JP6670192B2 - Organic sludge processing method and processing apparatus - Google Patents

Organic sludge processing method and processing apparatus Download PDF

Info

Publication number
JP6670192B2
JP6670192B2 JP2016135151A JP2016135151A JP6670192B2 JP 6670192 B2 JP6670192 B2 JP 6670192B2 JP 2016135151 A JP2016135151 A JP 2016135151A JP 2016135151 A JP2016135151 A JP 2016135151A JP 6670192 B2 JP6670192 B2 JP 6670192B2
Authority
JP
Japan
Prior art keywords
organic sludge
oxygen
sludge
iron
iron compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016135151A
Other languages
Japanese (ja)
Other versions
JP2018001137A (en
Inventor
克博 大野
克博 大野
智之 森田
智之 森田
直明 片岡
直明 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2016135151A priority Critical patent/JP6670192B2/en
Publication of JP2018001137A publication Critical patent/JP2018001137A/en
Application granted granted Critical
Publication of JP6670192B2 publication Critical patent/JP6670192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、有機汚泥の処理方法及び処理装置に関する。   The present invention relates to a method and an apparatus for treating organic sludge.

下水処理場から発生する余剰汚泥は、下水道の普及に伴って増加している。その多くはメタン発酵を行うなどして有効活用されてはいるが、未だ活用できていない汚泥については、脱水処理後に最終処分場で埋め立て処分されている。近年では、最終処分場の確保が難しくなってきたという社会的な問題がある。また、メタン発酵によって発生する嫌気性処理汚泥の多くは難脱水性汚泥であり、脱水処理するために凝集剤を多量に必要とするため運転コストが高という問題がある。その上、得られる脱水ケーキの含水率も高い為、燃焼処理できない脱水ケーキは、未活用の汚泥と同様に最終処分場の確保が難しいという問題を抱えている。   Surplus sludge generated from sewage treatment plants is increasing with the spread of sewerage. Most of the sludge has been used effectively through methane fermentation, but sludge that has not yet been used is landfilled at a final disposal site after dewatering. In recent years, there is a social problem that it has become difficult to secure a final disposal site. Further, most of the anaerobic treated sludge generated by methane fermentation is hardly dewaterable sludge, and there is a problem that a large amount of a flocculant is required for the dewatering treatment, so that the operation cost is high. In addition, since the obtained dewatered cake has a high moisture content, the dewatered cake that cannot be burned has a problem that it is difficult to secure a final disposal site like the unused sludge.

嫌気性処理汚泥の脱水性を改善する方法として、有機性廃棄物をメタン発酵して得られる発酵残液およびその他の嫌気性有機化合物含有液をpH5.5以下、好ましくは4.5〜3.5に調整するとともに酸化剤と接触させた後の処理液を固液分離する方法が提案されている(特許文献1)。pH調整は、塩酸、硫酸、硝酸などの無機酸を添加して行うことが開示されている。酸化剤との接触については、空気や酸素を曝気によって強制的に発酵残液中に導入してアンモニア成分を液外に放散させるか、次亜塩素酸や次亜塩素酸塩などを添加することが開示されている。また、発酵残液のpHを5.5以下に調整することで二酸化炭素に由来する激しい発泡が生じることも記載されている。   As a method for improving the dehydration property of the anaerobic treated sludge, the pH of the fermentation residue obtained by subjecting the organic waste to methane fermentation and other anaerobic organic compound-containing liquids is 5.5 or less, preferably 4.5 to 3.0. In addition, there has been proposed a method of performing solid-liquid separation of the treatment liquid after adjusting to 5 and contacting with an oxidizing agent (Patent Document 1). It is disclosed that pH adjustment is performed by adding an inorganic acid such as hydrochloric acid, sulfuric acid, and nitric acid. For contact with oxidizing agents, forcibly introduce air or oxygen into the fermentation residue by aeration to disperse the ammonia component out of the solution, or add hypochlorous acid or hypochlorite, etc. Is disclosed. In addition, it is described that when the pH of the fermentation residue is adjusted to 5.5 or less, intense foaming derived from carbon dioxide occurs.

メタン発酵が可能な有機性廃棄物を嫌気性消化処理し、消化残物を酸素含有ガスで曝気処理したのち機械脱水して得た脱水ケーキを曝気ブロワーの吐出空気の熱で乾燥させる方法が提案されている(特許文献2)。特許文献2には、曝気処理のみでは不十分な脱水を熱による乾燥で補うことが開示されている。   A method is proposed in which anaerobic digestion of organic waste capable of methane fermentation is performed, the digestion residue is aerated with oxygen-containing gas, and then the dewatered cake obtained by mechanical dehydration is dried with the heat of the air discharged from the aeration blower. (Patent Document 2). Patent Document 2 discloses that dehydration, which is insufficient only by aeration treatment, is compensated for by drying with heat.

嫌気性消化汚泥に曝気を行った後余剰汚泥を混合し、金属塩を添加し、両性有機高分子凝集剤を添加した後、脱水する嫌気性消化汚泥の脱水方法が提案されている(特許文献3)。特許文献3には、嫌気性消化汚泥を曝気して、溶解している炭酸ガスを脱気することにより、凝集剤を添加する際の炭酸ガスの発泡による凝集阻害を防止することができたが、曝気を行わなかった場合には発泡による凝集阻害により脱水ケーキの含水率が高くなったことが開示されている。   A method of dewatering anaerobic digested sludge has been proposed in which excess sludge is mixed after anaerobic digested sludge is aerated, a metal salt is added, an amphoteric organic polymer flocculant is added, and then dewatered. 3). Patent Literature 3 discloses that by aerating anaerobic digested sludge and degassing dissolved carbon dioxide gas, it was possible to prevent aggregation inhibition due to foaming of carbon dioxide gas when adding a flocculant. It is disclosed that when aeration was not performed, the moisture content of the dewatered cake increased due to aggregation inhibition due to foaming.

有機性汚泥を嫌気性消化し、固液分離した後、消化汚泥にオゾン又は過酸化水素を添加して可溶化した後、さらに嫌気性消化する有機性汚泥の減量化方法が提案されている(特許文献4)。従来のオゾン酸化処理法よりはオゾンの使用量を削減できるが、それでもなお高額なオゾン酸化処理を行う方法であり、コスト削減の課題は残る。   After the organic sludge is anaerobically digested and solid-liquid separated, ozone or hydrogen peroxide is added to the digested sludge for solubilization, and furthermore, a method for reducing the amount of organic sludge to be anaerobically digested has been proposed ( Patent Document 4). Although the amount of ozone used can be reduced as compared with the conventional ozone oxidation treatment method, it is still a method of performing expensive ozone oxidation treatment, and the problem of cost reduction remains.

特開2005-334713号公報JP 2005-334713 A 特開昭60−38099号公報JP-A-60-38099 特開平08−206699号公報JP-A-08-206699 特開平09−085299号公報JP-A-09-085299

本発明は、オゾンなどの高価な酸化剤を使用せずに、また大型のブロアなどの追加設備を設ける必要なく、運転コストを抑制し、脱水率を向上させて、有機性汚泥の減容化を達成できる、簡易な有機汚泥の処理方法を提供することを目的とする。   The present invention suppresses the operation cost, improves the dewatering rate, and reduces the volume of organic sludge without using an expensive oxidizing agent such as ozone and without having to provide an additional facility such as a large blower. It is an object of the present invention to provide a simple organic sludge treatment method that can achieve the above.

本発明者らは、有機汚泥中の粘性物質が濃縮されることによって難脱水化することを知見し、有機汚泥の脱水処理に際して、有機汚泥の凝集処理前に、有機汚泥中の粘性物質を分解して粘度を低減することにより、脱水処理を容易に行い得ることに想到した。   The present inventors have found that the viscous substances in the organic sludge are hardly dehydrated by being concentrated, and in the dehydration treatment of the organic sludge, the viscous substances in the organic sludge are decomposed before the coagulation treatment of the organic sludge. It has been conceived that dehydration can be easily performed by reducing the viscosity.

本発明によれば、以下の態様の有機汚泥の処理方法及び処理装置が提供される。
[1]有機汚泥の凝集及び脱水処理前に、鉄化合物を含む有機汚泥を酸素と接触させてヒドロキシラジカルを発生させ、当該有機汚泥の粘度をB型回転粘度計で35℃、60rpmで計測した場合に20mPa・s/h以上の粘度低減速度で低減させる有機汚泥の処理方法。
[2]有機汚泥中の鉄化合物の総量[Fe(mg/L)]と、TS(total solid:蒸発残留物質)[TS(mg/L)]と、酸素移動容量係数(kLa(h−1))との間に、下記式(1):
According to the present invention, there are provided the following methods and apparatuses for treating organic sludge.
[1] Before the coagulation and dehydration treatment of organic sludge, the organic sludge containing an iron compound is brought into contact with oxygen to generate hydroxyl radicals, and the viscosity of the organic sludge was measured at 35 ° C. and 60 rpm with a B-type rotational viscometer. A method for treating organic sludge wherein the viscosity is reduced at a viscosity reduction rate of 20 mPa · s / h or more.
[2] The total amount of iron compounds in organic sludge [Fe (mg / L)], TS (total solid: evaporation residue) [TS (mg / L)], and oxygen transfer capacity coefficient (kLa (h −1 )) )) And the following formula (1):

