JP2003245662A - Waste water treatment system - Google Patents

Waste water treatment system

Info

Publication number
JP2003245662A
JP2003245662A JP2002089898A JP2002089898A JP2003245662A JP 2003245662 A JP2003245662 A JP 2003245662A JP 2002089898 A JP2002089898 A JP 2002089898A JP 2002089898 A JP2002089898 A JP 2002089898A JP 2003245662 A JP2003245662 A JP 2003245662A
Authority
JP
Japan
Prior art keywords
wastewater
treatment system
microbubbles
wastewater treatment
generating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002089898A
Other languages
Japanese (ja)
Inventor
Futoshi Kimura
太 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FM ECOLOGY KENKYUSHO KK
Original Assignee
FM ECOLOGY KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FM ECOLOGY KENKYUSHO KK filed Critical FM ECOLOGY KENKYUSHO KK
Priority to JP2002089898A priority Critical patent/JP2003245662A/en
Publication of JP2003245662A publication Critical patent/JP2003245662A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively reduce excess sludge and to provide an effective treatment method for waste water. <P>SOLUTION: A microbubble generation means, a cavitation technique and a discharge system are provided in order to solve the problem. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[発明の属する技術分野]本発明は、廃水
処理システムとミキシング装置、特に各種産業から発生
する廃水や過程からの生活廃水ないし下水その他の汚廃
水(廃水と略称する)を処理する新規な廃水処理システ
ムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment system and a mixing device, and more particularly to a novel treatment of wastewater generated from various industries, domestic wastewater from processes, sewage and other wastewater (abbreviated as wastewater). Wastewater treatment system.

【0002】[従来の技術]食品プラント、パルププラ
ント、化学プラント等の各種産業から発生する廃水や家
庭からの生活廃水ないし下水その他の廃水をそのまま放
流すると、河川、湖沼および海洋は勿論、土壌及び環境
までも汚染することになり、人間生活自体が、危機的状
態になってしまうので、その対策が緊急の課題となって
いる。このような状況を回避するために、各産業施設や
自治体等では廃水処理装置を設置して環境にやさしい排
水を放流するようになってきている。
[Prior Art] When wastewater generated from various industries such as food plants, pulp plants, chemical plants, etc. and household wastewater or sewage and other wastewater are discharged as they are, not only rivers, lakes and oceans but also soil and The environment is also polluted, and the human life itself is in a critical state, so countermeasures against it are an urgent task. In order to avoid such a situation, industrial facilities, local governments, etc. have installed wastewater treatment devices to discharge environmentally friendly wastewater.

【0003】ところで、各種産業から発生する廃水や家
庭からの生活廃水ないし下水その他の廃水を処理する従
来の廃水処理方法は、大別して汚染物ないし汚染成分を
濾過、沈殿などによって分別、除去する物理的処理と、
化学薬品など用いて微細粒子を凝集して除去する化学的
処理とが実施されてきた。これに加えて、近年微生物を
利用する活性汚泥法が注目されるようになってきた。微
生物を利用する活性汚泥法は、物理的または化学的に除
去困難な廃水を特別な薬品を用いずに、すなわち環境に
悪影響を与えずに廃水を有効に処理できるという特徴を
有している。
By the way, conventional wastewater treatment methods for treating wastewater generated from various industries, domestic wastewater from households, sewage, and other wastewater are roughly classified into physical types in which contaminants or contaminants are separated and removed by filtration, precipitation, or the like. Processing,
A chemical treatment has been performed in which fine particles are aggregated and removed by using a chemical agent or the like. In addition to this, the activated sludge method utilizing microorganisms has recently been drawing attention. The activated sludge method utilizing microorganisms is characterized in that wastewater that is difficult to remove physically or chemically can be effectively treated without using a special chemical, that is, without adversely affecting the environment.

【0004】通常、微生物は好気性菌と嫌気性菌に区分
される。好気性菌は好気条件下で育成増殖し、嫌気条件
下ではやがて死滅する。これとは反対に嫌気性菌は嫌気
条件下で育成増殖し、好気条件下では生育休止状態とな
り、やがて死滅する。しかし、微生物はその育成増殖条
件下において、有機物または窒素、燐を栄養分として吸
収するが、生育休止状態ではそうした栄養分の吸収作用
が停止することとなるから、微生物を利用した廃水処理
においては有機物は処理されるが、窒素、燐は処理され
ないまま残ることとなるので、窒素、燐を多く含む廃水
には必ずしも有効ではない。
Usually, microorganisms are classified into aerobic and anaerobic ones. Aerobic bacteria grow and grow under aerobic conditions and eventually die under anaerobic conditions. On the contrary, anaerobic bacteria grow and proliferate under anaerobic conditions, and become a growth quiescent state under aerobic conditions, and eventually die. However, microorganisms absorb organic substances or nitrogen and phosphorus as nutrients under their growth and growth conditions, but the absorption action of such nutrients is stopped in a growth quiescent state, so organic substances are not treated in wastewater treatment using microorganisms. Although it is treated, nitrogen and phosphorus are left untreated and are not necessarily effective for wastewater containing a large amount of nitrogen and phosphorus.

【0005】[発明が解決しようとする課題]一般的な
廃水はBOD(生物学的酸素要求量)、COD(浮遊物
質量)で代表されるように、有機物と共に窒素分や燐酸
分などが混在しているのが普通であり、したがって、こ
のような廃水を微生物で処理するには好気性条件と嫌気
性条件を形成した特別の処理設備を設けねばならず、処
理操作が繁雑となり、しかも処理設備も大型となるため
設備費や運転操作費もかさむという問題がある。
[Problems to be Solved by the Invention] In general wastewater, as represented by BOD (biological oxygen demand) and COD (amount of suspended solids), nitrogen and phosphoric acid are mixed together with organic matter. Therefore, in order to treat such wastewater with microorganisms, it is necessary to install special treatment equipment that has formed aerobic and anaerobic conditions, which makes the treatment operation complicated and Since the equipment becomes large, there is a problem that the equipment cost and the operation cost are also increased.

