JP2012007098A - Hydrorefining method of hydrocarbon oil - Google Patents

Hydrorefining method of hydrocarbon oil Download PDF

Info

Publication number
JP2012007098A
JP2012007098A JP2010145120A JP2010145120A JP2012007098A JP 2012007098 A JP2012007098 A JP 2012007098A JP 2010145120 A JP2010145120 A JP 2010145120A JP 2010145120 A JP2010145120 A JP 2010145120A JP 2012007098 A JP2012007098 A JP 2012007098A
Authority
JP
Japan
Prior art keywords
catalyst
mass
titania
oil
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010145120A
Other languages
Japanese (ja)
Other versions
JP5610875B2 (en
Inventor
Hiroyuki Seki
浩幸 関
Masanori Yoshida
正典 吉田
Shogo Tagawa
勝吾 田河
Tomoyasu Kagawa
智靖 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010145120A priority Critical patent/JP5610875B2/en
Application filed by JX Nippon Oil and Energy Corp, JGC Catalysts and Chemicals Ltd filed Critical JX Nippon Oil and Energy Corp
Priority to US13/805,739 priority patent/US9061265B2/en
Priority to RU2013103340/04A priority patent/RU2562607C2/en
Priority to SG2012093829A priority patent/SG186776A1/en
Priority to CN201180041131.9A priority patent/CN103079697B/en
Priority to EP11798112.6A priority patent/EP2586529A4/en
Priority to PCT/JP2011/064106 priority patent/WO2011162228A1/en
Publication of JP2012007098A publication Critical patent/JP2012007098A/en
Application granted granted Critical
Publication of JP5610875B2 publication Critical patent/JP5610875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hydrorefining method using a hydrodesulfurization catalyst improved so as to exhibit a high desulfurization activity in the case of being used for a hydroprocessing reaction of a hydrocarbon oil, especially a straight gasoil.SOLUTION: The hydrodesulfurization catalyst is used which is prepared by subjecting an initial hydrodesulfurization catalyst to a preparatory sulfurization treatment and has a molybdenum disulfide layer(s) after the preparatory sulfurization treatment having an average length of >3.5 mm and ≤7 mm and an average laminating number of >1.0 and ≤1.9, wherein the initial hydrodesulfurization catalyst is obtained by containing a metal component(s) (including molybdenum as an essential component) selected from the periodic table VIA group and VIII group together with a chelate agent or further a phosphorus compound in a silica-alumina-titania carrier in which the total of a diffraction peak area indicating a crystal structure of anatase-type titania (101) plane and a diffraction peak area indicating a crystal structure of rutile-type titania (110) plane, as measured by X-ray diffractometry, is ≤1/4 the diffraction peak area indicating an aluminum crystal structure assigned to a γ-alumina (400) plane.

Description

本発明は、高い脱硫活性を有する触媒を用いた炭化水素油の水素化精製方法に関する。   The present invention relates to a method for hydrorefining hydrocarbon oil using a catalyst having high desulfurization activity.

近年、環境保護の観点から燃料油の硫黄分の品質規制が強化されている。特に、ガソリンや軽油中の硫黄分は厳しい規制となっている。このため、この規制に対応できるよう高い脱硫性能を示す触媒の開発が進んでいる。   In recent years, quality control of fuel oil sulfur content has been strengthened from the viewpoint of environmental protection. In particular, the sulfur content in gasoline and light oil is strictly regulated. For this reason, the development of a catalyst exhibiting high desulfurization performance in order to meet this regulation is in progress.

脱硫触媒の活性点は、担体に担持された活性金属の硫化物に起因し、主に積層構造をとる二硫化モリブデンの結晶層(以下、「二硫化モリブデン層」ともいう。)のエッジ部に存在すると考えられている。例えば、特許文献1には、二硫化モリブデン層の積層数の平均値が2.5〜5であり、結晶層の面方向の長さの平均値(平均値長さ)が1〜3.5nmである水素化処理触媒が高い軽油の脱硫性能を示すと記載されている。   The active point of the desulfurization catalyst is caused by the sulfide of the active metal supported on the support, and is mainly at the edge of the molybdenum disulfide crystal layer (hereinafter also referred to as “molybdenum disulfide layer”) having a laminated structure. It is considered to exist. For example, in Patent Document 1, the average value of the number of laminated molybdenum disulfide layers is 2.5 to 5, and the average length (average value length) in the plane direction of the crystal layer is 1 to 3.5 nm. It is described that the hydrotreating catalyst is a high gas oil desulfurization performance.

また、チタニア担体は、アルミナ担体と比べ高脱硫性能を示すことが知られており、チタニア担体を使用した水素化処理触媒もその要求に応えられる触媒として期待が高まっている。しかし、チタニアは一般的に比表面積が小さく、また高温での熱安定性が低いといった問題がある。この問題を解決するために、含水酸化チタンのヒドロゾル又はヒドロゲル若しくはそれらの乾燥物に、焼成時の粒子成長を抑制する粒子成長抑制剤等を添加した後、乾燥、焼成して得られる多孔質チタニアが開発されている(例えば、特許文献2参照)。しかしながら、この多孔質チタニアのみを担体として用いた場合には、触媒が高価となるという問題がある。そこで、水溶性チタニア化合物をアルミナ担体に担持させて調製したアルミナ−チタニア担体を用いた水素化処理触媒も開発されている(例えば、特許文献3参照)。しかしながら、この水素化処理触媒は、価格を安くできるが、担体の吸水率分しかチタニアを担持できないため、触媒の性能が低いという欠点がある。また、アルミナ調製時にチタニアを混合することによりアルミナ中にチタニアを高分散させて調製したアルミナ−チタニア担体を用いた水素化処理触媒も開発されている(例えば、特許文献4参照)。しかしながら、この担体は、チタニアをアルミナ中に高分散させることができるが、チタニアの含有量が増えるにつれ比表面積が低下し、チタニアが凝集するため細孔分布のシャープネスが悪くなり、触媒の性能が低下するという欠点があった。   In addition, titania support is known to exhibit higher desulfurization performance than alumina support, and a hydrotreating catalyst using titania support is expected to be a catalyst that can meet the demand. However, titania generally has a problem that its specific surface area is small and its thermal stability at high temperature is low. In order to solve this problem, a porous titania obtained by adding a particle growth inhibitor or the like that suppresses particle growth during firing to a hydrosol or hydrogel of hydrous titanium oxide or a dried product thereof, followed by drying and firing. Has been developed (see, for example, Patent Document 2). However, when only this porous titania is used as a carrier, there is a problem that the catalyst becomes expensive. Therefore, a hydrotreating catalyst using an alumina-titania carrier prepared by supporting a water-soluble titania compound on an alumina carrier has also been developed (see, for example, Patent Document 3). However, this hydrotreating catalyst can be reduced in price, but has the disadvantage that the performance of the catalyst is low because titania can be supported only by the water absorption rate of the carrier. In addition, a hydrotreating catalyst using an alumina-titania support prepared by highly dispersing titania in alumina by mixing titania during alumina preparation has been developed (see, for example, Patent Document 4). However, this carrier can highly disperse titania in alumina. However, as the titania content increases, the specific surface area decreases and the titania aggregates, so that the sharpness of the pore distribution deteriorates and the performance of the catalyst decreases. There was a drawback of lowering.

特開2003−299960号公報JP 2003-299960 A 特開2005−336053号公報JP 2005-336053 A 特開2005−262173号公報JP 2005-262173 A 特開平10−118495号公報Japanese Patent Laid-Open No. 10-118495

本発明は、チタニアを高分散させたシリカ−アルミナ−チタニア担体を使用した安価で高脱硫性能を示す水素化脱硫触媒を用いた炭化水素油の水素化精製方法を提供することを目的とする。   An object of the present invention is to provide a hydrorefining method for hydrocarbon oil using a hydrodesulfurization catalyst that shows a high desulfurization performance at low cost, using a silica-alumina-titania support in which titania is highly dispersed.

本発明者らは鋭意研究した結果、特定構造のシリカ、アルミナおよびチタニアを含有する担体(以下、「シリカ−アルミナ−チタニア担体」という。)に、少なくともモリブデンを含む金属成分をキレート剤と共に含浸、担持して調製された水素化脱硫触媒を、二硫化モリブデンの結晶層の平均値長さが3.5nmを超え、7nm以下、かつ、平均積層数が1.0を超え、1.9以下となるように予備硫化処理して得られる水素化脱硫触媒(本明細書において、予備硫化処理前の水素化脱硫触媒と区別するため、予備硫化処理して得られる水素化脱硫触媒を「予備硫化済み水素化脱硫触媒」ということがある。)を炭化水素油の水素化精製に用いることで、炭化水素油の脱硫性能が大きく向上し、前記課題を達成し得ることを見出し、本発明を完成したものである。   As a result of intensive studies, the present inventors have impregnated a support containing silica, alumina and titania having a specific structure (hereinafter referred to as “silica-alumina-titania support”) with a metal component containing at least molybdenum together with a chelating agent. The hydrodesulfurization catalyst prepared by supporting the molybdenum disulfide crystal layer with an average length of more than 3.5 nm and not more than 7 nm, and an average number of layers exceeding 1.0 and not more than 1.9 The hydrodesulfurization catalyst obtained by the presulfidation treatment (in this specification, the hydrodesulfurization catalyst obtained by the presulfidation treatment is referred to as “presulfided It has been found that by using "hydrodesulfurization catalyst" for hydrorefining of hydrocarbon oil, the desulfurization performance of hydrocarbon oil can be greatly improved and the above-mentioned problems can be achieved. It is those that completed.

即ち、本発明は、[1]シリカ、アルミナおよびチタニアを含有する担体と該担体に担持された周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分(ただし、モリブデンを必須として含有する)とを有し、
前記担体は、X線回折分析により測定されるアナターゼ型チタニア(101)面の結晶構造を示す回折ピーク面積及びルチル型チタニア(110)面の結晶構造を示す回折ピーク面積の合計の面積(チタニア回折ピーク面積)が、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積(アルミナ回折ピーク面積)に対して1/4以下であり、
前記金属成分がキレート剤あるいはさらにリン化合物と共に担体に含有された水素化脱硫触媒aを得、
前記水素化脱硫触媒aを予備硫化処理することによって、前記モリブデンが二硫化モリブデンの結晶となって担体上に層状に配設され、しかも、該二硫化モリブデンの結晶層は、該結晶層の面方向の平均値長さが3.5nmを超え、7nm以下、かつ、平均積層数が1.0を超え、1.9以下となる予備硫化処理された水素化脱硫触媒とし、
該予備硫化処理された水素化脱硫触媒を用いて水素雰囲気下で炭化水素油を水素化処理することを特徴とする炭化水素油の水素化精製方法、に関する。
That is, the present invention provides [1] a support containing silica, alumina and titania and at least one metal component selected from Groups VIA and VIII of the periodic table supported on the support (however, molybdenum is essential) Containing)
The carrier is the total area of the diffraction peak area showing the crystal structure of the anatase titania (101) plane and the diffraction peak area showing the crystal structure of the rutile titania (110) plane as measured by X-ray diffraction analysis (titania diffraction). Peak area) is 1/4 or less with respect to a diffraction peak area (alumina diffraction peak area) indicating an aluminum crystal structure belonging to the γ-alumina (400) plane,
Obtaining a hydrodesulfurization catalyst a in which the metal component is contained in a carrier together with a chelating agent or further a phosphorus compound;
By pre-sulfiding the hydrodesulfurization catalyst a, the molybdenum is crystallized as molybdenum disulfide and arranged in a layer on the carrier, and the molybdenum disulfide crystal layer is a surface of the crystal layer. A pre-sulfurized hydrodesulfurization catalyst in which the average length in the direction exceeds 3.5 nm, 7 nm or less, and the average number of layers exceeds 1.0 and is 1.9 or less;
The present invention relates to a hydrorefining method for hydrocarbon oil, characterized by hydrotreating a hydrocarbon oil in a hydrogen atmosphere using the presulfided hydrodesulfurization catalyst.

