JP2005246294A - Oxygen-nanobubble water and production method therefor - Google Patents

Oxygen-nanobubble water and production method therefor Download PDF

Info

Publication number
JP2005246294A
JP2005246294A JP2004062160A JP2004062160A JP2005246294A JP 2005246294 A JP2005246294 A JP 2005246294A JP 2004062160 A JP2004062160 A JP 2004062160A JP 2004062160 A JP2004062160 A JP 2004062160A JP 2005246294 A JP2005246294 A JP 2005246294A
Authority
JP
Japan
Prior art keywords
oxygen
microbubbles
aqueous solution
nanobubble water
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004062160A
Other languages
Japanese (ja)
Other versions
JP2005246294A5 (en
JP4080440B2 (en
Inventor
Kaneo Chiba
金夫 千葉
Masayoshi Takahashi
正好 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
REO Laboratory Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
REO Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, REO Laboratory Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004062160A priority Critical patent/JP4080440B2/en
Priority to PCT/JP2005/003809 priority patent/WO2005084786A1/en
Publication of JP2005246294A publication Critical patent/JP2005246294A/en
Publication of JP2005246294A5 publication Critical patent/JP2005246294A5/ja
Application granted granted Critical
Publication of JP4080440B2 publication Critical patent/JP4080440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Animal Husbandry (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Zoology (AREA)
  • Dispersion Chemistry (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Fodder In General (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide oxygen-nanobubble water that has potential usefulness in every technical fields and particularly has potential effects relating to physiological activity on animals and plants. <P>SOLUTION: The oxygen-nanobubble water is characterized by having an air bubble diameter of 50 to 500 nm and comprising an aqueous solution that contains oxygen-nanobubbles containing oxygen within such air bubbles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、あらゆる技術分野にその有用性が潜在し、特に動植物に対しての生理活性効果を顕在化した酸素ナノバブル水に関するものである。   The present invention relates to oxygen nanobubble water that has potential utility in all technical fields, and in particular, has manifested bioactive effects on animals and plants.

近年、地球環境全般の汚染により、様々な化学物質の蓄積を通して人間の身体が組織レベルで酸素不足になることが知られるようになった。   In recent years, it has become known that due to pollution of the global environment in general, the human body becomes oxygen deficient at the tissue level through the accumulation of various chemical substances.

この問題を解決するために、例えば特許文献1では、通常の気泡とは異なった性質を持つ直径が50μm以下の気泡(微小気泡)中の気体に酸素を溶存させることにより、生理活性機能を有する微小気泡について提案している。   In order to solve this problem, for example, Patent Document 1 has a physiologically active function by dissolving oxygen in a gas in a bubble (microbubble) having a diameter different from that of a normal bubble having a diameter of 50 μm or less. Proposes microbubbles.

しかしながら、人間の生理活性機能を高めるには微小気泡を組織レベルで作用させなければならず、全身に十分な量の酸素を供給するためには、大掛りな装置が必要となり、コスト等の面で問題があった。
特開2002−143885号公報
However, in order to enhance human bioactivity function, microbubbles must act at the tissue level, and in order to supply a sufficient amount of oxygen to the whole body, a large-scale device is required, and costs, etc. There was a problem.
JP 2002-143885 A

本発明は上述したような実情に鑑みてなされたものであり、酸素ナノバブル水であって、長期間水溶液中に酸素が存在し、生物に対する活性効果等を有する酸素ナノバブル水およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and provides oxygen nanobubble water, in which oxygen is present in an aqueous solution for a long period of time and has an active effect on a living organism, and a method for producing the same The purpose is to do.

本発明の上記目的は、気泡の直径が50〜500nmであって、前記気泡内に酸素を含有する酸素ナノバブルが含まれる水溶液からなることによって達成される。   The object of the present invention is achieved by comprising an aqueous solution having a bubble diameter of 50 to 500 nm and containing oxygen nanobubbles containing oxygen in the bubble.

また、本発明の上記目的は、気泡の直径が50〜500nmであって、前記気泡内に酸素を含有する酸素ナノバブルが含まれる水溶液であって、前記水溶液は、塩分濃度が0.01〜3.5%の範囲に設定されていることによって効果的に達成される。   The object of the present invention is an aqueous solution having a bubble diameter of 50 to 500 nm and containing oxygen nanobubbles containing oxygen in the bubble, wherein the aqueous solution has a salinity of 0.01 to 3. It can be effectively achieved by setting in the range of 5%.

さらに、本発明の上記目的は、水溶液中に含まれる酸素を含有する微小気泡に物理的刺激を加えることにより、前記微小気泡の気泡径を急激に縮小させ、酸素ナノバブルを製造することによって達成される。   Further, the above object of the present invention is achieved by producing oxygen nanobubbles by applying a physical stimulus to oxygen-containing microbubbles contained in an aqueous solution, thereby rapidly reducing the bubble diameter of the microbubbles. The

本発明の上記目的は、前記微小気泡を急激に縮小させる過程において、気泡径が50〜500nmまで縮小すると前記微小気泡表面の電荷密度が上昇し、静電気的な反発力が生じることによって、前記微小気泡の縮小が停止することによって、或いは前記微小気泡を急激に縮小させる過程において、気液界面に吸着したイオンと静電気的な引力により、前記界面近傍の前記水溶液中に引き寄せられた反対符号を持つ両方のイオンが微小な体積の中に高濃度に濃縮することにより、前記微小気泡周囲を取り囲む殻の働きをし、前記微小気泡内の前記酸素の前記水溶液への拡散を阻害することによって、前記酸素ナノバブルを安定化させることによって、或いは前記気液界面に吸着したイオンは、水素イオンや水酸化物イオンであり、前記界面近傍に引き寄せられたイオンとして水溶液中の電解質イオンを利用することにより前記酸素ナノバブルを安定化させることによって、或いは前記微小気泡を急激に縮小させる過程において、断熱的圧縮によって前記微小気泡内温度が急激に上昇することにより、前記微小気泡の周囲に超高温度に伴う物理化学的な変化を与えることで前記酸素ナノバブルを安定化させることによってより効果的に達成される。   In the process of rapidly reducing the microbubbles, the object of the present invention is to increase the charge density on the surface of the microbubbles when the bubble diameter is reduced to 50 to 500 nm, thereby generating an electrostatic repulsive force. It has an opposite sign drawn into the aqueous solution in the vicinity of the interface by stopping the contraction of the bubbles or in the process of abruptly reducing the microbubbles due to ions adsorbed on the gas-liquid interface and electrostatic attraction. By concentrating both ions in a small volume to a high concentration, it acts as a shell surrounding the microbubbles, and by inhibiting diffusion of the oxygen in the microbubbles into the aqueous solution, The ions adsorbed on the gas-liquid interface by stabilizing the oxygen nanobubbles are hydrogen ions or hydroxide ions, and are close to the interface. In the process of stabilizing the oxygen nanobubbles by using electrolyte ions in an aqueous solution as ions attracted to the surface or abruptly shrinking the microbubbles, the temperature inside the microbubbles is rapidly increased by adiabatic compression. Ascending, it is achieved more effectively by stabilizing the oxygen nanobubbles by giving a physicochemical change accompanying ultra-high temperature around the microbubbles.

また、本発明の上記目的は、前記物理的刺激は、放電発生装置を用いて前記微小気泡に放電することであることによって、或いは前記物理的刺激は、超音波発信装置を用いて前記微小気泡に超音波照射することによって、或いは前記物理的刺激は、前記水溶液が入った容器内に取り付けた回転体を作動させることにより前記水溶液を流動させ、前記流動時に生じる圧縮、膨張および渦流を利用することであるによって、或いは前記物理的刺激は、前記容器に循環回路を形成した場合において、前記容器内の前記微小気泡が含まれる前記溶液を前記循環回路へ前記微小気泡が含まれる前記溶液を取り入れた後、前記循環系回路内に備えつけられた単一若しくは多数の孔を持つオリフィスもしくは多孔板を通過させることで圧縮、膨張および渦流を生じさせることによってより効果的に達成される。   Also, the object of the present invention is that the physical stimulus is a discharge to the microbubbles using a discharge generator, or the physical stimulus is the microbubbles using an ultrasonic transmission device. The ultrasonic stimulation is applied to the body, or the physical stimulation causes the aqueous solution to flow by operating a rotating body mounted in a container containing the aqueous solution, and uses compression, expansion, and vortex generated during the flow. Or when the physical stimulus forms a circulation circuit in the container, the solution containing the microbubbles in the container is taken in the solution containing the microbubbles in the circulation circuit. After that, compression, expansion, and vortex flow are made by passing through an orifice or a perforated plate having single or multiple holes provided in the circulation system circuit. It is more effectively achieved by generating.