【0006】上記したような微生物を用いて廃水を処理
する従来設備の問題点を解消するために、回転処理部に
廃水とバチルス菌を主体とした微生物およびこの微生物
の活性剤を注入して、構成樹脂などの繊維材による交錯
多孔組織回転体を廃水に部分浸漬させた条件下で回転作
動させるように構成された微生物による廃水の浄化処理
方法(特開平11−42496号公報)が提案されてい
る。
In order to solve the problems of the conventional equipment for treating wastewater using the above-mentioned microorganisms, wastewater and a microorganism mainly composed of Bacillus and an activator of this microorganism are injected into the rotary treatment section, A method for purifying wastewater by microorganisms (Japanese Unexamined Patent Publication No. 11-42496) has been proposed, which is configured to rotate the crossed porous tissue rotating body made of a fibrous material such as a constituent resin under the condition of being partially immersed in the wastewater. There is.

【0007】また、微生物による他の廃水の浄化処理方
法として、原水調整槽で曝気を行うことにより硝化を促
進させる処理方法や、原水調整槽の入口部でオゾン処理
をして分子に傷をつけ処理促進する処理方法や、あるい
は原水調整槽の出口部に回転円盤または固定槽を設け一
次硝化処理を行う処理方法等により、微生物による廃水
の浄化処理促進方法が行われている。しかしながら、こ
れら従来技術はいずれも主として曝気槽の増設対策とし
て開発されたものであり、その中身は生物硝化を促進す
ることのみに止どまっており、全体の廃水処理システム
のイニシャルコスト及びランニングコストを大幅に低減
させることはできなかった。
[0007] Further, as a method for purifying other waste water by microorganisms, a method of promoting nitrification by aeration in a raw water adjusting tank, or ozone treatment at the inlet of the raw water adjusting tank to damage molecules A method for accelerating the purification of wastewater by microorganisms is carried out by a method of accelerating the treatment, or a method of performing a primary nitrification treatment by providing a rotating disk or a fixed tank at the outlet of the raw water adjusting tank. However, all of these conventional techniques were developed mainly as a measure for adding an aeration tank, and the contents of the conventional techniques are merely to promote bionitrification, and the initial cost and running cost of the entire wastewater treatment system Could not be significantly reduced.

【0008】本発明は、上記した従来の廃水処理システ
ムを改善するためになされたもので、その課題は非常に
処理効率が高くかつ経済的な新規な廃水処理システムを
提供する事である。
The present invention has been made in order to improve the above-mentioned conventional wastewater treatment system, and its object is to provide a novel wastewater treatment system which has extremely high treatment efficiency and is economical.

【0009】[課題を解決するための手段]上記課題を
解決するために、請求項1記載の発明は、廃水を処理す
る廃水処理システムにおいて、マイクロバブルを発生さ
せる微細気泡発生手段と、前記微細気泡発生手段で発生
させたマイクロバブルを菌体を含む廃水に、加圧する加
圧手段と、この加圧された流体を急激に減圧する減圧手
段とを備え、前記減圧された廃水に、高圧パルス放電す
る事によりマイクロバブル中の酸素をラジカル化させる
ようにしたことを特徴とする。
[Means for Solving the Problem] In order to solve the above-mentioned problems, the invention according to claim 1 is a wastewater treatment system for treating wastewater, and in the wastewater treatment system, fine bubble generating means for generating microbubbles and the fine bubble generating means. A high-pressure pulse is added to the depressurized wastewater, which comprises a pressurizing means for pressurizing the microbubbles generated by the bubble-generating means into wastewater containing bacterial cells, and a depressurizing means for rapidly depressurizing the pressurized fluid. It is characterized in that oxygen in the microbubbles is converted into radicals by discharging.

【0010】請求項2記載の発明は、 廃水を処理する
廃水処理システムにおいて、酸素ガスを主成分とするマ
イクロバブルを発生させる微細気泡発生手段と、前記微
細気泡発生手段で発生させたマイクロバブルを菌体を含
む廃水に、加圧する加圧手段と、この加圧された流体を
急激に減圧する減圧手段とを備え、前記減圧された廃水
に、高圧パルス放電する事によりマイクロバブル中の酸
素をラジカル化させるようにしたことを特徴とする。
According to a second aspect of the present invention, in a wastewater treatment system for treating wastewater, fine bubble generating means for generating microbubbles containing oxygen gas as a main component and microbubbles generated by the fine bubble generating means are provided. The waste water containing the bacterial cells is provided with a pressurizing means for pressurizing and a depressurizing means for rapidly depressurizing the pressurized fluid, and the depressurized waste water is charged with oxygen in the microbubbles by high-pressure pulse discharge. It is characterized in that it is radicalized.

【0011】請求項3記載の発明は、廃水を処理する廃
水処理システムにおいて、オゾンガスを含むマイクロバ
ブルを発生させる微細気泡発生手段と、前記微細気泡発
生手段で発生させたマイクロバブルを菌体を含む廃水
に、加圧する加圧手段と、この加圧された流体を急激に
減圧する減圧手段とを備え、前記減圧された廃水に、高
圧パルス放電する事によりマイクロバブル中のラジカル
を増加させるようにしたことを特徴とする。
According to a third aspect of the present invention, in a wastewater treatment system for treating wastewater, microbubble generating means for generating microbubbles containing ozone gas, and microbubbles generated by the microbubble generating means include bacterial cells. The wastewater is provided with a pressurizing means for pressurizing and a depressurizing means for rapidly depressurizing the pressurized fluid, so that the high-pressure pulse discharge is applied to the depressurized wastewater to increase the radicals in the microbubbles. It is characterized by having done.

