオフェン、ベンゾチオフェン、ジベンゾチオフェンおよびこれらの誘導体であるが、石油系炭化水素油において灯油、軽油などそれぞれの留分について、脱硫深度が進むにつれて低硫黄領域まで脱硫を進める際には、反応性が乏しくなる傾向がある。すなわち、各留分において水素化脱硫の進行とともに残存する硫黄化合物は反応性に乏しく、より厳しい条件でなければ脱硫が進みにくくなる。例えば、灯油留分についてはベンゾチオフェン類、軽油留分については4,6−ジメチルジベンゾチオフェンに代表される複数のメチル基を置換基として持つアルキル置換ジベンゾチオフェン類は特に反応性に乏しく、硫黄分10質量ppmといった、より低硫黄領域まで脱硫を進める際の障害となっている。   Since petroleum hydrocarbon fractions other than residue oil obtained by crude oil distillation or heavy oil cracking reaction contain sulfur content of about 0.1 to 3% by mass, usually after hydrodesulfurization treatment is carried out Used as fuel substrate. The main sulfur compounds present in these petroleum hydrocarbon fractions are thiophene, benzothiophene, dibenzothiophene and their derivatives. However, in the petroleum hydrocarbon oil, the desulfurization depth of each fraction such as kerosene and light oil is When the desulfurization is advanced to the low sulfur region as the temperature advances, the reactivity tends to be poor. That is, the sulfur compounds remaining in the fractions with the progress of hydrodesulfurization are poor in reactivity, and desulfurization is difficult to proceed unless the conditions are more severe. For example, benzothiophenes for kerosene fractions and alkyl-substituted dibenzothiophenes having a plurality of methyl groups represented by 4,6-dimethyldibenzothiophene as substituents for gas oil fractions are particularly poor in reactivity and sulfur content. This is an obstacle to proceeding with desulfurization to a lower sulfur region such as 10 ppm by mass.

脱硫触媒においては、通常、担体に担持された活性金属は使用する前に硫化物に転換し、硫化金属の状態で活性を発揮する。また、活性金属の量を増加すると活性点が増加し、脱硫活性が向上すると言われている。しかしながら、本発明者らがさまざまな検討を行ったところ、金属担持量を増加しても、必ずしも担持金属が充分硫化物に転換されず、かえって脱硫活性が低下してしまう場合があることが分かった。さらに、担持金属が充分硫化されていないと使用中にコーク生成が促進される結果、触媒の活性劣化速度が上昇してしまい、触媒寿命が短くなり長期運転ができないことが分かった。   In the desulfurization catalyst, the active metal supported on the carrier is usually converted to sulfide before use and exhibits activity in the state of metal sulfide. Further, it is said that increasing the amount of active metal increases the active sites and improves the desulfurization activity. However, as a result of various studies conducted by the present inventors, it has been found that even if the amount of supported metal is increased, the supported metal is not necessarily sufficiently converted to sulfide, and instead the desulfurization activity may be reduced. It was. Further, it has been found that if the supported metal is not sufficiently sulfided, coke formation is promoted during use, resulting in an increase in the rate of catalyst activity deterioration, a shortened catalyst life, and long-term operation.

本発明は、高い脱硫活性を有し、かつ劣化速度が低く、安定的に長期運転が可能な石油系炭化水素油の水素化脱硫触媒及びその触媒を使用する炭化水素油の水素化脱硫方法を提供することを目的とするものである。   The present invention relates to a hydrodesulfurization catalyst for petroleum hydrocarbon oils having high desulfurization activity, low deterioration rate, and capable of stable long-term operation, and a hydrodesulfurization method for hydrocarbon oils using the catalyst. It is intended to provide.

本発明者らは鋭意研究した結果、触媒上に活性金属として担持されるモリブデンについて、硫化した触媒上のモリブデンの性状がX線光電子分光法における特定範囲のピークが一定の関係を具備する場合に本発明の目的を効果的に達成し得ることを見出し、本発明を完成したものである。   As a result of diligent research, the inventors of the present invention have found that when molybdenum is supported as an active metal on a catalyst, the properties of molybdenum on the sulfided catalyst have a certain relationship between peaks in a specific range in X-ray photoelectron spectroscopy. The inventors have found that the object of the present invention can be effectively achieved, and have completed the present invention.

すなわち、本発明は、アルミナを主成分とする触媒担体に、活性金属として少なくともニッケルおよび/またはコバルトとモリブデンを担持した水素化脱硫触媒であって、モリブデンを触媒重量に対して酸化物換算で20〜25質量%、アルミナを触媒重量に対して55質量%以上含有し、さらに触媒担体中にアルミナ以外の成分としてシリカ、チタニア、ジルコニアおよびボリアから選択される少なくとも1種類を含有して成り、かつ、硫化した触媒のX線光電子分光法によって得られるモリブデン3d5/2軌道に由来するピークのうち、結合エネルギー232〜233.5eVの範囲にピークトップをもつピークの面積をA、230〜231.5eVの範囲にピークトップをもつピークの面積をB、228〜230eVの範囲にピークトップをもつピークの面積をCとしたときに、これらがA/(A+B+C)≦0.3、および0.25≦B/(B+C)≦0.55の関係を具備していることを特徴とする石油系炭化水素油の水素化脱硫触媒に関する。
また本発明は、前記水素化脱硫触媒を用いて石油系炭化水素油を水素化脱硫処理することを特徴とする石油系炭化水素油の水素化脱硫方法に関する。
That is, the present invention is a hydrodesulfurization catalyst in which at least nickel and / or cobalt and molybdenum are supported as active metals on a catalyst carrier mainly composed of alumina, and molybdenum is converted into an oxide in terms of oxide with respect to the catalyst weight. ~ 25% by mass, containing 55% by mass or more of alumina with respect to the catalyst weight, and further comprising at least one selected from silica, titania, zirconia and boria as a component other than alumina in the catalyst carrier, and Among the peaks derived from the molybdenum 3d5 / 2 orbit obtained by X-ray photoelectron spectroscopy of the sulfided catalyst, the area of the peak having a peak top in the range of the binding energy 232 to 233.5 eV is A, 230 to 231.5 eV Peak area with peak top in the range of B, peak in the range of 228-230eV When the area of the peak having a peak is C, these have the relationship of A / (A + B + C) ≦ 0.3 and 0.25 ≦ B / (B + C) ≦ 0.55 The present invention relates to a hydrodesulfurization catalyst for petroleum hydrocarbon oil.
The present invention also relates to a hydrodesulfurization method for petroleum hydrocarbon oil, characterized in that petroleum hydrocarbon oil is hydrodesulfurized using the hydrodesulfurization catalyst.

以下に本発明を詳述する。
本発明における水素化脱硫触媒は、アルミナを主成分とする無機多孔質担体からなる触媒担体に、活性金属として少なくともニッケルおよび/またはコバルトとモリブデンを担持した触媒である。
アルミナ含有量は、触媒重量に対し55質量%以上であることが必要であり、好ましくは65質量%である。アルミナは特に灯油、軽油あるいは減圧軽油留分など沸点150〜550℃の石油系炭化水素に含まれている含硫黄炭化水素分子が拡散するのに好適な細孔容積を与えるのに適した多孔質担体であり、アルミナ含有量が55質量%より少ない場合には、充分な担体細孔容積を得ることが難しくなる。
The present invention is described in detail below.
The hydrodesulfurization catalyst in the present invention is a catalyst in which at least nickel and / or cobalt and molybdenum are supported as active metals on a catalyst carrier made of an inorganic porous carrier mainly composed of alumina.
The alumina content needs to be 55% by mass or more, preferably 65% by mass with respect to the catalyst weight. Alumina is a porous material suitable for providing a pore volume suitable for diffusion of sulfur-containing hydrocarbon molecules contained in petroleum hydrocarbons having a boiling point of 150 to 550 ° C. such as kerosene, light oil or vacuum gas oil fraction. When it is a support | carrier and alumina content is less than 55 mass%, it becomes difficult to obtain sufficient support | carrier pore volume.