また、本発明は、[2]前記担体には、担体基準で、シリカがSiOとして1〜10質量%の範囲、チタニアがTiOとして3〜40質量%の範囲、アルミナがAlとして50質量%以上の範囲でそれぞれ含まれていることを特徴とする前記[1]に記載の炭化水素油の水素化精製方法、に関する。
また、本発明は、[3]前記金属成分は、触媒基準で、酸化物として1〜35質量%の範囲にあり、前記モリブデンは、触媒基準で、MoOとして1〜25質量%の範囲にあることを特徴とする前記[1]又は[2]に記載の炭化水素油の水素化精製方法、に関する。
Further, the present invention is [2] wherein the carrier, with the carrier reference, the range silica is 1 to 10% by mass as SiO 2, range titania of 3 to 40% by mass as TiO 2, alumina Al 2 O 3 The method for hydrorefining a hydrocarbon oil according to [1], wherein the hydrocarbon oil is contained in a range of 50% by mass or more.
In the present invention, [3] the metal component is in the range of 1 to 35% by mass as an oxide on the catalyst basis, and the molybdenum is in the range of 1 to 25% by mass on the catalyst basis as MoO 3. The present invention relates to a method for hydrorefining a hydrocarbon oil according to the above [1] or [2].

また、本発明は、[4]前記炭化水素油が、直留軽油、減圧軽油、接触分解軽油、水素化分解軽油、および熱分解軽油から選ばれることを特徴とする前記[1]〜[3]のいずれかに記載の炭化水素油の水素化精製方法、に関する。
また、本発明は、[5]前記キレート剤がクエン酸又はリンゴ酸であることを特徴とする前記[1]〜[4]のいずれかに記載の炭化水素油の水素化精製方法、に関する。
[4] The present invention provides [4], wherein the hydrocarbon oil is selected from straight-run gas oil, vacuum gas oil, catalytic cracking gas oil, hydrocracked gas oil, and pyrolysis gas oil. ] The hydrorefining method of the hydrocarbon oil in any one of these.
The present invention also relates to [5] the method for hydrorefining a hydrocarbon oil according to any one of [1] to [4], wherein the chelating agent is citric acid or malic acid.

また、本発明は、[6]前記炭化水素油の水素化処理によって得られる生成油の硫黄分が10質量ppm以下であり、かつ窒素分が3質量ppm以下であることを特徴とする前記[1]〜[5]のいずれかに記載の炭化水素油の水素化精製方法、に関する。
また、本発明は、[6]反応圧力が1〜12MPa、液空間速度が0.1〜4.0h−1、水素/油比が80〜500NL/L、反応温度が250〜400℃の範囲であることを特徴とする前記[1]〜[6]のいずれかに記載の炭化水素の水素化精製方法、に関する。
In addition, the present invention provides [6] wherein the product oil obtained by hydrotreating the hydrocarbon oil has a sulfur content of 10 ppm by mass or less and a nitrogen content of 3 ppm by mass or less. The present invention relates to a method for hydrorefining hydrocarbon oil according to any one of 1] to [5].
The present invention also provides [6] a reaction pressure of 1 to 12 MPa, a liquid space velocity of 0.1 to 4.0 h −1 , a hydrogen / oil ratio of 80 to 500 NL / L, and a reaction temperature of 250 to 400 ° C. The hydrocarbon hydrorefining method according to any one of [1] to [6], wherein

本発明で使用する予備硫化済み水素化脱硫触媒は、脱硫の活性点となる二硫化モリブテン層の平均値長さが3.5nmを超え、7nm以下、かつ平均積層数が1.0を超え、1.9以下であることから、脱硫の活性点を増やすことが出来る。また、含浸溶液に含まれるキレート剤でモリブデンをキレート化させることにより、二硫化モリブデン層と担体との相互作用を弱めることができ、一層目の二硫化モリブデンであっても高い脱硫性能を示すことが可能となる。また、本発明で使用する水素化脱硫触媒は担体中にチタンが高分散しているため、アルミナやシリカと比較して高価なチタンを比較的少ない量で高い脱硫性能を発揮することが出来る。   The presulfided hydrodesulfurization catalyst used in the present invention has an average length of the molybdenum disulfide molybdenum layer that is an active point of desulfurization exceeding 3.5 nm, 7 nm or less, and an average number of layers exceeding 1.0, Since it is 1.9 or less, the active point of desulfurization can be increased. In addition, by chelating molybdenum with a chelating agent contained in the impregnation solution, the interaction between the molybdenum disulfide layer and the carrier can be weakened, and even the first molybdenum disulfide exhibits high desulfurization performance. Is possible. In addition, since the hydrodesulfurization catalyst used in the present invention has a high dispersion of titanium in the support, it can exhibit high desulfurization performance with a relatively small amount of expensive titanium as compared with alumina and silica.

実施例1における担体aのX線回折分析結果を示す図である。FIG. 3 is a diagram showing the result of X-ray diffraction analysis of carrier a in Example 1. 予備硫化済み水素化脱硫触媒の透過型電子顕微鏡(TEM)写真である。It is a transmission electron microscope (TEM) photograph of a presulfided hydrodesulfurization catalyst. 二硫化モリブデンの結晶層の面方向の積層数と長さを示すイメージ図である。It is an image figure which shows the lamination number and length of the surface direction of the crystal layer of molybdenum disulfide.

以下、本発明の好適な実施の形態について詳細に説明する。
本発明の炭化水素油の水素化精製方法に用いられる水素化脱硫触媒は、特定構造を有するシリカ−アルミナ−チタニア担体に、周期表第VIA族及び第VIII族から選ばれる少なくとも1種以上の金属成分(少なくともモリブデンを含む)を担持した水素化脱硫触媒を、さらに予備硫化処理することにより特定構造の二硫化モリブデン結晶層を形成してなる水素化脱硫触媒である。
Hereinafter, preferred embodiments of the present invention will be described in detail.
The hydrodesulfurization catalyst used in the hydrorefining method of hydrocarbon oil of the present invention is a silica-alumina-titania support having a specific structure, at least one metal selected from Group VIA and Group VIII of the periodic table. This is a hydrodesulfurization catalyst obtained by further preliminarily sulfiding a hydrodesulfurization catalyst supporting a component (including at least molybdenum) to form a molybdenum disulfide crystal layer having a specific structure.

本発明に係る水素化脱硫触媒に使用されるシリカ−アルミナ−チタニア担体は、X線回折分析により測定されるアナターゼ型チタニア(101)面の結晶構造を示す回折ピーク面積及びルチル型チタニア(110)面の結晶構造を示す回折ピーク面積の合計の面積(以下、「チタニア回折ピーク面積」ともいう。)が、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積(以下、「アルミナ回折ピーク面積」ともいう。)に対して、1/4以下であることが必要であり、1/5以下であるのが好ましく、1/6以下であるのがより好ましい。   The silica-alumina-titania support used in the hydrodesulfurization catalyst according to the present invention has a diffraction peak area and a rutile-type titania (110) showing the crystal structure of the anatase-type titania (101) plane measured by X-ray diffraction analysis. A diffraction peak area (hereinafter, referred to as “a titania diffraction peak area”) indicating the crystal structure of the plane is represented by an aluminum crystal structure belonging to the γ-alumina (400) plane. It is necessary to be 1/4 or less, preferably 1/5 or less, and more preferably 1/6 or less.

ここで、アルミナ回折ピーク面積に対するチタニア回折ピーク面積(チタニア回折ピーク面積/アルミナ回折ピーク面積)が1/4より大きい場合は、チタニアの結晶化が進んでいることを示し、脱硫反応に有効な細孔が減少する。従って、この場合には、担体に含まれるチタニア量を増やしても、得られる水素化脱硫触媒はその経済性に見合う分の脱硫性能が発揮されず、安価で高性能な触媒とならない。
なお、アナターゼ型チタニア(101)面の結晶構造を示す回折ピークは2θ=25.5°で測定したものであり、ルチル型チタニア(110)面の結晶構造を示す回折ピークは、2θ=27.5°で測定したものである。また、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピークは2θ=45.9°で測定したものである。
Here, when the titania diffraction peak area with respect to the alumina diffraction peak area (titania diffraction peak area / alumina diffraction peak area) is larger than 1/4, it indicates that the crystallization of titania is progressing, and is effective for desulfurization reaction. Holes are reduced. Therefore, in this case, even if the amount of titania contained in the support is increased, the resulting hydrodesulfurization catalyst does not exhibit desulfurization performance corresponding to its economic efficiency, and does not become an inexpensive and high-performance catalyst.
The diffraction peak showing the crystal structure of the anatase-type titania (101) plane was measured at 2θ = 25.5 °, and the diffraction peak showing the crystal structure of the rutile-type titania (110) plane was 2θ = 27. It is measured at 5 °. The diffraction peak showing the aluminum crystal structure attributed to the γ-alumina (400) plane is measured at 2θ = 45.9 °.

それぞれの回折ピーク面積の算出方法は、X線回折分析によって得られたグラフを最小二乗法によりフィッティングしベースライン補正を行い、最大ピーク値からベースラインまでの高さを求め(ピーク強度W)得られたピーク強度の半分の値(W/2)のときのピーク幅(半値幅)を求め、この半値幅とピーク強度との積を回折ピーク面積とした。求めた各回折ピーク面積から、「チタニア回折ピーク面積/アルミナ回折ピーク面積」を算出した(図1参照)。   Each diffraction peak area is calculated by fitting the graph obtained by X-ray diffraction analysis using the least square method and correcting the baseline to obtain the height from the maximum peak value to the baseline (peak intensity W). The peak width (half width) at the half value (W / 2) of the obtained peak intensity was determined, and the product of this half width and peak intensity was taken as the diffraction peak area. From each obtained diffraction peak area, “titania diffraction peak area / alumina diffraction peak area” was calculated (see FIG. 1).

前記担体は、シリカを担体基準でSiOとして1〜10質量%含有することが好ましく、2〜7質量%含有することがより好ましく、2〜5質量%含有することが更に好ましい。シリカ含有量が1質量%未満では、比表面積が低くなる上、担体の製造時(以下に後述する「第2工程」である。以下同様。)に焼成する際にチタニア粒子が凝集しやすくなり、X線回折分析により測定されるアナターゼ型チタニア及びルチル型チタニアの結晶構造を示す回折ピーク面積の合計の面積が大きくなる。また、シリカの含有量が10質量%を超える場合には、得られる担体の細孔分布のシャープネスが悪くなり所望の脱硫活性が得られないことがある。 The carrier preferably contains 1 to 10% by mass of silica as SiO 2 on a carrier basis, more preferably 2 to 7% by mass, and still more preferably 2 to 5% by mass. When the silica content is less than 1% by mass, the specific surface area is lowered and the titania particles are easily aggregated during firing during the production of the carrier (hereinafter referred to as “second step” described below. The same applies hereinafter). The total area of diffraction peaks indicating the crystal structures of anatase titania and rutile titania measured by X-ray diffraction analysis is increased. On the other hand, when the content of silica exceeds 10% by mass, the sharpness of the pore distribution of the obtained carrier is deteriorated and the desired desulfurization activity may not be obtained.