が成立するように、酸素移動容量係数又は鉄注入量を制御する、[1]に記載の有機汚泥の処理方法。
[3]有機汚泥前駆体又は有機汚泥への鉄化合物の注入量を
(i)酸素移動容量係数(kLa(h−1))が0.12h−1未満の場合には、有機汚泥中のTS(total solid:蒸発残留物質)当たりの鉄化合物の総量の比[Fe(mg/L)]/[TS(mg/L)]が1.6以上2.9以下となるように、
(ii)酸素移動容量係数(kLa(h−1))が0.12h−1以上0.28h−1未満の場合には、有機汚泥中のTS(total solid:蒸発残留物質)当たりの鉄化合物の総量の比[Fe(mg/L)]/[TS(mg/L)]が0.9以上2.9以下となるように、
(iii)酸素移動容量係数(kLa(h−1))が0.28h−1以上5.7h−1以下の場合には、有機汚泥中のTS(total solid:蒸発残留物質)当たりの鉄化合物の総量の比[Fe(mg/L)]/[TS(mg/L)]が0.6以上2.9以下となるように、有機汚泥への鉄注入量を制御する、[1]に記載の有機汚泥の処理方法。
[4]鉄化合物を含む有機汚泥を酸素と接触させてヒドロキシラジカルを発生させ、当該有機汚泥の粘度を20mPa・s/h以上の粘度低減速度で低減させる有機汚泥の処理方法を実施するための処理装置であって、
有機汚泥前駆体又は有機汚泥に鉄化合物を注入する鉄化合物注入手段と、
鉄化合物を含有する有機汚泥と酸素を接触させる酸素接触処理槽と、
当該酸素接触処理槽から排出される有機汚泥を凝集させる凝集槽と、
凝集した有機汚泥を脱水する脱水機と、
当該酸素接触処理槽内若しくは当該酸素接触処理槽と当該凝集槽との間に設けられている粘度計と、
当該接触処理槽の酸素移動容量係数又は鉄注入量を制御する制御装置と、
を具備する、有機汚泥の処理装置。
[5]前記接触処理槽は、曝気装置、撹拌装置及び有機汚泥注入切り換え弁の少なくとも1つを具備し、当該曝気装置、当該撹拌装置及び当該有機汚泥注入切り換え弁の少なくとも1つは前記制御装置に電気的に接続されている、[4]に記載の有機汚泥の処理装置。
The method for treating organic sludge according to [1], wherein the oxygen transfer capacity coefficient or the iron injection amount is controlled so that the following holds.
[3] When the injection amount (i) the volumetric oxygen transfer coefficient of the organic sludge precursor or an iron compound to organic sludge (kLa (h -1)) is less than 0.12H -1 is, TS in organic sludge (Fe (mg / L)] / [TS (mg / L)] of the total amount of iron compounds per (total solid: evaporation residue) is 1.6 or more and 2.9 or less.
When (ii) the volumetric oxygen transfer coefficient (kLa (h -1)) is less than 0.12H -1 than 0.28H -1 is, TS in organic sludge (total solid: evaporation residue material) iron compound per So that the ratio [Fe (mg / L)] / [TS (mg / L)] of the total amount is 0.9 or more and 2.9 or less.
To (iii) optionally an oxygen transfer capacity coefficient (kLa (h -1)) is 0.28H -1 or more 5.7H -1 or less, TS in organic sludge (total solid: evaporation residue material) iron compound per Controlling the amount of iron injected into the organic sludge so that the ratio [Fe (mg / L)] / [TS (mg / L)] of the total amount becomes 0.6 or more and 2.9 or less. The method for treating organic sludge according to the above.
[4] An organic sludge containing an iron compound is brought into contact with oxygen to generate hydroxyl radicals, and a method for treating organic sludge for reducing the viscosity of the organic sludge at a viscosity reduction rate of 20 mPa · s / h or more. A processing device,
Iron compound injection means for injecting an iron compound into the organic sludge precursor or organic sludge,
An oxygen contact treatment tank that brings oxygen into contact with organic sludge containing an iron compound,
A coagulation tank for coagulating organic sludge discharged from the oxygen contact treatment tank,
A dehydrator for dehydrating the coagulated organic sludge,
A viscometer provided in the oxygen contact treatment tank or between the oxygen contact treatment tank and the coagulation tank,
A control device for controlling the oxygen transfer capacity coefficient or the iron injection amount of the contact treatment tank,
An apparatus for treating organic sludge, comprising:
[5] The contact treatment tank includes at least one of an aeration device, a stirring device, and an organic sludge injection switching valve, and at least one of the aeration device, the stirring device, and the organic sludge injection switching valve is the control device. The organic sludge treatment apparatus according to [4], which is electrically connected to the organic sludge.

本発明によれば、有機汚泥の凝集及び脱水処理前に、鉄化合物を含む有機汚泥を酸素と接触させて、鉄の自動酸化を起因として発生させたヒドロキシラジカルにより、当該有機汚泥中の粘性物質を分解して、当該有機汚泥の粘度を低減させることが可能となる。有機汚泥中に粘性物質が濃縮すると有機汚泥が難脱水化するため、粘度を低減させることで難脱水化を防止することができる。   According to the present invention, before the coagulation and dehydration treatment of the organic sludge, the organic sludge containing an iron compound is brought into contact with oxygen, and the hydroxyl radical generated due to the autoxidation of iron causes the viscous substance in the organic sludge to be reduced. To reduce the viscosity of the organic sludge. When the viscous substance is concentrated in the organic sludge, the organic sludge is hardly dehydrated. Therefore, by reducing the viscosity, the hard dewatering can be prevented.

また、酸素移動容量係数を増加させることが難しい状況下においては、有機汚泥前駆体又は有機汚泥への鉄化合物の注入量を増量することでヒドロキシラジカルの発生量を高めることができ、有機汚泥中の粘性物質の分解速度を高めることが可能となる。   Further, in a situation where it is difficult to increase the oxygen transfer capacity coefficient, it is possible to increase the amount of hydroxyl radical generated by increasing the injection amount of the iron compound into the organic sludge precursor or the organic sludge. Can increase the decomposition rate of the viscous substance.

さらには、鉄の自動酸化によって生成したFe(III)の一部は、例えば嫌気性処理汚泥が持つ還元力によってFe(II)へと還元させることができるため、理論的に必要な量以下の鉄化合物の注入を行える様になり、鉄化合物の使用量を削減することが可能となる。   Furthermore, since a part of Fe (III) generated by the autoxidation of iron can be reduced to Fe (II) by the reducing power of the anaerobic treated sludge, for example, the amount is less than the theoretically necessary amount. Iron compounds can be injected, and the amount of iron compounds used can be reduced.

また、鉄の自動酸化によって生成したFe(III)による凝集反応や酸素による酸化反応も同時に起こすことができることから、有機汚泥の粘度をより安定的に低減させることが可能となる。   Further, since the coagulation reaction due to Fe (III) generated by the autoxidation of iron and the oxidation reaction due to oxygen can be caused at the same time, the viscosity of the organic sludge can be more stably reduced.

さらに、副次的な効果として、脱水処理、排水処理、脱硫処理、脱臭処理への負荷を低減できる。より詳しくは下記のような効果がある。
(1)有機汚泥と酸素を接触させることにより、有機汚泥中に含まれるFe(II)を酸化させることによって、Fe(III)を凝集剤として利用することができ、後段の凝集工程における凝集剤の注入量を削減することが可能となる。
(2)有機汚泥と酸素を接触させることにより、例えば、多糖類、タンパク質、糖タンパク質、核酸、リン脂質、フミン酸などの高分子物質などの嫌気性処理汚泥に含有されている凝集阻害物質を分解させることができるので、高価なアミジン系高分子凝集剤でしか凝集させることができない嫌気性処理汚泥に対して、安価な非アミジン系高分子凝集剤又はアミジン系高分子凝集剤に安価な非アミジン系高分子凝集剤を混合したブレンド品を凝集剤として使用することができ、凝集コストを低減することが可能となると共に、脱水効率が向上し、脱水ケーキの含水率を低減することが可能となる。
(3)鉄化合物を過剰に注入することにより、有機物に含まれる硫黄分と鉄が結合して、硫化水素の発生を抑制することができ、後段の脱硫処理や脱臭処理における負荷を低減することが可能となる。
(4)酸素移動容量係数を増加させる場合には、嫌気性処理汚泥に溶存している炭酸ガスを除去することができるので、後段の凝集工程で凝集剤を注入した際の発泡現象を抑制することが可能となる。
Further, as a secondary effect, the load on the dehydration treatment, drainage treatment, desulfurization treatment and deodorization treatment can be reduced. More specifically, the following effects are obtained.
(1) By bringing organic sludge into contact with oxygen to oxidize Fe (II) contained in the organic sludge, Fe (III) can be used as a flocculant, and the flocculant in the subsequent flocculation step Can be reduced.
(2) By contacting organic sludge with oxygen, for example, coagulation inhibitory substances contained in anaerobic treated sludge such as polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and polymeric substances such as humic acid are removed. Since it can be decomposed, it is possible to use an inexpensive non-amidine polymer flocculant or an inexpensive non-amidine polymer flocculant for anaerobic treated sludge that can only be coagulated with an expensive amidine polymer flocculant. Blend products mixed with amidine-based polymer coagulant can be used as coagulant, which can reduce coagulation cost, improve dewatering efficiency, and reduce water content of dewatered cake Becomes
(3) By injecting an excessive amount of an iron compound, sulfur contained in an organic substance is combined with iron, thereby suppressing the generation of hydrogen sulfide, and reducing the load in the subsequent desulfurization treatment and deodorization treatment. Becomes possible.
(4) When increasing the oxygen transfer capacity coefficient, the carbon dioxide gas dissolved in the anaerobic treated sludge can be removed, so that the foaming phenomenon when the coagulant is injected in the subsequent coagulation step is suppressed. It becomes possible.