アルミナ以外の担体構成成分としてはシリカ、チタニア、ジルコニアおよびボリアから選択される少なくとも1種類であり、好ましくは少なくとも2種類である。
本発明の水素化脱硫触媒における担体構成成分としては、シリカ−アルミナ、チタニア−アルミナ、ボリア−アルミナ、シリカ−チタニア−アルミナ、シリカ−ジルコニア−アルミナ、シリカ−ボリア−アルミナの組み合わせが好ましく、より好ましくはシリカ−チタニア−アルミナ、シリカ−ジルコニア−アルミナ、シリカ−ボリア−アルミナであり、さらに好ましくはシリカ−チタニア−アルミナ、シリカ−ボリア−アルミナである。
アルミナ以外の担体構成成分の合計含有量は、担体重量に対して1〜9質量%であることが好ましく、3〜9質量%であることがより好ましく、4〜8質量%であることがさらに好ましい。これらの合計含有量が1質量%以下の場合、所定のX線光電子分光スペクトルが発現せず、充分な脱硫活性および安定性を発揮できない。またこれらの合計含有量が9質量%を超える場合、担体の酸性質が上昇し、軽油留分の分解が生じ、収率の低下や分解に伴うコーク生成による活性低下により活性劣化速度が上昇する恐れがある。
また、本発明においてはこれらの成分以外に、担体構成成分としてリンを含んでいても良い。リンを担体として含む場合には、その含有量は、担体重量に対して酸化物換算で1〜5質量%であることが好ましく、2〜3.5質量%がさらに好ましい。
The carrier component other than alumina is at least one selected from silica, titania, zirconia and boria, and preferably at least two.
The carrier component in the hydrodesulfurization catalyst of the present invention is preferably a combination of silica-alumina, titania-alumina, boria-alumina, silica-titania-alumina, silica-zirconia-alumina, silica-boria-alumina, and more preferably. Is silica-titania-alumina, silica-zirconia-alumina, silica-boria-alumina, more preferably silica-titania-alumina, silica-boria-alumina.
The total content of the carrier constituents other than alumina is preferably 1 to 9% by mass, more preferably 3 to 9% by mass, and further preferably 4 to 8% by mass with respect to the carrier weight. preferable. When the total content is 1% by mass or less, a predetermined X-ray photoelectron spectroscopy spectrum does not appear and sufficient desulfurization activity and stability cannot be exhibited. Further, when the total content exceeds 9% by mass, the acidity of the carrier increases, decomposition of the gas oil fraction occurs, and the rate of activity deterioration increases due to the decrease in yield and the decrease in activity due to coke formation accompanying the decomposition. There is a fear.
In the present invention, in addition to these components, phosphorus may be included as a carrier constituent component. When phosphorus is included as a carrier, the content is preferably 1 to 5% by mass, more preferably 2 to 3.5% by mass in terms of oxide with respect to the weight of the carrier.

担体構成成分のアルミナの調製法は特に限定されない。例えば、硫酸アルミニウムなどのアルミニウム塩とアルミン酸塩を中和する方法、あるいはアルミニウムアマルガム、アルミニウムアルコレートを加水分解する方法などから得られるアルミナ中間体を経由することにより得ることができる。また、市販のアルミナ中間体、ベーマイトパウダーを使用しても良い。   The method for preparing the support component alumina is not particularly limited. For example, it can be obtained via an alumina intermediate obtained from a method of neutralizing an aluminum salt such as aluminum sulfate and an aluminate, or a method of hydrolyzing aluminum amalgam or aluminum alcoholate. Moreover, you may use a commercially available alumina intermediate body and boehmite powder.

アルミナ以外の担体構成成分である、シリカ、チタニア、ジルコニア、ボリアの前駆体となる原料は特に限定されず、一般的なケイ素、チタン、ジルコニウム、ボロンを含む溶液を用いることができる。例えば、ケイ素についてはケイ酸、水ガラス、シリカゾルなど、チタンについては硫酸チタン、四塩化チタンや各種アルコキサイド塩など、ジルコニウムについては硫酸ジルコニウム、各種アルコキサイド塩など、ボロンについてはホウ酸などを用いることができる。リンとしては、リン酸あるいはリン酸のアルカリ塩などを用いることができる。   There are no particular limitations on the raw materials that are precursors of silica, titania, zirconia, and boria, which are carrier constituents other than alumina, and general solutions containing silicon, titanium, zirconium, and boron can be used. For example, silicic acid, water glass and silica sol for silicon, titanium sulfate, titanium tetrachloride and various alkoxide salts for titanium, zirconium sulfate and various alkoxide salts for zirconium, and boric acid for boron, etc. it can. As phosphorus, phosphoric acid or an alkali salt of phosphoric acid can be used.

本発明で用いる触媒担体は、これらの担体原料を焼成することにより調製することができる。本発明における触媒担体の調製は、アルミナ原料に、アルミナ以外の担体構成成分の原料を添加したのち焼成して調製する方法が好ましく採用される。例えば、予めアルミニウム水溶液に添加した後に、これらの構成成分を含む水酸化アルミニウムゲルとしてもよく、調合した水酸化アルミニウムゲルに添加してもよく、あるいは市販のアルミナ中間体やベーマイトパウダーに水あるいは酸性水溶液を添加して混練する工程に添加してもよいが、水酸化アルミニウムゲルを調合する段階で共存させる方法がより好ましい。これらのアルミナ以外の担体構成成分の効果発現機構は解明できていないが、アルミニウムと複合的な酸化物状態を形成していると思われ、このことが担体とモリブデンとの相互作用の形態に影響を及ぼすことで硫化状態が制御されるものと推察される。   The catalyst carrier used in the present invention can be prepared by calcining these carrier raw materials. For the preparation of the catalyst carrier in the present invention, a method in which a raw material of a carrier constituent component other than alumina is added to an alumina raw material and then calcined is preferably employed. For example, it may be added to an aqueous aluminum solution in advance, and may be an aluminum hydroxide gel containing these components, or may be added to a prepared aluminum hydroxide gel, or commercially available alumina intermediate or boehmite powder with water or acidic Although it may be added to the step of adding and kneading the aqueous solution, a method of coexisting at the stage of preparing the aluminum hydroxide gel is more preferable. Although the mechanism of the effects of these carrier constituents other than alumina has not been elucidated, it is thought that they form a complex oxide state with aluminum, which affects the mode of interaction between the carrier and molybdenum. It is presumed that the sulfide state is controlled by exerting.

本発明の触媒は、前記の触媒担体に、ニッケルおよび/またはコバルトとモリブデンを担持したものである。ニッケルおよびコバルトは単独で用いることもでき、両者を組み合わせて用いることもできる。
コバルトとニッケルの合計担持量は、好ましくは酸化物換算で触媒重量に対して1.5〜7質量%、より好ましくは2〜5質量%、さらに好ましくは2〜4.5質量%である。コバルトとニッケルの合計担持量が1.5質量%よりも少ない場合には充分な触媒効果が得られず脱硫活性が低下してしまう恐れがある。一方、7質量%より多い場合には、金属が効果的に分散せず、充分な硫化状態に至らず、脱硫活性の低下や活性劣化を促進してしまう可能性がある。
モリブデンの担持量は、好ましくは酸化物換算で触媒重量に対して20.0〜25.0質量%、より好ましくは20.5〜24.0質量%、さらに好ましくは21.0〜23.5質量%である。モリブデンの担持量が20.0質量%よりも少ない場合には活性点の数が少なくなり、脱硫活性が低下してしまう。一方、25.0質量%より多い場合には、金属が効果的に分散せず、充分な硫化状態に至らず、脱硫活性の低下や活性劣化を促進してしまう。
The catalyst of the present invention is obtained by supporting nickel and / or cobalt and molybdenum on the catalyst carrier. Nickel and cobalt can be used alone or in combination.
The total supported amount of cobalt and nickel is preferably 1.5 to 7% by mass, more preferably 2 to 5% by mass, and further preferably 2 to 4.5% by mass based on the catalyst weight in terms of oxide. If the total supported amount of cobalt and nickel is less than 1.5% by mass, a sufficient catalytic effect cannot be obtained and the desulfurization activity may be reduced. On the other hand, when the amount is more than 7% by mass, the metal is not effectively dispersed and does not reach a sufficient sulfidation state, which may promote a decrease in desulfurization activity and an activity deterioration.
The supported amount of molybdenum is preferably 20.0 to 25.0 mass%, more preferably 20.5 to 24.0 mass%, and further preferably 21.0 to 23.5 mass% based on the catalyst weight in terms of oxide. % By mass. When the supported amount of molybdenum is less than 20.0% by mass, the number of active sites decreases, and the desulfurization activity decreases. On the other hand, when the amount is more than 25.0% by mass, the metal is not effectively dispersed, does not reach a sufficient sulfurized state, and promotes a decrease in desulfurization activity and activity deterioration.

ニッケルおよび/またはコバルトとモリブデンを触媒に含有させる方法は特に限定されず、通常の脱硫触媒を製造する際に適用される公知の方法を用いることができる。通常は、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また平衡吸着法、Pore−filling法、Incipient−wetness法なども好ましく採用される。例えば、Pore−filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法であるが、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。   The method of incorporating nickel and / or cobalt and molybdenum into the catalyst is not particularly limited, and a known method applied when producing an ordinary desulfurization catalyst can be used. Usually, a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed. Further, an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are also preferably employed. For example, the pore-filling method is a method in which the pore volume of the support is measured in advance and impregnated with the same volume of the metal salt solution, but the impregnation method is not particularly limited, and the amount of metal supported Further, it can be impregnated by an appropriate method depending on the physical properties of the catalyst support.