【0012】請求項4記載の発明は、廃水を処理する廃
水処理システムにおいて、マイクロバブルを発生させる
微細気泡発生手段と、前記微細気泡発生手段で発生させ
たマイクロバブルを菌体を含む廃水に、加圧する加圧手
段と、この加圧された流体を急激に減圧する減圧手段と
を備え、前記減圧された廃水に、紫外線照射することに
よりマイクロバブル中の酸素をラジカル化させるように
したことを特徴とする。
According to a fourth aspect of the present invention, in a wastewater treatment system for treating wastewater, microbubble generating means for generating microbubbles, and microbubbles generated by the fine bubble generating means for wastewater containing bacterial cells, It is provided with a pressurizing unit for pressurizing and a depressurizing unit for rapidly depressurizing the pressurized fluid, and the depressurized wastewater is irradiated with ultraviolet rays to radicalize oxygen in the microbubbles. Characterize.

【0013】請求項5記載の発明は、廃水を処理する廃
水処理システムにおいて、オゾンガスを含むマイクロバ
ブルを発生させる微細気泡発生手段と、前記微細気泡発
生手段で発生させたマイクロバブルを菌体を含む廃水
に、加圧する加圧手段と、この加圧された流体を急激に
減圧する減圧手段とを備えることを特徴とする。
According to a fifth aspect of the present invention, in a wastewater treatment system for treating wastewater, microbubble generating means for generating microbubbles containing ozone gas, and microbubbles generated by the microbubble generating means include bacterial cells. The wastewater is provided with a pressurizing means for pressurizing and a depressurizing means for rapidly depressurizing the pressurized fluid.

【0014】請求項6記載の発明は、請求項1〜5の後
段に菌体を固定する菌体固定手段を付加した事を、特徴
とする。
The invention according to claim 6 is characterized in that a microbial cell fixing means for fixing microbial cells is added to the subsequent stage of claims 1 to 5.

【0015】請求項7記載の発明は、請求項1〜6をP
H8以上12以下の条件で処理する事を特徴とする。
The invention according to claim 7 is the same as claim 1 to 6
It is characterized in that it is processed under the condition of H8 or more and 12 or less.

【0016】請求項1、請求項2、請求項3、請求項4
の発明によると、マイクロバブル及び、キャビテーショ
ンのパワー、放電によるラジカル発生による酸化分解、
破砕分散による、マイクロエマルジョン化等の相乗効果
により、廃水処理効率を非常に向上させる事が出来る。
Claim 1, Claim 2, Claim 3, and Claim 4
According to the invention, microbubbles and cavitation power, oxidative decomposition by radical generation by discharge,
The wastewater treatment efficiency can be greatly improved due to the synergistic effect of microemulsion and the like by crushing and dispersing.

【0017】請求項6記載の発明によると、ラジカル処
理された廃液が、その性状に合う菌体を固定増殖した固
定槽を通過する事により更に処理効率が向上する。
According to the sixth aspect of the invention, the treatment efficiency is further improved by passing the radical-treated waste liquid through the fixing tank in which the bacterial cells suitable for its properties are fixed and propagated.

【0018】次に、本新技術の基本原理について説明す
る。マイクロバルブを大量に混入された流体が、加圧、
急減圧を繰り返すとか、あるいは強い攪拌を受けること
によりキャビテイションが発生し、更にミキシング部で
放電する事により、酸素分子がラジカル化する、又バブ
ルの破壊現象も同時に発生し局部的に発熱して酸化分解
が促進される。そして汚廃水中に含まれている有機物の
結合を切る等の現象が起こって低分子化し、メタン、エ
タン、プロパン等の形で水の中よりストリッピングさ
れ、後段で硝化しやすい状態となる。また油分障害もマ
イクロエマルジョンとなることで菌体の表面を覆って酸
素の取り入れ障害を起こしていたものが、捕食できるレ
ベルまで細かくされ、解消される。
Next, the basic principle of the new technology will be described. Fluid mixed with a large amount of microvalve is pressurized,
Cavitation occurs due to repeated rapid depressurization or strong agitation, and further discharge in the mixing section causes oxygen molecules to radicalize, and bubble destruction also occurs at the same time, causing local heat generation. Oxidative decomposition is promoted. Then, a phenomenon such as breaking the bonds of organic substances contained in the wastewater occurs to lower the molecular weight, and is stripped from the water in the form of methane, ethane, propane, etc., and nitrification is likely to occur in the latter stage. In addition, the oil damage also becomes a microemulsion, which covers the surface of the bacterial cells and causes an oxygen intake failure.