本発明の有機汚泥の処理方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the processing method of the organic sludge of this invention. 本発明の有機汚泥の処理方法を実施するための装置構成の概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the apparatus structure for implementing the processing method of the organic sludge of this invention. 嫌気性処理における本発明の有機汚泥の処理方法を実施するための装置構成の概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the apparatus structure for implementing the organic sludge processing method of this invention in anaerobic processing. 好気性処理における本発明の有機汚泥の処理方法を実施するための装置構成の概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the apparatus structure for implementing the processing method of the organic sludge of this invention in aerobic processing. 下水好気性処理における本発明の有機汚泥の処理方法を実施するための装置構成の概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the apparatus structure for implementing the processing method of the organic sludge of this invention in sewage aerobic processing. 実施例1における汚泥粘度の測定結果を示すグラフである。4 is a graph showing a measurement result of a sludge viscosity in Example 1. 実施例2における汚泥粘度の測定結果を示すグラフである。9 is a graph showing the results of measuring the viscosity of sludge in Example 2. 実施例3における鉄濃度に対応するSS回収率及び脱水ケーキ含水率の測定結果を示すグラフである。10 is a graph showing the measurement results of the SS recovery rate and the water content of the dehydrated cake corresponding to the iron concentration in Example 3. 実施例4における凝集処理時の凝集剤添加量とSS回収率の測定結果を示すグラフである。14 is a graph showing the results of measuring the amount of flocculant added and the SS recovery rate during flocculation treatment in Example 4. 実施例4における凝集処理時の凝集剤添加量と脱水ケーキ含水率の測定結果を示すグラフである。11 is a graph showing the results of measuring the amount of coagulant added and the water content of a dehydrated cake during the coagulation treatment in Example 4. 実施例5における酸素接触処理による粒子径平均値の変化を示すグラフである。14 is a graph showing a change in a particle diameter average value due to an oxygen contact treatment in Example 5. 実施例6における酸素接触処理による粒子径中央値の変化を示すグラフである。14 is a graph showing a change in median particle diameter due to oxygen contact treatment in Example 6.

以下、添付図面を参照しながら、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited thereto.

本発明は、有機汚泥の凝集及び脱水処理前に、鉄化合物を含む有機汚泥を酸素と接触させてヒドロキシラジカルを発生させ、当該有機汚泥の粘度をB型回転粘度計で35℃、60rpmで計測した場合に20mPa・s/h以上の粘度低減速度で低減させる有機汚泥の処理方法である。   In the present invention, before the coagulation and dehydration treatment of organic sludge, an organic sludge containing an iron compound is brought into contact with oxygen to generate hydroxyl radicals, and the viscosity of the organic sludge is measured at 35 ° C. and 60 rpm with a B-type rotational viscometer. This is a method for treating organic sludge in which the viscosity is reduced at a viscosity reduction rate of 20 mPa · s / h or more.

図1は本発明の有機汚泥の処理方法の流れを示すフローチャートであり、図2は本発明の有機汚泥の処理方法を実施するための装置構成の概略図、図3〜5は代表的な嫌気性処理及び好気性処理における本発明の有機汚泥の処理方法を実施するための装置構成の概略図である。   FIG. 1 is a flowchart showing the flow of an organic sludge treatment method of the present invention, FIG. 2 is a schematic diagram of an apparatus configuration for implementing the organic sludge treatment method of the present invention, and FIGS. BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the apparatus structure for implementing the processing method of the organic sludge of this invention in anaerobic and aerobic treatment.

本発明の処理方法は、図1に示すように、通常の有機汚泥の凝集及び脱水処理に先立ち、鉄化合物を含む有機汚泥を酸素と接触させる酸素接触処理工程を含む。図1における「有機汚泥発生工程」は、たとえば図3に示す嫌気性処理槽で嫌気性消化汚泥が形成されるまでの工程、図4に示す生物反応槽及び後処理槽で余剰汚泥が形成されるまでの工程、図5に示す下水処理の最終沈殿池で余剰汚泥が形成されるまでの工程を意味する。図1における「酸素接触工程」は、たとえば図3に示す凝集槽の前段で嫌気性消化汚泥を酸素と接触させる工程、図4に示す凝集槽の前段で余剰汚泥を酸素と接触させる工程、図5に示す凝集槽の前段で余剰汚泥を酸素と接触させる工程を意味する。   As shown in FIG. 1, the treatment method of the present invention includes an oxygen contact treatment step of bringing organic sludge containing an iron compound into contact with oxygen prior to ordinary coagulation and dehydration treatment of organic sludge. The “organic sludge generation step” in FIG. 1 is, for example, a step until an anaerobic digestion sludge is formed in an anaerobic treatment tank shown in FIG. 3, and an excess sludge is formed in a biological reaction tank and a post-treatment tank shown in FIG. Until the surplus sludge is formed in the final sedimentation basin of the sewage treatment shown in FIG. The “oxygen contacting step” in FIG. 1 includes, for example, a step of bringing anaerobic digested sludge into contact with oxygen at a stage preceding the coagulation tank shown in FIG. 3, a step of bringing excess sludge into contact with oxygen at a stage preceding the coagulation tank shown in FIG. 5 means a step in which excess sludge is brought into contact with oxygen at a stage preceding the coagulation tank.

本発明において「有機汚泥」とは、嫌気性処理による消化汚泥、及び好気性処理による余剰汚泥の両者を含み、嫌気性処理及び好気性処理のいずれかに限定されない。また、「有機汚泥前駆体」とは、嫌気性処理又は好気性処理によって有機汚泥を形成する物質であればよく、たとえば嫌気性処理の場合には下水処理で発生する初沈汚泥や余剰汚泥、各種産業排水処理で発生する余剰汚泥、食品製造残渣や生ゴミ及びこれらの可溶化液などが挙げられ、たとえば好気性処理の場合には下水、消化汚泥脱離液や各種産業排水などが挙げられる。一般的に、嫌気性処理又は好気性処理されて形成される有機汚泥は、少量の鉄化合物を含むことが多い。しかし、本発明の処理方法においては、有機汚泥が後述する一定量の鉄濃度を有することが必要である。酸素接触処理の際に有機汚泥が十分な鉄濃度を有していない場合には、前記有機汚泥前駆体又は有機汚泥に鉄化合物を追加で注入してもよく、遅くとも酸素接触処理中若しくは酸素接触処理前の有機汚泥に対して注入することができればよい。例えば、図3に示す嫌気性処理汚泥に対して注入する場合には、凝集槽の前段の可溶化槽、可溶化物貯槽、嫌気性処理槽、酸素接触処理槽及びこれらの間の配管の任意の箇所で鉄化合物を注入することができる。例えば、図4に示す生物処理を含む好気性処理汚泥に対して注入する場合には、生物反応槽の後段で凝集槽の前段の後処理槽及び酸素接触処理槽及びこれらの間の配管の任意の箇所で鉄化合物を注入することができる。例えば、図5に示す下水処理の場合には、生物反応槽の後段で凝集槽の前段の最終沈殿池及び酸素接触処理槽及びこれらの間の配管の任意の箇所で鉄化合物を注入することができる。   In the present invention, “organic sludge” includes both digested sludge by anaerobic treatment and excess sludge by aerobic treatment, and is not limited to either anaerobic treatment or aerobic treatment. The `` organic sludge precursor '' may be any substance that forms organic sludge by anaerobic treatment or aerobic treatment.For example, in the case of anaerobic treatment, primary sludge or excess sludge generated in sewage treatment, Examples include excess sludge generated in various industrial wastewater treatments, food production residues and garbage, and solubilized liquids thereof. For example, in the case of aerobic treatment, sewage, digested sludge desorbed liquid, various industrial wastewaters, and the like are included. . Generally, organic sludge formed by anaerobic or aerobic treatment often contains a small amount of iron compounds. However, in the treatment method of the present invention, it is necessary that the organic sludge has a certain iron concentration described later. If the organic sludge does not have a sufficient iron concentration at the time of the oxygen contact treatment, an iron compound may be additionally injected into the organic sludge precursor or the organic sludge. What is necessary is just to be able to inject the organic sludge before the treatment. For example, when injecting into the anaerobic sludge shown in FIG. 3, the solubilization tank, the solubilized substance storage tank, the anaerobic treatment tank, the oxygen contact treatment tank, and the piping between them are optional. The iron compound can be injected at the point. For example, when injecting into the aerobic treated sludge including the biological treatment shown in FIG. 4, the post-treatment tank, the oxygen contact treatment tank, and the piping between them at the stage after the biological reaction tank and before the coagulation tank are optional. The iron compound can be injected at the point. For example, in the case of the sewage treatment shown in FIG. 5, it is possible to inject an iron compound into the final sedimentation tank and the oxygen contact treatment tank in the latter stage of the biological reaction tank and the previous stage of the coagulation tank, and in any part of the piping between them. it can.

本発明において「鉄化合物」とは、特に限定されず、塩化第二鉄、塩化第一鉄、硫酸第二鉄、硫酸第一鉄、ポリ硫酸第二鉄、ポリ硫酸第一鉄などが挙げられるが、酸素によるFe(II)からFe(III)への自動酸化によりヒドロキシラジカルを発生させることができる硫酸第二鉄、塩化第二鉄などの二価の鉄の塩であることが好ましい。   In the present invention, the "iron compound" is not particularly limited, and examples thereof include ferric chloride, ferrous chloride, ferric sulfate, ferrous sulfate, ferric polysulfate, and ferrous polysulfate. Is preferably a divalent iron salt such as ferric sulfate or ferric chloride which can generate a hydroxyl radical by autoxidation of Fe (II) to Fe (III) with oxygen.