本発明においては、活性金属成分として、ニッケルおよび/またはコバルトとモリブデン以外に、リンを担持することが好ましい。リンの担持方法は特に限定されるものではないが、リン酸、若しくはリン酸塩などをニッケルおよび/またはコバルトとモリブデンを含有する溶液に共存させてもよく、ニッケルおよび/またはコバルトおよびモリブデンを担持した後に逐次的に担持してもよい。
担持されるリンの担持量は、酸化物換算で触媒重量に対して好ましくは1.0〜5.0質量%であり、より好ましくは1.2〜4.5質量%であり、さらに好ましくは1.5〜4.0質量%である。1.0質量%より少ない場合には活性金属の凝集を招き、あるいは硫化物となって活性を発揮する際に活性点の形成が充分でないと思われ、脱硫活性が低下してしまう恐れがある。また5.0質量%より多い場合には分解といった副反応が進行してしまう可能性がある。
In the present invention, it is preferable to support phosphorus in addition to nickel and / or cobalt and molybdenum as the active metal component. The method for supporting phosphorus is not particularly limited, but phosphoric acid or phosphate may be coexistent in a solution containing nickel and / or cobalt and molybdenum, and nickel and / or cobalt and molybdenum are supported. Then, it may be supported sequentially.
The supported amount of phosphorus to be supported is preferably 1.0 to 5.0% by mass, more preferably 1.2 to 4.5% by mass, and still more preferably based on the catalyst weight in terms of oxide. It is 1.5-4.0 mass%. If the amount is less than 1.0% by mass, the active metal may be aggregated, or when active as a sulfide, the active site may not be sufficiently formed, and the desulfurization activity may be reduced. . On the other hand, if the amount is more than 5.0% by mass, a side reaction such as decomposition may proceed.

以上のようにして調製した触媒を水素化脱硫反応に用いるに際して予備硫化処理を行う。この予備硫化処理の条件は特に限定されないが、例えば、石油系炭化水素留分に含まれる硫黄分やジメチルジスルフィドなどの硫化剤を用い、石油系炭化水素留分単独あるいは硫化剤を添加した留分を通油して200℃以上の温度条件下に活性金属を硫化物の状態にする方法を用いることができる。   When the catalyst prepared as described above is used in the hydrodesulfurization reaction, a preliminary sulfidation treatment is performed. The conditions for this preliminary sulfidation treatment are not particularly limited. For example, a sulfur component contained in a petroleum hydrocarbon fraction or a sulfurizing agent such as dimethyl disulfide is used, and a petroleum hydrocarbon fraction alone or a fraction to which a sulfurizing agent is added. It is possible to use a method in which the active metal is brought into a sulfide state under a temperature condition of 200 ° C. or higher by passing oil.

本発明においては、硫化された触媒のX線光電子分光法によって得られるスペクトルにおいて、モリブデン3d軌道のピークを、4価に帰属されると思われるモリブデンとして結合エネルギー228〜232eVの範囲に2つのピーク、5価に帰属されると思われるモリブデンとして結合エネルギー230〜234eVの範囲に2つのピーク、および6価に帰属されると思われる結合エネルギー232〜237eVの範囲にそれぞれ3d(3/2)、3d(5/2)に由来する2つのピークとして、フォークト関数を用いてピーク分離する。このとき、X線光電子分光法の測定条件は、加速電圧10kV、エミッション電流20mAである。また、基準エネルギーとして、担体構成元素のひとつであるAlの2p軌道の結合エネルギー74.2eVを用いる。なお、このとき、硫黄の2p軌道に由来するピークが226eV付近に観測される。   In the present invention, in the spectrum obtained by X-ray photoelectron spectroscopy of the sulfided catalyst, the peak of the molybdenum 3d orbital is divided into two peaks in the range of a binding energy of 228 to 232 eV as molybdenum which is considered to be attributed to tetravalence. Molybdenum, which is believed to be attributed to pentavalent, has two peaks in the range of binding energy 230 to 234 eV, and 3d (3/2), respectively, in the range of binding energy 232 to 237 eV, which is believed to be attributed to hexavalent. As two peaks derived from 3d (5/2), peaks are separated using a Forked function. At this time, the measurement conditions of the X-ray photoelectron spectroscopy are an acceleration voltage of 10 kV and an emission current of 20 mA. Further, as the reference energy, the binding energy 74.2 eV of 2p orbital of Al, which is one of the carrier constituent elements, is used. At this time, a peak derived from the 2p orbital of sulfur is observed in the vicinity of 226 eV.

得られた各ピークのうち、モリブデン3d5/2に帰属するピークについて、結合エネルギー232〜233.5eVの範囲にピークトップをもつピークの面積をA、230〜231.5eVの範囲にピークトップをもつピークの面積をB、228〜230eVの範囲にピークトップをもつピークの面積をCとしたときに、これらが、A/(A+B+C)≦0.3の関係を満たすことが必要であり、A/(A+B+C)≦0.25であることがより好ましい。A/(A+B+C)の値が0.3より多い場合には硫化そのものの進行が進んでおらず充分な活性および安定性を発揮できない。   Among the obtained peaks, the peak attributed to molybdenum 3d5 / 2 has a peak area having a peak top in the range of binding energy 232 to 233.5 eV and A having a peak top in the range of 230 to 231.5 eV. When the area of the peak is B and the area of the peak having a peak top in the range of 228 to 230 eV is C, these must satisfy the relationship of A / (A + B + C) ≦ 0.3, and A / More preferably, (A + B + C) ≦ 0.25. When the value of A / (A + B + C) is more than 0.3, the progress of sulfidation does not proceed and sufficient activity and stability cannot be exhibited.

また同時に、0.25≦B/(B+C)≦0.55の関係を満たすことが必要であり、0.25≦B/(B+C)≦0.50であることがより好ましく、0.35≦B/(B+C)≦0.50であることがさらに好ましい。
これらの強度比における効果発現機構について解明されていないが、このような条件を満たしている触媒においては、活性金属が高度に分散し、効率よく水素化が進行することによりコーク生成を抑制しているものと思われる。また、B/(B+C)は完全酸化物と硫化物との遷移状態の価数にあるものを示すものと思われ、この値が0.25より少ない場合には硫化した活性金属がかえって凝集しており、活性を充分発揮できない。また、0.55より大きい場合には硫化そのものが充分進行しておらず、活性および安定性が充分でない。
At the same time, it is necessary to satisfy the relationship of 0.25 ≦ B / (B + C) ≦ 0.55, more preferably 0.25 ≦ B / (B + C) ≦ 0.50, and 0.35 ≦ More preferably, B / (B + C) ≦ 0.50.
The mechanism of the effect of these strength ratios has not been elucidated, but in the case of a catalyst that satisfies these conditions, the active metal is highly dispersed and the hydrogenation proceeds efficiently to suppress coke formation. It seems that there is. In addition, B / (B + C) is considered to indicate a valence of a transition state between a complete oxide and a sulfide. When this value is less than 0.25, the sulfided active metal is agglomerated instead. And cannot fully demonstrate its activity. On the other hand, when it is larger than 0.55, the sulfurization itself does not proceed sufficiently, and the activity and stability are not sufficient.

本発明において、X線光電子分光測定に用いる硫化触媒は、担持したニッケルおよび/またはコバルトとモリブデンがそれぞれNi32、Co98、MoS2の化学式に相当する硫化物に完全に転換したと仮定したときの20倍当量以上のジメチルジサルファイドを硫化剤として用い、オートクレーブ中で水素圧力5MPa±1.0MPaの範囲に加圧し、300℃で2時間保持する硫化操作を施す。 In the present invention, the sulfurization catalyst used for X-ray photoelectron spectroscopy measurement was completely converted to sulfides in which supported nickel and / or cobalt and molybdenum correspond to the chemical formulas of Ni 3 S 2 , Co 9 S 8 , and MoS 2 , respectively. Assuming that dimethyl disulfide is 20 times equivalent or more as a sulfiding agent, a hydrogen pressure is applied in a range of 5 MPa ± 1.0 MPa in an autoclave, and a sulfiding operation is performed at 300 ° C. for 2 hours.

本発明の水素化脱硫触媒の、窒素によるBET法で求められる表面積は、特に限定されないが、あまりに高い表面積は炭化水素分子の細孔での十分な拡散を確保できないため、290m2/g以下であることが好ましく、270m2/g以下であることがより好ましく、260m2/g以下であることがさらに好ましい。また、その下限は、活性を維持する観点から220m2/g以上が好ましく、より好ましくは225m2/g以上であり、さらに好ましくは230m2/g以上である。 The surface area required by the BET method using nitrogen of the hydrodesulfurization catalyst of the present invention is not particularly limited, but an excessively high surface area cannot ensure sufficient diffusion in the pores of hydrocarbon molecules, and is not more than 290 m 2 / g. Preferably, it is 270 m 2 / g or less, more preferably 260 m 2 / g or less. Further, the lower limit is preferably 220 m 2 / g or more, more preferably 225 m 2 / g or more, and further preferably 230 m 2 / g or more from the viewpoint of maintaining activity.

触媒の平均細孔半径は30〜50Åの範囲であることが好ましく、より好ましくは32〜40Åの範囲である。30Åより小さい場合には反応分子の細孔内拡散が充分でなく活性が低くなってしまう。また、50Åより大きい場合には、触媒の表面積が小さくなり充分な脱硫活性を発揮できない。   The average pore radius of the catalyst is preferably in the range of 30 to 50 mm, more preferably in the range of 32 to 40 mm. If it is smaller than 30 mm, the reaction molecules are not sufficiently diffused in the pores and the activity becomes low. On the other hand, if it is larger than 50%, the surface area of the catalyst becomes small and sufficient desulfurization activity cannot be exhibited.