【0019】原水調整槽でこの処理のみを行ったケース
では、滞留時間が半日ぐらいのため、この処理により生
成された微生物が後段曝気槽に流入してしまうが、処理
出口の槽内または槽外に菌体固定槽を設けることにより
処理レベルは格段に向上する。固定化担体は、組みひも
技術応用単体、合成繊維等による交錯多孔組織体、セラ
ミック多孔体等、菌体を固定できるものであればよい。
また固定槽の入口部に複合して、微細気泡発生装置を付
加することによりエマルジョン化の能力を高めることが
可能である。この菌体固定槽に固定される微生物として
は、バチルス菌の固定化が有効であり、次のような微生
物が複数含まれているのが一般的であるである。すなわ
ち、微生物としては、オペルクラリア、ボルティケラ、
キネトキムル、パラメシウム、コルポーダ、コルピジウ
ム、ボド、オイコモナス、モナス、プレウロモナス、ラ
ブドライムス、フィロジナ、プリスチナ、ゾーグレア、
ベギアトア、スフェロチルスが挙げられる。この処理に
よるBOD除去率は70%以上、窒素、燐の除去率は9
0%以上を達成した。
In the case where only this treatment is carried out in the raw water conditioning tank, the residence time is about half a day, so the microorganisms produced by this treatment flow into the latter aeration tank, but inside or outside the treatment outlet tank. The treatment level is markedly improved by providing a cell-fixing tank in the. The immobilization carrier may be any substance that can immobilize bacterial cells, such as a simple substance applied with a braiding technique, an interstitial porous tissue made of synthetic fibers, a ceramic porous body, or the like.
In addition, it is possible to enhance the emulsification ability by adding a fine bubble generator in combination with the inlet of the fixing tank. Immobilization of Bacillus is effective as a microorganism to be fixed in the cell-fixing tank, and it is common that a plurality of the following microorganisms are contained. That is, as microorganisms, Opelclaria, Volticera,
Kinetokimul, paramesium, colpoda, colpidium, vodo, eucomonas, monas, pleuromonas, lab drymus, filogina, pristina, zogrea,
Examples include Begia Toa and Spherocillus. The BOD removal rate by this treatment is 70% or more, and the removal rate of nitrogen and phosphorus is 9%.
Achieved 0% or more.

【0020】また、余剰汚泥を高圧、又はオゾン、酸化
物と混合して処理し、可溶化させ曝気槽で再処理する方
式が提案されているが、菌相が著しく変わるとか、処理
状況が悪くなるとか、燐等の濃縮が起こる等の問題があ
る。これらの処理液を本発明の廃水処理システムに導入
することにより、これらの処理能力を半分以下にしても
十分な汚泥減量化効果が得られ、障害もなくなる。
Further, a method has been proposed in which excess sludge is treated with high pressure or mixed with ozone and oxides, solubilized and retreated in an aeration tank, but the microflora changes remarkably or the treatment condition is poor. However, there are problems such as concentration of phosphorus. By introducing these treatment liquids into the wastewater treatment system of the present invention, a sufficient sludge reduction effect can be obtained even if these treatment capacities are reduced to less than half, and obstacles are eliminated.

【0021】さらに、本方式を、PH条件の変化で確認
した、ところPH8〜12の条件で汚泥減量効果がある
ことが確認できた。 [発明の実施の形態]以下本発明の実施の形態を図面を
参照して説明する。図1は、本発明の一実施形態である
微生物による廃水処理システムの概略フロー図である。
Further, this system was confirmed by changing the PH conditions, and it was confirmed that the sludge reducing effect was obtained under the conditions of PH8-12. BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic flow diagram of a wastewater treatment system using microorganisms according to an embodiment of the present invention.

【0022】図に示すように、本実施形態の廃水処理シ
ステムは、原水である廃水中に混入しているゴミなどを
濾過するスクリーン1と、このスクリーン1で濾過され
た原水を蓄える原水ピット2と、マイクロバブルと菌体
を原水ピット2から流出する原水に加圧及び減圧注入す
るミキサー4及びバチルス菌体を固定した菌体固定槽5
と、マイクロバブルと菌体を含む原水が流入する原水調
整槽3と、原水調整槽3で調整された原水を曝気する曝
気槽6と、この曝気槽6で曝気された原水を蓄える沈澱
槽7と、この沈澱槽7の上澄を放流するために蓄える放
流ピット8と、高圧パルス放電装置9と、空気を加圧し
てミキサー4に注入するコンプレッサー10と、沈澱槽
7で沈澱した汚泥を蓄える汚泥槽11と、汚泥槽11の
汚泥を脱水してケーキとする汚泥脱水機12とから構成
されている。
As shown in the figure, in the wastewater treatment system of this embodiment, a screen 1 for filtering dust and the like mixed in the wastewater, which is raw water, and a raw water pit 2 for storing the raw water filtered by this screen 1. And a mixer 4 for injecting microbubbles and bacterial cells into raw water flowing out from the raw water pit 2 under pressure and reduced pressure, and a bacterial cell fixing tank 5 in which Bacillus bacterial cells are fixed
A raw water adjusting tank 3 into which raw water containing microbubbles and bacteria flows, an aeration tank 6 for aerating the raw water adjusted by the raw water adjusting tank 3, and a precipitation tank 7 for storing the raw water aerated by the aeration tank 6. A discharge pit 8 for discharging the supernatant of the settling tank 7, a high-pressure pulse discharge device 9, a compressor 10 for pressurizing air and injecting it into the mixer 4, and a sludge settling in the settling tank 7. It is composed of a sludge tank 11 and a sludge dehydrator 12 that dehydrates the sludge in the sludge tank 11 into a cake.