鉄化合物を含む有機汚泥と酸素を接触させることによって、酸素による有機汚泥中の粘性物質の分解に加え、鉄の自動酸化により発生するヒドロキシラジカルによる有機汚泥中の粘性物質の分解が生じ、粘性物質の分解が促進される。有機性汚泥が硝化脱窒素処理後の余剰汚泥や生物脱臭処理後の汚泥などである場合には、種々の好気性微生物群が高分子成分の分解活性は高くないが多数生存している。これらの好気性微生物群は、嫌気性処理工程において汚泥中に残留する粘着質成分を生育源として摂取し分解することが可能であるため、酸素と接触させて部分的に好気性雰囲気とすることによって高分子成分の分解活性を高めることができる。汚泥中の残留有機物と無機物とが架橋作用で結合して生じた粘着物、有機物同士が会合して生じた粘着物、及び高分子系粘着物などは、好気性微生物群による生物的反応及びヒドロキシラジカルによる化学的反応で分解される。特に、消化汚泥中に残留する分子量100万〜200万以上の高分子物質が分解されることにより汚泥粘度は大きく低減される。   By contacting organic sludge containing iron compounds with oxygen, in addition to the decomposition of viscous substances in organic sludge by oxygen, the decomposition of viscous substances in organic sludge by hydroxyl radicals generated by the autoxidation of iron occurs. Decomposition is promoted. When the organic sludge is surplus sludge after nitrification denitrification treatment or sludge after biological deodorization treatment, various aerobic microorganisms survive in spite of not having high decomposition activity of polymer components. These aerobic microorganisms can take up the sticky components remaining in the sludge in the anaerobic treatment process as a growth source and decompose them. As a result, the decomposition activity of the polymer component can be increased. Adhesive substances formed by the cross-linking of organic and inorganic substances remaining in the sludge, adhesive substances formed by the association of organic substances, and polymeric adhesive substances are caused by biological reactions by aerobic microorganisms and hydroxylation. Decomposed by chemical reaction due to radicals. In particular, sludge viscosity is greatly reduced by decomposing high molecular substances having a molecular weight of 1,000,000 to 2,000,000 or more remaining in digested sludge.

また、有機汚泥中の鉄化合物と酸素との接触により、Fe(II)は自動酸化されてFe(III)となる。鉄の自動酸化により生じるFe(III)は、マイナスに帯電している分解した粘性物質を含む有機汚泥により取り囲まれ(凝結)、基礎フロックを形成する凝結剤としても作用する。基礎フロックは、後段の凝集工程において凝集フロックへと成長する。   Further, Fe (II) is automatically oxidized to Fe (III) by the contact between the iron compound in the organic sludge and oxygen. Fe (III) generated by the autoxidation of iron is surrounded (coagulated) by organic sludge containing decomposed viscous substances that are negatively charged, and also acts as a coagulant forming a basic floc. The base flocks grow into flocculated flocs in a subsequent flocculation step.

本発明において、酸素は、酸素を含む気体として有機汚泥に導入することができればよい。たとえば、純粋酸素、空気、難脱水性消化汚泥が形成される処理施設内のごみ受入ピットやごみ選別設備などから発生する悪臭成分を含む低濃度系および高濃度系の臭気ガス、汚水の活性汚泥処理設備から発生する曝気排ガスなどを用いることができる。また、脱水処理工程の後段に脱水分離液の硝化工程を含む場合には、硝化工程からの排気ガスを酸素含有気体として再利用することができる。硝化工程からの排気ガスは、通常の空気よりも酸素含有量は低いが、本発明における酸素接触処理に用いるためには十分な酸素を含む。撹拌による気液接触による液中への酸素溶解、マイクロバブル発生器や曝気装置による液中への気体の導入など、公知の種々の手段を用いて有機汚泥中へ酸素を導入することができる。しかし、本発明の処理方法においては、後述する一定量の酸素と接触させることが必要であり、溶存酸素(DO)濃度としては1.0mg/L以下に維持できる量とすることが好ましい。   In the present invention, oxygen only needs to be introduced into the organic sludge as a gas containing oxygen. For example, low-concentration and high-concentration odor gas containing odorous components generated from refuse receiving pits and refuse sorting facilities in treatment facilities where pure oxygen, air, and hardly dewaterable digested sludge are formed, and activated sludge of sewage Aerated exhaust gas generated from the processing equipment can be used. In the case where the dehydration treatment step includes a nitrification step of the dehydrated separated liquid after the dehydration treatment step, the exhaust gas from the nitrification step can be reused as an oxygen-containing gas. The exhaust gas from the nitrification step has a lower oxygen content than normal air, but contains sufficient oxygen for use in the oxygen contact treatment in the present invention. Oxygen can be introduced into the organic sludge using various known means, such as dissolution of oxygen into the liquid by gas-liquid contact by stirring, introduction of gas into the liquid by a microbubble generator or an aerator. However, in the treatment method of the present invention, it is necessary to make contact with a certain amount of oxygen described later, and it is preferable that the dissolved oxygen (DO) concentration is maintained at 1.0 mg / L or less.

有機汚泥中の鉄化合物と酸素との量的関係については、下記式(1):   Regarding the quantitative relationship between the iron compound in the organic sludge and oxygen, the following formula (1):

(式中、kLa(h−1)は酸素移動容量係数であり、[Fe(mg/L)]は有機汚泥中の鉄化合物の総量であり、[TS(mg/L)]は有機汚泥のTS(total solid:蒸発残留物質)である。)
が成立するように、酸素移動容量係数又は鉄注入量を制御する。
(Where kLa (h −1 ) is the oxygen transfer capacity coefficient, [Fe (mg / L)] is the total amount of iron compounds in the organic sludge, and [TS (mg / L)] is the amount of the organic sludge. TS (total solid: evaporation residue).
The oxygen transfer capacity coefficient or the iron injection amount is controlled so that the following holds.

酸素移動容量係数kLa(h−1)は、気相から液相への酸素供給能力を示す指標であり、曝気量、撹拌速度、液位、酸素分圧などの実効制御因子により制御することができる。曝気量の制御は、たとえば曝気装置の風量を制御することにより行うことができる。撹拌速度の制御は、酸素接触処理槽に設けられている撹拌手段、たとえば撹拌翼の回転数を制御することにより行うことができる。液位の制御は、酸素接触処理槽へ導入する有機汚泥の流量又は酸素接触処理槽からの排出量を制御することにより行うことができる。酸素分圧の制御は、たとえば酸素源となる気体中の酸素量を制御することにより行うことができる。 The oxygen transfer capacity coefficient kLa (h −1 ) is an index indicating the ability to supply oxygen from the gas phase to the liquid phase, and can be controlled by effective control factors such as aeration amount, stirring speed, liquid level, and oxygen partial pressure. it can. The control of the aeration amount can be performed, for example, by controlling the air volume of the aeration device. The stirring speed can be controlled by controlling the number of revolutions of a stirring means provided in the oxygen contact treatment tank, for example, a stirring blade. The liquid level can be controlled by controlling the flow rate of the organic sludge introduced into the oxygen contact treatment tank or the discharge amount from the oxygen contact treatment tank. The oxygen partial pressure can be controlled, for example, by controlling the amount of oxygen in a gas serving as an oxygen source.

より簡易な方法としては、酸素接触処理槽の酸素移動容量係数の設計値、有機汚泥のTS及び鉄濃度の実測値に基づいて、下記のように有機汚泥前駆体又は有機汚泥への鉄化合物の注入量を制御することもできる。ここで、[Fe(mg/L)]/[TS(mg/L)]は、有機汚泥中のTS(total solid:蒸発残留物質)当たりの鉄化合物の総量の比である。
(i)酸素移動容量係数(kLa(h−1))が0.12h−1未満の場合には、[Fe(mg/L)]/[TS(mg/L)]が1.6以上2.9以下となる鉄注入量。
(ii)酸素移動容量係数(kLa(h−1))が0.12h−1以上0.28h−1未満の場合には、[Fe(mg/L)]/[TS(mg/L)]が0.9以上2.9以下となる鉄注入量。
(iii)酸素移動容量係数(kLa(h−1))が0.28h−1以上5.7h−1以下の場合には、[Fe(mg/L)]/[TS(mg/L)]が0.6以上2.9以下となる鉄注入量。
As a simpler method, based on the design value of the oxygen transfer capacity coefficient of the oxygen contact treatment tank, the TS of the organic sludge and the actually measured values of the iron concentration, the iron compound to the organic sludge precursor or the organic sludge as described below. The injection volume can also be controlled. Here, [Fe (mg / L)] / [TS (mg / L)] is the ratio of the total amount of iron compounds per TS (total solid: evaporation residue) in organic sludge.
If (i) the volumetric oxygen transfer coefficient (kLa (h -1)) is less than 0.12H -1 is, [Fe (mg / L) ] / [TS (mg / L)] is 1.6 or more 2 Iron injection amount to be 9 or less.
When (ii) the volumetric oxygen transfer coefficient (kLa (h -1)) is less than 0.12H -1 than 0.28H -1 is, [Fe (mg / L) ] / [TS (mg / L)] Is the iron injection amount which becomes 0.9 or more and 2.9 or less.
To (iii) optionally an oxygen transfer capacity coefficient (kLa (h -1)) is 0.28H -1 or more 5.7H -1 or less, [Fe (mg / L) ] / [TS (mg / L)] Is the iron injection amount at which 0.6 becomes 2.9 or less.

本発明の処理方法により、酸素移動容量係数又は鉄注入量の粘度低減速度をB型回転粘度計で35℃、60rpmで計測した場合に20mPa・s/h以上、好ましくは30mPa・s/h以上、より好ましくは45mPa・s/h以上とすることで、有機汚泥の難脱水化を阻止することができる。粘度低減速度が高いほど、短時間の接触処理で有機汚泥の粘度低減が可能となり、あるいは長時間の接触処理でより低い粘度まで低減することが可能となる。粘度の測定は、酸素接触槽内若しくは酸素接触槽と凝集槽との間の配管内で行うことが好ましい。   According to the treatment method of the present invention, when the oxygen transfer capacity coefficient or the viscosity reduction rate of the iron injection amount is measured by a B-type rotational viscometer at 35 ° C. and 60 rpm, it is 20 mPa · s / h or more, preferably 30 mPa · s / h or more. , More preferably at least 45 mPa · s / h, it is possible to prevent the organic sludge from being hardly dehydrated. As the viscosity reduction rate is higher, the viscosity of the organic sludge can be reduced by a short contact treatment, or the viscosity can be reduced to a lower viscosity by a long contact treatment. The viscosity is preferably measured in an oxygen contact tank or in a pipe between the oxygen contact tank and the coagulation tank.

本発明の処理方法により低粘度化された汚泥は、次いで、凝集槽における凝集処理、及び脱水機における脱水処理により脱水ケーキとされる。凝集処理及び脱水処理は特に限定されず、通常の処理を行うことができるが、凝集剤の添加量は通常の処理の場合の必要量の約90%以下でよい。   The sludge whose viscosity has been reduced by the treatment method of the present invention is then formed into a dewatered cake by a coagulation treatment in a coagulation tank and a dehydration treatment in a dehydrator. The coagulation treatment and the dehydration treatment are not particularly limited, and ordinary treatment can be performed. However, the amount of the coagulant added may be about 90% or less of the necessary amount in the case of ordinary treatment.

次に、図3〜5の各装置構成の概略を説明する。   Next, an outline of each device configuration of FIGS.

図3は、嫌気性処理汚泥に本発明の処理方法を適用する場合の装置構成の概略である。有機物が可溶化槽にて可溶化され、嫌気性処理槽にて嫌気性処理されて形成される嫌気性処理汚泥は、凝集処理される前に、酸素接触処理槽に導入される。鉄化合物は、可溶化処理前の有機物、可溶化槽、可溶化物貯槽、嫌気性処理槽、酸素接触処理槽及びこれらの間の配管の任意の箇所で注入され得る。   FIG. 3 is an outline of an apparatus configuration when the treatment method of the present invention is applied to anaerobic treated sludge. Anaerobic sludge formed by solubilizing organic matter in the solubilization tank and anaerobic treatment in the anaerobic treatment tank is introduced into the oxygen contact treatment tank before the coagulation treatment. The iron compound can be injected into any part of the organic matter before the solubilization treatment, the solubilization tank, the solubilized substance storage tank, the anaerobic treatment tank, the oxygen contact treatment tank, and the piping therebetween.

図4は、好気性処理の余剰汚泥に発明の処理方法を適用する場合の装置構成の概略である。有機性排水が前処理及び生物反応槽にて好気性処理されて形成される余剰汚泥、及び生物反応槽からの処理水を後処理する際に形成される余剰汚泥は、凝集処理される前に、酸素接触処理槽に導入される。鉄化合物は、生物反応槽からの余剰汚泥及び後処理槽からの余剰汚泥又は酸素接触処理槽に注入され得る。なお、前処理はなくてもよい。   FIG. 4 is a schematic view of an apparatus configuration when the treatment method of the present invention is applied to excess sludge of aerobic treatment. The excess sludge formed when the organic wastewater is subjected to the aerobic treatment in the pretreatment and the biological reaction tank, and the excess sludge formed when the treated water from the biological reaction tank is post-treated are subjected to coagulation treatment. Is introduced into the oxygen contact treatment tank. The iron compound can be injected into the excess sludge from the biological reaction tank and the excess sludge from the post-treatment tank or the oxygen contact treatment tank. Note that the pre-processing may not be performed.

図5は、下水処理汚泥発明の処理方法を適用する場合の装置構成の概略である。下水又は有機性排水が沈砂池及び最初沈殿池で固液分離され、上澄液が生物反応槽に送られて好気性処理され、次いで最終沈殿池にて固液分離された余剰汚泥は、凝集処理される前に、酸素接触処理槽に導入される。鉄化合物は、最終沈殿池、余剰汚泥又は酸素接触処理槽に注入され得る。   FIG. 5 is a schematic view of an apparatus configuration when the treatment method of the present invention is applied. Sewage or organic wastewater is separated into solid and liquid in the settling basin and first settling basin, the supernatant is sent to the biological reaction tank for aerobic treatment, and the excess sludge separated in the final settling tank is solidified. Before being treated, it is introduced into an oxygen contact treatment tank. The iron compound can be injected into a final settling basin, excess sludge or an oxygen contact treatment tank.

酸素接触処理槽には、有機汚泥を供給する手段、酸素含有気体を供給するための曝気手段、酸素接触処理後の汚泥の引き抜き手段を備える。曝気手段としては、散気式、機械撹拌式、散気式と機械撹拌式の併用式などが挙げられる。散気式の曝気装置は、散気装置とブロアから構成される。散気装置としては、散気板、散気管、多孔管、スパージャなどが挙げられる。曝気手段は、曝気槽底部から曝気槽内の汚泥に気泡を供給できるように設けることが好ましい。また、曝気槽には、運転管理する計測機器としてpH計、DO計、ORP計、粘度計を備えることが好ましい。また、曝気槽の汚泥のpHを制御するため、酸注入手段やアルカリ注入手段を備えることが好ましい。   The oxygen contact treatment tank is provided with means for supplying organic sludge, aeration means for supplying an oxygen-containing gas, and means for extracting sludge after the oxygen contact treatment. Examples of the aeration means include an aeration type, a mechanical stirring type, and a combination type of an aeration type and a mechanical stirring type. A diffuser-type aerator is composed of a diffuser and a blower. Examples of the diffuser include a diffuser plate, a diffuser tube, a perforated tube, and a sparger. The aeration means is preferably provided so that air bubbles can be supplied from the bottom of the aeration tank to the sludge in the aeration tank. The aeration tank preferably includes a pH meter, a DO meter, an ORP meter, and a viscometer as measuring devices for operation management. Further, in order to control the pH of the sludge in the aeration tank, it is preferable to provide an acid injection unit or an alkali injection unit.

凝集槽は、酸素接触処理した後の有機汚泥を供給する手段、凝集剤を注入する手段、有機汚泥と凝集剤を混合する手段、凝集汚泥の引き抜き手段を備える。また、2つ以上の凝集槽を設けて、凝集剤を分割注入してもよい。例えば、凝集槽を2つ以上設ける場合、第1の凝集槽では無機凝集剤を注入し、第2以降の凝集槽では高分子凝集剤を注入し、凝集汚泥を形成してもよいし、第1の凝集槽でも高分子凝集剤を注入し、第2以降の凝集槽でも高分子凝集剤を注入してもよい。また、凝集槽を3つ以上設ける場合、第1の凝集槽に無機凝集剤を分割注入し、第2の凝集槽及び第3以降の凝集槽に高分子凝集剤を分割注入してもよい。凝集剤の注入量及び注入回数は、処理すべき汚泥の性状及び凝集槽の数に応じて適宜設定することができる。   The coagulation tank is provided with a means for supplying the organic sludge after the oxygen contact treatment, a means for injecting the coagulant, a means for mixing the organic sludge and the coagulant, and a means for extracting the coagulated sludge. Further, two or more coagulation tanks may be provided, and the coagulant may be dividedly injected. For example, when two or more coagulation tanks are provided, an inorganic coagulant may be injected in the first coagulation tank, and a polymer coagulant may be injected in the second and subsequent coagulation tanks to form coagulated sludge. The polymer flocculant may be injected into the first flocculation tank, and the polymer flocculant may be injected into the second and subsequent flocculation tanks. When three or more coagulation tanks are provided, the inorganic coagulant may be dividedly injected into the first coagulation tank, and the polymer coagulant may be dividedly injected into the second coagulation tank and the third and subsequent coagulation tanks. The injection amount and the number of injections of the coagulant can be appropriately set according to the properties of the sludge to be treated and the number of coagulation tanks.

脱水装置としては特に限定されず、凝集汚泥又は濃縮汚泥へ圧力を付与する手段と、固形物と脱水分離液とに分離する手段を具備することが好ましい。脱水装置としては、ベルトプレス、スクリュープレス、遠心脱水機、フィルタープレス、多重円板型脱水機、多重円盤型スクリュープレス、ロータリープレスなどが挙げられる。また、凝集槽と一体型の脱水装置に設けられていてもよい。このような脱水装置としては、一部の遠心脱水機が挙げられ、このような遠心脱水機は、内部に凝集槽に相当する領域を備えており、遠心力により汚泥と凝集剤を混合し、凝集汚泥を形成する。   The dewatering apparatus is not particularly limited, and preferably includes a means for applying pressure to the coagulated sludge or the concentrated sludge, and a means for separating the solid matter and the dewatered separation liquid. Examples of the dehydrating apparatus include a belt press, a screw press, a centrifugal dehydrator, a filter press, a multiple disk type dehydrator, a multiple disk type screw press, a rotary press, and the like. Further, it may be provided in a dehydrator integrated with the coagulation tank. Examples of such a dehydrator include some centrifugal dehydrators, and such a centrifugal dehydrator has an area corresponding to a flocculation tank therein, and mixes sludge and a flocculant by centrifugal force, Form coagulated sludge.

実施例及び比較例により、本発明を具体的に説明する。   The present invention will be specifically described with reference to Examples and Comparative Examples.

[実施例1]
TS34800mg/Lの消化汚泥250mL(鉄濃度232mg/L)が入った500mLポリ瓶に、鉄濃度換算で120g/LのFeSO水溶液を調製し、注入鉄濃度が0mg/L(総鉄濃度232mg/L、[Fe]/[TS]=0.6)、40mg/L(総鉄濃度272mg/L、[Fe]/[TS]=0.8)、及び80mg/L(総鉄濃度312mg/L、[Fe]/[TS]=0.9)の3種類について、振とう速度をそれぞれ120rpm(kLa=0.12h−1)及び200rpm(kLa=3.28h−1)として2種類の酸素移動容量係数のサンプルとして、温度35℃で振とう撹拌し、任意の撹拌経過時間でサンプルを採取して粘度の計測を行った。粘度の計測は、B型回転粘度計を使用し、35℃、60rpmで測定した(以下の実施例において同じ)。粘度低減速度は初期粘度と5時間で採取したサンプルの粘度とから求めた。結果を表1及び図6に示す。
[Example 1]
In a 500 mL plastic bottle containing 250 mL of TS34 800 mg / L digested sludge (iron concentration 232 mg / L), an aqueous solution of FeSO 4 having an iron concentration of 120 g / L was prepared, and the injected iron concentration was 0 mg / L (total iron concentration 232 mg / L). L, [Fe] / [TS] = 0.6), 40 mg / L (total iron concentration 272 mg / L, [Fe] / [TS] = 0.8), and 80 mg / L (total iron concentration 312 mg / L) , [Fe] / [TS] = about three 0.9), two oxygen transfer shaking speed of each 120rpm (kLa = 0.12h -1) and 200rpm (kLa = 3.28h -1) As a sample of the capacity coefficient, the mixture was shaken and stirred at a temperature of 35 ° C., and a sample was collected at an arbitrary elapsed time of stirring to measure the viscosity. The viscosity was measured at 35 ° C. and 60 rpm using a B-type rotational viscometer (the same applies to the following examples). The viscosity reduction rate was determined from the initial viscosity and the viscosity of the sample taken in 5 hours. The results are shown in Table 1 and FIG.

酸素移動容量係数kLaが0.12h−1の場合には、有機汚泥中のTS(total solid:蒸発残留物質)当たりの鉄化合物の総量の比[Fe(mg/L)]/[TS(mg/L)]が0.6及び0.8では粘度低減速度が20mPa・s/h未満であったが、[Fe(mg/L)]/[TS(mg/L)]が0.9で粘度低減速度が20mPa・s/h以上となった。酸素移動容量係数kLaが3.28h−1の場合には、[Fe(mg/L)]/[TS(mg/L)]が0.6、0.8及び0.9のいずれも粘度低減速度が20mPa・s/h以上となった。 When the oxygen transfer capacity coefficient kLa is 0.12 h −1 , the ratio [Fe (mg / L)] / [TS (mg) of the total amount of iron compounds per TS (total solid: evaporation residue) in the organic sludge. / L)] of 0.6 and 0.8, the viscosity reduction rate was less than 20 mPa · s / h, but [Fe (mg / L)] / [TS (mg / L)] was 0.9. The viscosity reduction rate was 20 mPa · s / h or more. When the oxygen transfer capacity coefficient kLa is 3.28 h −1 , the viscosity reduction of [Fe (mg / L)] / [TS (mg / L)] is 0.6, 0.8 and 0.9, respectively. The speed became 20 mPa · s / h or more.

[実施例2]
TS34800mg/Lの消化汚泥250mL(鉄濃度232mg/L)が入った500mLポリ瓶に、鉄濃度換算で120g/L及び240mg/LのFeSO水溶液(それぞれFe(FeSO)120ppm及びFe(FeSO)240ppmと称す)及び60mg/L及び120mg/Lのポリ硫酸第二鉄水溶液(それぞれFe(P)60ppm及びFe(P)120ppmと称す)を調製し、注入鉄濃度が0mg/L(総鉄濃度232mg/L、[Fe]/[TS]=0.6)、60mg/L(総鉄濃度292mg/L、[Fe]/[TS]=0.8)、120mg/L(総鉄濃度352mg/L、[Fe]/[TS]=1.0)、及び240mg/L(総鉄濃度472mg/L、[Fe]/[TS]=1.4)となるようにそれぞれ注入した。振とう速度200rpm(kLa=3.28h−1)、温度35℃で振とう撹拌し、任意の撹拌時間でサンプルを採取し、粘度の計測を行った。粘度低減速度は初期粘度と4時間で採取したサンプルの粘度とから求めた。表2及び図7に、対照として鉄を注入せず且つ振とう撹拌しなかった場合(総鉄濃度232mg/L、[Fe]/[TS]=0.6、kLa=0h−1)の粘度測定結果を合わせて示す。なお、振とう撹拌しなかった場合には、気液接触界面における気相から液相への酸素の溶解が生じている可能性はあるが、界面下の液体中への酸素の移動は生じていないため、酸素移動容量係数は0h−1として扱う。
[Example 2]
In a 500 mL plastic bottle containing 250 mL of TS34800 mg / L digested sludge (232 mg / L of iron), 120 g / L and 240 mg / L of FeSO 4 aqueous solution (Fe (FeSO 4 ) 120 ppm and Fe (FeSO 4 ) 240 ppm) and 60 mg / L and 120 mg / L aqueous ferric polysulfate solutions (referred to as 60 ppm Fe (P) and 120 ppm Fe (P), respectively) were prepared and the injected iron concentration was 0 mg / L (total iron). Concentration 232 mg / L, [Fe] / [TS] = 0.6), 60 mg / L (total iron concentration 292 mg / L, [Fe] / [TS] = 0.8), 120 mg / L (total iron concentration 352 mg) / L, [Fe] / [TS] = 1.0) and 240 mg / L (total iron concentration 472 mg / L, [Fe] / [TS] = 1.4). It was injected, respectively. The mixture was shaken and stirred at a shaking speed of 200 rpm (kLa = 3.28 h -1 ) and a temperature of 35 ° C., a sample was collected at an arbitrary stirring time, and the viscosity was measured. The viscosity reduction rate was determined from the initial viscosity and the viscosity of the sample taken in 4 hours. Table 2 and FIG. 7 show the viscosities as a control without iron injection and without shaking (total iron concentration 232 mg / L, [Fe] / [TS] = 0.6, kLa = 0 h -1 ). The measurement results are also shown. When shaking is not performed, oxygen may be dissolved from the gas phase to the liquid phase at the gas-liquid contact interface, but the oxygen does not move into the liquid under the interface. Since there is no oxygen transfer capacity coefficient, it is treated as 0h- 1 .

酸素移動容量係数kLa=3.28h−1の場合には、[Fe(mg/L)]/[TS(mg/L)]が0.6、0.8、1.0及び1.4のいずれも粘度低減速度が20mPa・s/h以上となった。一方、酸素移動容量係数kLa=0h−1の場合には、鉄が存在していても、粘度は400mPa・S/h以上のまま維持され、低減しなかった。 When the oxygen transfer capacity coefficient kLa = 3.28 h −1 , [Fe (mg / L)] / [TS (mg / L)] is 0.6, 0.8, 1.0, and 1.4. In each case, the viscosity reduction rate was 20 mPa · s / h or more. On the other hand, when the oxygen transfer capacity coefficient kLa = 0 h −1 , even if iron was present, the viscosity was maintained at 400 mPa · S / h or more and did not decrease.

撹拌なしの場合に、鉄の注入量を増やして鉄注入量のみの影響を検討したところ、2時間経過後に採取したサンプルで鉄注入量の増量による粘度低減効果は認められなかった。   In the case without stirring, the influence of only the iron injection amount was examined by increasing the iron injection amount. As a result, no effect of decreasing the viscosity by increasing the iron injection amount was observed in the sample collected after 2 hours.

[実施例3]
実施例2の14時間目で採取した各サンプル200mLに、凝集剤:エバグロース(登録商標)CS−374D(水ing(株)製)を135mL投入(対TS注入率4.9%)し、凝集フロックを形成させ、ベルトプレス脱水機で脱水処理して、各サンプルの脱水ケーキを作製した。脱水試験にはベルトプレス回分脱水テスト機を用いて、脱水条件は実機DRP−P型デハイロール(登録商標、水ing(株)製)のろ布緊張力=4.9kN/m、ろ布スピード=1.0m/min相当に設定した。注入した鉄濃度(又はFe/TS)とSS回収率及び脱水ケーキ含水率の関係を表3及び図8に示す。注入鉄濃度の増加と共にSS回収率及び脱水性が向上することが確認できた。
[Example 3]
A coagulant: Ebagulose (registered trademark) CS-374D (manufactured by Mizu-ing Co., Ltd.) was added to 200 mL of each sample collected at the 14th hour in Example 2 (135 mL) (the TS injection rate was 4.9%). Flock was formed and dewatered by a belt press dehydrator to produce a dehydrated cake of each sample. For the dewatering test, a belt press batch dewatering tester was used, and the dewatering conditions were the filter cloth tension of a real machine DRP-P type dehigh roll (registered trademark, manufactured by Mizu-ing Co., Ltd.) = 4.9 kN / m, the filter cloth speed = It was set to 1.0 m / min. Table 3 and FIG. 8 show the relationship between the iron concentration (or Fe / TS) injected, the SS recovery rate, and the water content of the dehydrated cake. It was confirmed that the SS recovery rate and the dehydration property were improved as the concentration of the injected iron was increased.

[実施例4]
実施例3と同様にして、鉄無注入系及び鉄注入系(鉄換算で120mg/LのFeSOを注入)のサンプルに対し、高分子凝集剤:エバグロース(登録商標)CS−374D(水ing(株)製)(2.5g/L)の注入率を変化させた場合のSS回収率及び脱水ケーキ含水率を求め、図9及び図10に示す。ベルトプレス試験機ベースであるが、鉄を注入することで、脱水工程における高分子凝集剤の使用量を約1割削減できることが確認できた。
[Example 4]
In the same manner as in Example 3, samples of a non-iron-injection system and an iron-injection system (injection of 120 mg / L FeSO 4 in terms of iron) were subjected to a polymer flocculant: Ebagulose (registered trademark) CS-374D (water ing The SS recovery rate and the water content of the dehydrated cake when the injection rate of (2.5 g / L) was changed were determined, and the results are shown in FIGS. 9 and 10. Although it is based on a belt press tester, it was confirmed that the amount of the polymer flocculant used in the dehydration step can be reduced by about 10% by injecting iron.

[実施例5]
実施例2の14時間目で採取したサンプルを10倍希釈してから2種類のフィルターでろ過し、フィルター画分3種(酸素接触処理汚泥、7μm以下の濾過液、0.45μm以下の濾過液)を調製し、粒度分布変化を計測した。表4に酸素接触処理前後の消化汚泥のフィルター画分の識別子を示し、図11に各フィルター画分の粒子径平均値の変化、図12に各フィルター画分の粒子径中央値の変化を示す。フィルター画分中の粒径の平均値、中央値とも酸素接触処理によって小さくなっており、鉄を注入した系ではさらに小さくなっており、鉄及び酸素接触により、消化汚泥が分解され、微細化し、凝集していないことが明らかとなった。
[Example 5]
The sample collected at the 14th hour in Example 2 was diluted 10-fold, and then filtered through two types of filters. Three types of filter fractions (oxygen-contact-treated sludge, filtrate of 7 μm or less, filtrate of 0.45 μm or less) ) Was prepared, and the change in particle size distribution was measured. Table 4 shows the identifiers of the filter fractions of the digested sludge before and after the oxygen contact treatment, FIG. 11 shows the change in the average particle diameter of each filter fraction, and FIG. 12 shows the change in the median particle diameter of each filter fraction. . Both the average value and the median of the particle size in the filter fraction are reduced by the oxygen contact treatment, and in the system in which iron is injected, the size is further reduced.The digestion sludge is decomposed and refined by the iron and oxygen contact, It was clarified that there was no aggregation.

[実施例6]
実施例5のサンプルのフィルター画分の励起蛍光マトリクスを計測し、いずれのフィルター画分も、酸素接触処理の際に鉄を注入した場合の励起蛍光マトリクスの変化は、鉄を注入しない場合に比べて大きく変化していることが確認できた。また、微細なフィルター画分ほど励起蛍光マトリクスの変化が大きいことが確認できた。別途で、溶解性のTOC(全有機炭素)、COD(化学的酸素要求量)、及びKj−N(ケルダール窒素:有機体窒素とアンモニウム態窒素の和)の値も増加している結果も得られていることから、消化汚泥に対して所定量の鉄の存在下で酸素接触処理を行うことにより、有機汚泥中の蛋白質、多糖、核酸、腐食酸等の有機性物質が溶出したと考えられる。
[Example 6]
The excitation fluorescence matrix of the filter fraction of the sample of Example 5 was measured, and the change in the excitation fluorescence matrix when iron was injected during the oxygen contact treatment for any of the filter fractions was smaller than when no iron was injected. It has been confirmed that it has changed greatly. It was also confirmed that the finer the filter fraction, the greater the change in the excitation fluorescence matrix. Separately, the results show that the values of soluble TOC (total organic carbon), COD (chemical oxygen demand), and Kj-N (Kjeldahl nitrogen: the sum of organic nitrogen and ammonium nitrogen) are also increased. Therefore, it is considered that by subjecting digested sludge to oxygen contact treatment in the presence of a predetermined amount of iron, organic substances such as proteins, polysaccharides, nucleic acids, and corrosive acids in organic sludge were eluted. .

[実施例7]
テレフタル酸を化学プローブとして用いたヒドロキシラジカル検出系を構築し、終濃度が1mMとなるようにテレフタル酸を消化汚泥に注入して、酸素接触処理を実施し、任意の経過時間でサンプリングを行い、励起蛍光マトリクス計測を行った。2−ヒドロキシテレフタル酸の検出が確認されたことから、鉄を含む消化汚泥の酸素接触処理によりヒドロキシラジカルが発生していることが確認できた。なお、2−ヒドロキシテレフタル酸は消化汚泥中で20時間は安定であることを確認した。
[Example 7]
Construct a hydroxyl radical detection system using terephthalic acid as a chemical probe, inject terephthalic acid into digested sludge so as to have a final concentration of 1 mM, carry out oxygen contact treatment, sample at any elapsed time, Excitation fluorescence matrix measurement was performed. Since the detection of 2-hydroxyterephthalic acid was confirmed, it was confirmed that hydroxyl radicals were generated by the oxygen contact treatment of the digested sludge containing iron. In addition, it was confirmed that 2-hydroxyterephthalic acid was stable in digested sludge for 20 hours.

実施例5〜7の結果に基づき、有機汚泥を所定量の鉄及び酸素の存在下で処理することによって、Fe(II)からFe(III)へと自動酸化されると共にヒドロキシラジカルが発生し、有機汚泥中の蛋白質、多糖、核酸、腐食酸等の有機性物質を分解して溶出させ、Fe(III)が凝結剤として作用して微細な凝結フロックを形成させ、有機汚泥の粘度が急激に低下すると考えられる。   Based on the results of Examples 5 to 7, by treating organic sludge in the presence of predetermined amounts of iron and oxygen, Fe (II) is automatically oxidized from Fe (II) to Fe (III), and hydroxyl radicals are generated. Organic substances such as proteins, polysaccharides, nucleic acids, and corrosive acids in organic sludge are decomposed and eluted, and Fe (III) acts as a coagulant to form fine coagulated flocs. It is thought to decrease.

Claims (4)

有機汚泥の凝集及び脱水処理前に、鉄化合物を含む有機汚泥を酸素と接触させてヒドロキシラジカルを発生させ、当該有機汚泥の粘度をB型回転粘度計で35℃、60rpmで計測した場合に20mPa・s/h以上の粘度低減速度で低減させる有機汚泥の処理方法であって、
有機汚泥中の鉄化合物の総量[Fe(mg/L)]と、TS(total solid:蒸発残留物質)[TS(mg/L)]と、酸素移動容量係数(kLa(h−1))との間に、下記式(1):
が成立するように、酸素移動容量係数又は鉄注入量を制御する、有機汚泥の処理方法。
Before the coagulation and dehydration treatment of the organic sludge, the organic sludge containing an iron compound is brought into contact with oxygen to generate hydroxyl radicals, and the viscosity of the organic sludge is measured at 35 ° C. and 60 rpm with a B-type rotational viscometer at 20 mPa. A method for treating organic sludge reduced at a viscosity reduction rate of s / h or more,
The total amount of iron compounds in the organic sludge [Fe (mg / L)], TS (total solid: evaporation residue) [TS (mg / L)], oxygen transfer capacity coefficient (kLa (h -1 )) During the following equation (1):
A method for treating organic sludge, wherein the oxygen transfer capacity coefficient or iron injection amount is controlled so that the following holds.
有機汚泥の凝集及び脱水処理前に、鉄化合物を含む有機汚泥を酸素と接触させてヒドロキシラジカルを発生させ、当該有機汚泥の粘度をB型回転粘度計で35℃、60rpmで計測した場合に20mPa・s/h以上の粘度低減速度で低減させる有機汚泥の処理方法であって、
有機汚泥前駆体又は有機汚泥への鉄化合物の注入量を
(i)酸素移動容量係数(kLa(h−1))が0.12h−1未満の場合には、有機汚泥中のTS(total solid:蒸発残留物質)当たりの鉄化合物の総量の比[Fe(mg/L)]/[TS(mg/L)]が1.6以上2.9以下となるように、
(ii)酸素移動容量係数(kLa(h−1))が0.12h−1以上0.28h−1未満の場合には、有機汚泥中のTS(total solid:蒸発残留物質)当たりの鉄化合物の総量の比[Fe(mg/L)]/[TS(mg/L)]が0.9以上2.9以下となるように、
(iii)酸素移動容量係数(kLa(h−1))が0.28h−1以上5.7h−1以下の場合には、有機汚泥中のTS(total solid:蒸発残留物質)当たりの鉄化合物の総量の比[Fe(mg/L)]/[TS(mg/L)]が0.6以上2.9以下となるように、制御する、有機汚泥の処理方法。
Before the coagulation and dehydration treatment of the organic sludge, the organic sludge containing an iron compound is brought into contact with oxygen to generate hydroxyl radicals, and the viscosity of the organic sludge is measured at 35 ° C. and 60 rpm with a B-type rotational viscometer at 20 mPa. A method for treating organic sludge reduced at a viscosity reduction rate of s / h or more,
If the injection amount (i) the volumetric oxygen transfer coefficient of the organic sludge precursor or an iron compound to organic sludge (kLa (h -1)) is less than 0.12H -1 is, TS in organic sludge (total solid : Fe (mg / L) / [TS (mg / L)] of the total amount of iron compounds per (evaporation residue) is 1.6 or more and 2.9 or less.
When (ii) the volumetric oxygen transfer coefficient (kLa (h -1)) is less than 0.12H -1 than 0.28H -1 is, TS in organic sludge (total solid: evaporation residue material) iron compound per So that the ratio [Fe (mg / L)] / [TS (mg / L)] of the total amount is 0.9 or more and 2.9 or less.
To (iii) optionally an oxygen transfer capacity coefficient (kLa (h -1)) is 0.28H -1 or more 5.7H -1 or less, TS in organic sludge (total solid: evaporation residue material) iron compound per The method for treating organic sludge, wherein the ratio [Fe (mg / L)] / [TS (mg / L)] is controlled to be 0.6 or more and 2.9 or less.
鉄化合物を含む有機汚泥を酸素と接触させてヒドロキシラジカルを発生させ、当該有機汚泥の粘度を20mPa・s/h以上の粘度低減速度で低減させる有機汚泥の処理方法を実施するための処理装置であって、
有機汚泥前駆体又は有機汚泥に鉄化合物を注入する鉄化合物注入手段と、
鉄化合物を含有する有機汚泥と酸素を接触させる酸素接触処理槽と、
当該酸素接触処理槽から排出される有機汚泥を凝集させる凝集槽と、
凝集した有機汚泥を脱水する脱水機と、
当該酸素接触処理槽内若しくは当該酸素接触処理槽と当該凝集槽との間に設けられている粘度計と、
当該接触処理槽の酸素移動容量係数又は鉄注入量を制御する制御装置と、
を具備し、
当該制御装置は、当該粘度計からの粘度測定値に基づいて求められる粘度低減速度が20mPa・s/h未満である場合に、
(A)有機汚泥中の鉄化合物の総量[Fe(mg/L)]と、TS(total solid:蒸発残留物質)[TS(mg/L)]と、酸素移動容量係数(kLa(h −1 ))との間に、下記式(1):
が成立するように、酸素移動容量係数又は鉄注入量を制御するか、又は
(B)有機汚泥前駆体又は有機汚泥への鉄化合物の注入量を
(i)酸素移動容量係数(kLa(h −1 ))が0.12h −1 未満の場合には、有機汚泥中のTS(total solid:蒸発残留物質)当たりの鉄化合物の総量の比[Fe(mg/L)]/[TS(mg/L)]が1.6以上2.9以下となるように、
(ii)酸素移動容量係数(kLa(h −1 ))が0.12h −1 以上0.28h −1 未満の場合には、有機汚泥中のTS(total solid:蒸発残留物質)当たりの鉄化合物の総量の比[Fe(mg/L)]/[TS(mg/L)]が0.9以上2.9以下となるように、
(iii)酸素移動容量係数(kLa(h −1 ))が0.28h −1 以上5.7h −1 以下の場合には、有機汚泥中のTS(total solid:蒸発残留物質)当たりの鉄化合物の総量の比[Fe(mg/L)]/[TS(mg/L)]が0.6以上2.9以下となるように、制御する
ことを特徴とする有機汚泥の処理装置。
A treatment apparatus for carrying out an organic sludge treatment method for bringing an organic sludge containing an iron compound into contact with oxygen to generate hydroxyl radicals and reducing the viscosity of the organic sludge at a viscosity reduction rate of 20 mPa · s / h or more. So,
Iron compound injection means for injecting an iron compound into the organic sludge precursor or organic sludge,
An oxygen contact treatment tank that brings oxygen into contact with organic sludge containing an iron compound,
A coagulation tank for coagulating organic sludge discharged from the oxygen contact treatment tank,
A dehydrator for dehydrating the coagulated organic sludge,
A viscometer provided in the oxygen contact treatment tank or between the oxygen contact treatment tank and the coagulation tank,
A control device for controlling the oxygen transfer capacity coefficient or the iron injection amount of the contact treatment tank,
Equipped with,
The control device, when the viscosity reduction rate obtained based on the viscosity measurement value from the viscometer is less than 20 mPa · s / h,
(A) The total amount of iron compound in organic sludge [Fe (mg / L)], TS (total solid: evaporation residue) [TS (mg / L)], and oxygen transfer capacity coefficient (kLa (h −1 )) )) And the following formula (1):
The oxygen transfer capacity coefficient or the iron injection amount is controlled so that
(B) Determine the amount of iron compound injected into the organic sludge precursor or organic sludge.
If (i) the volumetric oxygen transfer coefficient (kLa (h -1)) is less than 0.12H -1 is, TS in organic sludge: the ratio of the total amount of (total solid evaporation residue material) iron compound per [Fe (Mg / L)] / [TS (mg / L)] is from 1.6 to 2.9.
When (ii) the volumetric oxygen transfer coefficient (kLa (h -1)) is less than 0.12H -1 than 0.28H -1 is, TS in organic sludge (total solid: evaporation residue material) iron compound per So that the ratio [Fe (mg / L)] / [TS (mg / L)] of the total amount is 0.9 or more and 2.9 or less.
To (iii) optionally an oxygen transfer capacity coefficient (kLa (h -1)) is 0.28H -1 or more 5.7H -1 or less, TS in organic sludge (total solid: evaporation residue material) iron compound per Is controlled so that the ratio [Fe (mg / L)] / [TS (mg / L)] of the total amount is 0.6 or more and 2.9 or less.
An organic sludge treatment apparatus , characterized in that:
前記接触処理槽は、曝気装置、撹拌装置及び有機汚泥注入切り換え弁の少なくとも1つを具備し、当該曝気装置、当該撹拌装置及び当該有機汚泥注入切り換え弁の少なくとも1つは前記制御装置に電気的に接続されている、請求項に記載の有機汚泥の処理装置。 The contact treatment tank includes at least one of an aeration device, a stirring device, and an organic sludge injection switching valve, and at least one of the aeration device, the stirring device, and the organic sludge injection switching valve is electrically connected to the control device. The organic sludge treatment apparatus according to claim 3 , wherein the apparatus is connected to an organic sludge.
JP2016135151A 2016-07-07 2016-07-07 Organic sludge processing method and processing apparatus Active JP6670192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016135151A JP6670192B2 (en) 2016-07-07 2016-07-07 Organic sludge processing method and processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135151A JP6670192B2 (en) 2016-07-07 2016-07-07 Organic sludge processing method and processing apparatus

Publications (2)

Publication Number Publication Date
JP2018001137A JP2018001137A (en) 2018-01-11
JP6670192B2 true JP6670192B2 (en) 2020-03-18

Family

ID=60945573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135151A Active JP6670192B2 (en) 2016-07-07 2016-07-07 Organic sludge processing method and processing apparatus

Country Status (1)

Country Link
JP (1) JP6670192B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109574446A (en) * 2018-12-14 2019-04-05 上海交通大学 A method of improving dewatering performance of sludge using ozone/coagulant/hydrophobic polyurethane
JP7173901B2 (en) * 2019-03-04 2022-11-16 水ing株式会社 Organic wastewater treatment method and organic wastewater treatment apparatus
CN112661375B (en) * 2020-12-23 2022-08-02 福州大学 Method for deodorizing sludge through catalytic oxidation of hydroxyl radicals, deodorized sludge and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209100A (en) * 1985-03-13 1986-09-17 Kawasaki Steel Corp Dehydration pretreatment of sludge
JPS6352000A (en) * 1986-08-20 1988-03-05 Kubota Ltd Method for dehydrating excess sludge
JP2003275726A (en) * 2002-03-26 2003-09-30 Sumitomo Heavy Ind Ltd Method and system for treating organic waste

Also Published As

Publication number Publication date
JP2018001137A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6909878B2 (en) Organic matter processing method and processing equipment
JP6868679B2 (en) Organic sludge treatment method and treatment equipment
CN104370418A (en) Treatment method of chemical sewage
JP6670192B2 (en) Organic sludge processing method and processing apparatus
JP2009214043A (en) Biological treatment method for organic waste liquid, and treatment device therefor
WO2000073220A1 (en) A disposal method for pig ordure
JP2008018378A (en) Organic sludge treatment method and equipment
KR102005213B1 (en) Sludge treatment method before dehydration
JP2007061773A (en) Organic sludge treatment method and apparatus
KR940000379A (en) Advanced treatment of manure and high concentration organic wastewater
JP2015188817A (en) Waste water treatment facility and method
JP2014094322A (en) Multistage organic waste water treatment system
JP5951984B2 (en) Biological treatment method of organic wastewater
KR100710488B1 (en) Apparatus and method for water and wastewater treatment using dissolved ozone flotation and pressurized ozone oxidation
KR101916120B1 (en) Sludge treatment system and method before dehydration
JP6393491B2 (en) Water treatment equipment and biological treatment method of organic waste water
JP3181521B2 (en) Water treatment method and water treatment device
JP2007222830A (en) Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it
WO2012147467A1 (en) Sludge-concentrating method and apparatus
JP6164878B2 (en) Organic wastewater treatment method
WO2023276823A1 (en) Aerobic granule forming method and aerobic granule forming device
JP5873744B2 (en) Organic wastewater and organic waste treatment method and treatment equipment
JP3916697B2 (en) Wastewater treatment method
JP3326084B2 (en) How to reduce organic sludge
JP5063975B2 (en) Organic wastewater treatment method and treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200228

R150 Certificate of patent or registration of utility model

Ref document number: 6670192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250