本発明は、前記した触媒を用いて、石油系炭化水素油の水素化脱硫処理を行う。
本発明における石油系炭化水素油は沸点範囲140〜550℃の留分を80容量%以上含む原油の常圧蒸留装置、減圧蒸留装置や熱分解、接触分解、あるいは水素化処理等の石油精製工程で生成する留分である。さらには、軽油留分である沸点範囲240〜380℃の留分を70容量%以上含む石油系炭化水素留分、あるいは灯油留分である沸点範囲140〜240℃の留分を70容量%以上含む石油系炭化水素留分であることが好ましく、軽油留分である沸点範囲240〜380℃の留分を70容量%以上含む石油系炭化水素留分がさらに好ましい。
石油系炭化水素油としては、原油の蒸留によって得られる留分のほか、熱分解や接触分解反応などによって得られる留分も含むことができるが、好ましくは軽油留分中の50容量%以上は直留軽油であり、より好ましくは70容量%以上である。熱分解軽油や接触分解軽油はオレフィン分、芳香族分などが直留軽油より多く含有されており、これらの留分の割合が多くなると反応性の低下や生成油の色相が悪化する傾向にある。また灯油留分中の50容量%以上は同様の理由から直留灯油であることが好ましく、より好ましくは70容量%である。
In the present invention, hydrodesulfurization treatment of petroleum hydrocarbon oil is performed using the above-described catalyst.
The petroleum hydrocarbon oil in the present invention is an oil refining process such as a normal pressure distillation apparatus, a vacuum distillation apparatus, a thermal distillation, catalytic cracking, or a hydrotreating of crude oil containing a fraction having a boiling point range of 140 to 550 ° C. of 80 vol% Is a fraction produced in Furthermore, a petroleum hydrocarbon fraction containing 70 vol% or more of a boiling point range of 240 to 380 ° C that is a light oil fraction, or a 70% or more fraction of a boiling point range of 140 to 240 ° C that is a kerosene fraction. It is preferably a petroleum hydrocarbon fraction containing, and more preferably a petroleum hydrocarbon fraction containing 70 vol% or more of a fraction having a boiling range of 240 to 380 ° C. which is a light oil fraction.
Petroleum hydrocarbon oils can include fractions obtained by distillation of crude oil as well as fractions obtained by thermal cracking, catalytic cracking reaction, etc., but preferably 50% by volume or more in light oil fractions Straight run diesel oil, more preferably 70% by volume or more. Pyrolysis gas oil and catalytic cracking gas oil contain more olefins and aromatics than straight-run gas oil, and when the proportion of these fractions increases, the reactivity tends to deteriorate and the hue of the product oil tends to deteriorate. . Further, 50% by volume or more in the kerosene fraction is preferably straight-run kerosene for the same reason, more preferably 70% by volume.

本発明の水素化脱硫触媒はチオフェン類、ベンゾチオフェン類、ジベンゾチオフェン類といった構造を有する硫黄分子からの脱硫に適しており、特に軽油留分である沸点240〜380℃の留分を80容量%以上含む石油系炭化水素油に適しているが、灯油留分として沸点範囲140〜240℃の留分を80容量%以上含む石油系炭化水素油にも良好に使用できる。なお、ここに示す蒸留性状の値についてはJIS K 2254「石油製品−蒸発試験方法」に記載の方法に準拠して測定される値である。このような留分の原料油の性状として、一般的には全芳香族分20〜30容量%、硫黄分含有量(硫黄分濃度)0.5〜2質量%、窒素分が50〜500質量ppmが含まれている。   The hydrodesulfurization catalyst of the present invention is suitable for desulfurization from sulfur molecules having a structure such as thiophenes, benzothiophenes, dibenzothiophenes, and in particular, 80% by volume of a gas oil fraction having a boiling point of 240 to 380 ° C. Although it is suitable for the petroleum-based hydrocarbon oils contained above, it can also be used favorably for petroleum-based hydrocarbon oils containing 80% by volume or more of the fraction having a boiling range of 140 to 240 ° C. as the kerosene fraction. In addition, about the value of the distillation property shown here, it is a value measured based on the method as described in JISK2254 "petroleum product-evaporation test method". As the properties of the raw material oil of such a fraction, generally, the aromatic content is 20 to 30% by volume, the sulfur content (sulfur content) is 0.5 to 2% by mass, and the nitrogen content is 50 to 500% by mass. Contains ppm.

本発明では、好ましくはこのような軽油留分を本発明の触媒を用いて水素化脱硫することにより、硫黄分濃度10質量ppm以下に低減することができる。好ましくは硫黄分濃度5質量ppm以下、窒素分濃度1.5質量ppm以下に低減することができる。硫黄分は前述のごとく少ないほどディーゼルエンジン排ガス処理において極めて有利であり、排ガス処理装置の性能は飛躍的に向上すると言われている。硫黄分濃度が10質量ppmを超えるとこのような排ガス浄化における燃料油硫黄分の低減効果が充分発揮できない恐れがある。   In the present invention, such a gas oil fraction is preferably hydrodesulfurized using the catalyst of the present invention, so that the sulfur concentration can be reduced to 10 ppm by mass or less. Preferably, the sulfur content can be reduced to 5 mass ppm or less and the nitrogen content can be reduced to 1.5 mass ppm or less. As described above, the smaller the sulfur content, the more advantageous in the exhaust gas treatment of diesel engines, and it is said that the performance of the exhaust gas treatment device is drastically improved. If the sulfur concentration exceeds 10 ppm by mass, there is a possibility that the effect of reducing the sulfur content of the fuel oil in such exhaust gas purification cannot be exhibited sufficiently.

灯油留分は、寒冷地における流動性などディーゼル燃料としての性状を調整するため、軽油留分に対して所定量混合して使用する。このため、本発明では、好ましくはこのような灯油留分を本発明の触媒を用いて水素化脱硫して硫黄分濃度10質量ppm以下に低減することにより、ディーゼルエンジン排ガス処理において前述の硫黄低減効果を発揮することができる。さらにはストーブなどの暖房器具燃料として用いる場合には、硫黄分濃度10質量ppm以下の灯油とすることにより有害な硫黄酸化物等の発生を著しく低減することが期待できる。   The kerosene fraction is used by mixing a predetermined amount with the diesel oil fraction in order to adjust the properties as diesel fuel such as fluidity in cold regions. For this reason, in the present invention, preferably, such a kerosene fraction is hydrodesulfurized using the catalyst of the present invention to reduce the sulfur concentration to 10 mass ppm or less, thereby reducing the above-mentioned sulfur in diesel engine exhaust gas treatment. The effect can be demonstrated. Furthermore, when used as a heating appliance fuel such as a stove, it can be expected that generation of harmful sulfur oxides and the like will be significantly reduced by using kerosene having a sulfur concentration of 10 mass ppm or less.

なお、本明細書における硫黄分含有量とは、JIS K 2541「硫黄分試験方法」またはASTM−D5453に記載の方法に準拠して測定される石油系炭化水素油全量を基準とした硫黄分の質量含有量を意味する。   The sulfur content in this specification refers to the sulfur content based on the total amount of petroleum hydrocarbon oil measured according to the method described in JIS K 2541 “Sulfur Content Test Method” or ASTM-D5453. Mean mass content.

さらに、原料油となる石油系炭化水素油が、軽油留分である沸点240〜380℃の留分を80容量%以上含む場合において、本発明の触媒を用いて水素化脱硫処理をすることにより、生成油の色相をASTM色で1.0以下とすることができる。1.0を越える場合には、軽油としての色相が黄色あるいは褐色に近い色合いになってしまい、商品価値が低下する懸念がある。水素化脱硫処理における着色は、その脱硫反応温度と関係があることが指摘されているが、本発明によれば、このような高い反応温度やその外シビアな運転条件を採用することがないため安定して無色で商品価値の高い軽油を製造することができる。   Further, when the petroleum hydrocarbon oil as the feedstock contains 80% by volume or more of a light oil fraction having a boiling point of 240 to 380 ° C., hydrodesulfurization treatment is performed using the catalyst of the present invention. The hue of the product oil can be 1.0 or less in ASTM color. When it exceeds 1.0, the hue as a light oil becomes a hue close to yellow or brown, and there is a concern that the commercial value is lowered. It has been pointed out that the coloration in the hydrodesulfurization treatment is related to the desulfurization reaction temperature, but according to the present invention, such a high reaction temperature and other severe operating conditions are not employed. Diesel oil that is stable and colorless and has high commercial value can be produced.

灯油留分においても、脱硫を進めるために反応温度やその外シビアな運転条件を採用した場合、色相が黄色に着色し、軽油と同様に商品価値が低下する懸念がある。本発明によれば、安定して商品価値の高い灯油を製造できるとともに、ディーゼル燃料として軽油留分に混合した場合においても、ディーゼル燃料としての商品価値が下がるといった懸念が払拭できる。   Even in the kerosene fraction, when the reaction temperature or severe operating conditions are employed to promote desulfurization, the hue is colored yellow, and there is a concern that the commercial value will be reduced in the same manner as light oil. According to the present invention, kerosene having a high commercial value can be produced stably, and even when it is mixed as a diesel fuel with a light oil fraction, the concern that the commercial value as a diesel fuel is reduced can be eliminated.