また、前記担体は、チタニアを担体基準でTiOとして3〜40質量%含有することが好ましく、より好ましくは15〜35質量%、さらに好ましくは15〜25質量%含有するのが望ましい。チタニアの含有量が3質量%より少ない場合には、チタニア成分の添加効果が少なく、得られる触媒は所望の触媒活性が得られないことがある。また、チタニアの含有量が40質量%より多い場合には、触媒の機械的強度が低くなる虞がある上、担体の製造時に焼成する際にチタニア粒子の結晶化が進み易くなるため比表面積が低くなり、チタニア量を増やした分の経済性に見合うだけの触媒性能が発揮されず、安価で高性能な触媒とならず好ましくない。 Further, the carrier preferably contains 3 to 40% by mass of titania as TiO 2 based on the carrier, more preferably 15 to 35% by mass, and further preferably 15 to 25% by mass. When the titania content is less than 3% by mass, the addition effect of the titania component is small, and the resulting catalyst may not obtain the desired catalytic activity. In addition, when the titania content is more than 40% by mass, the mechanical strength of the catalyst may be lowered, and the specific surface area is increased because the crystallization of titania particles easily proceeds during firing during the production of the support. The catalyst performance becomes low and the catalyst performance corresponding to the economic efficiency corresponding to the increase in the amount of titania is not exhibited, and it is not preferable because it does not become an inexpensive and high-performance catalyst.

さらに、前記担体は、アルミナを担体基準でAlとして50〜96質量%含有することが好ましく、より好ましくは58〜83質量%、さらに好ましくは70〜83質量%含有するのが望ましい。ここで、アルミナの含有量が50質量%未満の場合には、触媒劣化が大きくなる傾向にあるので好ましくない。また、アルミナの含有量が96質量%より多い場合には、触媒性能が低下する傾向にあるため好ましくない。 Furthermore, the carrier preferably contains 50 to 96% by mass of alumina as Al 2 O 3 based on the carrier, more preferably 58 to 83% by mass, and even more preferably 70 to 83% by mass. Here, when the content of alumina is less than 50% by mass, catalyst deterioration tends to increase, such being undesirable. Moreover, when there is more content of alumina than 96 mass%, since there exists a tendency for catalyst performance to fall, it is unpreferable.

シリカ−アルミナ−チタニア担体に担持される金属成分は、周期表第VIA族(IUPAC第6族)及び第VIII族(IUPAC第8族〜第10族)から選ばれる。ただし、少なくともモリブデンを含むことが必須である。
周期表第VIA族の金属成分としては、モリブデン以外にはタングステンを好適に使用することができ、周期表第VIII族の金属成分としては、コバルト、ニッケルが好適に使用される。
周期表第VIA族及び第VIII族から選ばれる金属成分の総含有量は、触媒基準で、酸化物として、1〜35質量%の範囲が好ましく、15〜30質量%の範囲が更に好ましい。このうち、周期表第VIA族の金属成分(モリブデン含む)の含有量は、酸化物として、好ましくは1〜30質量%の範囲、より好ましくは13〜24質量%の範囲にあることが望ましく、周期表第VIII族の金属成分の含有量は、酸化物として、好ましくは1〜10質量%の範囲、より好ましくは2〜6質量%の範囲にあることが望ましい。また、必須成分として含まれるモリブデンの含有量は、酸化物として、好ましくは1〜25質量%の範囲、より好ましくは10〜22質量%の範囲であることが望ましい。
The metal component supported on the silica-alumina-titania support is selected from Group VIA (IUPAC Group 6) and Group VIII (IUPAC Groups 8 to 10) of the periodic table. However, it is essential to contain at least molybdenum.
As the metal component of Group VIA of the periodic table, tungsten can be preferably used in addition to molybdenum, and as the metal component of Group VIII of the periodic table, cobalt and nickel are preferably used.
The total content of metal components selected from Group VIA and Group VIII of the periodic table is preferably in the range of 1 to 35% by mass, more preferably in the range of 15 to 30% by mass as an oxide, based on the catalyst. Among these, the content of the metal component (including molybdenum) of Group VIA of the periodic table is preferably in the range of 1 to 30% by mass, more preferably in the range of 13 to 24% by mass as an oxide, The content of the metal component of Group VIII of the periodic table is preferably in the range of 1 to 10% by mass, more preferably in the range of 2 to 6% by mass as an oxide. The content of molybdenum contained as an essential component is preferably in the range of 1 to 25% by mass, more preferably in the range of 10 to 22% by mass, as an oxide.

本発明に用いられる水素化脱硫触媒に上記金属成分をシリカ−アルミナ−チタニア担体に担持させるにあたっては、金属成分をキレート剤あるいはさらにリン化合物と共に該担体に含有させることが重要である。   When the metal component is supported on the silica-alumina-titania support in the hydrodesulfurization catalyst used in the present invention, it is important that the metal component is contained in the support together with a chelating agent or further a phosphorus compound.

キレート剤としては、例えば、クエン酸、リンゴ酸、酒石酸、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、ポリエチレングリコール(PEG)、テトラエチレングリコール(TEG)などが使用でき、特に、クエン酸、リンゴ酸が好適に用いられる。キレート剤は、酸化モリブデンに対して、35〜75質量%含有されることが好ましく、55〜65質量%の範囲で含有されることがより好ましい。ここで、キレート剤の含有量が、酸化モリブデンに対し75質量%を超えると該金属成分を含有した含浸液の粘度が上がり、製造での含浸工程が困難になるため好ましくなく、35質量%未満だと含浸液の安定性が悪くなる上、触媒性能が低下する傾向にあるので好ましくない。
前記含浸液には、更に、リン化合物を含有することが好ましい。キレート剤、リン化合物は、慣用の手段(含浸法、浸漬法等)で該担体と接触させることができる。
Examples of chelating agents include citric acid, malic acid, tartaric acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), polyethylene glycol (PEG), and tetraethylene glycol (TEG). Malic acid is preferably used. The chelating agent is preferably contained in an amount of 35 to 75% by mass with respect to molybdenum oxide, and more preferably in the range of 55 to 65% by mass. Here, when the content of the chelating agent exceeds 75% by mass with respect to molybdenum oxide, the viscosity of the impregnating liquid containing the metal component increases, which makes the impregnation step in production difficult, and is less than 35% by mass. This is not preferable because the stability of the impregnating solution is deteriorated and the catalyst performance tends to be lowered.
The impregnation liquid preferably further contains a phosphorus compound. The chelating agent and phosphorus compound can be brought into contact with the carrier by conventional means (impregnation method, immersion method, etc.).

リン化合物としては、好ましくは、オルトリン酸(以下、単に「リン酸」ともいう)、リン酸二水素アンモニウム、リン酸水素二アンモニウム、トリメタリン酸、ピロリン酸、トリポリリン酸が用いられ、より好ましくは、オルトリン酸を用いることができる。
リン化合物は、酸化モリブデンに対して、酸化物換算で3〜25質量%含有されることが好ましく、5〜15質量%の範囲で含有されることがより好ましい。リン化合物の含有量が、酸化モリブデンに対して、25質量%を超えると予備硫化済み水素化脱硫触媒の性能が低下する傾向にあり、3質量%未満であると含浸液の安定性が悪くなり好ましくない。
As the phosphorus compound, preferably, orthophosphoric acid (hereinafter, also simply referred to as “phosphoric acid”), ammonium dihydrogen phosphate, diammonium hydrogen phosphate, trimetaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, and more preferably, Orthophosphoric acid can be used.
The phosphorus compound is preferably contained in an amount of 3 to 25% by mass in terms of oxide with respect to molybdenum oxide, and more preferably in the range of 5 to 15% by mass. If the content of the phosphorus compound exceeds 25% by mass with respect to molybdenum oxide, the performance of the presulfided hydrodesulfurization catalyst tends to decrease, and if it is less than 3% by mass, the stability of the impregnating solution deteriorates. It is not preferable.

なお、上記担体に、上記金属成分、キレート剤あるいはさらにリン化合物を含有させる方法は、特に限定されず、含浸法(平衡吸着法、ポアフィリング法、初期湿潤法等)、イオン交換法等の公知の方法を用いることができる。ここで、含浸法とは、担体に活性金属を含む含浸液を含浸させた後、乾燥する方法である。含浸法では、金属成分とを同時に担持することが好ましい。別々に金属を担持すると、脱硫活性又は脱窒素活性が不充分になることがある。   The method for incorporating the metal component, chelating agent or further phosphorus compound into the carrier is not particularly limited, and known methods such as impregnation method (equilibrium adsorption method, pore filling method, initial wetting method, etc.), ion exchange method and the like. This method can be used. Here, the impregnation method is a method in which a support is impregnated with an impregnation liquid containing an active metal and then dried. In the impregnation method, the metal component is preferably supported simultaneously. If the metals are separately supported, the desulfurization activity or denitrification activity may be insufficient.

次に、本発明で用いられる水素化脱硫触媒の製造方法について説明する。
本発明で用いられる水素化脱硫触媒の製造方法は、珪酸イオンの存在下で、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液(以下、単に「混合水溶液」ともいう。)と、塩基性アルミニウム塩水溶液とを、pHが6.5〜9.5になるように混合して水和物を得る第1工程と、前記水和物を順次洗浄、成型、乾燥、及び焼成して担体を得る第2工程と、前記担体に、周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分(ただし、モリブデンを必須として含む)とキレート剤あるいはさらにリン化合物を含む含浸液を接触させる第3工程と、第3工程で含浸液と接触させた担体を乾燥して水素化脱硫触媒を得る第4工程とを有する。以下、それぞれの工程について説明する。
Next, the manufacturing method of the hydrodesulfurization catalyst used by this invention is demonstrated.
The method for producing a hydrodesulfurization catalyst used in the present invention includes a mixed aqueous solution of a titanium mineral acid salt and an acidic aluminum salt (hereinafter also simply referred to as “mixed aqueous solution”), and a basic aluminum salt in the presence of silicate ions. A first step of obtaining a hydrate by mixing an aqueous solution so that the pH is 6.5 to 9.5, and a step of obtaining a carrier by sequentially washing, molding, drying and baking the hydrate. Two steps, wherein the carrier is contacted with an impregnation liquid containing at least one metal component selected from Group VIA and Group VIII of the periodic table (however, molybdenum is essential) and a chelating agent or further a phosphorus compound. 3 steps and a fourth step of obtaining the hydrodesulfurization catalyst by drying the support brought into contact with the impregnating liquid in the third step. Hereinafter, each process will be described.

(第1工程)
まず、珪酸イオンの存在下で、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液(これは酸性の水溶液である。)と、塩基性アルミニウム塩水溶液(これはアルカリ性の水溶液である。)とを、pHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.5〜7.5になるように混合して、シリカ、チタニア及びアルミナを含む水和物を得る。
(First step)
First, in the presence of silicate ions, a mixed aqueous solution of a titanium mineral acid salt and an acidic aluminum salt (this is an acidic aqueous solution) and a basic aqueous aluminum salt solution (this is an alkaline aqueous solution), Mixing so that the pH is 6.5 to 9.5, preferably 6.5 to 8.5, more preferably 6.5 to 7.5, to obtain a hydrate containing silica, titania and alumina. .

この工程では、(1)珪酸イオンを含む塩基性アルミニウム塩水溶液に、混合水溶液を添加する場合と、(2)珪酸イオンを含む混合水溶液に、塩基性アルミニウム塩水溶液を添加する場合とがある。
ここで、(1)の場合、塩基性アルミニウム塩水溶液に含有される珪酸イオンは、塩基性または中性のものが使用できる。塩基性の珪酸イオン源としては、珪酸ナトリウム等の水中で珪酸イオンを生じる珪酸化合物が使用可能である。また、(2)の場合、チタニウム鉱酸塩及び酸性アルミニウム塩水溶液の混合液に含有される珪酸イオンは、酸性または中性のものが使用できる。酸性の珪酸イオン源としては、珪酸等の水中で珪酸イオンを生じる珪酸化合物が使用可能である。
In this step, (1) a mixed aqueous solution may be added to the basic aluminum salt aqueous solution containing silicate ions, and (2) a basic aluminum salt aqueous solution may be added to the mixed aqueous solution containing silicate ions.
Here, in the case of (1), the silicate ion contained in the basic aluminum salt aqueous solution can be basic or neutral. As the basic silicate ion source, a silicate compound that generates silicate ions in water such as sodium silicate can be used. In the case of (2), the silicate ions contained in the mixed solution of the titanium mineral acid salt and the acidic aluminum salt aqueous solution can be acidic or neutral. As the acidic silicate ion source, a silicate compound that generates silicate ions in water such as silicic acid can be used.