【0023】次に、本実施形態の作用について説明す
る。図において、ミキサー4で発生されたマイクロバブ
ルを菌体固定槽5に注入することで、大量に混入された
菌体と空気を加圧された状態で、原水である廃水と共に
原水調整槽3に流入するが、ミキサー4では加圧と減圧
が繰り返されるので、この時起こるキャビテーション及
びその後の激しい乱流によりマイクロバブルが破壊さ
れ、さらに放電により酸素分子がラジカル化するこれに
より原水である廃水の酸化分解が起こる。また、同時に
原水調整槽3内に汚廃水が流入される時に、この汚廃水
中に含まれている有機物の結合が切れてメタン、エタ
ン、プロパン等の形で水の中よりストリッピングされ
る。そして、原水調整槽3内に放出された汚廃水中のマ
イクロバブルは長時間残留しているので、その間原水調
整槽3内は過飽和な溶存酸素状態を保ちつづけ、生物酸
化が進行する。
Next, the operation of this embodiment will be described. In the figure, by injecting the microbubbles generated by the mixer 4 into the bacterial cell fixing tank 5, a large amount of the mixed bacterial cells and air are pressurized to the raw water adjusting tank 3 together with the waste water which is the raw water. Although it flows in, the mixer 4 repeats pressurization and depressurization, so cavitation that occurs at this time and the subsequent turbulent flow destroys the microbubbles, and further discharges oxygen molecules into radicals, thereby oxidizing the wastewater that is raw water. Decomposition occurs. At the same time, when the wastewater is flowed into the raw water adjusting tank 3, the organic substances contained in the wastewater are disconnected and stripped from the water in the form of methane, ethane, propane or the like. Then, since the micro bubbles in the wastewater discharged into the raw water adjusting tank 3 remain for a long time, the supersaturated dissolved oxygen state is kept in the raw water adjusting tank 3 during that time, and the biological oxidation proceeds.

【0024】一般に生物酸化が進行すると、原水調整槽
3の次の曝気槽6内には嫌気性菌が大量に流入してゆ
き、処理能力ダウンの原因にもなっているが、本実施形
態では原水調整槽3内は過飽和な溶存酸素状態を保って
いるので、曝気槽6内には好気性菌が流入してゆき汚廃
水処理を助ける作用をすることになる。また、汚泥脱水
機12で脱水された汚泥はケーキとして外部に搬出され
る。
Generally, as the biological oxidation progresses, a large amount of anaerobic bacteria will flow into the aeration tank 6 next to the raw water conditioning tank 3, which causes a reduction in the treatment capacity. Since the inside of the raw water adjusting tank 3 maintains a supersaturated dissolved oxygen state, aerobic bacteria flow into the aeration tank 6 to help the wastewater treatment. Further, the sludge dehydrated by the sludge dehydrator 12 is carried out as a cake to the outside.

【0025】なお、図では曝気槽6は、第1曝気槽6
A、第2曝気槽6B、第3曝気槽6Cの3槽で構成され
ているが、このような構成は汚廃水の汚染状態で決めら
れるもので、1槽でもよく、あるいは5槽使用する場合
もあり得る。このことは原水調整槽3にも同様にあては
まる。
In the figure, the aeration tank 6 is the first aeration tank 6
A, the second aeration tank 6B, and the third aeration tank 6C are composed of three tanks. Such a structure is determined depending on the polluted state of the waste water, and one tank may be used, or when five tanks are used. There is also a possibility. This also applies to the raw water adjusting tank 3.

【0026】上記したように、廃水の処理は原水調整槽
3内で行われているが、原水調整槽出口より入口に戻す
リターン量は原水調整槽3の保有水量に対して2時間で
1ターンの処理流量程度で、エマルジョンミキシングラ
インを通すように操作することによりBOD負荷が1/
2〜1/3となる。これにより余剰汚泥の発生が著しく
減少すること及び窒素、燐の除去率も大幅に向上するこ
とが実験の結果明らかとなった。なお、このとき使用し
た微生物は主としてモナス、オペルクラリア、ボルティ
ケラ菌等であった。その結果を表1(余剰汚泥減量率)
及び表2(窒素、燐の除去率)に示す。
As described above, the waste water is treated in the raw water adjusting tank 3, but the amount of return from the outlet of the raw water adjusting tank to the inlet is 1 turn in 2 hours with respect to the amount of water held in the raw water adjusting tank 3. The BOD load can be reduced to 1 / by operating the emulsion mixing line at a processing flow rate of
It becomes 2 to 1/3. As a result of the experiment, it was clarified that the generation of excess sludge was significantly reduced and the removal rate of nitrogen and phosphorus was significantly improved. The microorganisms used at this time were mainly Monas, Opelclaria, Borticella, and the like. The results are shown in Table 1 (Excess sludge reduction rate)
And Table 2 (removal rates of nitrogen and phosphorus).

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】この表より本実験結果によると、BOD:
1200mg/l、SS:7000mg/l、水量50
0t/日の原廃水で余剰汚泥量が3t/日(脱水ケー
キ)であったものが、本発明のエマルジョン処理後で
は、BOD:300mg/l、SS:400mg/lと
なり、余剰汚泥量はほとんど無くなり、日に数度、ゴ
ミ、砂等の掃除をする程度であった。また、表1と同様
の原廃水では、N:700mg/l、P:44.4mg
/lであったものが、本発明のエマルジョン処理後で
は、N:300mg/l、P:20.0mg/lとな
り、更に固定化槽設置したものでは、N:15mg/
l、P:3mg/lであった。
According to the results of this experiment from this table, BOD:
1200 mg / l, SS: 7000 mg / l, water amount 50
The amount of surplus sludge was 3 t / day (dehydrated cake) in raw wastewater of 0 t / day, but after the emulsion treatment of the present invention, it became BOD: 300 mg / l, SS: 400 mg / l, and the surplus sludge amount was almost It disappeared, and I had to clean dust and sand several times a day. In the same raw wastewater as in Table 1, N: 700 mg / l, P: 44.4 mg
/ L was N: 300 mg / l and P: 20.0 mg / l after the emulsion treatment of the present invention, and further N: 15 mg / l in the case where the immobilization tank was installed.
1, P: 3 mg / l.

【0030】上述した通りであるので、本発明の廃水処
理システムは、食品工場の活性汚泥法による廃水処理の
負荷軽減対策、余剰汚泥低減化、窒素、燐対策に有効で
ある。また、パルプ工場、化学工場等の活性汚泥法によ
る廃水処理の負荷軽減対策、余剰汚泥低減化、窒素、燐
対策に有効である。さらに、し尿廃水の活性汚泥法によ
る廃水処理の負荷軽減対策、余剰汚泥低減化、窒素、燐
対策に有効である。
As described above, the wastewater treatment system of the present invention is effective for reducing the load of wastewater treatment by the activated sludge method in food factories, reducing excess sludge, and countermeasures for nitrogen and phosphorus. It is also effective in reducing the load of wastewater treatment by activated sludge method at pulp mills, chemical mills, etc., reducing excess sludge, and countermeasures for nitrogen and phosphorus. Furthermore, it is effective for reducing the load of wastewater treatment by the activated sludge method of human waste water, reducing excess sludge, and taking measures for nitrogen and phosphorus.

【0031】又ラジカル発生量の比較については、純水
を用い同一処理する過程で処理水出口部に液体サイクロ
ンをインライン設置し導入気体量を過剰投入しサイクロ
ン分離ガス中のオゾン濃度の比較を行った、その結果を
表3に示す。
For the comparison of the radical generation amount, a liquid cyclone is installed inline at the treated water outlet in the process of the same treatment with pure water, and the introduced gas amount is excessively added to compare the ozone concentration in the cyclone separation gas. The results are shown in Table 3.

【0032】[0032]

【表3】 [Table 3]

【0033】アルカリ条件での変化についてはMLSS
5000の廃水汚泥を用い、同一循環処理を行いMLS
Sの減少率で比較を行った、その結果を表4に示す。
MLSS for changes under alkaline conditions
MLS with the same circulation treatment using 5000 wastewater sludge
Table 4 shows the results obtained by comparing the S reduction rates.

【0034】[0034]

【表4】 [Table 4]

【0035】また、本発明のミキシング装置は上記した
構造に限定されるものではなく、例えば、流体が流れる
1つの流路を分岐させ、この分岐させた流路を流れる流
体を非常に早い速度で衝突させて1つの流路とすること
で、流体中に空気などがマイクロバブルが混入した状態
を作り出す装置等であればすべて本発明のミキシング装
置として使用可能である。このような例として特開平2
−261525号公報記載の乳化装置や特開平7−10
0404号公報記載の微粒化装置を挙げることができ
る。
Further, the mixing apparatus of the present invention is not limited to the above-mentioned structure. For example, one flow path through which a fluid flows is branched, and the fluid flowing through the branched flow path is flowed at a very high speed. Any device can be used as the mixing device of the present invention as long as it is a device that creates a state in which air and the like are mixed with microbubbles by colliding and forming one flow path. As an example of this, Japanese Patent Laid-Open No.
-261525 and the emulsification device described in JP-A-7-10
The atomization device described in Japanese Patent No. 0404 can be mentioned.

【0036】[発明の効果]以上説明したように、本発
明の廃水処理システムによると、微生物を確実に破壊で
き、微生物の殺菌が必要な種々の分野で利用でき、余剰
汚泥の効率的な減量化等が可能となり、紙パルプ製造に
おけるスライムの発生を防止でき、さらに、ディスポー
ザーの普及に伴う浄化槽の前段での負荷軽減対策に有効
である。
[Effects of the Invention] As described above, according to the wastewater treatment system of the present invention, microorganisms can be surely destroyed and can be used in various fields in which sterilization of microorganisms is required, and efficient reduction of excess sludge can be achieved. It is also possible to prevent slime generation in the production of paper pulp, and it is also effective as a measure to reduce the load at the front stage of the septic tank due to the spread of disposers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態である廃水処理システムの
概略フロー図。
FIG. 1 is a schematic flow diagram of a wastewater treatment system that is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1...スクリーン、2...原水ピット、3...原
水調整槽、4...ミキサー、5...固定槽、
6...曝気槽、6A...第1曝気槽、6B...第
2曝気槽、6C...第3曝気槽、7...沈澱槽、
8...放流ピット、9...コンプレッサー、1
0...放電装置、11...汚泥層、12...汚泥
脱水機
1. . . Screen, 2. . . Raw water pit, 3. . . Raw water adjusting tank, 4. . . Mixer, 5. . . Fixed tank,
6. . . Aeration tank, 6A. . . First aeration tank, 6B. . . Second aeration tank, 6C. . . Third aeration tank, 7. . . Settler,
8. . . Release pit, 9. . . Compressor, 1
0. . . Discharge device, 11. . . Sludge layer, 12. . . Sludge dehydrator

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/78 C02F 1/78 4G036 3/06 3/06 C12M 1/40 C12M 1/40 Z Fターム(参考) 4B029 AA27 BB02 CC03 4D003 AA01 BA02 CA01 CA10 EA17 EA18 EA24 EA30 FA07 4D037 AA11 BA18 BA26 BB04 BB05 BB07 CA07 CA12 CA14 4D050 AA12 BB01 BB02 BC09 BC10 BD03 BD06 CA07 CA13 CA17 CA20 4G035 AB05 AE05 4G036 AC36 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/78 C02F 1/78 4G036 3/06 3/06 C12M 1/40 C12M 1/40 Z F term (reference) 4B029 AA27 BB02 CC03 4D003 AA01 BA02 CA01 CA10 EA17 EA18 EA24 EA30 FA07 4D037 AA11 BA18 BA26 BB04 BB05 BB07 CA07 CA12 CA14 4D050 AA12 BB01 BB02 BC09 BC10 BD03 BD06 CA07 CA13 CA17 CA20 4G035 AB36 AE05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 廃水を処理する廃水処理システムにおい
て、マイクロバブルを発生させる微細気泡発生手段と、
前記微細気泡発生手段で発生させたマイクロバブルを菌
体を含む廃水に、加圧する加圧手段と、この加圧された
流体を急激に減圧する減圧手段とを備え、前記減圧され
た廃水に、高圧パルス放電する事によりマイクロバブル
中の酸素をラジカル化させるようにしたことを特徴とす
る廃水処理システム。
1. A wastewater treatment system for treating wastewater, comprising fine air bubble generating means for generating microbubbles,
The wastewater containing microbes generated by the microbubble generating means, a pressurizing means for pressurizing, and a depressurizing means for rapidly depressurizing the pressurized fluid, to the depressurized wastewater, A wastewater treatment system characterized in that oxygen in microbubbles is converted into radicals by high-voltage pulse discharge.
【請求項2】 廃水を処理する廃水処理システムにおい
て、酸素ガスを主成分とするマイクロバブルを発生させ
る微細気泡発生手段と、前記微細気泡発生手段で発生さ
せたマイクロバブルを菌体を含む廃水に、加圧する加圧
手段と、この加圧された流体を急激に減圧する減圧手段
とを備え、前記減圧された廃水に、高圧パルス放電する
事によりマイクロバブル中の酸素をラジカル化させるよ
うにしたことを特徴とする廃水処理システム。
2. A wastewater treatment system for treating wastewater, wherein microbubble generating means for generating microbubbles containing oxygen gas as a main component, and microbubbles generated by the microbubble generating means are added to wastewater containing bacterial cells. A pressurizing means for pressurizing and a depressurizing means for rapidly depressurizing the pressurized fluid are provided, and high-pressure pulse discharge is applied to the depressurized waste water to radicalize oxygen in the microbubbles. A wastewater treatment system characterized in that
【請求項3】 廃水を処理する廃水処理システムにおい
て、オゾンガスを含むマイクロバブルを発生させる微細
気泡発生手段と、前記微細気泡発生手段で発生させたマ
イクロバブルを菌体を含む廃水に、加圧する加圧手段
と、この加圧された流体を急激に減圧する減圧手段とを
備え、前記減圧された廃水に、高圧パルス放電する事に
よりマイクロバブル中のラジカルを増加させるようにし
たことを特徴とする廃水処理システム。
3. A wastewater treatment system for treating wastewater, wherein microbubble generating means for generating microbubbles containing ozone gas, and microbubbles generated by the microbubble generating means are added to the wastewater containing bacterial cells under pressure. It is characterized in that it is provided with a pressure means and a decompression means for rapidly decompressing the pressurized fluid, and is characterized in that radicals in the microbubbles are increased by subjecting the decompressed wastewater to high-pressure pulse discharge. Wastewater treatment system.
【請求項4】 廃水を処理する廃水処理システムにおい
て、マイクロバブルを発生させる微細気泡発生手段と、
前記微細気泡発生手段で発生させたマイクロバブルを菌
体を含む廃水に、加圧する加圧手段と、この加圧された
流体を急激に減圧する減圧手段とを備え、前記減圧され
た廃水に、紫外線照射することによりマイクロバブル中
の酸素をラジカル化させるようにしたことを特徴とする
廃水処理システム。
4. A wastewater treatment system for treating wastewater, comprising fine air bubble generating means for generating microbubbles,
The wastewater containing microbes generated by the microbubble generating means, a pressurizing means for pressurizing, and a depressurizing means for rapidly depressurizing the pressurized fluid, to the depressurized wastewater, A wastewater treatment system characterized in that oxygen in microbubbles is converted into radicals by irradiation with ultraviolet rays.
【請求項5】廃水を処理する廃水処理システムにおい
て、オゾンガスを含むマイクロバブルを発生させる微細
気泡発生手段と、前記微細気泡発生手段で発生させたマ
イクロバブルを菌体を含む廃水に、加圧する加圧手段
と、この加圧された流体を急激に減圧する減圧手段とを
備えることを特徴とする廃水処理システム。
5. A wastewater treatment system for treating wastewater, wherein microbubble generating means for generating microbubbles containing ozone gas, and microbubbles generated by the microbubble generating means are added to the wastewater containing bacterial cells under pressure. A wastewater treatment system comprising: a pressure means and a decompression means for rapidly decompressing the pressurized fluid.
【請求項6】請求項1〜5の後段に菌体を固定する菌体
固定手段を付加した事を、特徴とする。廃水処理システ
ム。
6. The method according to any one of claims 1 to 5, wherein a microbial cell fixing means for fixing the microbial cell is added. Wastewater treatment system.
【請求項7】請求項1〜6をPH8以上12以下の条件
で処理する事を特徴とする廃水処理システム。
7. A wastewater treatment system, characterized in that the treatment according to any one of claims 1 to 6 is carried out under a condition of PH 8 or more and 12 or less.
JP2002089898A 2002-02-21 2002-02-21 Waste water treatment system Pending JP2003245662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002089898A JP2003245662A (en) 2002-02-21 2002-02-21 Waste water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002089898A JP2003245662A (en) 2002-02-21 2002-02-21 Waste water treatment system

Publications (1)

Publication Number Publication Date
JP2003245662A true JP2003245662A (en) 2003-09-02

Family

ID=28671651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002089898A Pending JP2003245662A (en) 2002-02-21 2002-02-21 Waste water treatment system

Country Status (1)

Country Link
JP (1) JP2003245662A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005030649A1 (en) * 2003-09-30 2005-04-07 Reo Laboratory Co., Ltd. Crush of micro bubble
JP2005246294A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Oxygen-nanobubble water and production method therefor
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Production method of nano-bubble
JP2006102743A (en) * 2004-09-07 2006-04-20 Ki System:Kk Method for black liquor treatment
JP2007090206A (en) * 2005-09-28 2007-04-12 Sharp Corp Wastewater treatment method and wastewater treatment apparatus
JP2007136409A (en) * 2005-11-22 2007-06-07 Sharp Corp Water treatment method and water treatment apparatus
JP2007319783A (en) * 2006-06-01 2007-12-13 Sharp Corp Waste water treatment method and waste water treatment equipment
JP2008190753A (en) * 2007-02-02 2008-08-21 Techno Ryowa Ltd Air conditioner and pure water production system
JP2008200577A (en) * 2007-02-19 2008-09-04 Marsima Aqua System Corp Waste liquid treatment system
JP2011078971A (en) * 2004-09-07 2011-04-21 Ki System:Kk Treatment method of black liquor
JP2011110435A (en) * 2009-11-24 2011-06-09 Tomotaka Marui Device and method for forming minute air bubble in liquid to make liquid to generate heat
JP2019202920A (en) * 2018-05-25 2019-11-28 学校法人長崎総合科学大学 Method of producing liquid fertilizer
JP7475025B2 (en) 2020-01-23 2024-04-26 国立大学法人東北大学 Water containing oxygen-containing nanoparticles

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005030649A1 (en) * 2003-09-30 2005-04-07 Reo Laboratory Co., Ltd. Crush of micro bubble
US8349192B2 (en) 2003-09-30 2013-01-08 Reo Laboratory Co., Ltd. Method for collapsing microbubbles
JP2005246294A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Oxygen-nanobubble water and production method therefor
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Production method of nano-bubble
JP4655862B2 (en) * 2004-09-07 2011-03-23 株式会社 ケイ・アイシステム Black liquor processing method
JP2006102743A (en) * 2004-09-07 2006-04-20 Ki System:Kk Method for black liquor treatment
JP2011078971A (en) * 2004-09-07 2011-04-21 Ki System:Kk Treatment method of black liquor
JP2007090206A (en) * 2005-09-28 2007-04-12 Sharp Corp Wastewater treatment method and wastewater treatment apparatus
JP4485444B2 (en) * 2005-09-28 2010-06-23 シャープ株式会社 Waste water treatment method and waste water treatment equipment
JP4490904B2 (en) * 2005-11-22 2010-06-30 シャープ株式会社 Water treatment equipment
JP2007136409A (en) * 2005-11-22 2007-06-07 Sharp Corp Water treatment method and water treatment apparatus
JP2007319783A (en) * 2006-06-01 2007-12-13 Sharp Corp Waste water treatment method and waste water treatment equipment
JP2008190753A (en) * 2007-02-02 2008-08-21 Techno Ryowa Ltd Air conditioner and pure water production system
JP2008200577A (en) * 2007-02-19 2008-09-04 Marsima Aqua System Corp Waste liquid treatment system
JP2011110435A (en) * 2009-11-24 2011-06-09 Tomotaka Marui Device and method for forming minute air bubble in liquid to make liquid to generate heat
JP2019202920A (en) * 2018-05-25 2019-11-28 学校法人長崎総合科学大学 Method of producing liquid fertilizer
JP7144027B2 (en) 2018-05-25 2022-09-29 学校法人長崎総合科学大学 Method for producing liquid fertilizer
JP7475025B2 (en) 2020-01-23 2024-04-26 国立大学法人東北大学 Water containing oxygen-containing nanoparticles

Similar Documents

Publication Publication Date Title
US4370235A (en) Method of treating excess sludge
KR100729470B1 (en) System and method for treating sludge in a wastewater facility
CN106830536A (en) A kind of advanced treatment process of ferment antibiotics waste water
CN102452770A (en) Biochemical treatment/advanced oxidation treatment coupled sewage treatment technique
JP2014097472A (en) Treatment method and treatment apparatus for organic waste water
JP2003245662A (en) Waste water treatment system
JP3483917B2 (en) Sewage treatment method
JP2003164890A (en) Waste water treatment system and mixing equipment
JP2003251384A (en) Pretreatment method for biological wastewater treatment
WO1999033552A1 (en) Vapor/liquid mixer and polluted water purification apparatus using the mixer
JP2003200198A (en) Method and apparatus for treating sludge
KR101750442B1 (en) Sewage advanced treatment system using ultrasonic device
JP3867326B2 (en) Ozone treatment method for activated sludge process water
JP2002177990A (en) Water cleaning method and water cleaning plant
KR100972395B1 (en) Advanced treatment apparatus and method for waste water
JP6670192B2 (en) Organic sludge processing method and processing apparatus
JP3887581B2 (en) Sewage treatment equipment
KR100711259B1 (en) Purification treatment apparatus
KR940000379A (en) Advanced treatment of manure and high concentration organic wastewater
KR20000055904A (en) Method and apparatus of reusing for dirty and waste water including excretion
JP2005137991A (en) Drainage treatment apparatus
JPH06237B2 (en) Wastewater treatment method and apparatus
KR100418362B1 (en) Ionized gas aided system and method for treating high concentration organic wastewater
Kim et al. Effective combination of microfiltration and intermittent ozonation for high permeation flux and VFAs recovery from coagulated raw sludge
JP3846562B2 (en) Organic wastewater treatment method