なお、本発明においてASTM色とは、JIS K2580「色試験方法」に記載の方法に準拠して測定される色相のことを意味する。   In the present invention, the ASTM color means a hue measured according to the method described in JIS K2580 “Color Test Method”.

本発明における水素化脱硫反応条件として、LHSVは0.3〜3.0h-1が好ましく、より好ましくは0.35〜2.5h-1、さらに好ましくは0.4〜2.0h-1である。LHSVが0.3h-1より低い場合には、ある通油量を得るための反応塔容積が極めて大きくなるため反応塔の設置など莫大な設備投資が必要となる可能性がある。また、LHSVが3.0h-1より大きい場合には、触媒と油との接触時間が短くなるため脱硫反応の進行が充分でなく、脱硫や脱芳香族の効果が発揮できない恐れがある。 As hydrodesulfurization reaction conditions in the present invention, LHSV is preferably 0.3~3.0h -1, more preferably at 0.35~2.5h -1, more preferably 0.4~2.0H -1 is there. When LHSV is lower than 0.3 h −1 , the volume of the reaction tower for obtaining a certain oil flow rate becomes extremely large, and therefore a huge capital investment such as installation of a reaction tower may be required. On the other hand, when LHSV is greater than 3.0 h −1 , the contact time between the catalyst and the oil is shortened, so that the desulfurization reaction does not proceed sufficiently, and the effects of desulfurization and dearomatization may not be exhibited.

水素分圧は3〜7MPaが好ましく、より好ましくは3.5〜7MPa、さらに好ましくは4〜6.5MPaである。水素分圧が3MPaより低い場合には、脱硫や脱芳香族の効果が発揮できず、7MPaより大きい場合には、圧縮機や装置強度の見直しなど、大きな設備投資が必要となる可能性があり好ましくない。   The hydrogen partial pressure is preferably 3 to 7 MPa, more preferably 3.5 to 7 MPa, and still more preferably 4 to 6.5 MPa. If the hydrogen partial pressure is lower than 3 MPa, the effect of desulfurization and dearomatization cannot be exhibited. If the hydrogen partial pressure is higher than 7 MPa, there is a possibility that a large capital investment such as a review of the compressor and equipment strength may be required. It is not preferable.

反応温度は290〜380℃が好ましい。反応温度が290℃より低い場合には、充分な脱硫反応速度を得ることができない恐れがあり好ましくない。また、380℃より高い場合には、生成油の色相の悪化や分解による目的留分収率の低下を招く可能性があり好ましくない。   The reaction temperature is preferably 290 to 380 ° C. When the reaction temperature is lower than 290 ° C., a sufficient desulfurization reaction rate may not be obtained, which is not preferable. On the other hand, when the temperature is higher than 380 ° C., the hue of the product oil may be deteriorated or the yield of the target fraction may be reduced due to decomposition.

水素/油比は50〜500NL/Lが好ましい。水素/油比は原料油流量に対する水素ガス流量の比を示すものであり、多いほど系内への水素供給が充分になるだけでなく、硫化水素などの触媒活性点を被毒する物質をすばやく系外に除去できるため、反応性が向上する傾向がある。しかしながら500NL/Lを超える場合には、反応性は向上するが、効果としては徐々に小さくなる。また圧縮機など大きな設備投資が必要となる恐れがある。一方、50NL/Lより少ない場合には、反応性が低下してしまう恐れがある。   The hydrogen / oil ratio is preferably 50 to 500 NL / L. The hydrogen / oil ratio indicates the ratio of the hydrogen gas flow rate to the feed oil flow rate. The higher the hydrogen / oil ratio is, the more hydrogen supply into the system becomes, and the faster the substances that poison the catalytic active sites such as hydrogen sulfide. Since it can be removed out of the system, the reactivity tends to be improved. However, when it exceeds 500 NL / L, the reactivity is improved, but the effect is gradually reduced. Moreover, there is a risk that a large capital investment such as a compressor may be required. On the other hand, when it is less than 50 NL / L, the reactivity may be lowered.

水素化脱硫における反応塔の反応形式は特に限定されないが、通常は、固定床、移動床等のプロセスから選択できるが、固定床が好ましい。また、原料油の流通法については、ダウンフロー、アップフローのいずれの形式も採用することができる。   Although the reaction mode of the reaction tower in hydrodesulfurization is not particularly limited, it can usually be selected from processes such as a fixed bed and a moving bed, but a fixed bed is preferred. Moreover, about the distribution | circulation method of raw material oil, any form of a down flow and an up flow can be employ | adopted.

軽油留分について本発明の触媒を用いて水素化脱硫処理を行った場合に生成する超低硫黄・低芳香族軽油は単独でディーゼル軽油として用いてもよいが、この超低硫黄・低芳香族軽油に他の基材などの成分を混合した軽油組成物としてディーゼル軽油として用いることもできる。また、灯油留分について水素化脱硫処理を行った場合に生成する灯油留分を軽油基材のひとつとして用いることができる。   The ultra-low sulfur / low aromatic light oil produced when hydrodesulfurization treatment is performed on the gas oil fraction using the catalyst of the present invention may be used alone as diesel light oil. It can also be used as diesel light oil as a light oil composition in which components such as other base materials are mixed with light oil. Moreover, the kerosene fraction produced | generated when a hydrodesulfurization process is performed about a kerosene fraction can be used as one of light oil base materials.

本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって制限されるものではない。   EXAMPLES The present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

(実施例1)
濃度5質量%のアルミン酸ナトリウム水溶液200gに水ガラス3号を加え65℃に保温した容器に入れた。濃度2.5質量%の硫酸アルミニウム水溶液200gに硫酸ジルコニウム水溶液を加えた溶液を、65℃に保温した別の容器において調製し、前述のアルミン酸ナトリウムを含む水溶液に滴下した。混合溶液のpHが7.0になる時点を終点とし、得られたスラリー状生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。ケーキ状スラリーを還流冷却器を取り付けた容器に移し、蒸留水60mlと27%アンモニア水溶液1gを加え、80℃で24時間加熱攪拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去ながら混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。得られた成形担体60gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながら三酸化モリブデン、硝酸コバルト(II)6水和物、リン酸(濃度85%)およびリンゴ酸を含む含浸溶液をフラスコ中に注入した。含浸した試料は120℃で1時間乾燥した後、550℃で焼成し、触媒1を得た。調製した触媒の物性を表1にまとめた。
(Example 1)
Water glass No. 3 was added to 200 g of a sodium aluminate aqueous solution having a concentration of 5% by mass, and the mixture was placed in a container kept at 65 ° C. A solution obtained by adding a zirconium sulfate aqueous solution to 200 g of an aluminum sulfate aqueous solution having a concentration of 2.5% by mass was prepared in another container kept at 65 ° C. and dropped into the aqueous solution containing sodium aluminate described above. The end point was when the pH of the mixed solution reached 7.0, and the resulting slurry product was filtered through a filter to obtain a cake-like slurry. The cake-like slurry was transferred to a container equipped with a reflux condenser, 60 ml of distilled water and 1 g of 27% aqueous ammonia solution were added, and the mixture was heated and stirred at 80 ° C. for 24 hours. The slurry was put into a kneading apparatus, heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product. The obtained kneaded material was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier. 60 g of the obtained shaped carrier was put into an eggplant-shaped flask, and an impregnating solution containing molybdenum trioxide, cobalt nitrate (II) hexahydrate, phosphoric acid (concentration 85%) and malic acid was removed from the flask while degassing with a rotary evaporator. Injected into. The impregnated sample was dried at 120 ° C. for 1 hour and then calcined at 550 ° C. to obtain Catalyst 1. The physical properties of the prepared catalyst are summarized in Table 1.

(実施例2)
濃度5質量%のアルミン酸ナトリウム水溶液200gに水ガラス3号を加え65℃に保温した容器に入れた。濃度2.5質量%の硫酸アルミニウム水溶液200gに硫酸チタン水溶液を加えた溶液を、65℃に保温した別の容器において調製し、前述のアルミン酸ナトリウムを含む水溶液に滴下した。混合溶液のpHが7.0になる時点を終点とし、得られたスラリー状生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。ケーキ状スラリーを還流冷却器を取り付けた容器に移し、蒸留水60mlと27%アンモニア水溶液1gを加え、80℃で24時間加熱攪拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去ながら混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。得られた成形担体60gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながら三酸化モリブデン、硝酸ニッケル6水和物、リン酸(濃度85%)およびリンゴ酸を含む含浸溶液をフラスコ中に注入した。含浸した試料は120℃で1時間乾燥した後、550℃で焼成し、触媒2を得た。調製した触媒の物性を表1にまとめた。
(Example 2)
Water glass No. 3 was added to 200 g of a sodium aluminate aqueous solution having a concentration of 5 mass%, and the mixture was placed in a container kept at 65 ° C. A solution obtained by adding a titanium sulfate aqueous solution to 200 g of an aluminum sulfate aqueous solution having a concentration of 2.5% by mass was prepared in another container kept at 65 ° C., and dropped into the aqueous solution containing sodium aluminate described above. The end point was when the pH of the mixed solution reached 7.0, and the resulting slurry product was filtered through a filter to obtain a cake-like slurry. The cake-like slurry was transferred to a container equipped with a reflux condenser, 60 ml of distilled water and 1 g of 27% aqueous ammonia solution were added, and the mixture was heated and stirred at 80 ° C. for 24 hours. The slurry was put into a kneading apparatus, heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product. The obtained kneaded material was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier. 60 g of the obtained shaped carrier was put into an eggplant-shaped flask, and an impregnation solution containing molybdenum trioxide, nickel nitrate hexahydrate, phosphoric acid (concentration 85%) and malic acid was poured into the flask while degassing with a rotary evaporator. did. The impregnated sample was dried at 120 ° C. for 1 hour and then calcined at 550 ° C. to obtain Catalyst 2. The physical properties of the prepared catalyst are summarized in Table 1.