塩基性アルミニウム塩としては、アルミン酸ナトリウム、アルミン酸カリウム等が好適に使用される。また、酸性アルミニウム塩としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム等が好適に使用され、チタニウム鉱酸塩としては、四塩化チタン、三塩化チタン、硫酸チタン、硝酸チタン等が例示され、特に硫酸チタンは安価であるので好適に使用される。   As the basic aluminum salt, sodium aluminate, potassium aluminate or the like is preferably used. Further, as the acidic aluminum salt, aluminum sulfate, aluminum chloride, aluminum nitrate and the like are preferably used, and as the titanium mineral acid salt, titanium tetrachloride, titanium trichloride, titanium sulfate, titanium nitrate and the like are exemplified. Titanium is preferably used because it is inexpensive.

例えば、所定量の塩基性の珪酸イオンを含有する塩基性アルミニウム塩水溶液を攪拌機付きタンクに張り込み、通常40〜90℃、好ましくは50〜70℃に加温して保持し、この溶液の温度±5℃、好ましくは±2℃、より好ましくは±1℃に加温した所定量のチタニウム鉱酸塩及び酸性アルミニウム塩水溶液の混合水溶液をpHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.5〜7.5になるように、通常5〜20分、好ましくは7〜15分で連続添加し沈殿を生成させ、水和物のスラリーを得る。ここで、塩基性アルミニウム塩水溶液への混合水溶液の添加は、時間が長くなると擬ベーマイトの他にバイヤライトやギブサイト等の好ましくない結晶物が生成することがあるので、15分以下が望ましく、13分以下がさらに望ましい。バイヤライトやギブサイトは、焼成した時に比表面積が低下するので、好ましくない。   For example, a basic aluminum salt aqueous solution containing a predetermined amount of basic silicate ions is placed in a tank equipped with a stirrer, and is usually kept at 40 to 90 ° C., preferably 50 to 70 ° C., and the temperature of this solution ± A mixed aqueous solution of a predetermined amount of a titanium mineral acid salt and an acidic aluminum salt aqueous solution heated to 5 ° C., preferably ± 2 ° C., more preferably ± 1 ° C. has a pH of 6.5 to 9.5, preferably 6.5. It is added continuously in 5 to 20 minutes, preferably 7 to 15 minutes so as to be ˜8.5, more preferably 6.5 to 7.5, to form a precipitate, thereby obtaining a hydrate slurry. Here, the addition of the mixed aqueous solution to the basic aluminum salt aqueous solution is preferably 15 minutes or less because undesirable crystals such as bayerite and gibbsite may be generated in addition to pseudoboehmite as time goes on. More preferably less than a minute. Bayerite and gibbsite are not preferred because their specific surface area decreases when fired.

(第2工程)
第1工程で得られた水和物のスラリーを、所望により熟成した後、洗浄して副生塩を除き、シリカ、チタニア及びアルミナを含む水和物のスラリーを得る。得られた水和物のスラリーを、所望により更に加熱熟成した後、慣用の手段により、例えば、加熱捏和して成型可能な捏和物とした後、押出成型などにより所望の形状に成型し、通常70〜150℃、好ましくは90〜130℃で乾燥した後、更に400〜800℃、好ましくは450〜600℃で、0.5〜10時間、好ましくは2〜5時間焼成して、シリカ、アルミナ及びチタニアを含むシリカ−アルミナ−チタニア担体を得る。
(Second step)
The hydrate slurry obtained in the first step is aged as desired, and then washed to remove by-product salts to obtain a hydrate slurry containing silica, titania and alumina. The obtained hydrate slurry is further heat-aged if desired, and then, by a conventional means, for example, heat-kneaded to form a kneaded product, and then molded into a desired shape by extrusion molding or the like. In general, after drying at 70 to 150 ° C., preferably 90 to 130 ° C., it is further calcined at 400 to 800 ° C., preferably 450 to 600 ° C., for 0.5 to 10 hours, preferably 2 to 5 hours to obtain silica. A silica-alumina-titania support containing alumina and titania is obtained.

(第3工程)
得られたシリカ−アルミナ−チタニア担体に、周期表第VIA族及び第VIII族から選ばれた少なくとも1種の金属成分(ただし、モリブデンを必須として含有する)、キレート剤あるいはさらにリン化合物を含む含浸液を上述したとおり、慣用の手段(含浸法、浸漬法など)で担体と接触させる。
金属成分の原料としては、例えば、三酸化モリブデン、モリブデン酸アンモニウム、メタタングステン酸アンモニウム、パラタングステン酸アンモニウム、三酸化タングステン、硝酸ニッケル、炭酸ニッケル、硝酸コバルト、炭酸コバルト等が好適に使用される。
(Third step)
The resulting silica-alumina-titania support is impregnated with at least one metal component selected from Group VIA and Group VIII of the periodic table (provided that molybdenum is essential), a chelating agent or further a phosphorus compound. As described above, the liquid is brought into contact with the carrier by conventional means (impregnation method, dipping method, etc.).
As the raw material for the metal component, for example, molybdenum trioxide, ammonium molybdate, ammonium metatungstate, ammonium paratungstate, tungsten trioxide, nickel nitrate, nickel carbonate, cobalt nitrate, cobalt carbonate and the like are preferably used.

(第4工程)
第3工程で含浸液と接触させて得られる金属成分を担持した担体を、200℃以下、好ましくは110〜150℃で0.5〜3時間、好ましくは1〜2時間乾燥して水素化脱硫触媒を得る。
なお、200℃を超える温度で乾燥もしくは焼成を行なった場合には、キレート剤が熱分解を起こし、担持された金属成分が凝集するので好ましくない。
(4th process)
The carrier carrying the metal component obtained by contacting with the impregnation liquid in the third step is hydrodesulfurized by drying at 200 ° C. or less, preferably 110 to 150 ° C. for 0.5 to 3 hours, preferably 1 to 2 hours. A catalyst is obtained.
In addition, when drying or baking is performed at a temperature exceeding 200 ° C., the chelating agent is thermally decomposed, and the supported metal component is aggregated, which is not preferable.

本発明の炭化水素油の水素化精製方法では、上記の水素化脱硫触媒を予備硫化処理し、触媒中のモリブデンが二硫化モリブデンの結晶となって担体上に層状に配設され、しかも、該二硫化モリブデンの結晶層は、該結晶層の面方向の平均値長さが3.5nmを超え、7nm以下、好ましくは3.6nm以上、6.5nm以下、より好ましくは3.7nm以上、5.5nm以下であり、かつ、平均積層数が1.0を超え、1.9以下、好ましくは1.1nm以上、1.7nm以下、より好ましくは1.2nm以上、1.5nm以下となる予備硫化済み水素化脱硫触媒を得る必要がある。
ここで、二硫化モリブデン層の面方向の平均値長さが、3.5nm以下である場合では、二硫化モリブデンの結晶性が低下して担体との相互作用を受けやすくなり、7nmより大きい場合では、活性点の数が逆に少なくなるため、得られる予備硫化済み水素化脱硫触媒が高脱硫活性を示さない。また、二硫化モリブデン層の平均積層数が、1.9を超える場合には、二硫化モリブデンが高分散されていないため、充分な脱硫性能を示さない。
In the hydrorefining method for hydrocarbon oil of the present invention, the above-mentioned hydrodesulfurization catalyst is presulfided, and the molybdenum in the catalyst is crystallized as molybdenum disulfide and arranged in a layer on the support. In the crystal layer of molybdenum disulfide, the average length of the crystal layer in the plane direction exceeds 3.5 nm and is 7 nm or less, preferably 3.6 nm or more and 6.5 nm or less, more preferably 3.7 nm or more, 5 Preliminary in which the average number of layers exceeds 1.0 and is 1.9 or less, preferably 1.1 nm or more and 1.7 nm or less, more preferably 1.2 nm or more and 1.5 nm or less. There is a need to obtain a sulfurized hydrodesulfurization catalyst.
Here, in the case where the average length in the surface direction of the molybdenum disulfide layer is 3.5 nm or less, the crystallinity of molybdenum disulfide is reduced and the interaction with the carrier is likely to occur, and the average length is greater than 7 nm. Then, since the number of active sites decreases, the resulting presulfided hydrodesulfurization catalyst does not exhibit high desulfurization activity. Moreover, when the average number of laminated molybdenum disulfide layers exceeds 1.9, molybdenum disulfide is not highly dispersed, so that sufficient desulfurization performance is not exhibited.

なお、二硫化モリブデンの結晶層の平均積層数及び平均値長さは以下の方法によって求められる値である。
予備硫化終了後、予備硫化済み水素化脱硫触媒を室温まで冷却し、窒素雰囲気下で保存する。この予備硫化済み水素化脱硫触媒の一部を、例えば、20メッシュ以下に粉砕し、得られた粉末の透過型電子顕微鏡(TEM)写真を撮影する(図2参照)。
予備硫化済み水素化脱硫触媒中の二硫化モリブデンの結晶層の平均積層数は、得られたTEM写真から、例えば、20個、好ましくは50個、より好ましくは100個以上の二硫化モリブデン層について、それぞれの積層数Nを測定(図3参照)し、それらの平均値により算出する。
また、二硫化モリブデン層の長さは、平均積層数と同様にTEM写真から、それぞれの二硫化モリブデン層の長さLを測定し、それらの平均値により算出する。
The average number of laminated molybdenum disulfide crystal layers and the average value length are values obtained by the following method.
After the presulfurization is completed, the presulfided hydrodesulfurization catalyst is cooled to room temperature and stored in a nitrogen atmosphere. A part of this presulfided hydrodesulfurization catalyst is pulverized to, for example, 20 mesh or less, and a transmission electron microscope (TEM) photograph of the obtained powder is taken (see FIG. 2).
The average number of molybdenum disulfide crystal layers in the presulfided hydrodesulfurization catalyst is, for example, about 20, preferably 50, more preferably 100 or more molybdenum disulfide layers from the obtained TEM photograph. Then, the number N of the respective layers is measured (see FIG. 3), and the average value thereof is calculated.
Further, the length of the molybdenum disulfide layer is calculated by measuring the length L of each molybdenum disulfide layer from the TEM photograph in the same manner as the average number of layers, and calculating the average value thereof.

本発明に係る予備硫化処理とは、上記水素化脱硫触媒と、炭化水素油及び硫化剤の混合油、或いは硫化水素とを、温度200〜400℃で接触させ、水素化脱硫触媒に含有される金属成分を硫化物の状態にする処理のことをいう。
より具体的には、(1)水素化脱硫触媒と、硫黄化合物を含む石油蒸留物(本発明における「炭化水素油」である。)及び硫化剤を混合した混合油とを、或いは、(2)水素化脱硫触媒と硫化水素とを、200〜400℃、好ましくは240〜340℃、常圧あるいはそれ以上の水素分圧の水素雰囲気下で接触させて、予備硫化処理を行い、予備硫化済み水素化脱硫触媒を得る。
ここで、予備硫化処理の温度が、200℃未満の場合には、担持金属の硫化度が低いため、脱硫活性が低下する傾向にあるので好ましくなく、また、400℃を超える場合には、二硫化モリブテンの結晶層の積層数が著しく増加し、脱硫活性が低下する傾向にあるので好ましくない。ここで、混合油を水素化脱硫触媒と接触させる場合には、初期の温度を常温から120℃の範囲にすることが好ましい。ここで、混合油を120℃を超えてから接触させるとキレート剤の効果が減少し、結果として脱硫活性が低下する傾向にある。
The preliminary sulfidation treatment according to the present invention refers to the hydrodesulfurization catalyst and the mixed oil of hydrocarbon oil and sulfiding agent, or hydrogen sulfide brought into contact at a temperature of 200 to 400 ° C. and contained in the hydrodesulfurization catalyst. This refers to a process for converting a metal component into a sulfide state.
More specifically, (1) a hydrodesulfurization catalyst, a petroleum distillate containing a sulfur compound (“hydrocarbon oil” in the present invention) and a mixed oil mixed with a sulfiding agent, or (2 ) The hydrosulfurization catalyst and hydrogen sulfide are contacted in a hydrogen atmosphere at 200 to 400 ° C., preferably 240 to 340 ° C., at a normal pressure or a hydrogen partial pressure, and subjected to preliminary sulfidation treatment and pre-sulfided. A hydrodesulfurization catalyst is obtained.
Here, when the temperature of the preliminary sulfidation treatment is less than 200 ° C., the degree of sulfidation of the supported metal is low, and therefore the desulfurization activity tends to decrease, and when the temperature exceeds 400 ° C., it is not preferable. This is not preferable because the number of laminated molybdenum sulfide crystal layers is remarkably increased and the desulfurization activity tends to decrease. Here, when the mixed oil is brought into contact with the hydrodesulfurization catalyst, it is preferable that the initial temperature be in the range of room temperature to 120 ° C. Here, when the mixed oil is brought into contact after exceeding 120 ° C., the effect of the chelating agent decreases, and as a result, the desulfurization activity tends to decrease.