本発明に係る酸素ナノバブル水およびその製造方法によれば、酸素ナノバブル水中の酸素は、気泡径が50〜500nmの大きさのナノバブルとして含まれており、1月以上の長期に渡って酸素を水溶液中に溶存させることができるようになった。これにより、医療現場や魚介類の畜養、養殖、陸上生物の飼育現場等において、酸素による生理活性効果を高める目的で利用が可能となった。   According to the oxygen nanobubble water and the method for producing the same according to the present invention, oxygen in the oxygen nanobubble water is contained as nanobubbles having a bubble diameter of 50 to 500 nm, and oxygen is used as an aqueous solution for a long period of one month or longer. It can be dissolved inside. As a result, it has become possible to use it for the purpose of enhancing the physiological activity effect of oxygen in medical sites, seafood breeding and aquaculture, terrestrial life breeding sites, and the like.

また、本発明に係る酸素ナノバブル水を生物の体内に取りこむことにより、疾病が急速に快復したり、細菌やウイルス等による感染症も予防できるようになった。皮膚に本発明に係る酸素ナノバブル水を塗布することにより、皮膚病の快復を促すことも可能となった。   In addition, by incorporating oxygen nanobubble water according to the present invention into the body of a living organism, it has become possible to quickly recover from diseases and to prevent infections caused by bacteria and viruses. By applying the oxygen nanobubble water according to the present invention to the skin, it has become possible to promote the recovery of skin diseases.

さらに、本発明に係る酸素ナノバブル水の塩分濃度を0.5〜1.5%の範囲に調節することにより、淡水性および海水性の魚介類を一つの水槽で共存させることが可能となり、この酸素ナノバブル水に衰弱した魚介類を入れると、衰弱した魚介類を快復させることも可能となった。   Furthermore, by adjusting the salt concentration of oxygen nanobubble water according to the present invention in the range of 0.5 to 1.5%, it becomes possible to coexist freshwater and seawater fish and shellfish in one aquarium. When weakened seafood was put into oxygen nanobubble water, it became possible to recover the weakened seafood.

本発明に係る酸素ナノバブル水について詳細に説明する。   The oxygen nanobubble water according to the present invention will be described in detail.

本発明に係る酸素ナノバブル水とは、水溶液中の酸素がナノバブルとして保持されている。ナノバブルとは図1の粒径分布が示すように気泡径が50〜500nmの大きさを持っている気泡のことをいい、1月以上の長期に渡って酸素が水溶液中に溶存することを特徴とする。本発明に係る酸素ナノバブル水の保存方法は、特に限定されるものではなく、通常の容器に入れて保存しても、1月以上酸素が水溶液中から消滅することはない。   In the oxygen nanobubble water according to the present invention, oxygen in an aqueous solution is held as nanobubbles. A nanobubble is a bubble having a bubble diameter of 50 to 500 nm as shown in the particle size distribution in FIG. 1, and is characterized by oxygen being dissolved in an aqueous solution over a long period of one month or more. And The method for storing oxygen nanobubble water according to the present invention is not particularly limited, and oxygen does not disappear from the aqueous solution for more than one month even if stored in a normal container.

本発明に係る酸素ナノバブル水の酸素が酸素ナノバブルとしての存在するメカニズムを図2に示す。酸素微小気泡の場合には、小さな気泡ほど内部の酸素の溶解効率が高く、存在が不安定となり瞬時に消滅する。酸素ナノバブルの場合、気液界面に極めて高濃度の電荷が濃縮しているため、球の反対側同士の電荷間に働く静電気的な反発力により球(気泡)が収縮することを妨げている。また、濃縮した高電場の作用により、水溶液中に含まれる鉄等の電解質イオンを主体とした無機質の殻を気泡周囲に形成し、これが内部の酸素の散逸を防止している。この殻は界面活性剤や有機物の殻とは異なるため、細菌等の他の物質と酸素ナノバブルが接触した時に生じる気泡周囲の電荷の逸脱により、殻自体が簡単に崩壊する。殻が崩壊したときには、内部に含まれる酸素は簡単に水溶液中に放出される。   FIG. 2 shows a mechanism in which oxygen of oxygen nanobubble water according to the present invention exists as oxygen nanobubbles. In the case of oxygen microbubbles, the smaller the bubbles, the higher the internal oxygen dissolution efficiency, and the presence becomes unstable and disappears instantly. In the case of oxygen nanobubbles, an extremely high concentration of electric charge is concentrated at the gas-liquid interface, which prevents the sphere (bubble) from contracting due to an electrostatic repulsive force acting between the charges on opposite sides of the sphere. In addition, due to the action of the concentrated high electric field, an inorganic shell mainly composed of electrolyte ions such as iron contained in the aqueous solution is formed around the bubbles, which prevents the dissipation of oxygen inside. Since this shell is different from the surfactant or organic shell, the shell itself easily collapses due to the deviation of the charge around the bubble that occurs when oxygen nanobubbles come into contact with other substances such as bacteria. When the shell collapses, the oxygen contained inside is easily released into the aqueous solution.

また、濃縮した高電場の作用により鉄等の電解質イオンを主体とした無機質の殻を気泡周囲に形成し、これが内部の酸素の散逸を防止している。この殻は界面活性剤や有機物の殻とは異なるため、細菌等の他の物質と酸素ナノバブルが接触した時に生じる気泡周囲の電荷の逸脱により、殻自体が簡単に崩壊する傾向を持っている。殻が崩壊したときには内部に含まれる酸素は簡単に水溶液中に放出される。   Also, an inorganic shell mainly composed of electrolyte ions such as iron is formed around the bubbles by the action of the concentrated high electric field, which prevents the dissipation of oxygen inside. Since this shell is different from the surfactant or organic shell, the shell itself tends to collapse easily due to the deviation of the charge around the bubble that occurs when oxygen nanobubbles come into contact with other substances such as bacteria. When the shell collapses, the oxygen contained inside is easily released into the aqueous solution.

発明者等は鋭意研究の結果、本発明に係る酸素ナノバブル水を生物の体内に取りこむと疾病が急速に快復したり、細菌やウイルス等の感染症を予防できることを見出した。理由については定かでないが、酸素ナノバブルが生体の体内に浸透して入りこみ、細胞を活性化することが予測される。   As a result of intensive studies, the inventors have found that when the oxygen nanobubble water according to the present invention is taken into the body of a living organism, the disease can be recovered rapidly or infectious diseases such as bacteria and viruses can be prevented. Although the reason is not clear, it is predicted that oxygen nanobubbles penetrate into the body of the living body and activate cells.

また、理由については今後の研究を待たねばならないが、発明者等は酸素ナノバブル水の塩分濃度を0.5〜1.5%に調節すると、淡水性および海水性の魚介類を一つの水槽で共存させることができることを見出した。   In addition, we have to wait for future research on the reason. However, the inventors adjusted the salt concentration of oxygen nanobubble water to 0.5 to 1.5%, so that freshwater and seawater fish and shellfish can be contained in one tank. It was found that they can coexist.

次に、本発明に係る酸素ナノバブル水の製造方法について詳細に説明する。   Next, the method for producing oxygen nanobubble water according to the present invention will be described in detail.

本発明に係る酸素ナノバブル水の製造方法においては、直径が10〜50μmの酸素微小気泡を物理的な刺激によって急速に縮小させる。酸素微小気泡が含まれる水溶液中の電気伝導度が300μS/cm以上となるように鉄、マンガン、カルシウム、ナトリウム、マグネシウムイオン、その他ミネラル類のイオン等の電解質を混入させると、これらの静電気的な反発力により気泡の縮小を阻害する。この静電気的な反発力とは、球形をした微小気泡において縮小に伴い球の曲率が増加することにより、球の反対面に存在する同符号のイオン同士に作用する静電気力のことである。縮小した酸素微小気泡は加圧されているため、酸素微小気泡が縮小するほど、より縮小しようとする傾向が強まるが、気泡径が500nmよりも小さくなるとこの静電気的な反発力が顕在化してきて、気泡の縮小が停止する。   In the method for producing oxygen nanobubble water according to the present invention, oxygen microbubbles having a diameter of 10 to 50 μm are rapidly reduced by physical stimulation. When electrolytes such as iron, manganese, calcium, sodium, magnesium ions and other mineral ions are mixed so that the electric conductivity in an aqueous solution containing oxygen microbubbles is 300 μS / cm or more, Inhibits the reduction of bubbles by the repulsive force. This electrostatic repulsive force is an electrostatic force that acts on ions of the same sign existing on the opposite surface of the sphere by increasing the curvature of the sphere as it shrinks in a spherical microbubble. Since the reduced oxygen microbubbles are pressurized, the smaller the oxygen microbubbles, the greater the tendency to shrink. However, when the bubble diameter becomes smaller than 500 nm, this electrostatic repulsion force has become apparent. , The bubble shrinkage stops.

水溶液中に電気伝導度が3mS/cm以上になるように鉄、マンガン、カルシウム、ナトリウム、マグネシウムイオン、ミネラル類のイオン等の電解質を混入させると、この静電気的な反発力が十分に強く働き、気泡は縮小する力と反発力のバランスを取って安定化する。この安定化したときの気泡径(ナノバブルの気泡径)は電解質イオンの濃度や種類により異なるが、図1に示すように、50〜500nmの大きさである。   When an electrolyte such as iron, manganese, calcium, sodium, magnesium ions, or mineral ions is mixed in the aqueous solution so that the electric conductivity is 3 mS / cm or more, this electrostatic repulsive force works sufficiently strongly. Bubbles stabilize by balancing the shrinking force and the repulsive force. The bubble diameter when stabilized (bubble diameter of nanobubbles) varies depending on the concentration and type of electrolyte ions, but is 50 to 500 nm as shown in FIG.

酸素ナノバブルの特徴は、酸素を内部に加圧された状態で維持しているのみでなく、濃縮した表面電荷により極めて強い電場を形成していることである。この強い電場は、気泡内部の酸素や周囲の水溶液に強力な影響を与える力を持っており、生理的な活性効果や殺菌効果、化学的な反応性等を有するようになる。   The feature of oxygen nanobubbles is that not only oxygen is maintained in a pressurized state but also an extremely strong electric field is formed by the concentrated surface charge. This strong electric field has a strong influence on oxygen in the bubbles and the surrounding aqueous solution, and has a physiological activity effect, a bactericidal effect, a chemical reactivity, and the like.

図3は放電装置を用いて酸素ナノバブル水を製造する装置の側面図である。   FIG. 3 is a side view of an apparatus for producing oxygen nanobubble water using a discharge device.

微小気泡発生装置3は取水口31によって容器1内の水溶液を取り込み、微小気泡発生装置3内に酸素微小気泡を製造するための酸素を注入する注入口(図示せず)から酸素が注入され、取水口31によって取り込んだ水溶液と混合させて、酸素ナノバブル含有水溶液排出口32から微小気泡発生装置3で製造した酸素微小気泡を容器1内へ送る。これにより容器1内に酸素微小気泡が存在するようになる。容器1内には、陽極21と陰極22があり、陽極21と陰極22は放電発生装置2に接続されている。   The microbubble generator 3 takes in the aqueous solution in the container 1 through the water intake 31, and oxygen is injected into the microbubble generator 3 from an inlet (not shown) for injecting oxygen for producing oxygen microbubbles. The oxygen microbubbles produced by the microbubble generator 3 are fed into the container 1 from the oxygen nanobubble-containing aqueous solution discharge port 32 by mixing with the aqueous solution taken in by the water intake 31. As a result, oxygen microbubbles are present in the container 1. In the container 1, there are an anode 21 and a cathode 22, and the anode 21 and the cathode 22 are connected to the discharge generator 2.

まず、水溶液の入った容器1内に微小気泡発生装置3を用いて酸素微小気泡を発生させる。   First, oxygen microbubbles are generated in the container 1 containing the aqueous solution using the microbubble generator 3.

次に鉄、マンガン、カルシウムその他ミネラル類の電解質を加えて水溶液の電気伝導度が3mS/cm以上になるように電解質を加える。   Next, an electrolyte of iron, manganese, calcium and other minerals is added, and the electrolyte is added so that the electric conductivity of the aqueous solution becomes 3 mS / cm or more.

放電発生装置2を用いて、容器1内の酸素微小気泡が含まれる水溶液に水中放電を行う。より効率的に酸素ナノバブルを製造させるため、容器1内の酸素微小気泡の濃度が飽和濃度の50%以上に達している場合が好ましい。また、水中放電の電圧は2000〜3000Vが好ましい。   Using the discharge generator 2, an underwater discharge is performed on the aqueous solution containing oxygen microbubbles in the container 1. In order to produce oxygen nanobubbles more efficiently, it is preferable that the concentration of oxygen microbubbles in the container 1 reaches 50% or more of the saturation concentration. The underwater discharge voltage is preferably 2000 to 3000V.

水中放電に伴う衝撃波の刺激(物理的刺激)により、水中の酸素微小気泡は急速に縮小され、ナノレベルの気泡となる。この時に気泡周囲に存在しているイオン類は、縮小速度が急速なため、周囲の水中に逸脱する時間が無く、気泡の縮小に伴って急速に濃縮する。濃縮されたイオン類は気泡周囲に極めて強い高電場を形成する。この高電場の存在のもとで気液界面に存在する水素イオンや水酸化物イオンは気泡周囲に存在する反対符号を持つ電解質イオンと結合関係を持ち、気泡周囲に無機質の殻を形成する。この殻は気泡内の酸素の水溶液中への自然溶解を阻止するため、酸素ナノバブルは溶解することなく安定的に水溶液中に含まれる。なお、製造される酸素ナノバブルは50〜500nm程度の極めて微小な気泡であるため、水中における浮力をほとんど受けることが無く、通常の気泡で認められる水表面での破裂は皆無に近い。   Oxygen microbubbles in water are rapidly reduced into nano-level bubbles by shock wave stimulation (physical stimulation) accompanying underwater discharge. At this time, the ions present around the bubbles have a rapid reduction speed, so that they do not have time to deviate into the surrounding water and are rapidly concentrated as the bubbles are reduced. Concentrated ions form a very strong high electric field around the bubbles. In the presence of this high electric field, hydrogen ions and hydroxide ions present at the gas-liquid interface have a binding relationship with electrolyte ions having opposite signs existing around the bubbles, and form an inorganic shell around the bubbles. Since this shell prevents spontaneous dissolution of oxygen in the bubbles in the aqueous solution, the oxygen nanobubbles are stably contained in the aqueous solution without dissolving. In addition, since the produced oxygen nanobubble is a very fine bubble of about 50 to 500 nm, it hardly receives buoyancy in water, and there is almost no rupture on the water surface recognized by a normal bubble.

超音波を酸素微小気泡に照射することにより、酸素ナノバブル水を製造する方法を説明する。なお、放電による酸素ナノバブル水の製造方法と重複する個所については説明を省略する。   A method for producing oxygen nanobubble water by irradiating oxygen microbubbles with ultrasonic waves will be described. In addition, description is abbreviate | omitted about the location which overlaps with the manufacturing method of oxygen nano bubble water by discharge.

図4は超音波発生装置を用いて酸素ナノバブル水を製造する装置の側面図である。   FIG. 4 is a side view of an apparatus for producing oxygen nanobubble water using an ultrasonic generator.

放電による酸素ナノバブル水の製造方法と同様に、微小気泡発生装置3、取水口31および酸素ナノバブル含有水溶液排出口32で酸素微小気泡を製造し、酸素微小気泡を容器1内へ送る。容器1内には超音波発生装置4が設置されている。超音波発生装置4の設置場所は特に限定されていないが、効率よく酸素ナノバブルを製造するには取水口31と酸素ナノバブル含有水溶液排出口32の間に超音波発生装置4を設置することが好ましい。   Similarly to the method for producing oxygen nanobubble water by discharge, oxygen microbubbles are produced by the microbubble generator 3, the water intake 31 and the oxygen nanobubble-containing aqueous solution outlet 32, and the oxygen microbubbles are sent into the container 1. An ultrasonic generator 4 is installed in the container 1. Although the installation place of the ultrasonic generator 4 is not particularly limited, it is preferable to install the ultrasonic generator 4 between the water intake 31 and the oxygen nanobubble-containing aqueous solution outlet 32 in order to efficiently produce oxygen nanobubbles. .

まず、電解質イオンを含んだ水の入った容器1内に微小気泡発生装置3を用いて酸素微小気泡を発生させる。   First, oxygen microbubbles are generated using a microbubble generator 3 in a container 1 containing water containing electrolyte ions.

次に、超音波発生装置4を用いて、超音波を容器1内の酸素微小気泡が含まれる水溶液に照射する。より効率的に酸素ナノバブル水を製造させるため、容器1内の酸素微小気泡の濃度が飽和濃度の50%以上に達している場合が好ましい。超音波の発信周波数は20kHz〜1MHzが好ましく、超音波の照射は30秒間隔で発振と停止を繰り返すことが好ましいが、連続に照射してもよい。   Next, using the ultrasonic generator 4, an ultrasonic wave is applied to the aqueous solution containing oxygen microbubbles in the container 1. In order to produce oxygen nanobubble water more efficiently, it is preferable that the concentration of oxygen microbubbles in the container 1 reaches 50% or more of the saturation concentration. The transmission frequency of the ultrasonic waves is preferably 20 kHz to 1 MHz, and the ultrasonic irradiation preferably repeats oscillation and stop at intervals of 30 seconds, but may be performed continuously.

次に、渦流を起こすことにより、酸素ナノバブル水を製造する方法について説明する。なお、放電による酸素ナノバブル水を製造する方法及び超音波照射による酸素ナノバブル水を製造する方法と重複する個所については説明を省略する。   Next, a method for producing oxygen nanobubble water by causing vortex will be described. In addition, description is abbreviate | omitted about the location which overlaps with the method of manufacturing oxygen nano bubble water by discharge, and the method of manufacturing oxygen nano bubble water by ultrasonic irradiation.

図5は酸素ナノバブル水を製造するために圧縮、膨張および渦流を用いた場合の装置の側面図である。放電による酸素ナノバブル水の製造方法および超音波照射による酸素ナノバブル水の製造方法と同様に、微小気泡発生装置3、取水口31および酸素ナノバブル含有水溶液排出口32で微小気泡を製造し、酸素微小気泡を容器1内へ送る。容器1には容器1内の酸素微小気泡が含まれる水溶液を部分循環させるための循環ポンプ5が接続されており、循環ポンプ5が設置されている配管(循環配管)内には多数の孔を持つオリフィス(多孔板)6が接続され、容器1と連結している。容器1内の酸素微小気泡が含まれる水溶液は循環ポンプ5により循環配管内を流動させられ、オリフィス(多孔板)6を通過することで圧縮、膨張および渦流を生じさせる。   FIG. 5 is a side view of the apparatus when compression, expansion and vortex are used to produce oxygen nanobubble water. Similarly to the method for producing oxygen nanobubble water by discharge and the method for producing oxygen nanobubble water by ultrasonic irradiation, microbubbles are produced by the microbubble generator 3, the water intake 31 and the oxygen nanobubble-containing aqueous solution outlet 32, and oxygen microbubbles are produced. Into the container 1. A circulation pump 5 for partially circulating an aqueous solution containing oxygen microbubbles in the container 1 is connected to the container 1, and a large number of holes are formed in a pipe (circulation pipe) in which the circulation pump 5 is installed. An orifice (perforated plate) 6 is connected and connected to the container 1. The aqueous solution containing oxygen microbubbles in the container 1 is caused to flow in the circulation pipe by the circulation pump 5 and passes through the orifice (perforated plate) 6 to generate compression, expansion and vortex.

まず、電荷質イオンを含んだ水の入った容器1内に微小気泡発生装置3を用いて酸素微小気泡を発生させる。   First, oxygen microbubbles are generated in a container 1 containing water containing charged ions using a microbubble generator 3.

次に、この酸素微小気泡が含まれる水溶液を部分循環させるため、循環ポンプ5を作動させる。この循環ポンプ5により酸素微小気泡が含まれる水溶液が押し出され、オリフィス(多孔板)6を通過前及び通過後の配管内で圧縮、膨張及び渦流が発生する。通過時の微小気泡の圧縮や膨張により、および配管内で発生した渦流により電荷を持った酸素微小気泡が渦電流を発生させることにより酸素微小気泡は急激に縮小され酸素ナノバブルとして安定化する。なお、循環ポンプ5とオリフィス(多孔板)6の流路における順序は逆でもよい。   Next, the circulation pump 5 is operated to partially circulate the aqueous solution containing the oxygen microbubbles. An aqueous solution containing oxygen microbubbles is pushed out by the circulation pump 5, and compression, expansion, and vortex flow are generated in the pipe before and after passing through the orifice (porous plate) 6. Oxygen microbubbles are rapidly reduced and stabilized as oxygen nanobubbles by generating eddy currents due to the compression and expansion of the microbubbles during passage and the eddy currents generated in the pipes. In addition, the order in the flow path of the circulation pump 5 and the orifice (porous plate) 6 may be reversed.

オリフィス(多孔板)6は図6では単一であるが、複数設置してもよく、循環ポンプ5は必要に応じて省略してもよい。その場合、微小気泡発生装置2の水溶液に対する駆動力や高低差による水溶液の流動等を利用することも可能である。   Although the orifice (perforated plate) 6 is single in FIG. 6, a plurality of orifices (circular plate) may be provided, and the circulation pump 5 may be omitted if necessary. In that case, it is also possible to use the driving force of the microbubble generator 2 on the aqueous solution, the flow of the aqueous solution due to the height difference, and the like.

また、図6に示すように、容器1内に渦流を発生させるための回転体7を取り付けることによっても酸素ナノバブルを製造することができる。回転体7を500〜10000rpmで回転させることにより、効率よく渦流を容器1内で発生させることができる。   In addition, as shown in FIG. 6, oxygen nanobubbles can also be produced by attaching a rotating body 7 for generating a vortex in the container 1. By rotating the rotating body 7 at 500 to 10000 rpm, a vortex can be efficiently generated in the container 1.

本発明に係る酸素ナノバブル水を製造後、酸素ナノバブルを動的光散乱光学計により測定したところ、約150nmを中心とする粒径分布を持っていた。この酸素ナノバブル水をガラス瓶に入れて蓋をして冷暗所において保存をした。1月後同様に測定すると、ほぼ同一の粒径分布を持っており、安定した状態を保っていた。   After the oxygen nanobubble water according to the present invention was produced, the oxygen nanobubbles were measured by a dynamic light scattering optical meter, and had a particle size distribution centered at about 150 nm. This oxygen nanobubble water was put in a glass bottle, covered, and stored in a cool and dark place. When measured in the same manner after one month, they had almost the same particle size distribution and remained stable.

酸素ナノバブル水におけるナノバブルの安定化には電解質イオンの作用が重要である。本発明に係る酸素ナノバブル水の水質を測定したところ、pH=8.4、硬度=1000mg/L、鉄=0.03mg/L未満、マンガン=0.016mg/L、ナトリウム=2200mg/L、塩化物イオン=2110mg/Lであった。   The action of electrolyte ions is important for the stabilization of nanobubbles in oxygen nanobubble water. When the water quality of the oxygen nanobubble water according to the present invention was measured, pH = 8.4, hardness = 1000 mg / L, iron = 0.03 mg / L, manganese = 0.016 mg / L, sodium = 2200 mg / L, chloride. Product ion was 2110 mg / L.

塩分濃度が淡水と海水の中間である酸素ナノバブル水に衰弱した鰯とメバルを入れたところ急速に快復した。   When weakened coral and rockfish were put into oxygen nanobubble water with a salinity between fresh water and seawater, it recovered rapidly.

また、水槽内に酸素ナノバブル水を入れると、鯛、カレイ、ヒラメ、アイナメ、竜宮ハゼ、ドンコ等の海水魚、およびコイ、金魚、鉄魚、鮎、イワナ等の淡水魚を同時に半年以上の期間に渡って生存させることができた。また、この間に稚魚の急速な成長を確認した。さらに熱帯魚については、海水系のコバルトや淡水系のグッピー等を同じ水槽内で、水温15℃程度の条件でも数日間以上生存させることができた。   In addition, when oxygen nanobubble water is put into the aquarium, freshwater fish such as carp, flounder, flounder, ainame, Ryugu goby, donko, etc. I was able to survive across. Also, during this period, the rapid growth of fry was confirmed. Furthermore, with regard to tropical fish, seawater-based cobalt, freshwater-based guppy, etc. could survive several days or more in the same aquarium even under conditions of a water temperature of about 15 ° C.

鶏の飼育現場において、飲料用に酸素ナノバブル水を与えることにより、感染症に対する抵抗量が向上し、抗生物質の使用を大幅に低下させることができた。   By providing oxygen nanobubble water for drinking at chicken breeding sites, the amount of resistance against infectious diseases was improved and the use of antibiotics could be greatly reduced.

本発明に係る酸素ナノバブル水の酸素ナノバブルの粒径頻度分布である(平均分布は約140nmで標準偏差は約40nmである)。It is the particle size frequency distribution of oxygen nanobubbles of oxygen nanobubble water according to the present invention (average distribution is about 140 nm and standard deviation is about 40 nm). ナノバブルとして酸素が安定して水溶液中に存在しているメカニズムを表わした模式図である。It is the schematic diagram showing the mechanism in which oxygen exists stably in aqueous solution as nanobubble. 放電装置を用いて酸素ナノバブル水を製造する装置の側面図である。It is a side view of the apparatus which manufactures oxygen nano bubble water using a discharge device. 超音波発生装置を用いて酸素ナノバブル水を製造する装置の側面図である。It is a side view of the apparatus which manufactures oxygen nano bubble water using an ultrasonic generator. 渦流を起して酸素ナノバブル水を製造する装置の側面図である。It is a side view of the apparatus which raise | generates an eddy current and manufactures oxygen nano bubble water. 回転体で渦流を起して酸素ナノバブル水を製造する装置の側面図である。It is a side view of the apparatus which raise | generates an eddy current with a rotary body and manufactures oxygen nano bubble water.

符号の説明Explanation of symbols

1 容器
2 放電発生装置
21 陽極
22 陰極
3 微小気泡発生装置
31 取水口
32 酸素ナノバブル含有水溶液排出口
4 超音波発生装置
5 循環ポンプ
6 オリフィス(多孔板)
7 回転体
DESCRIPTION OF SYMBOLS 1 Container 2 Discharge generator 21 Anode 22 Cathode 3 Microbubble generator 31 Water intake 32 Oxygen nanobubble containing aqueous solution outlet 4 Ultrasonic generator 5 Circulation pump 6 Orifice (perforated plate)
7 Rotating body

Claims (11)

気泡の直径が50〜500nmであって、前記気泡内に酸素を含有する酸素ナノバブルが含まれる水溶液からなることを特徴とする酸素ナノバブル水。   Oxygen nanobubble water, wherein the bubble has a diameter of 50 to 500 nm and is made of an aqueous solution containing oxygen nanobubbles containing oxygen in the bubbles. 気泡の直径が50〜500nmであって、前記気泡内に酸素を含有する酸素ナノバブルが含まれる水溶液であって、前記水溶液は、塩分濃度が0.01〜3.5%の範囲に設定されていることを特徴とする酸素ナノバブル水。   A bubble diameter of 50 to 500 nm, and an aqueous solution containing oxygen nanobubbles containing oxygen in the bubble, wherein the aqueous solution has a salinity of 0.01 to 3.5%. Oxygen nanobubble water characterized by 水溶液中に含まれる酸素を含有する微小気泡に物理的刺激を加えることにより、前記微小気泡の気泡径を急激に縮小させ、酸素ナノバブルを製造することを特徴とする酸素ナノバブル水の製造方法。   A method for producing oxygen nanobubble water, characterized in that oxygen nanobubbles are produced by applying a physical stimulus to microbubbles containing oxygen contained in an aqueous solution to rapidly reduce the bubble diameter of the microbubbles. 前記微小気泡を急激に縮小させる過程において、気泡径が50〜500nmまで縮小すると前記微小気泡表面の電荷密度が上昇し、静電気的な反発力が生じることによって、前記微小気泡の縮小が停止する請求項3に記載の酸素ナノバブル水の製造方法。   In the process of abruptly reducing the microbubbles, if the bubble diameter is reduced to 50 to 500 nm, the charge density on the surface of the microbubbles is increased, and electrostatic repulsion is generated, whereby the reduction of the microbubbles is stopped. Item 4. The method for producing oxygen nanobubble water according to Item 3. 前記微小気泡を急激に縮小させる過程において、気液界面に吸着したイオンと静電気的な引力により、前記界面近傍の前記水溶液中に引き寄せられた反対符号を持つ両方のイオンが微小な体積の中に高濃度に濃縮することにより、前記微小気泡周囲を取り囲む殻の働きをし、前記微小気泡内の前記酸素の前記水溶液への拡散を阻害することによって、前記酸素ナノバブルを安定化させる請求項3または4に記載の酸素ナノバブル水の製造方法。   In the process of abruptly reducing the microbubbles, both ions having opposite signs attracted into the aqueous solution in the vicinity of the interface due to the ions adsorbed on the gas-liquid interface and the electrostatic attractive force are brought into the minute volume. The oxygen nanobubbles are stabilized by acting as a shell surrounding the microbubbles by concentrating to a high concentration and inhibiting diffusion of the oxygen in the microbubbles into the aqueous solution. 4. The method for producing oxygen nanobubble water according to 4. 前記気液界面に吸着したイオンは、水素イオンや水酸化物イオンであり、前記界面近傍に引き寄せられたイオンとして水溶液中の電解質イオンを利用することにより前記酸素ナノバブルを安定化させる請求項3乃至5のいずれかに記載の酸素ナノバブル水の製造方法。   The ions adsorbed on the gas-liquid interface are hydrogen ions or hydroxide ions, and the oxygen nanobubbles are stabilized by using electrolyte ions in an aqueous solution as ions attracted to the vicinity of the interface. 5. The method for producing oxygen nanobubble water according to any one of 5 above. 前記微小気泡を急激に縮小させる過程において、断熱的圧縮によって前記微小気泡内温度が急激に上昇し、前記微小気泡の周囲に超高温度に伴う物理化学的な変化を与えることで前記酸素ナノバブルを安定化させる請求項3乃至6のいずれかに記載の酸素ナノバブル水の製造方法。   In the process of abruptly reducing the microbubbles, the temperature inside the microbubbles rapidly increases due to adiabatic compression, and the oxygen nanobubbles are formed by giving a physicochemical change around the microbubbles with an ultrahigh temperature. The method for producing oxygen nanobubble water according to any one of claims 3 to 6, wherein the oxygen nanobubble water is stabilized. 前記物理的刺激は、放電発生装置を用いて前記微小気泡に放電することである請求項3乃至7のいずれかに記載の酸素ナノバブル水の製造方法。   The method for producing oxygen nanobubble water according to any one of claims 3 to 7, wherein the physical stimulation is to discharge the microbubbles using a discharge generator. 前記物理的刺激は、超音波発信装置を用いて前記微小気泡に超音波照射することである請求項3乃至7のいずれかに記載の酸素ナノバブル水の製造方法。   The method for producing oxygen nanobubble water according to any one of claims 3 to 7, wherein the physical stimulation is to ultrasonically irradiate the microbubbles using an ultrasonic transmission device. 前記物理的刺激は、前記水溶液が入った容器内に取り付けた回転体を作動させることにより前記水溶液を流動させ、前記流動時に生じる圧縮、膨張および渦流を利用することである請求項3乃至7のいずれかに記載の酸素ナノバブル水の製造方法。   The physical stimulation is to cause the aqueous solution to flow by operating a rotating body mounted in a container containing the aqueous solution, and to utilize compression, expansion, and vortex generated during the flow. The method for producing oxygen nanobubble water according to any one of the above. 前記物理的刺激は、前記容器に循環回路を形成した場合において、前記容器内の前記微小気泡が含まれる前記水溶液を前記循環回路へ前記微小気泡が含まれる前記水溶液を取り入れた後、前記循環系回路内に備えつけられた単一若しくは多数の孔を持つオリフィス若しくは多孔板を通過させることで圧縮、膨張および渦流を生じさせることである請求項3乃至7のいずれかに記載の酸素ナノバブル水の製造方法。   In the case where a circulation circuit is formed in the container, the physical stimulation is performed by taking the aqueous solution containing the microbubbles in the container into the circulation circuit and then introducing the aqueous solution containing the microbubbles into the circulation circuit. The production of oxygen nanobubble water according to any one of claims 3 to 7, wherein compression, expansion and vortex are generated by passing through an orifice or a perforated plate having a single or multiple holes provided in a circuit. Method.
JP2004062160A 2004-03-05 2004-03-05 Oxygen nanobubble water and method for producing the same Expired - Lifetime JP4080440B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004062160A JP4080440B2 (en) 2004-03-05 2004-03-05 Oxygen nanobubble water and method for producing the same
PCT/JP2005/003809 WO2005084786A1 (en) 2004-03-05 2005-02-28 Water containing oxygen nano bubbles and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004062160A JP4080440B2 (en) 2004-03-05 2004-03-05 Oxygen nanobubble water and method for producing the same

Publications (3)

Publication Number Publication Date
JP2005246294A true JP2005246294A (en) 2005-09-15
JP2005246294A5 JP2005246294A5 (en) 2006-03-16
JP4080440B2 JP4080440B2 (en) 2008-04-23

Family

ID=34918108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004062160A Expired - Lifetime JP4080440B2 (en) 2004-03-05 2004-03-05 Oxygen nanobubble water and method for producing the same

Country Status (2)

Country Link
JP (1) JP4080440B2 (en)
WO (1) WO2005084786A1 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Production method of nano-bubble
JP2006289183A (en) * 2005-04-06 2006-10-26 Nano Bubble Kk Nano-bubble forming method and apparatus
WO2007034580A1 (en) * 2005-09-23 2007-03-29 Sadatoshi Watanabe Nanofluid generator and cleaning apparatus
JP2007137791A (en) * 2005-11-16 2007-06-07 Kenko Hyakunijussai:Kk Novel physicochemically harmonized bactericidal disinfectant solution
JP2007136255A (en) * 2005-11-14 2007-06-07 Chiken Kk Nano-bubble producing apparatus
JP2007152301A (en) * 2005-12-07 2007-06-21 Nanoplanet Kenkyusho:Kk Functional water producing method and functional water
KR100744739B1 (en) * 2006-03-29 2007-08-01 옥철호 Apparatus for generation of water drop in a water tank
JP2008043906A (en) * 2006-08-19 2008-02-28 Nanoplanet Kenkyusho:Kk Functional microbubble and functional microbubble water
JP2008063258A (en) * 2006-09-06 2008-03-21 Tokyo Medical & Dental Univ Tissue-preserving solution
JP2008093611A (en) * 2006-10-13 2008-04-24 National Institute Of Advanced Industrial & Technology Manufacturing method of water containing extremely fine air bubble and water containing extremely fine air bubble
WO2008072371A1 (en) 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University Preparation for sterilization or disinfection of tissue
JP2008156320A (en) * 2006-12-26 2008-07-10 Hydrox Kk Antioxidative functional water
WO2008115290A2 (en) 2006-10-25 2008-09-25 Revalesio Corporation Methods of wound care and treatment
JP2008246054A (en) * 2007-03-30 2008-10-16 Sharp Corp Bathtub device, therapeutic bathtub device, bath water, and therapeutic bath water
JP2008259456A (en) * 2007-04-12 2008-10-30 Reo Laboratory Co Ltd Method for preserving fish and shellfish
JP2009101299A (en) * 2007-10-24 2009-05-14 Fuji Xerox Co Ltd Micro nano-bubble generation method, washing method for micro-flow passage, micro nano-bubble generation system, and micro-reactor
JP2009114059A (en) * 2006-12-11 2009-05-28 Opt Creation:Kk Apparatus and method for producing nanobubble liquid
JP2009131770A (en) * 2007-11-29 2009-06-18 Reo Laboratory Co Ltd Manufacturing method of carbon dioxide-nano bubble water
JP2009131769A (en) * 2007-11-29 2009-06-18 Reo Laboratory Co Ltd Manufacturing method of nitrogen-nano bubble water
JP2009188116A (en) * 2008-02-05 2009-08-20 Shibaura Mechatronics Corp Processing apparatus and processing method for substrate
EP2097107A2 (en) * 2006-10-25 2009-09-09 Revalesio Corporation Methods of therapeutic treatment of eyes and other human tissues using an oxygen-enriched solution
JP2010075180A (en) * 2008-09-01 2010-04-08 Hiroyuki Tanaka Nk activity enhancer and use thereof
JP2011011126A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Apparatus for producing functional liquid
JP2011055794A (en) * 2009-09-13 2011-03-24 Kumamoto Seifun Kk Grain treated with oxygen nanobubble water and superheated steam
WO2011036722A1 (en) * 2009-09-25 2011-03-31 Tanaka Hiroyuki Enhancer of nk activity and use thereof
JP2011519861A (en) * 2008-05-01 2011-07-14 レバレジオ コーポレイション Compositions and methods for treating gastrointestinal disorders
KR101085840B1 (en) 2008-12-04 2011-11-24 주식회사환경과생명 Nano Bubble proceded water Generator
EP2463022A1 (en) * 2009-08-06 2012-06-13 Kyowakisetsu Co., Ltd. Composition and process for production thereof
US8349273B2 (en) 2007-10-12 2013-01-08 Fuji Xerox Co., Ltd. Microreactor device
KR101219880B1 (en) * 2010-10-08 2013-01-08 한국생산기술연구원 Manufacturing Method Of Tofu Using Nano Bubble
US8349191B2 (en) 1997-10-24 2013-01-08 Revalesio Corporation Diffuser/emulsifier for aquaculture applications
JP2013006146A (en) * 2011-06-24 2013-01-10 Mitsubishi Electric Corp Active oxygen species generator, water heater and air conditioner
US8418719B2 (en) 2006-07-18 2013-04-16 Fuji Xerox Co., Ltd. Microchannel device
US8445546B2 (en) 2006-10-25 2013-05-21 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
JP2013124250A (en) * 2011-12-16 2013-06-24 Yamano Gakuen Permanent wave second agent having small load on hair and environment
US8470893B2 (en) 2006-10-25 2013-06-25 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
JP2013135661A (en) * 2011-07-25 2013-07-11 Mg Grow Up:Kk Method for producing highly-concentrated oxygen treated water, highly-concentrated oxygen treated water and freshness retention treatment of fresh fish and shellfish
US8585278B2 (en) 2009-03-16 2013-11-19 Fuji Xerox Co., Ltd. Micro fluidic device and fluid control method
JP2014014359A (en) * 2012-06-14 2014-01-30 Takaaki Matsumoto Fish-and-shellfish oxygen water and manufacturing system therefor, fish-and-shellfish breeding apparatus, fish-and-shellfish breeding method, fish-and-shellfish transporting method, and oxygen ice for fish-and-shellfish
US8679336B2 (en) 2008-11-14 2014-03-25 Fuji Xerox Co., Ltd. Microchannel device, separation apparatus, and separation method
US8721992B2 (en) 2007-03-27 2014-05-13 Fuji Xerox Co., Ltd Micro fluidic device
US8784898B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of wound care and treatment
US8784897B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of therapeutic treatment of eyes
US8815292B2 (en) 2009-04-27 2014-08-26 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US8889075B2 (en) 2007-09-26 2014-11-18 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Apparatus for producing water having redox activity
JP2015188822A (en) * 2014-03-28 2015-11-02 国立研究開発法人産業技術総合研究所 Manufacturing method for water containing nano-bubbles
JPWO2014148397A1 (en) * 2013-03-18 2017-02-16 学校法人北里研究所 Nanobubble sterilization method and nanobubble generator used therefor
JP2017043602A (en) * 2015-08-25 2017-03-02 禾▲よう▼生技股▲ふん▼有限公司 High-oxygen water, biocompatible composition containing high-oxygen water, production method of high-oxygen water, and application of high-oxygen water
KR20170046720A (en) 2014-08-22 2017-05-02 유겐 카이샤 조호 카가쿠 켄큐쇼 Method for manufacturing ultra-fine bubbles having oxidizing radical or reducing radical by resonance foaming and vacuum cavitation, and ultra-fine bubble water manufacturing device
KR101767146B1 (en) * 2016-10-17 2017-08-10 임용범 The apparatus and method of generating with micro bubble and nano bubble
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
JP2017205763A (en) * 2015-04-08 2017-11-24 SonoCore株式会社 Manufacturing method of bubble
CN108002605A (en) * 2017-11-17 2018-05-08 浙江海洋大学 The processing method of antibiotic in a kind of marine culture wastewater
JP2018090514A (en) * 2016-12-01 2018-06-14 日新技研株式会社 Fine bubble mixed liquid having bactericidal effect
JP2018153159A (en) * 2017-03-21 2018-10-04 吉川工業株式会社 Aquarium fish growth system
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
KR20180130568A (en) 2016-05-13 2018-12-07 시그마 테크놀로지 유겐가이샤 Aqueous solution capable of administration in vivo and a method for producing the same
JP2019162633A (en) * 2013-10-03 2019-09-26 エベド ホールディングス インク. Liquid solution including nano-bubble
WO2020017415A1 (en) * 2018-07-20 2020-01-23 国立研究開発法人産業技術総合研究所 Water evaluation method and water evaluation mechanism
CN111265543A (en) * 2020-03-31 2020-06-12 潘纲 Medical nano oxygen infusion agent for controlling partial pressure of blood oxygen and preparation method and application thereof
JP2020168607A (en) * 2019-04-03 2020-10-15 国立研究開発法人産業技術総合研究所 Method for producing bubbles and method for producing material
CN113680225A (en) * 2021-08-20 2021-11-23 常州大学 Charged micro-nano bubble suspension injection machine based on heating cutting method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8046867B2 (en) 2006-02-10 2011-11-01 Tennant Company Mobile surface cleaner having a sparging device
US8025787B2 (en) 2006-02-10 2011-09-27 Tennant Company Method and apparatus for generating, applying and neutralizing an electrochemically activated liquid
US8156608B2 (en) 2006-02-10 2012-04-17 Tennant Company Cleaning apparatus having a functional generator for producing electrochemically activated cleaning liquid
BRPI0707585B1 (en) * 2006-02-10 2020-09-15 Tennant Company MOBILE SURFACE CLEANING DEVICE AND SURFACE CLEANING METHOD
US8609148B2 (en) 2006-10-25 2013-12-17 Revalesio Corporation Methods of therapeutic treatment of eyes
JP5255451B2 (en) * 2006-12-12 2013-08-07 国立大学法人 東京医科歯科大学 Preparation for tissue repair or regeneration
US8147876B2 (en) * 2007-02-27 2012-04-03 National University Corporation Tokyo Medical And Dental University Medical agent for preventing or treating diseases resulting from one of inflammation and remodeling, and method for preventing or treating the diseases
EP2207631A2 (en) 2007-10-04 2010-07-21 Tennant Company Method and apparatus for neutralizing electrochemically activated liquids
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
KR20110031190A (en) 2008-06-19 2011-03-24 텐난트 컴파니 Electrolysis de-scaling method with constant output
BR112012021936A2 (en) 2010-03-08 2016-05-31 Sharp Kk mold release treatment method, mold, anti-reflective film production method, mold release treatment device, and mold washer / dryer
EP2566460A4 (en) 2010-05-07 2015-12-23 Revalesio Corp Compositions and methods for enhancing physiological performance and recovery time
KR20130091759A (en) 2010-08-12 2013-08-19 레발레시오 코퍼레이션 Compositions and methods for treatment of taupathy
KR101483842B1 (en) 2013-02-22 2015-01-16 손덕순 Generation apparatus and method for electrolyte concentrated and fusion nano oxygen bubble water
CN106035142A (en) * 2016-05-30 2016-10-26 铜陵东晟生态农业科技有限公司 Procypris rabaudi cultivation method
GB2578105B (en) 2018-10-15 2023-06-28 Univ College Dublin Nat Univ Ireland Dublin A system, method and generator for generating nanobubbles or nanodroplets
JP7475025B2 (en) 2020-01-23 2024-04-26 国立大学法人東北大学 Water containing oxygen-containing nanoparticles
JP7152824B1 (en) 2022-08-26 2022-10-13 株式会社ナノバブル研究所 Cation-containing microbubble generator and cation generator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276675A (en) * 1996-04-17 1997-10-28 Kankyo Kagaku Kogyo Kk Gas-liquid contact apparatus
JP2000254483A (en) * 1999-03-12 2000-09-19 Babcock Hitachi Kk Cavitation reactor
JP2001009463A (en) * 1999-06-24 2001-01-16 Kobe Steel Ltd Underwater electric discharge method and apparatus
JP2001225060A (en) * 1999-12-08 2001-08-21 Mitsubishi Heavy Ind Ltd Water treatment method and its device
JP2002355684A (en) * 2001-05-31 2002-12-10 Jec Kk Wastewater treatment method and apparatus
JP2003245533A (en) * 2002-02-22 2003-09-02 Mori Kikai Seisakusho:Kk Ultrafine air bubble generator
JP2003245662A (en) * 2002-02-21 2003-09-02 Fm Ecology Kenkyusho:Kk Waste water treatment system
JP2003334548A (en) * 2002-05-20 2003-11-25 National Institute Of Advanced Industrial & Technology Method for producing nanometer air bubble
JP2004121962A (en) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3397154B2 (en) * 1997-12-30 2003-04-14 博文 大成 Revolving microbubble generator
JP4309021B2 (en) * 2000-05-10 2009-08-05 鈴木産業株式会社 Wastewater treatment system
JP3682286B2 (en) * 2000-06-23 2005-08-10 池田 好明 Fine bubble generator and fine bubble generator provided with the same
JP2002143885A (en) * 2000-11-14 2002-05-21 Hirobumi Onari Micro bubble

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276675A (en) * 1996-04-17 1997-10-28 Kankyo Kagaku Kogyo Kk Gas-liquid contact apparatus
JP2000254483A (en) * 1999-03-12 2000-09-19 Babcock Hitachi Kk Cavitation reactor
JP2001009463A (en) * 1999-06-24 2001-01-16 Kobe Steel Ltd Underwater electric discharge method and apparatus
JP2001225060A (en) * 1999-12-08 2001-08-21 Mitsubishi Heavy Ind Ltd Water treatment method and its device
JP2002355684A (en) * 2001-05-31 2002-12-10 Jec Kk Wastewater treatment method and apparatus
JP2003245662A (en) * 2002-02-21 2003-09-02 Fm Ecology Kenkyusho:Kk Waste water treatment system
JP2003245533A (en) * 2002-02-22 2003-09-02 Mori Kikai Seisakusho:Kk Ultrafine air bubble generator
JP2003334548A (en) * 2002-05-20 2003-11-25 National Institute Of Advanced Industrial & Technology Method for producing nanometer air bubble
JP2004121962A (en) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
大成博文: "マイクロ・ナノバブルの発生機構と生理活性", 日本混相流学会年会講演会講演論文集, JPN4007009529, 2003, JP, pages 221 - 222, ISSN: 0000848156 *
大成博文: "マイクロ・ナノバブルの発生機構と生理活性", 日本混相流学会年会講演会講演論文集, JPN6008002297, 2003, JP, pages 221 - 222, ISSN: 0000965577 *
大成博文: "第1部マイクロバブルの魅力と技術的可能性を探る", 混相流レクチャーシリーズ 第28回マイクロバブルの魅力とその利用技術, JPN4007009528, June 2003 (2003-06-01), JP, pages 1 - 14, ISSN: 0000848157 *
大成博文: "第1部マイクロバブルの魅力と技術的可能性を探る", 混相流レクチャーシリーズ 第28回マイクロバブルの魅力とその利用技術, JPN6008002302, June 2003 (2003-06-01), JP, pages 1 - 14, ISSN: 0000965578 *

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349191B2 (en) 1997-10-24 2013-01-08 Revalesio Corporation Diffuser/emulsifier for aquaculture applications
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Production method of nano-bubble
JP2006289183A (en) * 2005-04-06 2006-10-26 Nano Bubble Kk Nano-bubble forming method and apparatus
WO2007034580A1 (en) * 2005-09-23 2007-03-29 Sadatoshi Watanabe Nanofluid generator and cleaning apparatus
US8726918B2 (en) 2005-09-23 2014-05-20 Sadatoshi Watanabe Nanofluid generator and cleaning apparatus
JP2007136255A (en) * 2005-11-14 2007-06-07 Chiken Kk Nano-bubble producing apparatus
JP2007137791A (en) * 2005-11-16 2007-06-07 Kenko Hyakunijussai:Kk Novel physicochemically harmonized bactericidal disinfectant solution
JP2007152301A (en) * 2005-12-07 2007-06-21 Nanoplanet Kenkyusho:Kk Functional water producing method and functional water
KR100744739B1 (en) * 2006-03-29 2007-08-01 옥철호 Apparatus for generation of water drop in a water tank
US8418719B2 (en) 2006-07-18 2013-04-16 Fuji Xerox Co., Ltd. Microchannel device
JP2008043906A (en) * 2006-08-19 2008-02-28 Nanoplanet Kenkyusho:Kk Functional microbubble and functional microbubble water
JP2008063258A (en) * 2006-09-06 2008-03-21 Tokyo Medical & Dental Univ Tissue-preserving solution
US7749692B2 (en) 2006-09-06 2010-07-06 National University Corporation Tokyo Medical And Dental University Tissue preservation method comprising contacting tissue with a solution of nanobubbles and salt
JP2008093611A (en) * 2006-10-13 2008-04-24 National Institute Of Advanced Industrial & Technology Manufacturing method of water containing extremely fine air bubble and water containing extremely fine air bubble
JP2014111648A (en) * 2006-10-25 2014-06-19 Revalesio Corp Methods of wound care and treatment
US8784897B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of therapeutic treatment of eyes
US8470893B2 (en) 2006-10-25 2013-06-25 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US9511333B2 (en) 2006-10-25 2016-12-06 Revalesio Corporation Ionic aqueous solutions comprising charge-stabilized oxygen-containing nanobubbles
AU2007308840B2 (en) * 2006-10-25 2014-02-27 Revalesio Corporation Methods of therapeutic treatment of eyes and other human tissues using an oxygen-enriched solution
EP2083876A2 (en) * 2006-10-25 2009-08-05 Revalesio Corporation Methods of wound care and treatment
US9402803B2 (en) 2006-10-25 2016-08-02 Revalesio Corporation Methods of wound care and treatment
EP2097107A2 (en) * 2006-10-25 2009-09-09 Revalesio Corporation Methods of therapeutic treatment of eyes and other human tissues using an oxygen-enriched solution
JP2010508088A (en) * 2006-10-25 2010-03-18 リバルシオ コーポレイション Wound care and treatment methods
US8445546B2 (en) 2006-10-25 2013-05-21 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
EP3170401A1 (en) * 2006-10-25 2017-05-24 Revalesio Corporation Ionic aqueous fluid composition containing oxygen microbubbles
WO2008115290A2 (en) 2006-10-25 2008-09-25 Revalesio Corporation Methods of wound care and treatment
EP2083876A4 (en) * 2006-10-25 2012-09-19 Revalesio Corp Methods of wound care and treatment
JP2014131806A (en) * 2006-10-25 2014-07-17 Revalesio Corp Mixing device and output mixture thereof
AU2007308840C1 (en) * 2006-10-25 2014-09-25 Revalesio Corporation Methods of therapeutic treatment of eyes and other human tissues using an oxygen-enriched solution
US9512398B2 (en) 2006-10-25 2016-12-06 Revalesio Corporation Ionic aqueous solutions comprising charge-stabilized oxygen-containing nanobubbles
US8784898B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of wound care and treatment
EP2097107A4 (en) * 2006-10-25 2011-10-05 Revalesio Corp Methods of therapeutic treatment of eyes and other human tissues using an oxygen-enriched solution
JP4481342B2 (en) * 2006-12-11 2010-06-16 株式会社オプトクリエーション Nano bubble water production apparatus and production method
US9416329B2 (en) 2006-12-11 2016-08-16 Opt Creation, Inc. Apparatus and process for production of nanobubble liquid
JP2009114059A (en) * 2006-12-11 2009-05-28 Opt Creation:Kk Apparatus and method for producing nanobubble liquid
JP2014028832A (en) * 2006-12-12 2014-02-13 Tokyo Medical And Dental Univ Preparation for sterilization or disinfection of tissue
JPWO2008072371A1 (en) * 2006-12-12 2010-03-25 国立大学法人 東京医科歯科大学 Preparations for tissue sterilization or disinfection
WO2008072371A1 (en) 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University Preparation for sterilization or disinfection of tissue
JP2008156320A (en) * 2006-12-26 2008-07-10 Hydrox Kk Antioxidative functional water
US8721992B2 (en) 2007-03-27 2014-05-13 Fuji Xerox Co., Ltd Micro fluidic device
JP2008246054A (en) * 2007-03-30 2008-10-16 Sharp Corp Bathtub device, therapeutic bathtub device, bath water, and therapeutic bath water
JP2008259456A (en) * 2007-04-12 2008-10-30 Reo Laboratory Co Ltd Method for preserving fish and shellfish
US8889075B2 (en) 2007-09-26 2014-11-18 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Apparatus for producing water having redox activity
US8349273B2 (en) 2007-10-12 2013-01-08 Fuji Xerox Co., Ltd. Microreactor device
JP2009101299A (en) * 2007-10-24 2009-05-14 Fuji Xerox Co Ltd Micro nano-bubble generation method, washing method for micro-flow passage, micro nano-bubble generation system, and micro-reactor
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
JP2009131770A (en) * 2007-11-29 2009-06-18 Reo Laboratory Co Ltd Manufacturing method of carbon dioxide-nano bubble water
JP2009131769A (en) * 2007-11-29 2009-06-18 Reo Laboratory Co Ltd Manufacturing method of nitrogen-nano bubble water
JP2009188116A (en) * 2008-02-05 2009-08-20 Shibaura Mechatronics Corp Processing apparatus and processing method for substrate
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US8980325B2 (en) 2008-05-01 2015-03-17 Revalesio Corporation Compositions and methods for treating digestive disorders
JP2011519861A (en) * 2008-05-01 2011-07-14 レバレジオ コーポレイション Compositions and methods for treating gastrointestinal disorders
JP2010075180A (en) * 2008-09-01 2010-04-08 Hiroyuki Tanaka Nk activity enhancer and use thereof
US8679336B2 (en) 2008-11-14 2014-03-25 Fuji Xerox Co., Ltd. Microchannel device, separation apparatus, and separation method
KR101085840B1 (en) 2008-12-04 2011-11-24 주식회사환경과생명 Nano Bubble proceded water Generator
US8585278B2 (en) 2009-03-16 2013-11-19 Fuji Xerox Co., Ltd. Micro fluidic device and fluid control method
US9011922B2 (en) 2009-04-27 2015-04-21 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US8815292B2 (en) 2009-04-27 2014-08-26 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
JP2011011126A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Apparatus for producing functional liquid
EP2463022A4 (en) * 2009-08-06 2014-09-03 Ligaric Co Ltd Composition and process for production thereof
EP2463022A1 (en) * 2009-08-06 2012-06-13 Kyowakisetsu Co., Ltd. Composition and process for production thereof
JP2011055794A (en) * 2009-09-13 2011-03-24 Kumamoto Seifun Kk Grain treated with oxygen nanobubble water and superheated steam
WO2011036722A1 (en) * 2009-09-25 2011-03-31 Tanaka Hiroyuki Enhancer of nk activity and use thereof
KR101219880B1 (en) * 2010-10-08 2013-01-08 한국생산기술연구원 Manufacturing Method Of Tofu Using Nano Bubble
JP2013006146A (en) * 2011-06-24 2013-01-10 Mitsubishi Electric Corp Active oxygen species generator, water heater and air conditioner
JP2013135661A (en) * 2011-07-25 2013-07-11 Mg Grow Up:Kk Method for producing highly-concentrated oxygen treated water, highly-concentrated oxygen treated water and freshness retention treatment of fresh fish and shellfish
JP2013124250A (en) * 2011-12-16 2013-06-24 Yamano Gakuen Permanent wave second agent having small load on hair and environment
JP2014014359A (en) * 2012-06-14 2014-01-30 Takaaki Matsumoto Fish-and-shellfish oxygen water and manufacturing system therefor, fish-and-shellfish breeding apparatus, fish-and-shellfish breeding method, fish-and-shellfish transporting method, and oxygen ice for fish-and-shellfish
JPWO2014148397A1 (en) * 2013-03-18 2017-02-16 学校法人北里研究所 Nanobubble sterilization method and nanobubble generator used therefor
JP2019162633A (en) * 2013-10-03 2019-09-26 エベド ホールディングス インク. Liquid solution including nano-bubble
JP2015188822A (en) * 2014-03-28 2015-11-02 国立研究開発法人産業技術総合研究所 Manufacturing method for water containing nano-bubbles
US10500553B2 (en) 2014-08-22 2019-12-10 Johokagaku Kenkyusyo Co. Ltd. Method for manufacturing ultra-fine bubbles having oxidizing radical or reducing radical by resonance foaming and vacuum cavitation, and ultra-fine bubble water manufacturing device
US11007496B2 (en) 2014-08-22 2021-05-18 Johokagaku Kenkyusyo Co. Ltd. Method for manufacturing ultra-fine bubbles having oxidizing radical or reducing radical by resonance foaming and vacuum cavitation, and ultra-fine bubble water manufacturing device
KR20170046720A (en) 2014-08-22 2017-05-02 유겐 카이샤 조호 카가쿠 켄큐쇼 Method for manufacturing ultra-fine bubbles having oxidizing radical or reducing radical by resonance foaming and vacuum cavitation, and ultra-fine bubble water manufacturing device
US10857104B2 (en) 2015-04-08 2020-12-08 Sonocore, Inc. Method for manufacturing bubbles and bubbles
JP2017205763A (en) * 2015-04-08 2017-11-24 SonoCore株式会社 Manufacturing method of bubble
JP2017043602A (en) * 2015-08-25 2017-03-02 禾▲よう▼生技股▲ふん▼有限公司 High-oxygen water, biocompatible composition containing high-oxygen water, production method of high-oxygen water, and application of high-oxygen water
KR20180130568A (en) 2016-05-13 2018-12-07 시그마 테크놀로지 유겐가이샤 Aqueous solution capable of administration in vivo and a method for producing the same
KR101767146B1 (en) * 2016-10-17 2017-08-10 임용범 The apparatus and method of generating with micro bubble and nano bubble
JP2018090514A (en) * 2016-12-01 2018-06-14 日新技研株式会社 Fine bubble mixed liquid having bactericidal effect
JP2018153159A (en) * 2017-03-21 2018-10-04 吉川工業株式会社 Aquarium fish growth system
CN108002605B (en) * 2017-11-17 2021-05-14 浙江海洋大学 Method for treating antibiotics in mariculture wastewater
CN108002605A (en) * 2017-11-17 2018-05-08 浙江海洋大学 The processing method of antibiotic in a kind of marine culture wastewater
WO2020017415A1 (en) * 2018-07-20 2020-01-23 国立研究開発法人産業技術総合研究所 Water evaluation method and water evaluation mechanism
JP2020168607A (en) * 2019-04-03 2020-10-15 国立研究開発法人産業技術総合研究所 Method for producing bubbles and method for producing material
JP7295395B2 (en) 2019-04-03 2023-06-21 ダイキン工業株式会社 Method for producing bubbles and method for producing substance
CN111265543A (en) * 2020-03-31 2020-06-12 潘纲 Medical nano oxygen infusion agent for controlling partial pressure of blood oxygen and preparation method and application thereof
CN113680225A (en) * 2021-08-20 2021-11-23 常州大学 Charged micro-nano bubble suspension injection machine based on heating cutting method
CN113680225B (en) * 2021-08-20 2022-05-31 常州大学 Charged micro-nano bubble suspension injection machine based on heating cutting method

Also Published As

Publication number Publication date
WO2005084786A1 (en) 2005-09-15
JP4080440B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP2005246294A (en) Oxygen-nanobubble water and production method therefor
JP2005246294A5 (en)
US20070286795A1 (en) Oxygen Nanobubble Water and Method of Producing the Same
JP4059506B2 (en) Ozone water and method for producing the same
JP4144669B2 (en) Method for producing nanobubbles
JP6762467B2 (en) Aeration device
KR101379274B1 (en) Apparatus for water containing nitric oxide having sterilizing function
KR101085840B1 (en) Nano Bubble proceded water Generator
JP5294370B2 (en) Method for producing water containing reactive species and water containing reactive species
JP5854502B2 (en) Ozone sterilizer
WO2004016344A1 (en) Minute air bubble-containing liquid matter and device for manufacturing the liquid matter
CN107459203A (en) A kind of device for generating hydrogen rich water
JP2009131770A (en) Manufacturing method of carbon dioxide-nano bubble water
CN204162498U (en) The micro-nano bubble water machine of sun power
JP4921332B2 (en) Method for producing nitrogen nanobubble water
CN102246712B (en) Method of expelling ectoparasites parasitic on breeding fish
JP5596276B2 (en) Super fine bubble water
JP2012239938A (en) Water-quality improvement apparatus, water-quality improving method and metal ion water generator
JP2007325558A (en) Method for water treatment and apparatus for water treatment
KR100509813B1 (en) Apparatus of Dissolving Ozone in Water with High Degree of Efficiency and Method thereof
KR101919406B1 (en) Health Care System Using Quantum Energy Generator built-in Oxidized Nitrogen Contained Vaporizing Apparatus
JP2013193000A (en) Ballast water treating system and ballast water treating method
JP2016198096A (en) Seafood processor, seafood processing method, frozen seafood, and reviving method of frozen seafood
JP2004267868A (en) System for dissolving/storing/supplying gas with line atomizer
Chaurasia Nanobubbles: an emerging science in nanotechnology

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070404

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4080440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term