(比較例1)
濃度5質量%のアルミン酸ナトリウム水溶液200gを65℃に保温した容器に入れた。濃度2.5質量%の硫酸アルミニウム水溶液200gを、65℃に保温した別の容器において調製し、前述のアルミン酸ナトリウムを含む水溶液に滴下した。混合溶液のpHが7.0になる時点を終点とし、得られたスラリー状生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。ケーキ状スラリーを還流冷却器を取り付けた容器に移し、蒸留水60mlと27%アンモニア水溶液1gを加え、80℃で15時間加熱攪拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去ながら混練し、この工程においてコロイダルシリカ(粒径10〜20nm)溶液、次いでジルコニウムイソプロポキシド水溶液を順次滴下しながらさらに混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。得られた成形担体60gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながら三酸化モリブデン、硝酸コバルト(II)6水和物、リン酸(濃度85%)およびリンゴ酸を含む含浸溶液をフラスコ中に注入した。含浸した試料は120℃で1時間乾燥した後、550℃で焼成し、触媒3を得た。調製した触媒の物性を表1にまとめた。
(Comparative Example 1)
200 g of a sodium aluminate aqueous solution having a concentration of 5% by mass was put in a container kept at 65 ° C. 200 g of an aluminum sulfate aqueous solution having a concentration of 2.5% by mass was prepared in a separate container kept at 65 ° C. and dropped into the aqueous solution containing sodium aluminate described above. The end point was when the pH of the mixed solution reached 7.0, and the resulting slurry product was filtered through a filter to obtain a cake-like slurry. The cake-like slurry was transferred to a container equipped with a reflux condenser, 60 ml of distilled water and 1 g of 27% aqueous ammonia solution were added, and the mixture was heated and stirred at 80 ° C. for 15 hours. The slurry is put in a kneading apparatus, heated to 80 ° C. or higher and kneaded while removing moisture. In this step, a colloidal silica (particle size: 10 to 20 nm) solution, and then an aqueous zirconium isopropoxide solution are further kneaded while being sequentially dropped, A clay-like kneaded material was obtained. The obtained kneaded material was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier. 60 g of the obtained shaped carrier was put into an eggplant-shaped flask, and an impregnating solution containing molybdenum trioxide, cobalt nitrate (II) hexahydrate, phosphoric acid (concentration 85%) and malic acid was removed from the flask while degassing with a rotary evaporator. Injected into. The impregnated sample was dried at 120 ° C. for 1 hour and then calcined at 550 ° C. to obtain Catalyst 3. The physical properties of the prepared catalyst are summarized in Table 1.

(比較例2)
濃度5質量%のアルミン酸ナトリウム水溶液200gを65℃に保温した容器に入れた。濃度2.5質量%の硫酸アルミニウム水溶液200gを、65℃に保温した別の容器において調製し、前述のアルミン酸ナトリウムを含む水溶液に滴下した。混合溶液のpHが7.0になる時点を終点とし、得られたスラリー状生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。ケーキ状スラリーを還流冷却器を取り付けた容器に移し、蒸留水60mlと27%アンモニア水溶液1gを加え、80℃で12時間加熱攪拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去ながら混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。得られた成形担体60gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながら三酸化モリブデン、硝酸コバルト(II)6水和物、リン酸(濃度85%)およびリンゴ酸を含む含浸溶液をフラスコ中に注入した。含浸した試料は120℃で1時間乾燥した後、550℃で焼成し、触媒4を得た。調製した触媒の物性を表1にまとめた。
(Comparative Example 2)
200 g of a sodium aluminate aqueous solution having a concentration of 5% by mass was put in a container kept at 65 ° C. 200 g of an aluminum sulfate aqueous solution having a concentration of 2.5% by mass was prepared in a separate container kept at 65 ° C. and dropped into the aqueous solution containing sodium aluminate described above. The end point was when the pH of the mixed solution reached 7.0, and the resulting slurry product was filtered through a filter to obtain a cake-like slurry. The cake-like slurry was transferred to a container equipped with a reflux condenser, 60 ml of distilled water and 1 g of 27% aqueous ammonia solution were added, and the mixture was heated and stirred at 80 ° C. for 12 hours. The slurry was put into a kneading apparatus, heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product. The obtained kneaded material was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier. 60 g of the obtained shaped carrier was put into an eggplant-shaped flask, and an impregnating solution containing molybdenum trioxide, cobalt nitrate (II) hexahydrate, phosphoric acid (concentration 85%) and malic acid was removed from the flask while degassing with a rotary evaporator. Injected into. The impregnated sample was dried at 120 ° C. for 1 hour and then calcined at 550 ° C. to obtain catalyst 4. The physical properties of the prepared catalyst are summarized in Table 1.

(実施例3)
触媒1を1gオートクレーブに入れ、触媒に含有されるコバルトおよびモリブデンがそれぞれCo98およびMoS2の化学式に相当する硫化物に完全に転換したと仮定したときの30倍当量のジメチルジサルファイドを触媒に加え、水素圧力5MPaに加圧し、300℃で2時間保持した。硫化終了後、触媒を窒素雰囲気下の容器に回収し、そのままX線光電子分光測定に用いた。X線光電子分光測定は、KRATOS社製ESCA3400を用い、加速電圧10kV、電流10mAで行った。硫化した触媒1のX線光電子分光法によって得られるスペクトルにおけるモリブデン3d軌道のピーク分離結果を図1に示す。また触媒1〜4のピーク分離結果を表2にまとめた。
(Example 3)
Catalyst 1 was placed in a 1 g autoclave and 30 times equivalents of dimethyl disulfide were assumed, assuming that the cobalt and molybdenum contained in the catalyst were completely converted to sulfides corresponding to the chemical formulas of Co 9 S 8 and MoS 2 , respectively. In addition to the catalyst, it was pressurized to a hydrogen pressure of 5 MPa and held at 300 ° C. for 2 hours. After completion of sulfiding, the catalyst was recovered in a container under a nitrogen atmosphere and used as it was for X-ray photoelectron spectroscopy. X-ray photoelectron spectroscopy measurement was performed using ESCA3400 manufactured by KRATOS at an acceleration voltage of 10 kV and a current of 10 mA. The peak separation result of the molybdenum 3d orbit in the spectrum obtained by X-ray photoelectron spectroscopy of the sulfurized catalyst 1 is shown in FIG. The peak separation results for catalysts 1 to 4 are summarized in Table 2.

(実施例4)
内径25mmの反応管に触媒1を100ml充填し、硫黄分濃度が3質量%となるようにジメチルジサルファィドを加えた直留軽油(硫黄分3質量%)を用いて触媒層平均温度300℃、水素分圧6MPa、LHSV1h-1、水素/油比200NL/Lの条件下で、4時間触媒の予備硫化を行った。予備硫化後、中東系の直留軽油(10%留出点240℃、90%留出点340℃、硫黄分1.28質量%、窒素分210質量ppm)を反応温度350℃、圧力5MPa、LHSV1h-1、水素/油比200NL/Lの条件で通油して水素化脱硫を行った。また、通油開始後40〜80日間は生成油硫黄分が10質量ppmとなるよう反応温度を調整しながら運転し、活性劣化速度を測定した。
触媒2についても同様に実施した。各触媒の反応試験結果を表3にまとめた。
Example 4
The catalyst layer average temperature is 300 using 100 ml of catalyst 1 in a reaction tube having an inner diameter of 25 mm and straight-run gas oil (3% by mass of sulfur) added with dimethyl disulfide so that the sulfur concentration is 3% by mass. The catalyst was presulfided for 4 hours under the conditions of ° C., hydrogen partial pressure 6 MPa, LHSV 1 h −1 , and hydrogen / oil ratio 200 NL / L. After preliminary sulfidation, a Middle East straight oil (10% distillation point 240 ° C., 90% distillation point 340 ° C., sulfur content 1.28 mass%, nitrogen content 210 mass ppm) was reacted at 350 ° C., pressure 5 MPa, Hydrodesulfurization was performed by passing oil under conditions of LHSV1h −1 and a hydrogen / oil ratio of 200 NL / L. In addition, for 40 to 80 days after the start of oil passing, operation was performed while adjusting the reaction temperature so that the sulfur content of the produced oil was 10 ppm by mass, and the activity deterioration rate was measured.
The same procedure was performed for catalyst 2. The reaction test results for each catalyst are summarized in Table 3.