予備硫化処理に用いる硫化剤としては、特に限定されないが、二硫化炭素、硫化水素等に加えて、チオフェン、ジメチルサルファイド、ジメチルジスルフィド、ジオクチルポリスルフィド、ジアルキルペンタスルフィド、ジブチルポリスルフィド等の有機硫黄化合物及びそれらの混合物を挙げることができ、ジメチルサルファイド、ジメチルジスルフィド、二硫化炭素、硫化水素等が一般的に用いられる。   The sulfurizing agent used for the preliminary sulfiding treatment is not particularly limited, but in addition to carbon disulfide, hydrogen sulfide, etc., organic sulfur compounds such as thiophene, dimethyl sulfide, dimethyl disulfide, dioctyl polysulfide, dialkylpentasulfide, dibutyl polysulfide, and the like. And dimethyl sulfide, dimethyl disulfide, carbon disulfide, hydrogen sulfide and the like are generally used.

本発明の炭化水素油の水素化精製方法では、上記予備硫化済み水素化脱硫触媒を用いて水素雰囲気下で炭化水素油の水素化処理を行う。水素化処理は、特に限定されるものではないが、流通式固定床反応装置に触媒を充填して水素雰囲気下、高温高圧条件で行なわれる。   In the hydrorefining method of hydrocarbon oil of the present invention, the hydrotreating of hydrocarbon oil is performed in a hydrogen atmosphere using the pre-sulfided hydrodesulfurization catalyst. The hydrogenation treatment is not particularly limited, but is carried out under a high-temperature and high-pressure condition in a hydrogen atmosphere by filling a flow-through fixed bed reactor with a catalyst.

本発明に用いられる炭化水素油としては、原油の常圧蒸留装置から得られる直留灯油、又は直留軽油、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧軽油、減圧重質軽油あるいは脱硫重油を接触分解して得られる接触分解灯油、又は接触分解軽油、減圧重質軽油あるいは脱硫重油を水素化分解して得られる水素化分解灯油、又は水素化分解軽油、コーカー等の熱分解装置から得られる熱分解灯油、又は熱分解軽油等が挙げられ、沸点が180〜390℃の留分を80容量%以上含んだ留分である。常圧蒸留装置で処理される油は特に限定されないが、石油系の原油、オイルサンド由来の合成原油、石炭液化油、ビチュメン改質油などを挙げることができる。
なお、ここでいう蒸留性状(沸点)の値は、JIS K2254「石油製品‐蒸留試験方法」に記載の方法に準拠して測定される値である。
As the hydrocarbon oil used in the present invention, straight-run kerosene obtained from an atmospheric distillation apparatus of crude oil, straight-run light oil, straight-run heavy oil obtained from an atmospheric distillation apparatus or residual oil is obtained with a vacuum distillation apparatus. Gasoline diesel oil obtained by catalytic cracking of reduced pressure light oil, vacuum heavy gas oil or desulfurized heavy oil obtained by treatment, or hydrocracked kerosene obtained by hydrocracking contact cracked light oil, vacuum heavy gas oil or desulfurized heavy oil Or hydrocracked kerosene obtained from a pyrolysis device such as hydrocracked gas oil or coker, or pyrolyzed gas oil, and the like, and a fraction containing 80% by volume or more of a fraction having a boiling point of 180 to 390 ° C. The oil to be treated in the atmospheric distillation apparatus is not particularly limited, and examples thereof include petroleum crude oil, synthetic crude oil derived from oil sand, coal liquefied oil, bitumen reformed oil, and the like.
In addition, the value of distillation property (boiling point) here is a value measured according to the method described in JIS K2254 “Petroleum product-distillation test method”.

本発明に係る炭化水素油の水素化精製方法は、以下の反応条件で行なわれることが好ましい。
水素分圧(反応圧力)は特に制限されないが、1〜12MPaであることが好ましい。反応圧力が1MPa未満では脱硫および脱窒素活性が著しく低下する傾向にあるため、1MPa以上が好ましく、3MPa以上がより好ましい。一方、反応圧力が12MPaを超えると水素消費が大きくなり運転コストが増加するので好ましくないため、12MPa以下が好ましく、10MPa以下がより好ましく、7MPa以下がさらに好ましい。
液空間速度は特に制限されないが、0.1〜4h−1であることが好ましく、より好ましくは0.5〜2h−1である。液空間速度が0.1h−1未満では処理量が低いので生産性が低くなり実用的ではない。また、液空間速度が4h−1を超えると反応温度が高くなり、触媒劣化が速くなるので好ましくない。
水素/油比は特に制限されないが、80〜500NL/Lであることが好ましく、より好ましくは150〜350NL/Lである。水素/油比が80NL/L未満では脱硫率が低下するので好ましくない。また、500NL/Lを超えても脱硫活性に大きな変化がなく、運転コストが増加するだけなので好ましくない。
反応温度は特に制限されないが、250〜400℃であることが好ましく、より好ましくは300〜380℃である。反応温度が250℃未満では脱硫および脱窒素活性が著しく低下する傾向にあり実用的でない。また、反応温度が400℃を超えると触媒の劣化が著しくなり、触媒寿命が短くなるので好ましくない。
The method for hydrorefining hydrocarbon oil according to the present invention is preferably carried out under the following reaction conditions.
The hydrogen partial pressure (reaction pressure) is not particularly limited, but is preferably 1 to 12 MPa. When the reaction pressure is less than 1 MPa, desulfurization and denitrogenation activities tend to be remarkably lowered, and therefore, 1 MPa or more is preferable and 3 MPa or more is more preferable. On the other hand, when the reaction pressure exceeds 12 MPa, hydrogen consumption increases and the operating cost increases, which is not preferable. Therefore, the pressure is preferably 12 MPa or less, more preferably 10 MPa or less, and even more preferably 7 MPa or less.
But not liquid hourly space velocity particularly limited, is preferably a 0.1~4H -1, more preferably 0.5~2h -1. If the liquid space velocity is less than 0.1 h −1 , the throughput is low and the productivity is low, which is not practical. Further, if the liquid space velocity exceeds 4 h −1 , the reaction temperature is increased, and the catalyst deterioration is accelerated.
The hydrogen / oil ratio is not particularly limited, but is preferably 80 to 500 NL / L, and more preferably 150 to 350 NL / L. A hydrogen / oil ratio of less than 80 NL / L is not preferable because the desulfurization rate decreases. Moreover, even if it exceeds 500 NL / L, since there is no big change in desulfurization activity and only an operating cost increases, it is not preferable.
Although reaction temperature in particular is not restrict | limited, It is preferable that it is 250-400 degreeC, More preferably, it is 300-380 degreeC. If the reaction temperature is less than 250 ° C., the desulfurization and denitrification activities tend to be remarkably lowered, which is not practical. On the other hand, when the reaction temperature exceeds 400 ° C., the catalyst is remarkably deteriorated and the catalyst life is shortened.

本発明に係る炭化水素油の水素化精製方法によって得られる生成油の硫黄分は、10質量ppm以下であることが好ましく、8質量ppm以下であることよりが好ましく、7質量ppm以下であることがさらに好ましい。また生成油の窒素分は3質量ppm以下であることが好ましく、1質量ppm以下がより好ましい。本発明では、炭化水素油を上述の特定の水素化脱硫触媒を用いて水素化処理することにより、生成油の硫黄分濃度および窒素分を高度に低減することが可能となる。
なお、ここでいう硫黄分(硫黄分濃度)の値は、JIS K2541「原油及び石油製品−硫黄分試験方法」に記載の方法に準拠して測定される値である。また窒素分(窒素分濃度)の値は、JIS K2609「原油及び石油製品−窒素分試験方法」に記載の方法に準拠して測定される値である。
The sulfur content of the product oil obtained by the hydrorefining method for hydrocarbon oil according to the present invention is preferably 10 ppm by mass or less, more preferably 8 ppm by mass or less, and 7 ppm by mass or less. Is more preferable. Moreover, it is preferable that the nitrogen content of produced | generated oil is 3 mass ppm or less, and 1 mass ppm or less is more preferable. In the present invention, it is possible to highly reduce the sulfur content concentration and nitrogen content of the product oil by hydrotreating the hydrocarbon oil using the above-mentioned specific hydrodesulfurization catalyst.
In addition, the value of sulfur content here (sulfur content concentration) is a value measured according to the method described in JIS K2541 “Crude oil and petroleum products—sulfur content test method”. Moreover, the value of nitrogen content (nitrogen content concentration) is a value measured according to the method described in JIS K2609 “Crude oil and petroleum products—Test method for nitrogen content”.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらのものに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[触媒Aの調製]
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.16kgを入れ、イオン交換水41kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液1.80kgを攪拌しながら添加し、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液7.38kgを13kgのイオン交換水で希釈した酸性アルミニウム塩水溶液と、TiO濃度換算で33質量%の硫酸チタン1.82kgを10kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合し、60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、シリカ、チタニア、及びアルミナを含有する水和物スラリーaを調製した。
得られた水和物スラリーaを攪拌しながら60℃で1時間熟成した後、平板フィルターを用いて脱水し、更に、0.3質量%アンモニア水溶液150Lで洗浄した。洗浄後のケーキ状のスラリーをAl濃度換算で10質量%となるようにイオン交換水で希釈した後、15質量%アンモニア水でpHを10.5に調整した。これを還流機付熟成タンクに移し、攪拌しながら95℃で10時間熟成した。熟成終了後のスラリーを脱水し、スチームジャケットを備えた双腕式ニーダーにて練りながら所定の水分量まで濃縮捏和した。得られた捏和物を押出成型機にて直径が1.8mmの円柱形状に成型し、110℃で乾燥した。乾燥した成型品は電気炉で550℃の温度で3時間焼成し、担体aを得た。担体aは、シリカがSiO濃度換算で3質量%(担体基準)、チタニアがTiO濃度換算で20質量%(担体基準)、アルミニウムがAl濃度換算で77質量%(担体基準)含有されていた。
[Preparation of catalyst A]
A tank with a steam jacket with a capacity of 100 L is charged with 8.16 kg of 22 mass% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration, diluted with 41 kg of ion-exchanged water, and then 5 mass% silicic acid in terms of SiO 2 concentration. 1.80 kg of sodium solution was added with stirring and heated to 60 ° C. to prepare a basic aluminum salt aqueous solution. Further, 10 kg of an acidic aluminum salt aqueous solution obtained by diluting 7.38 kg of an aluminum sulfate aqueous solution of 7% by mass in terms of Al 2 O 3 concentration with 13 kg of ion-exchanged water, and 1.82 kg of 33% by mass of titanium sulfate in terms of TiO 2 concentration. The aqueous solution of titanium mineral salt dissolved in the ion-exchanged water was mixed and heated to 60 ° C. to prepare a mixed aqueous solution. Water containing silica, titania, and alumina is added to the tank containing the basic aqueous aluminum salt solution at a constant rate using a roller pump until the pH is 7.2 (addition time: 10 minutes). A Japanese slurry a was prepared.
The obtained hydrate slurry a was aged at 60 ° C. for 1 hour with stirring, dehydrated using a flat plate filter, and further washed with 150 L of a 0.3 mass% aqueous ammonia solution. The cake-like slurry after washing was diluted with ion-exchanged water so as to be 10% by mass in terms of Al 2 O 3 concentration, and then the pH was adjusted to 10.5 with 15% by mass ammonia water. This was transferred to an aging tank equipped with a reflux machine and aged at 95 ° C. for 10 hours with stirring. The slurry after completion of aging was dehydrated and concentrated and kneaded to a predetermined moisture content while kneading with a double-arm kneader equipped with a steam jacket. The obtained kneaded product was molded into a cylindrical shape having a diameter of 1.8 mm by an extrusion molding machine and dried at 110 ° C. The dried molded product was baked in an electric furnace at a temperature of 550 ° C. for 3 hours to obtain a carrier a. As for the carrier a, silica is 3% by mass in terms of SiO 2 (support standard), titania is 20% by mass in terms of TiO 2 (support standard), and aluminum is 77% by mass in terms of Al 2 O 3 concentration (support standard). Contained.