(比較例3)
内径25mmの反応管に触媒3を100ml充填し、実施例4に示す条件で予備硫化した後に、実施例4と同様の条件で水素化脱硫を行った。触媒4についても同様に実施した。各触媒の反応試験結果を表3にまとめた。
(Comparative Example 3)
100 ml of catalyst 3 was filled in a reaction tube having an inner diameter of 25 mm, presulfided under the conditions shown in Example 4, and then hydrodesulfurized under the same conditions as in Example 4. It carried out similarly about the catalyst 4. The reaction test results for each catalyst are summarized in Table 3.

(実施例5)
内径25mmの反応管に触媒1を50ml充填し、実施例4に示す条件で予備硫化した後に、中東系の直留灯油(95%留出点260℃、硫黄分0.30質量%、窒素分10質量ppm)を反応温度300℃、圧力3.5MPa、LHSV2h-1、水素/油比80NL/Lの条件で通油して水素化脱硫を行った。また、通油開始後40〜80日間は強制劣化試験としてLHSV5h-1とし、生成油硫黄分が10質量ppmとなるよう反応温度を調整しながら運転し、活性劣化速度を測定した。触媒2についても同様に実施した。各触媒の反応試験結果を表4にまとめた。
(Example 5)
50 ml of catalyst 1 was filled in a reaction tube having an inner diameter of 25 mm, and presulfided under the conditions shown in Example 4, followed by Middle East straight-run kerosene (95% distillation point 260 ° C., sulfur content 0.30% by mass, nitrogen content) 10 mass ppm) was subjected to hydrodesulfurization by passing oil under conditions of a reaction temperature of 300 ° C., a pressure of 3.5 MPa, LHSV 2 h −1 , and a hydrogen / oil ratio of 80 NL / L. Further, for 40 to 80 days after the start of oil passing, LHSV5h- 1 was set as a forced deterioration test, and the operation was performed while adjusting the reaction temperature so that the sulfur content of the produced oil was 10 ppm by mass, and the activity deterioration rate was measured. The same procedure was performed for catalyst 2. The reaction test results for each catalyst are summarized in Table 4.

(比較例4)
内径25mmの反応管に触媒3を50ml充填し、実施例4に示す条件で予備硫化した後に、実施例5と同様の条件で水素化脱硫を行った。触媒4についても同様に実施した。各触媒の反応試験結果を表4にまとめた。
(Comparative Example 4)
50 ml of catalyst 3 was filled in a reaction tube having an inner diameter of 25 mm, presulfided under the conditions shown in Example 4, and then hydrodesulfurized under the same conditions as in Example 5. It carried out similarly about the catalyst 4. The reaction test results for each catalyst are summarized in Table 4.

Figure 2005254141
Figure 2005254141

Figure 2005254141
Figure 2005254141

Figure 2005254141
Figure 2005254141

Figure 2005254141
Figure 2005254141

硫化した触媒1のX線光電子分光法によって得られるスペクトルにおけるモリブデン3d軌道のピーク分離結果を示す図である。It is a figure which shows the peak separation result of the molybdenum 3d orbit in the spectrum obtained by the X-ray photoelectron spectroscopy of the sulfurized catalyst 1.

Claims (8)

アルミナを主成分とする触媒担体に、活性金属として少なくともニッケルおよび/またはコバルトとモリブデンを担持した水素化脱硫触媒であって、モリブデンを触媒重量に対して酸化物換算で20〜25質量%、アルミナを触媒重量に対して55質量%以上含有し、さらに触媒担体中にアルミナ以外の成分としてシリカ、チタニア、ジルコニアおよびボリアから選択される少なくとも1種類を含有して成り、かつ、硫化した触媒のX線光電子分光法によって得られるモリブデン3d5/2軌道に由来するピークのうち、結合エネルギー232〜233.5eVの範囲にピークトップをもつピークの面積をA、230〜231.5eVの範囲にピークトップをもつピークの面積をB、228〜230eVの範囲にピークトップをもつピークの面積をCとしたときに、これらがA/(A+B+C)≦0.3、および0.25≦B/(B+C)≦0.55の関係を具備していることを特徴とする石油系炭化水素油の水素化脱硫触媒。   A hydrodesulfurization catalyst in which at least nickel and / or cobalt and molybdenum are supported as active metals on a catalyst carrier having alumina as a main component, and molybdenum is 20 to 25% by mass in terms of oxide based on the catalyst weight. Of the sulfurized catalyst, and containing at least one selected from silica, titania, zirconia and boria as a component other than alumina in the catalyst support. Of the peaks derived from the molybdenum 3d5 / 2 orbit obtained by line photoelectron spectroscopy, the peak area having a peak top in the range of binding energy 232 to 233.5 eV is A, and the peak top is in the range of 230 to 231.5 eV. The area of the peak having B is the peak having a peak top in the range of 228 to 230 eV. Petroleum hydrocarbons characterized by having a relationship of A / (A + B + C) ≦ 0.3 and 0.25 ≦ B / (B + C) ≦ 0.55 when the product is C Oil hydrodesulfurization catalyst. 触媒担体を構成する成分として、アルミナ以外に、シリカ、チタニア、ジルコニアおよびボリアから選択される少なくとも2種類を含有することを特徴とする請求項1に記載の石油系炭化水素油の水素化脱硫触媒。   2. The hydrodesulfurization catalyst for petroleum hydrocarbon oil according to claim 1, wherein the catalyst carrier contains at least two kinds selected from silica, titania, zirconia and boria in addition to alumina. . シリカ、チタニア、ジルコニアおよびボリアから選択される担体構成成分の含有量合計が、触媒担体の1〜9質量%であることを特徴とする請求項1または2に記載の石油系炭化水素油の水素化脱硫触媒。   The hydrogen of petroleum hydrocarbon oil according to claim 1 or 2, wherein the total content of the carrier component selected from silica, titania, zirconia and boria is 1 to 9% by mass of the catalyst carrier. Hydrodesulfurization catalyst. 触媒担体が、アルミナ原料に、アルミナ以外の担体構成成分の原料を添加したのち焼成して調製されたものであることを特徴とする請求項1〜3のいずれかに記載の石油系炭化水素油の水素化脱硫触媒。   The petroleum hydrocarbon oil according to any one of claims 1 to 3, wherein the catalyst carrier is prepared by adding a raw material of a carrier component other than alumina to an alumina raw material, followed by firing. Hydrodesulfurization catalyst. 窒素によるBET法で求められる触媒の平均細孔半径が30〜50Åの範囲であり、表面積が220〜290m2/gの範囲にあることを特徴とする請求項1〜4のいずれかに記載の石油系炭化水素油の水素化脱硫触媒。 The average pore radius of the catalyst determined by the BET method using nitrogen is in the range of 30 to 50 mm, and the surface area is in the range of 220 to 290 m 2 / g. Hydrodesulfurization catalyst for petroleum hydrocarbon oil. 請求項1〜5のいずれかに記載の水素化脱硫触媒を用いて石油系炭化水素油を水素化脱硫処理することを特徴とする石油系炭化水素油の水素化脱硫方法。   A hydrodesulfurization method for petroleum hydrocarbon oil, comprising hydrodesulfurizing a petroleum hydrocarbon oil using the hydrodesulfurization catalyst according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載の水素化脱硫触媒を用いて灯油または軽油留分を水素化脱硫処理して得られる生成油の硫黄分が10質量ppm以下であり、かつ、色相がASTM色で1.0以下であることを特徴とする請求項6に記載の水素化脱硫方法。   The sulfur content of the product oil obtained by hydrodesulfurizing the kerosene or light oil fraction using the hydrodesulfurization catalyst according to any one of claims 1 to 5 is 10 ppm by mass or less, and the hue is ASTM. The hydrodesulfurization method according to claim 6, which is 1.0 or less in color. 水素化脱硫処理が、LHSV0.3〜3.0、水素圧力3〜7MPa、反応温度290〜380℃、および水素油比50〜500NL/Lの条件下に行われることを特徴とする請求項6又は7に記載の水素化脱硫方法。




The hydrodesulfurization treatment is performed under conditions of LHSV 0.3 to 3.0, hydrogen pressure 3 to 7 MPa, reaction temperature 290 to 380 ° C, and hydrogen oil ratio 50 to 500 NL / L. Or the hydrodesulfurization method according to 7.