また、担体aを(株)リガク社製のX線回折装置RINT2100にて、X線回折分析を行った(以下の実施例についても同様である)。その結果を図3に示す。ここで、得られたグラフを最小二乗法によりフィッティングし、ベースライン補正を行い2θ=25.5°に示されるアナターゼ型チタニア(101)面に帰属されるピークの半値幅を求め、この半値幅とベースラインからのピーク強度との積をアナターゼ型チタニア回折ピーク面積とした。同様に2θ=27.5°に示されるルチル型チタニア(110)面に帰属されるピークの半減値を求め、この半減値とベースラインからのピーク強度との積をルチル型チタニア回折ピーク面積とした。ここで、アナターゼ型チタニア回折ピーク面積とルチル型チタニア回折ピーク面積との合計の面積を、チタニア回折ピーク面積とした。なお、担体aにおいては、ルチル型チタニアのピークは検出されなかった。更に、2θ=45.9°に示されるγ−アルミナ(400)面に帰属されるピークの半減値を求め、この半減値とベースラインからのピーク強度との積をアルミナ回折ピーク面積とした。担体aは、アナターゼ型チタニア及びルチル型チタニアの結晶構造を示す回折ピーク面積が、アルミニウムに帰属される結晶構造を示す回折ピーク面積に対して、1/8であった(チタニア回折ピーク面積/アルミナ回折ピーク面積=1/8。以下同様)。   Further, the carrier a was subjected to X-ray diffraction analysis with an X-ray diffraction apparatus RINT2100 manufactured by Rigaku Corporation (the same applies to the following examples). The result is shown in FIG. Here, the obtained graph was fitted by the least square method, the baseline was corrected, and the half width of the peak attributed to the anatase-type titania (101) surface indicated by 2θ = 25.5 ° was obtained. And the peak intensity from the baseline was defined as the anatase titania diffraction peak area. Similarly, the half value of the peak attributed to the rutile-type titania (110) plane shown at 2θ = 27.5 ° is obtained, and the product of this half-value and the peak intensity from the baseline is the rutile-type titania diffraction peak area. did. Here, the total area of the anatase type titania diffraction peak area and the rutile type titania diffraction peak area was defined as the titania diffraction peak area. In carrier a, no rutile-type titania peak was detected. Further, the half value of the peak attributed to the γ-alumina (400) plane shown at 2θ = 45.9 ° was determined, and the product of this half value and the peak intensity from the baseline was defined as the alumina diffraction peak area. In carrier a, the diffraction peak area showing the crystal structure of anatase titania and rutile type titania was 1/8 of the diffraction peak area showing the crystal structure belonging to aluminum (titania diffraction peak area / alumina). Diffraction peak area = 1/8.

三酸化モリブデン232gと炭酸コバルト97gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流措置を施して加熱した後、リンゴ酸145gを加えて溶解させ、含浸液aを作製した。この含浸液aを、担体a1000gに噴霧含浸させた後、110℃で1時間乾燥させて触媒Aを得た。触媒Aの金属成分は、MoOが18質量%(触媒基準)で、CoOが4.5質量%(触媒基準)であった。 After suspending 232 g of molybdenum trioxide and 97 g of cobalt carbonate in 500 ml of ion-exchanged water and heating this suspension at 95 ° C. for 5 hours so as not to reduce the liquid volume, malic acid was heated. 145 g was added and dissolved to prepare impregnating solution a. The impregnating liquid a was impregnated with 1000 g of support a and then dried at 110 ° C. for 1 hour to obtain Catalyst A. The metal component of the catalyst A was 18% by mass of MoO 3 (catalyst reference) and 4.5% by mass of CoO (catalyst reference).

[触媒Bの調製]
担体は実施例1と同様の担体aを用いた。三酸化モリブデン235gと炭酸コバルト98gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流措置を施して加熱した後、リン酸21gとクエン酸147gを加えて溶解させ、含浸液bを作製した。この含浸液bを、担体a1000gに噴霧含浸させた後、110℃で1時間乾燥させて触媒Bを得た。触媒Bの金属成分は、MoOが18質量%(触媒基準)で、CoOが4.5質量%(触媒基準)で、Pが1.0質量%(触媒基準)であった。触媒Bの性状を表1に示す。
[Preparation of catalyst B]
The same carrier a as in Example 1 was used as the carrier. After suspending 235 g of molybdenum trioxide and 98 g of cobalt carbonate in 500 ml of ion-exchanged water and heating this suspension at 95 ° C. for 5 hours so that the liquid volume does not decrease, phosphoric acid is added. 21 g and 147 g of citric acid were added and dissolved to prepare impregnating solution b. The impregnating liquid b was spray impregnated on 1000 g of the carrier a and then dried at 110 ° C. for 1 hour to obtain a catalyst B. The metal component of catalyst B was 18% by mass (catalyst reference) for MoO 3 , 4.5% by mass (catalyst reference) for CoO, and 1.0% by mass (catalyst reference) for P 2 O 5 . Properties of catalyst B are shown in Table 1.

[触媒Cの調製]
担体は実施例1と同様の担体aを用いた。三酸化モリブデン235gと炭酸ニッケル107gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流措置を施して加熱した後、リン酸21gとクエン酸147gを加えて溶解させ、含浸液cを作製した。この含浸液cを、担体a1000gに噴霧含浸させた後、110℃で1時間乾燥させて触媒Cを得た。触媒Cの金属成分は、MoOが18質量%(触媒基準)で、NiOが4.5質量%(触媒基準)で、Pが1.0質量%(触媒基準)あった。触媒Cの性状を表1に示す。
[Preparation of catalyst C]
The same carrier a as in Example 1 was used as the carrier. After suspending 235 g of molybdenum trioxide and 107 g of nickel carbonate in 500 ml of ion-exchanged water and heating this suspension at 95 ° C. for 5 hours so that the liquid volume does not decrease, phosphoric acid is added. 21 g and 147 g of citric acid were added and dissolved to prepare impregnating solution c. The impregnating solution c was spray impregnated on 1000 g of the carrier a and then dried at 110 ° C. for 1 hour to obtain a catalyst C. The metal component of the catalyst C was 18% by mass of MoO 3 (based on catalyst), 4.5% by mass of NiO (based on catalyst), and 1.0% by mass of P 2 O 5 (based on catalyst). The properties of catalyst C are shown in Table 1.

[触媒Dの調製]
Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.82kgを入れ、イオン交換水34kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液1.80kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液に、Al濃度換算で7質量%の硫酸アルミニウム水溶液13.86kgを25kgのイオン交換水で希釈した酸性アルミニウム塩水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーdを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーdから担体dを調製した。担体dは、SiO濃度が3質量%(担体基準)、TiO濃度が0質量%(担体基準)、アルミニウムがAl濃度換算で97質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は0であった。
更に、実施例1と同様にして、担体dと含浸液aから触媒Dを製造した。触媒Dは、MoOを18質量%(触媒基準)、CoOを4.5質量%(触媒基準)含有していた。表1に触媒Dの性状を示す。
[Preparation of catalyst D]
Add 8.82 kg of 22 wt% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration, dilute with 34 kg of ion-exchanged water, and add 1.80 kg of 5 wt% sodium silicate solution in terms of SiO 2 concentration with stirring. A basic aluminum salt aqueous solution prepared by heating to 60 ° C., an acidic aluminum salt aqueous solution obtained by diluting 13.86 kg of an aluminum sulfate aqueous solution of 7% by mass in terms of Al 2 O 3 concentration with 25 kg of ion-exchanged water, It differs from Example 1 in that the hydrate slurry d was prepared by adding the solution until the pH reached 7.2.
In the same manner as in Example 1, carrier d was prepared from hydrate slurry d. In the carrier d, the SiO 2 concentration was 3% by mass (carrier standard), the TiO 2 concentration was 0% by mass (carrier standard), and the aluminum was 97% by mass in terms of Al 2 O 3 concentration (carrier standard).
In addition, as a result of X-ray diffraction analysis (not shown) as in Example 1, the titania diffraction peak area / alumina diffraction peak area was 0.
Further, in the same manner as in Example 1, catalyst D was produced from carrier d and impregnating liquid a. Catalyst D contained 18% by mass (based on catalyst) of MoO 3 and 4.5% by mass (based on catalyst) of CoO. Table 1 shows the properties of the catalyst D.

[触媒Eの調製]
含浸液aにおいてリンゴ酸を用いなかったこと以外は、実施例1と同様の担体aおよび調製方法により触媒Eを得た。触媒Eの性状を表1に示す。
[Preparation of catalyst E]
Catalyst E was obtained by the same carrier a and the same preparation method as in Example 1 except that malic acid was not used in the impregnating liquid a. Properties of catalyst E are shown in Table 1.

[触媒Fの調製]
Al濃度換算で22質量%のアルミン酸ナトリウム水溶液7.09kgを入れ、イオン交換水47kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液1.80kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液に、TiO濃度換算で33質量%の硫酸チタン4.09kgを23kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーfを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーfから担体fを調製した。担体fは、SiO濃度が3質量%(担体基準)、TiO濃度が45質量%(担体基準)、アルミニウムがAl濃度換算で52質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/3であった。
更に、実施例1と同様にして、担体fと含浸液f(含浸液a中の三酸化モリブテン量を232gから256gに変更)から触媒Fを製造した。触媒Fは、MoOを20質量%(触媒基準)、CoOを4.5質量%(触媒基準)含有していた。表1に触媒Fの性状を示す。
[Preparation of catalyst F]
Add 7.09 kg of 22% by mass sodium aluminate aqueous solution in terms of Al 2 O 3 concentration, dilute with 47 kg of ion-exchanged water, and add 1.80 kg of 5% by mass sodium silicate solution in terms of SiO 2 concentration with stirring. In a basic aluminum salt aqueous solution prepared by heating to 60 ° C., a titanium mineral acid aqueous solution in which 4.09 kg of 33% by mass of titanium sulfate in terms of TiO 2 concentration was dissolved in 23 kg of ion-exchanged water was added at a constant rate. The difference from Example 1 is that the hydrate slurry f was prepared by adding until the pH reached 7.2.
In the same manner as in Example 1, the carrier f was prepared from the hydrate slurry f. In the carrier f, the SiO 2 concentration was 3% by mass (carrier standard), the TiO 2 concentration was 45% by mass (carrier standard), and the aluminum was 52% by mass (carrier standard) in terms of Al 2 O 3 concentration.
In addition, as a result of X-ray diffraction analysis (not shown) as in Example 1, the titania diffraction peak area / alumina diffraction peak area was 1/3.
Further, in the same manner as in Example 1, catalyst F was produced from carrier f and impregnating liquid f (the amount of molybdenum trioxide in impregnating liquid a was changed from 232 g to 256 g). Catalyst F contained 20% by mass of MoO 3 (based on catalyst) and 4.5% by mass of CoO (based on catalyst). Table 1 shows the properties of the catalyst F.

[実施例1]
流通式固定床反応装置に触媒Aを200ml充填した。予備硫化は硫黄分2.0重量%に調整された直留軽油とジメチルジスルフィドの混合油を常温からフィードし、圧力5.0MPa、液空間速度2.0h−1、水素/油比200NL/Lの下、反応温度250℃で8時間、さらに320℃で5時間保持して終了した。
日立製作所社製の透過型電子顕微鏡装置H−800により、予備硫化処理後の触媒A(予備硫化済み水素化脱硫触媒A)のTEM写真を撮影し、得られたTEM写真から、50個の二硫化モリブデン層を観察し、各二硫化モリブデン層にについてそれぞれ積層数及び長さを測定し、平均積層数及び平均値長さを算出した。(以下の実施例についても同様である)。二硫化モリブデンの積層数Nや長さLの規定については図3に示す。予備硫化済み水素化脱硫触媒の二硫化モリブデンの平均積層数は1.3、平均値長さは4.4nmであった。
予備硫化後、原料油を直留軽油(沸点220〜385℃、硫黄分1.27質量%)に切り替え、圧力6.0MPa、液空間速度1.5h−1、水素/油比200NL/L、反応温度340℃にて触媒の脱硫活性評価(水素化精製実験)を実施した。生成油の硫黄分を表1に示す。
[Example 1]
A flow-through fixed bed reactor was charged with 200 ml of Catalyst A. Pre-sulfurization feeds straight run gas oil adjusted to a sulfur content of 2.0 wt% and dimethyl disulfide from normal temperature, pressure 5.0 MPa, liquid space velocity 2.0 h −1 , hydrogen / oil ratio 200 NL / L. Then, the reaction was completed by maintaining the reaction temperature at 250 ° C. for 8 hours and further at 320 ° C. for 5 hours.
Using a transmission electron microscope apparatus H-800 manufactured by Hitachi, Ltd., a TEM photograph of catalyst A (pre-sulfided hydrodesulfurization catalyst A) after the pre-sulfidation treatment was taken, and from the obtained TEM photograph, 50 two The molybdenum sulfide layer was observed, the number of layers and the length of each molybdenum disulfide layer were measured, and the average number of layers and the average value length were calculated. (The same applies to the following examples). The regulation of the number N and the length L of molybdenum disulfide is shown in FIG. The average number of layers of molybdenum disulfide of the presulfided hydrodesulfurization catalyst was 1.3, and the average value length was 4.4 nm.
After preliminary sulfidation, the raw material oil is switched to straight-run gas oil (boiling point 220-385 ° C., sulfur content 1.27% by mass), pressure 6.0 MPa, liquid space velocity 1.5 h −1 , hydrogen / oil ratio 200 NL / L, The catalyst was evaluated for desulfurization activity (hydrorefining experiment) at a reaction temperature of 340 ° C. Table 1 shows the sulfur content of the product oil.

[実施例2]
触媒Aの代わりに触媒Bを用いたこと以外は、実施例1と同様の予備硫化および脱硫活性評価を実施した。予備硫化済み水素化脱硫触媒の二硫化モリブデンの平均積層数は1.3、平均値長さは4.3nmであった。生成油の硫黄分を表1に示す。
[Example 2]
The same presulfidation and desulfurization activity evaluation as in Example 1 was performed except that the catalyst B was used instead of the catalyst A. The average number of layers of molybdenum disulfide in the presulfided hydrodesulfurization catalyst was 1.3, and the average value length was 4.3 nm. Table 1 shows the sulfur content of the product oil.

[実施例3]
触媒Aの代わりに触媒Cを用いたこと以外は、実施例1と同様の予備硫化および脱硫活性評価を実施した。予備硫化済み水素化脱硫触媒の二硫化モリブデンの平均積層数は1.3、平均値長さは3.7nmであった。生成油の硫黄分を表1に示す。
[Example 3]
The same preliminary sulfidation and desulfurization activity evaluation as in Example 1 was performed except that the catalyst C was used instead of the catalyst A. The average number of layers of molybdenum disulfide of the presulfided hydrodesulfurization catalyst was 1.3, and the average value length was 3.7 nm. Table 1 shows the sulfur content of the product oil.

[比較例1]
触媒Aの代わりに触媒Dを用いたこと以外は、実施例1と同様の予備硫化および脱硫活性評価を実施した。予備硫化済み水素化脱硫触媒の二硫化モリブデンの平均積層数は1.2、平均値長さは4.7nmであった。生成油の硫黄分を表1に示す。
[Comparative Example 1]
The same presulfidation and desulfurization activity evaluation as in Example 1 was performed except that catalyst D was used instead of catalyst A. The average number of layers of molybdenum disulfide of the presulfided hydrodesulfurization catalyst was 1.2, and the average value length was 4.7 nm. Table 1 shows the sulfur content of the product oil.

[比較例2]
触媒Aの代わりに触媒Eを用いたこと以外は、実施例1と同様の予備硫化および脱硫活性評価を実施した。予備硫化済み水素化脱硫触媒の二硫化モリブデンの平均積層数は2.8、平均値長さは7.2nmであった。生成油の硫黄分を表1に示す。
[Comparative Example 2]
The same preliminary sulfidation and desulfurization activity evaluation as in Example 1 was performed except that the catalyst E was used instead of the catalyst A. The average number of layers of molybdenum disulfide of the presulfided hydrodesulfurization catalyst was 2.8, and the average value length was 7.2 nm. Table 1 shows the sulfur content of the product oil.

[比較例3]
触媒Aの代わりに触媒Fを用いたこと以外は、実施例1と同様の予備硫化および脱硫活性評価を実施した。予備硫化済み水素化脱硫触媒の二硫化モリブデンの平均積層数は1.8、平均値長さは7.1nmであった。生成油の硫黄分を表1に示す。
[Comparative Example 3]
The same preliminary sulfidation and desulfurization activity evaluation as in Example 1 was performed except that the catalyst F was used instead of the catalyst A. The average number of layers of molybdenum disulfide of the presulfided hydrodesulfurization catalyst was 1.8, and the average value length was 7.1 nm. Table 1 shows the sulfur content of the product oil.

[比較例4]
予備硫化において320℃で5時間保持する代わりに、410℃で5時間保持したこと以外は、実施例1と同様の予備硫化および脱硫活性評価を実施した。予備硫化済み水素化脱硫触媒の二硫化モリブデンの平均積層数は3.8、平均値長さは4.5nmであった。生成油の硫黄分を表1に示す。
[Comparative Example 4]
The preliminary sulfidation and desulfurization activity evaluation was carried out in the same manner as in Example 1 except that the preliminary sulfidation was held at 320 ° C for 5 hours instead of being held at 410 ° C for 5 hours. The average number of layers of molybdenum disulfide of the presulfided hydrodesulfurization catalyst was 3.8, and the average value length was 4.5 nm. Table 1 shows the sulfur content of the product oil.

[実施例4]
脱硫活性評価において圧力3.7MPa、液空間速度0.5h−1、水素/油比180NL/L、反応温度320℃としたこと以外は実施例1と同様の予備硫化および脱硫活性評価を実施した。予備硫化済み水素化脱硫触媒の二硫化モリブデンの平均積層数は1.3、平均値長さは4.4nmであった。生成油の硫黄分を表1に示す。
[Example 4]
In the desulfurization activity evaluation, the same preliminary sulfidation and desulfurization activity evaluation as in Example 1 was performed except that the pressure was 3.7 MPa, the liquid space velocity was 0.5 h −1 , the hydrogen / oil ratio was 180 NL / L, and the reaction temperature was 320 ° C. . The average number of layers of molybdenum disulfide of the presulfided hydrodesulfurization catalyst was 1.3, and the average value length was 4.4 nm. Table 1 shows the sulfur content of the product oil.

[比較例5]
触媒Fを使用したこと以外は、実施例4と同様の予備硫化および脱硫活性評価を実施した。予備硫化済み水素化脱硫触媒の二硫化モリブデンの平均積層数は1.8、平均値長さは7.1nmであった。生成油の硫黄分を表1に示す。
[Comparative Example 5]
The same preliminary sulfidation and desulfurization activity evaluation as in Example 4 was performed except that the catalyst F was used. The average number of layers of molybdenum disulfide of the presulfided hydrodesulfurization catalyst was 1.8, and the average value length was 7.1 nm. Table 1 shows the sulfur content of the product oil.

[実施例5]
脱硫活性評価の原料油に直留軽油80重量%と流動接触分解軽油(沸点170〜360℃、硫黄分0.19質量%)20重量%の混合油(硫黄分1.05重量%)を用いたこと以外は、実施例4同様の予備硫化および脱硫活性評価を実施した。予備硫化済み水素化脱硫触媒の二硫化モリブデンの平均積層数は1.3、平均値長さは4.4nmであった。生成油の硫黄分を表1に示す。
[Example 5]
A mixed oil (sulfur content: 1.05% by weight) of 80% by weight of straight-run gas oil and fluid catalytic cracking gas oil (boiling point: 170 to 360 ° C., sulfur content: 0.19% by mass) 20% by weight is used as the raw oil for desulfurization activity Except for the above, preliminary sulfidation and desulfurization activity evaluation was performed in the same manner as in Example 4. The average number of layers of molybdenum disulfide of the presulfided hydrodesulfurization catalyst was 1.3, and the average value length was 4.4 nm. Table 1 shows the sulfur content of the product oil.

[比較例6]
触媒Dを用いたこと以外は、実施例5同様の予備硫化および脱硫活性評価を実施した。予備硫化済み水素化脱硫触媒の二硫化モリブデンの平均積層数は1.2、平均値長さは4.7nmであった。生成油の硫黄分を表1に示す。
[Comparative Example 6]
Except that the catalyst D was used, the same preliminary sulfidation and desulfurization activity evaluation as in Example 5 was performed. The average number of layers of molybdenum disulfide of the presulfided hydrodesulfurization catalyst was 1.2, and the average value length was 4.7 nm. Table 1 shows the sulfur content of the product oil.

[比較例7]
触媒Eを用いたこと以外は、実施例5同様の予備硫化および脱硫活性評価を実施した。予備硫化済み水素化脱硫触媒の二硫化モリブデンの平均積層数は2.8、平均値長さは7.2nmであった。生成油の硫黄分を表1に示す。
[Comparative Example 7]
Except that the catalyst E was used, the same preliminary sulfidation and desulfurization activity evaluation as in Example 5 was performed. The average number of layers of molybdenum disulfide of the presulfided hydrodesulfurization catalyst was 2.8, and the average value length was 7.2 nm. Table 1 shows the sulfur content of the product oil.

[比較例8]
触媒Fを用いたこと以外は、実施例5同様の予備硫化および脱硫活性評価を実施した。予備硫化済み水素化脱硫触媒の二硫化モリブデンの平均積層数は1.8、平均値長さは7.1nmであった。生成油の硫黄分を表1に示す。
[Comparative Example 8]
Except that the catalyst F was used, the same preliminary sulfidation and desulfurization activity evaluation as in Example 5 was performed. The average number of layers of molybdenum disulfide of the presulfided hydrodesulfurization catalyst was 1.8, and the average value length was 7.1 nm. Table 1 shows the sulfur content of the product oil.

表1の結果より、X線回折分析により測定されるアナターゼ型チタニア(101)面の結晶構造を示す回折ピーク面積及びルチル型チタニア(110)面の結晶構造を示す回折ピーク面積の合計の面積が、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積に対して、1/4以下であるシリカ−アルミナ−チタニア担体に、周期表第VIA族、及び第VIII族から選ばれた少なくとも1種の金属成分をキレート剤と共に担持し、さらに予備硫化処理を施された水素化精製用触媒の二硫化モリブテン層の平均値長さが3.5nmを超え、7nm以下、かつ、平均積層数が1.0を超え、1.9以下であることを特徴した水素化精製触媒を用いることで高い脱硫活性を得ることが出来る。   From the results of Table 1, the total area of the diffraction peak area showing the crystal structure of the anatase titania (101) plane and the diffraction peak area showing the crystal structure of the rutile titania (110) plane measured by X-ray diffraction analysis is The silica-alumina-titania support, which is 1/4 or less of the diffraction peak area showing the aluminum crystal structure attributed to the γ-alumina (400) plane, is selected from Group VIA and Group VIII of the periodic table. The average length of the disulfide molybdenite layer of the hydrorefining catalyst that is loaded with at least one metal component together with a chelating agent and further subjected to presulfidation treatment is more than 3.5 nm and not more than 7 nm, and High desulfurization activity can be obtained by using a hydrorefining catalyst characterized in that the average number of layers exceeds 1.0 and is 1.9 or less.

本発明の方法により、炭化水素油を高度に水素化精製することができるため産業上きわめて有用である。   Since the hydrocarbon oil can be highly hydrorefined by the method of the present invention, it is very useful industrially.

Claims (7)

シリカ、アルミナおよびチタニアを含有する担体と該担体に担持された周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分(ただし、モリブデンを必須として含有する)とを有し、
前記担体は、X線回折分析により測定されるアナターゼ型チタニア(101)面の結晶構造を示す回折ピーク面積及びルチル型チタニア(110)面の結晶構造を示す回折ピーク面積の合計の面積(チタニア回折ピーク面積)が、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積(アルミナ回折ピーク面積)に対して1/4以下であり、
前記金属成分がキレート剤あるいはさらにリン化合物と共に担体に含有された水素化脱硫触媒aを得、
前記水素化脱硫触媒aを予備硫化処理することによって、前記モリブデンが二硫化モリブデンの結晶となって担体上に層状に配設され、しかも、該二硫化モリブデンの結晶層は、該結晶層の面方向の平均値長さが3.5nmを超え、7nm以下、かつ、平均積層数が1.0を超え、1.9以下となる予備硫化処理された水素化脱硫触媒とし、
該予備硫化処理された水素化脱硫触媒を用いて水素雰囲気下で炭化水素油を水素化処理することを特徴とする炭化水素油の水素化精製方法。
A carrier containing silica, alumina and titania, and at least one metal component selected from Group VIA and Group VIII of the periodic table supported on the carrier (however, molybdenum is contained as an essential component);
The carrier is the total area of the diffraction peak area showing the crystal structure of the anatase titania (101) plane and the diffraction peak area showing the crystal structure of the rutile titania (110) plane as measured by X-ray diffraction analysis (titania diffraction). Peak area) is 1/4 or less with respect to a diffraction peak area (alumina diffraction peak area) indicating an aluminum crystal structure belonging to the γ-alumina (400) plane,
Obtaining a hydrodesulfurization catalyst a in which the metal component is contained in a carrier together with a chelating agent or further a phosphorus compound;
By pre-sulfiding the hydrodesulfurization catalyst a, the molybdenum is crystallized as molybdenum disulfide and arranged in a layer on the carrier, and the molybdenum disulfide crystal layer is a surface of the crystal layer. A pre-sulfurized hydrodesulfurization catalyst in which the average length in the direction exceeds 3.5 nm, 7 nm or less, and the average number of layers exceeds 1.0 and is 1.9 or less;
A method for hydrotreating a hydrocarbon oil, comprising hydrotreating a hydrocarbon oil in a hydrogen atmosphere using the hydrosulfurization catalyst subjected to the presulfurization treatment.
前記担体には、担体基準で、シリカがSiOとして1〜10質量%の範囲、チタニアがTiOとして3〜40質量%の範囲、アルミナがAlとして50質量%以上の範囲でそれぞれ含まれていることを特徴とする請求項1記載の炭化水素油の水素化精製方法。 In the carrier, silica is in the range of 1 to 10% by mass as SiO 2 , titania is in the range of 3 to 40% by mass as TiO 2 , and alumina is in the range of 50% by mass or more as Al 2 O 3 , respectively. The method for hydrorefining hydrocarbon oil according to claim 1, which is contained. 前記金属成分は、触媒基準で、酸化物として1〜35質量%の範囲にあり、前記モリブデンは、触媒基準で、MoOとして1〜25質量%の範囲にあることを特徴とする請求項1又は請求項2に記載の炭化水素油の水素化精製方法。 The metal component is in a range of 1 to 35% by mass as an oxide on a catalyst basis, and the molybdenum is in a range of 1 to 25% by mass on a catalyst basis as MoO 3. Or the hydrorefining method of the hydrocarbon oil of Claim 2. 前記炭化水素油が、直留軽油、減圧軽油、接触分解軽油、水素化分解軽油、および熱分解軽油から選ばれることを特徴とする請求項1〜3のいずれかに記載の炭化水素油の水素化精製方法。   The hydrocarbon oil according to any one of claims 1 to 3, wherein the hydrocarbon oil is selected from straight-run gas oil, vacuum gas oil, catalytic cracking gas oil, hydrocracked gas oil, and pyrolysis gas oil. Purification method. 前記キレート剤がクエン酸又はリンゴ酸であることを特徴とする請求項1〜4のいずれかに記載の炭化水素油の水素化精製方法。   The method for hydrorefining hydrocarbon oil according to any one of claims 1 to 4, wherein the chelating agent is citric acid or malic acid. 前記炭化水素油の水素化処理によって得られる生成油の硫黄分が10質量ppm以下であり、かつ窒素分が3質量ppm以下であることを特徴とする請求項1〜5のいずれかに記載の炭化水素油の水素化精製方法。   The sulfur content of the product oil obtained by hydrotreating the hydrocarbon oil is 10 ppm by mass or less, and the nitrogen content is 3 ppm by mass or less. A method for hydrorefining hydrocarbon oil. 反応圧力が1〜12MPa、液空間速度が0.1〜4.0h−1、水素/油比が80〜500NL/L、反応温度が250〜400℃の範囲であることを特徴とする請求項1〜6のいずれかに記載の炭化水素の水素化精製方法。 The reaction pressure is 1 to 12 MPa, the liquid space velocity is 0.1 to 4.0 h -1 , the hydrogen / oil ratio is 80 to 500 NL / L, and the reaction temperature is 250 to 400 ° C. The hydrocarbon hydrotreating method according to any one of 1 to 6.
JP2010145120A 2010-06-25 2010-06-25 Hydrorefining method of hydrocarbon oil Active JP5610875B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010145120A JP5610875B2 (en) 2010-06-25 2010-06-25 Hydrorefining method of hydrocarbon oil
RU2013103340/04A RU2562607C2 (en) 2010-06-25 2011-06-21 Hydrodesulphurisation catalyst for liquid oil product, method for production thereof and hydrofining method
SG2012093829A SG186776A1 (en) 2010-06-25 2011-06-21 Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
CN201180041131.9A CN103079697B (en) 2010-06-25 2011-06-21 Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil
US13/805,739 US9061265B2 (en) 2010-06-25 2011-06-21 Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
EP11798112.6A EP2586529A4 (en) 2010-06-25 2011-06-21 Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil
PCT/JP2011/064106 WO2011162228A1 (en) 2010-06-25 2011-06-21 Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010145120A JP5610875B2 (en) 2010-06-25 2010-06-25 Hydrorefining method of hydrocarbon oil

Publications (2)

Publication Number Publication Date
JP2012007098A true JP2012007098A (en) 2012-01-12
JP5610875B2 JP5610875B2 (en) 2014-10-22

Family

ID=45537999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010145120A Active JP5610875B2 (en) 2010-06-25 2010-06-25 Hydrorefining method of hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP5610875B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017064647A (en) * 2015-09-30 2017-04-06 Jxエネルギー株式会社 Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
CN110913985A (en) * 2017-07-21 2020-03-24 雅宝欧洲有限责任公司 Hydroprocessing catalysts with titanium-containing supports and sulfur-containing organic additives

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254141A (en) * 2004-03-11 2005-09-22 Nippon Oil Corp Hydrodesulfurization catalyst of petroleum hydrocarbon oil and its hydrodesulfurization method
JP2005262063A (en) * 2004-03-17 2005-09-29 National Institute Of Advanced Industrial & Technology Hydrogenation catalyst
JP2008239484A (en) * 2000-12-19 2008-10-09 Idemitsu Kosan Co Ltd Aqueous solution containing titanium and process for producing the same
JP2009101362A (en) * 2004-03-26 2009-05-14 Cosmo Oil Co Ltd Method for producing catalyst for hydrogenation treatment of hydrocarbon oil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239484A (en) * 2000-12-19 2008-10-09 Idemitsu Kosan Co Ltd Aqueous solution containing titanium and process for producing the same
JP2005254141A (en) * 2004-03-11 2005-09-22 Nippon Oil Corp Hydrodesulfurization catalyst of petroleum hydrocarbon oil and its hydrodesulfurization method
JP2005262063A (en) * 2004-03-17 2005-09-29 National Institute Of Advanced Industrial & Technology Hydrogenation catalyst
JP2009101362A (en) * 2004-03-26 2009-05-14 Cosmo Oil Co Ltd Method for producing catalyst for hydrogenation treatment of hydrocarbon oil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014015685; 武藤 昭博ら: '新規チタニア担体を用いた超深度脱硫触媒の開発-4-チタニア触媒のキャラクタリゼーション-' 石油・石油化学討論会 講演要旨 Vol.34th, 20041119, Page.154-155, 社団法人 石油学会 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017064647A (en) * 2015-09-30 2017-04-06 Jxエネルギー株式会社 Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
CN110913985A (en) * 2017-07-21 2020-03-24 雅宝欧洲有限责任公司 Hydroprocessing catalysts with titanium-containing supports and sulfur-containing organic additives

Also Published As

Publication number Publication date
JP5610875B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
WO2011162228A1 (en) Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil
WO2011040224A1 (en) Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
JP6489990B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
JP5610874B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
JP5517541B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
WO2010109823A1 (en) Hydrorefining catalyst, method for producing same, and process for hydrorefining hydrocarbon oil
JP6216658B2 (en) Catalyst for hydrorefining of vacuum gas oil and method for producing the same
US11896959B2 (en) Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and method for hydrotreating hydrocarbon oil
JP5815321B2 (en) Hydrocarbon oil hydrotreating catalyst, hydrocarbon oil hydrotreating catalyst production method, and hydrocarbon oil hydrotreating method
JP5610875B2 (en) Hydrorefining method of hydrocarbon oil
JP6284403B2 (en) Hydrocarbon oil hydrodesulfurization catalyst
JP5340101B2 (en) Hydrorefining method of hydrocarbon oil
WO2018180377A1 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for manufacturing hydrodesulfurization catalyst
JP6646349B2 (en) Method for producing catalyst for hydrodesulfurization of hydrocarbon oil and method for hydrodesulfurization of hydrocarbon oil
JP5150540B2 (en) Hydrorefining method of hydrocarbon oil
JP6251107B2 (en) Hydrocarbon oil hydrodesulfurization catalyst
JP6909879B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil, its production method, and hydrodesulfurization method
JP2013209528A (en) Hydrogenation purification method for heavy residual oil
WO2023033172A1 (en) Catalyst for hydrotreatment of heavy hydrocarbon oil and method for producing same, and method for hydrotreatment of heavy hydrocarbon oil
JP5193103B2 (en) Method for producing hydrotreating catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140902

R150 Certificate of patent or registration of utility model

Ref document number: 5610875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250