JP2004069503A 2004-03-11 2004-03-11 Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil Expired - Fee Related JP5013658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004069503A JP5013658B2 (en) 2004-03-11 2004-03-11 Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004069503A JP5013658B2 (en) 2004-03-11 2004-03-11 Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil

Publications (2)

Publication Number Publication Date
JP2005254141A true JP2005254141A (en) 2005-09-22
JP5013658B2 JP5013658B2 (en) 2012-08-29

Family

ID=35080401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004069503A Expired - Fee Related JP5013658B2 (en) 2004-03-11 2004-03-11 Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP5013658B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222751A (en) * 2006-02-22 2007-09-06 Idemitsu Kosan Co Ltd Hydrodesulfurization catalyst and hydrodesulfurization method for kerosene fraction
JP2007254275A (en) * 2006-02-24 2007-10-04 Cosmo Oil Co Ltd Desulfurizing agent for hydrocarbon
JP2011072928A (en) * 2009-09-30 2011-04-14 Jx Nippon Oil & Energy Corp Hydrodesulfurization catalyst for hydrocarbon oil and method for manufacturing the same
JP2011074235A (en) * 2009-09-30 2011-04-14 Jx Nippon Oil & Energy Corp Method of hydrorefining hydrocarbon oil
JP2012007098A (en) * 2010-06-25 2012-01-12 Jx Nippon Oil & Energy Corp Hydrorefining method of hydrocarbon oil
JP2012005976A (en) * 2010-06-25 2012-01-12 Jx Nippon Oil & Energy Corp Hydrodesulfurization catalyst for hydrocarbon oil and method of producing the same
CN102575175A (en) * 2009-09-30 2012-07-11 吉坤日矿日石能源株式会社 Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
CN103079697A (en) * 2010-06-25 2013-05-01 吉坤日矿日石能源株式会社 Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil
JP2014173025A (en) * 2013-03-11 2014-09-22 Jx Nippon Oil & Energy Corp Hydrogenation purification method for vacuum gas oil
JP2014173026A (en) * 2013-03-11 2014-09-22 Jx Nippon Oil & Energy Corp Hydrogenation purification method for light gas oil
WO2020066555A1 (en) * 2018-09-28 2020-04-02 日揮触媒化成株式会社 Hydrotreating catalyst for hydrocarbon oil, production method therefor, and method for hydrotreating hydrocarbon oil
KR20220009402A (en) 2019-05-15 2022-01-24 니폰 겟첸 가부시키가이샤 Hydrocarbon oil hydroprocessing catalyst and hydrocarbon oil hydroprocessing method using the catalyst
CN114433112A (en) * 2020-11-06 2022-05-06 宁波中科远东催化工程技术有限公司 Coke oven gas hydrodesulfurization catalyst and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275143A (en) * 1990-03-26 1991-12-05 Cosmo Sogo Kenkyusho:Kk Catalyst composition for hydrogen-processing hydrocarbon oil and hydrodesulfurization metho using the same
JPH05192575A (en) * 1991-05-08 1993-08-03 Intevep Sa Mild hydrocracking catalyst for decomposing material and method for its production
JPH0631176A (en) * 1990-12-24 1994-02-08 Exxon Res & Eng Co Catalyst with support for hydrogenation and hydrogen treatment and its catalyzing method
JPH09155197A (en) * 1995-12-14 1997-06-17 Sumitomo Metal Mining Co Ltd Hydrotreatment catalyst of hydrocarbon oil
JPH10211432A (en) * 1997-01-15 1998-08-11 Inst Fr Petrole Catalyst containing sulfide mixture and its applications for hydrofining/hydrogenating conversion of hydrocarbons by hydrogenation
JP2000342976A (en) * 1999-03-29 2000-12-12 Cosmo Research Inst Catalyst and method for hydrotreating light oil
JP2002233761A (en) * 2001-02-07 2002-08-20 Cosmo Research Inst Hydrogenation catalyst for light oil and hydrogenation method for light oil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275143A (en) * 1990-03-26 1991-12-05 Cosmo Sogo Kenkyusho:Kk Catalyst composition for hydrogen-processing hydrocarbon oil and hydrodesulfurization metho using the same
JPH0631176A (en) * 1990-12-24 1994-02-08 Exxon Res & Eng Co Catalyst with support for hydrogenation and hydrogen treatment and its catalyzing method
JPH05192575A (en) * 1991-05-08 1993-08-03 Intevep Sa Mild hydrocracking catalyst for decomposing material and method for its production
JPH09155197A (en) * 1995-12-14 1997-06-17 Sumitomo Metal Mining Co Ltd Hydrotreatment catalyst of hydrocarbon oil
JPH10211432A (en) * 1997-01-15 1998-08-11 Inst Fr Petrole Catalyst containing sulfide mixture and its applications for hydrofining/hydrogenating conversion of hydrocarbons by hydrogenation
JP2000342976A (en) * 1999-03-29 2000-12-12 Cosmo Research Inst Catalyst and method for hydrotreating light oil
JP2002233761A (en) * 2001-02-07 2002-08-20 Cosmo Research Inst Hydrogenation catalyst for light oil and hydrogenation method for light oil

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222751A (en) * 2006-02-22 2007-09-06 Idemitsu Kosan Co Ltd Hydrodesulfurization catalyst and hydrodesulfurization method for kerosene fraction
JP2007254275A (en) * 2006-02-24 2007-10-04 Cosmo Oil Co Ltd Desulfurizing agent for hydrocarbon
EP2484745A4 (en) * 2009-09-30 2016-01-13 Jx Nippon Oil & Energy Corp Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
CN102575175B (en) * 2009-09-30 2014-06-25 吉坤日矿日石能源株式会社 Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
JP2011072928A (en) * 2009-09-30 2011-04-14 Jx Nippon Oil & Energy Corp Hydrodesulfurization catalyst for hydrocarbon oil and method for manufacturing the same
US9067191B2 (en) 2009-09-30 2015-06-30 Jx Nippon Oil & Energy Corporation Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
CN102575175A (en) * 2009-09-30 2012-07-11 吉坤日矿日石能源株式会社 Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
JP2011074235A (en) * 2009-09-30 2011-04-14 Jx Nippon Oil & Energy Corp Method of hydrorefining hydrocarbon oil
CN103079697A (en) * 2010-06-25 2013-05-01 吉坤日矿日石能源株式会社 Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil
JP2012005976A (en) * 2010-06-25 2012-01-12 Jx Nippon Oil & Energy Corp Hydrodesulfurization catalyst for hydrocarbon oil and method of producing the same
EP2586529A1 (en) * 2010-06-25 2013-05-01 JX Nippon Oil & Energy Corporation Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil
JP2012007098A (en) * 2010-06-25 2012-01-12 Jx Nippon Oil & Energy Corp Hydrorefining method of hydrocarbon oil
EP2586529A4 (en) * 2010-06-25 2014-06-11 Jx Nippon Oil & Energy Corp Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil
US9061265B2 (en) 2010-06-25 2015-06-23 Jx Nippon Oil & Energy Corporation Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
JP2014173026A (en) * 2013-03-11 2014-09-22 Jx Nippon Oil & Energy Corp Hydrogenation purification method for light gas oil
JP2014173025A (en) * 2013-03-11 2014-09-22 Jx Nippon Oil & Energy Corp Hydrogenation purification method for vacuum gas oil
WO2020066555A1 (en) * 2018-09-28 2020-04-02 日揮触媒化成株式会社 Hydrotreating catalyst for hydrocarbon oil, production method therefor, and method for hydrotreating hydrocarbon oil
JPWO2020066555A1 (en) * 2018-09-28 2021-08-30 日揮触媒化成株式会社 Hydrocarbon oil hydrotreatment catalyst, its production method, and hydrocarbon oil hydrogenation treatment method
JP7366043B2 (en) 2018-09-28 2023-10-20 日揮触媒化成株式会社 Catalyst for hydrotreating hydrocarbon oil, method for producing the same, and method for hydrotreating hydrocarbon oil
US11896959B2 (en) 2018-09-28 2024-02-13 Jgc Catalysts And Chemicals Ltd. Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and method for hydrotreating hydrocarbon oil
KR20220009402A (en) 2019-05-15 2022-01-24 니폰 겟첸 가부시키가이샤 Hydrocarbon oil hydroprocessing catalyst and hydrocarbon oil hydroprocessing method using the catalyst
CN114433112A (en) * 2020-11-06 2022-05-06 宁波中科远东催化工程技术有限公司 Coke oven gas hydrodesulfurization catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP5013658B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP4201795B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4313265B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons
KR100664895B1 (en) Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
JP5928970B2 (en) Gas oil hydrodesulfurization catalyst, hydrodesulfurization catalyst production method, and gas oil hydrotreating method
US20060249429A1 (en) Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same
JP5013658B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil
CN101766984B (en) Desulfuration adsorbent containing phosphorus and preparation method and application thereof
US11097255B2 (en) Procedure for obtaining a catalytic formulation for the production of ultra low sulfur diesel, obtained product and application thereof
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP4246673B2 (en) Hydrocarbon hydrotreating catalyst and hydrotreating method using the catalyst
JP4545328B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil
JP4576257B2 (en) Production method of oil fraction
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4916370B2 (en) Process for hydrotreating diesel oil
JP4480120B2 (en) Gas oil hydrotreating catalyst and gas oil hydrotreating method
JP4680520B2 (en) Low sulfur gas oil production method and environmentally friendly gas oil
JP2006035052A (en) Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method
JP4249632B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons
JP4630014B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
CN106582741A (en) Deep desulphurization catalyst and preparation method thereof
JP2014111233A (en) Hydrodesulfurization catalyst of hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5013658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees