JP2001225060A - Water treatment method and its device - Google Patents

Water treatment method and its device

Info

Publication number
JP2001225060A
JP2001225060A JP37513299A JP37513299A JP2001225060A JP 2001225060 A JP2001225060 A JP 2001225060A JP 37513299 A JP37513299 A JP 37513299A JP 37513299 A JP37513299 A JP 37513299A JP 2001225060 A JP2001225060 A JP 2001225060A
Authority
JP
Japan
Prior art keywords
water
aqueous solution
water treatment
bound
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP37513299A
Other languages
Japanese (ja)
Inventor
Ichiro Toyoda
一郎 豊田
Noburo Goto
信朗 後藤
Kiyoshi Tatsuhara
潔 龍原
Kiyoshi Sugata
清 菅田
Ichiro Yamashita
一郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP37513299A priority Critical patent/JP2001225060A/en
Publication of JP2001225060A publication Critical patent/JP2001225060A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method and a device therefor, capable of reducing the load of a biological treatment means in a post-process and of easily performing coagulative separation of dissolved substances, to which constrained water is bonded by intermolecular force, without using a coagulating agent causing an environmental problem. SOLUTION: Wastewater treatment is carried out in a state adding two means to an aqueous solution, wherein one of means breaks or separates the constrained water bonded to water-soluble dissolved substances by the intermolecular force, and the other of means prevents the constrained water from being reconstrained. The means for preventing the reconstraint of the constrained water consists of fine air bubbles having a diameter of 10 μm or less. The means for breaking or separating the constrained water consists of a high frequency of 10 MHz to 1 GHz, ultrasonic waves having peak values in plural frequency bands or 0.1 mol/l or more of chloride ions, fine air bubbles having a diameter of 10 μm or less, or their combination.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固形物、微生物、
有機化合物のみならず水溶液中に溶解している有機系、
燐系、窒素系等の溶質物質も含めて積極的に除去若しく
は濃縮し得る水処理方法とその装置に係わり、特に、下
水道処理設備、屎尿処理設備、畜産排水処理設備、水産
加工排水処理設備、食品加工排水処理設備、洗浄排水処
理設備、工場排水処理設備、湖水浄化設備等に適用で
き、排水中に含まれている前記溶解物質を積極的に除去
して水浄化を行う処理方法、又、水溶液からの溶解物質
の濃縮精製プロセスに適用される水処理方法とその装置
に関する。
TECHNICAL FIELD The present invention relates to solid matter, microorganisms,
Organic compounds dissolved in aqueous solutions as well as organic compounds,
The present invention relates to a water treatment method and a water treatment method capable of positively removing or concentrating phosphorus-based and nitrogen-based solutes, and in particular, sewerage treatment equipment, human waste treatment equipment, livestock wastewater treatment equipment, fishery processing wastewater treatment equipment, Applicable to food processing wastewater treatment equipment, washing wastewater treatment equipment, factory wastewater treatment equipment, lake water purification equipment, etc., a processing method for positively removing the dissolved substances contained in wastewater and purifying water, The present invention relates to a water treatment method applied to a process for concentrating and purifying dissolved substances from an aqueous solution and an apparatus therefor.

【0002】[0002]

【従来の技術】従来より、下水排水処理法としては、加
圧浮上分離方法や微生物による活性汚泥処理法が主流を
占めている。図13はかかる従来の加圧浮上分離装置を
示し、図中101は加圧浮上法による排水処理槽を示
す。加圧浮上法は、排水処理槽101からの抜き出し水
の一部をポンプ104にて加圧タンク103に供給し、
加圧タンク103内にてコンプレッサ202で空気を加
圧溶解させて加圧水を生成し、その加圧水を排水処理槽
101下部から供給する。この時、加圧水の圧力が排水
処理槽101内で開放されることにより、加圧水内に溶
解していた空気が微細気泡として生成する。この気泡が
排水中に存在している浮遊懸濁物質と吸着し、気泡の浮
力で排水処理槽101上部に気泡と共に浮遊懸濁物質が
浮上してくることを利用して排水を浄化する方法であ
る。なお、浮上してきた懸濁物質は汚泥処理工程に回さ
れる。
2. Description of the Related Art Conventionally, as a sewage wastewater treatment method, a pressurized flotation separation method and an activated sludge treatment method using microorganisms have been dominant. FIG. 13 shows such a conventional pressure-flotation / separation apparatus, in which 101 denotes a wastewater treatment tank by a pressure-flotation method. In the pressurized flotation method, a part of the water extracted from the wastewater treatment tank 101 is supplied to the pressurized tank 103 by the pump 104,
Air is pressurized and dissolved by the compressor 202 in the pressurized tank 103 to generate pressurized water, and the pressurized water is supplied from the lower part of the wastewater treatment tank 101. At this time, when the pressure of the pressurized water is released in the wastewater treatment tank 101, the air dissolved in the pressurized water is generated as fine bubbles. A method of purifying the wastewater by utilizing the fact that the air bubbles adsorb with the suspended suspended matter present in the wastewater and the suspended suspended matter floats together with the air bubbles on the upper part of the wastewater treatment tank 101 by the buoyancy of the air bubbles. is there. The suspended material that has floated is sent to a sludge treatment step.

【0003】しかしながら、加圧浮上分離方法では、現
状10μmより大きな気泡しか形成出来ておらずこのた
めいわゆる固液分離は可能であるが、水中に溶解してい
る溶質の分離は出来なかった。即ち、加圧下で空気を水
に溶解させてから大気に開放すると、微細な気泡が発生
するが、その気泡は10μmより大きな気泡である故に
液体と固体の不連続界面に発生しやすい性質がある。即
ち、水中の懸濁物質と気泡の付着力は、その物質と水及
び空気との接触界面に作用する界面張力によって異な
り、一般には親水性の界面より疎水性の界面の方が空気
との接着力が大きい。このため前記加圧浮上分離方法で
は、水に溶解している親水性の物質、言い換えれば分子
間力によって拘束水が結合している溶質物質は除去でき
ず、水中に単に混合している状態の懸濁浮遊物質しか除
去できていない。
However, in the pressure flotation method, only bubbles larger than 10 μm can be formed at present, and so-called solid-liquid separation is possible, but solute dissolved in water cannot be separated. That is, when air is dissolved in water under pressure and then released to the atmosphere, fine bubbles are generated. Since the bubbles are larger than 10 μm, they tend to be generated at a discontinuous interface between a liquid and a solid. . That is, the adhesive force between a suspended substance in water and air bubbles depends on the interfacial tension acting on the contact interface between the substance and water and air. In general, a hydrophobic interface is more likely to adhere to air than a hydrophilic interface. Power is great. For this reason, in the pressure flotation method, the hydrophilic substance dissolved in water, in other words, the solute substance to which bound water is bound by intermolecular force cannot be removed, and the state in which the substance is simply mixed in water cannot be removed. Only suspended suspended solids could be removed.

【0004】従って、従来技術によれば、前記加圧浮上
分離法等で除去出来なかった微粒子、有機化合物、溶質
物質等の処理に対しては、図13に記載しているよう
に、排水処理槽101の後工程に活性汚泥処理槽102
を設け、微生物による活性汚泥処理を用いている。
Therefore, according to the prior art, the treatment of fine particles, organic compounds, solutes, etc., which could not be removed by the pressure flotation method or the like, as shown in FIG. Activated sludge treatment tank 102
And activated sludge treatment by microorganisms is used.

【0005】[0005]

【発明が解決しようとする課題】前記したように現状の
加圧浮上法では大き目の懸濁物質しか除去できず、排出
基準の指定項目であるBOD(生物化学的酸素消費
量)、COD(化学的酸素消費量)、SS(浮遊懸濁物
質)等の原因である微粒子、有機化合物、溶質物質等を
低減させることができない。そのため、予め凝集剤を添
加し大き目の懸濁物質まで固形物化してから加圧浮上法
が用いられる場合もあるが、環境保全の観点から凝集剤
は出来るだけ使用しないのが望ましく、管理も煩わし
い。
As described above, the current pressurized flotation method can only remove large suspended solids, and BOD (biochemical oxygen consumption), COD (chemical The amount of fine particles, organic compounds, solutes, etc., which are the causes of oxygen consumption) and SS (floating suspended solids). For this reason, the pressure flotation method may be used after adding a flocculant in advance and solidifying to a large suspended substance, but from the viewpoint of environmental conservation, it is desirable that the flocculant is not used as much as possible, and management is troublesome. .

【0006】このため現在では加圧浮上分離法と活性汚
泥法を組み合わせているが、活性汚泥法は微生物を利用
しているため処理能力が遅く、装置も大型化せざるを得
ないこと、また、微生物が対象であるために維持管理に
も手間が掛かる等の課題がある。さらに、処理後に排出
される残余活性汚泥の処分に対しても、最終処分場不足
等で社会問題化してきており、出来るだけ余剰活性汚泥
が出ない処理方法の開発が望まれている。
For this reason, the pressurized flotation method and the activated sludge method are currently combined, but the activated sludge method uses microorganisms, so that the treatment capacity is slow and the apparatus must be enlarged. In addition, there is a problem that it takes time and effort for maintenance because microorganisms are targets. Furthermore, disposal of residual activated sludge discharged after treatment has become a social problem due to shortage of final disposal sites and the like, and development of a treatment method that generates as little excess activated sludge as possible is desired.

【0007】本発明はかかる技術的課題に鑑み、後工程
における生物的処理手段の負荷低減と、又環境上問題と
なる凝集剤をほとんど用いずに、分子間力によって拘束
水が結合している溶質物質を容易に凝集分離できる水処
理方法とその装置を提供することを目的とする。又本発
明は、固形物、微生物、有機化合物のみならず水溶液中
に溶解している有機系、燐系、窒素系等の溶質物質も含
めて積極的に除去し得る水処理方法とその装置を提供す
ることにあり、特に、下水道処理設備、屎尿処理設備、
畜産排水処理設備、水産加工排水処理設備、食品加工排
水処理設備、洗浄排水処理設備、工場排水処理設備、湖
水浄化設備等に適用でき、又水溶液からの溶解物質の濃
縮精製プロセスに適用される水処理方法とその装置を提
供する事にある。
In view of the above technical problems, the present invention reduces the load on biological treatment means in the post-process, and binds bound water by intermolecular force without using an environmentally problematic flocculant. An object of the present invention is to provide a water treatment method and a water treatment method capable of easily coagulating and separating a solute substance. The present invention also provides a water treatment method and apparatus capable of positively removing not only solids, microorganisms, organic compounds, but also organic, phosphorus, and nitrogen-based solutes dissolved in an aqueous solution. To provide, especially, sewage treatment equipment, human waste treatment equipment,
Water that can be applied to livestock wastewater treatment equipment, marine processing wastewater treatment equipment, food processing wastewater treatment equipment, washing wastewater treatment equipment, factory wastewater treatment equipment, lake water purification equipment, etc., and also to the process of concentrating and purifying dissolved substances from aqueous solutions An object of the present invention is to provide a processing method and an apparatus therefor.

【0008】[0008]

【課題を解決するための手段】本発明に至った経過を順
を追って説明する。例えば廃水処理方法において、排水
中に存在し除去対象となっている微細な固形物、微生
物、及び有機、リン酸系、溶質物質等の物質は、水より
誘電率が小さいこと。及び、水より小さな誘電率物質同
士には水溶液中で引力が作用することから、誘電率が小
さい気泡を排水中に形成すれば、排水中に存在する固形
物等は気泡に吸着するため、この気泡を凝集除去すれば
固形物分離が出来ることは加圧浮上分離法も同様であ
る。
The process leading to the present invention will be described step by step. For example, in a wastewater treatment method, fine solids, microorganisms, and substances such as organic, phosphoric, and solute substances that are present in the wastewater and are to be removed have a lower dielectric constant than water. And, since an attractive force acts in the aqueous solution between the dielectric substances smaller than water, if bubbles having a small dielectric constant are formed in the wastewater, the solids and the like present in the wastewater are adsorbed by the bubbles. The same applies to the pressure flotation method in which solids can be separated by removing the bubbles by coagulation.

【0009】次に、水より小さな誘電率の物が気泡に吸
着する機構について説明すると、水溶液中に溶解してい
る物質を粒子1とし、気泡を粒子2とする。erを水溶
液の比誘電率、er1を粒子1の比誘電率、er2を粒
子2の比誘電率、a1を粒子1の半径、a2を粒子2の
半径、rを粒子1と2の間の距離、kをボルツマン定
数、Tを水溶液の温度とすれば、粒子1と粒子2の間の
分極相互作用エネルギーW(r)は数式1で書けること
が公知の事実として分かっている(参考文献:分子間力
と表面力(第二版)、イスラエルアチィヴィリ著、朝倉
書店、1986年)。
Next, the mechanism by which a substance having a dielectric constant smaller than that of water is adsorbed on the bubbles will be described. The substance dissolved in the aqueous solution is referred to as particles 1 and the bubbles are referred to as particles 2. er is the relative dielectric constant of the aqueous solution, er1 is the relative dielectric constant of particle 1, er2 is the relative dielectric constant of particle 2, a1 is the radius of particle 1, a2 is the radius of particle 2, and r is the distance between particles 1 and 2. , K is the Boltzmann constant and T is the temperature of the aqueous solution, it is known as a known fact that the polarization interaction energy W (r) between the particles 1 and 2 can be expressed by the following equation (1). Intermediate force and surface force (second edition), by Israeli Avili, Asakura Shoten, 1986.

【数1】 (Equation 1)

【0010】水の比誘電率erは78.3(25℃)、
粒子2の気泡の比誘電率er2は1程度である。一方、
廃水処理の対象とする有機化合物の比誘電率はer1は
10若しくはそれ以下(日本化学会編:化学便覧基礎編
II、p506より引用)である。そのため、有機化合物
等の物質では数式1より分極相互作用エネルギーW
(r)の符号はマイナスとなり、有機化合物と気泡との
間には引力が働くことがわかる。一方、有機化合物のみ
ならず、アンモニア等の窒素化合物や燐系化合物は一般
に水和状態で、水溶液中に溶解している場合が多く、こ
れらの溶質物質の周りには、拘束水と呼ばれる水分子が
分子間力で結合している状態である。
The relative permittivity er of water is 78.3 (25 ° C.),
The relative permittivity er2 of the bubbles of the particles 2 is about 1. on the other hand,
The relative dielectric constant of an organic compound to be treated for wastewater is er1 of 10 or less (edited by The Chemical Society of Japan: Basic Handbook of Chemical Handbook)
II, p. 506). Therefore, for a substance such as an organic compound, the polarization interaction energy W
The sign of (r) is negative, indicating that an attractive force acts between the organic compound and the bubbles. On the other hand, not only organic compounds but also nitrogen compounds such as ammonia and phosphorus-based compounds are generally hydrated and often dissolved in an aqueous solution, and around these solutes, water molecules called bound water are present. Are connected by an intermolecular force.

【0011】従って気泡を排水中にバブリングしただけ
では、拘束水が結合している溶質や有機物の凝集分離が
出来ない。即ち拘束水は、自由水と異なり溶質物質によ
り動きが拘束されているために、前記溶質に結合してい
る先ず拘束水を破壊若しくは分離しなければ凝集でき
ず、そして更に前記溶質に結合している拘束水が破壊若
しくは分離された後においては、該溶質に拘束水の再拘
束を阻害する手段を付与しなければ該溶質を水溶液中よ
り凝集分離するのは困難である。
[0011] Therefore, simply bubbling bubbles in the wastewater does not allow coagulation and separation of solutes and organic substances to which bound water is bound. That is, the bound water, unlike free water, is restricted in movement by a solute substance, and therefore cannot bind without first breaking or separating bound water bound to the solute, and further bound to the solute. After the constrained water is broken or separated, it is difficult to coagulate and separate the solute from the aqueous solution unless the solute is provided with a means for inhibiting the reconstraint of the constrained water.

【0012】そこで本発明は、前記拘束水の再拘束を阻
害する手段が、直径10μm以下の微細気泡群であるこ
とを見出し、更に、前記拘束水を破壊若しくは分離する
手段として、10MHzから1GHzの高周波、複数の
周波数域にピーク値を有する超音波若しくは0.1モル
/リットル以上の塩化物イオン、直径10μm以下の微
細気泡群若しくはこれらの組み合わせである事を見出し
た。
Therefore, the present invention has found that the means for inhibiting the re-constraint of the confined water is a group of microbubbles having a diameter of 10 μm or less. Further, as means for destroying or separating the confined water, a frequency of 10 MHz to 1 GHz is used. It has been found that they are high-frequency waves, ultrasonic waves having peak values in a plurality of frequency ranges, chloride ions of 0.1 mol / liter or more, a group of fine bubbles having a diameter of 10 μm or less, or a combination thereof.

【0013】請求項1記載の発明は、かかる点に着目し
たものであり、分子間力によって拘束水と結合している
溶質を含んだ水溶液中より、前記溶質を分離する水処理
方法において、前記溶質に結合している拘束水を破壊若
しくは分離するとともに、該溶質に拘束水の再拘束を阻
害する手段を付与しながら該溶質を水溶液中より凝集分
離することを特徴とする水処理方法を提案する。
[0013] The invention of claim 1 focuses on this point, and in the water treatment method for separating the solute from an aqueous solution containing the solute bound to the bound water by an intermolecular force, A water treatment method characterized by destroying or separating the bound water bound to the solute and coagulating and separating the solute from the aqueous solution while providing the solute with a means for inhibiting the rebound of the bound water. I do.

【0014】請求項2記載の発明は、特に窒素、燐若し
くは有機系水溶性溶解物を、水溶液中より凝集分離する
廃水処理方法に適用されるもので、水溶性溶解物に分子
間力によって結合している拘束水を破壊若しくは分離す
るとともに、該拘束水の再拘束を阻害する手段を、前記
水溶液中に付与しながら該溶解物を水溶液中より凝集分
離することを特徴とする。
The invention according to claim 2 is particularly applied to a wastewater treatment method for coagulating and separating nitrogen, phosphorus or an organic water-soluble solution from an aqueous solution, and is bonded to the water-soluble solution by an intermolecular force. The method is characterized in that the dissolved substance is coagulated and separated from the aqueous solution while providing means for breaking or separating the bound water and inhibiting re-binding of the bound water.

【0015】そしてかかる発明は溶質の濃縮方法にも適
用される。即ち、請求項3記載の発明は、水溶液からの
溶解物質の濃縮を行う水処理方法において、水溶性溶解
物に分子間力によって結合している拘束水を破壊若しく
は分離するとともに、該拘束水の再拘束を阻害する手段
を、前記水溶液中に付与しながら該溶解物の濃縮を行う
ことを特徴とする。
The invention is also applied to a method for concentrating a solute. That is, the invention according to claim 3 is a water treatment method for concentrating a dissolved substance from an aqueous solution, in which the bound water bound to the water-soluble dissolved substance by an intermolecular force is destroyed or separated, and the bound water is separated. The solution is concentrated while providing a means for inhibiting re-restraint in the aqueous solution.

【0016】本発明を具体的に説明する。前記1)式で
示すように、排水中の、気泡の半径a2が小さいほど、
引力が増大することもわかる。気泡径が100μmの気
泡と、10μmの気泡、及び1μmの気泡の場合を比較
すると、100μmの気泡の場合に比べ、10μmの気
泡では千倍も強い吸着力を持ち、1μmの気泡の場合に
は百万倍も強い吸着力となる。このことから、水溶液中
に前記拘束水を破壊し且つ拘束水の再拘束を阻害するよ
うな微細な気泡を形成すれば、有機化合物のような水よ
り小さな比誘電率を持つ物質は気泡のまわりに引き付け
られ吸着した状態で凝集させることが可能となる。従っ
て、10μm以下の微細な気泡を水溶液中に形成できれ
ば、その気泡に有機化合物等を吸着させながら凝集させ
ることは原理的に可能である。本発明では、この点に着
目し、10μm以下の微細な気泡群を、溶解物質と吸着
させて、この気泡群と共に吸着した溶解物質を凝集分離
させれば、従来の加圧浮上法では除去できず、後工程の
活性汚泥処理法にて処理を行なっていた微細な固形物、
微生物、有機化合物、溶質物質の除去も可能になること
を知見したものである。
The present invention will be specifically described. As shown in the above formula (1), the smaller the radius a2 of the bubbles in the drainage water,
It can also be seen that the attraction increases. When comparing the case of the bubble having a bubble diameter of 100 μm, the bubble of 10 μm, and the bubble of 1 μm, the bubble of 10 μm has 1000 times stronger adsorption power than the bubble of 100 μm, and in the case of the bubble of 1 μm A million times stronger adsorption power. From this, if fine bubbles are formed in the aqueous solution that destroy the bound water and hinder the re-bound of the bound water, a substance having a relative dielectric constant smaller than water, such as an organic compound, is formed around the bubbles. It is possible to aggregate in the state of being attracted to and adsorbed. Therefore, if fine bubbles of 10 μm or less can be formed in the aqueous solution, it is possible in principle to cause the bubbles to aggregate the organic compound and the like while adsorbing them. In the present invention, paying attention to this point, if a group of fine bubbles of 10 μm or less is adsorbed with the dissolved substance and the dissolved substance adsorbed together with the group of bubbles is coagulated and separated, it can be removed by the conventional pressure flotation method. Instead, fine solids that had been treated by the activated sludge treatment method in the subsequent process,
It has been found that microorganisms, organic compounds and solutes can be removed.

【0017】すなわち本発明は、微細な気泡を排水中に
形成すれば、排水中に存在する従来の加圧浮上法で取り
きれなかった微生物のみならず、有機化合物、窒素、リ
ン酸系等の溶質物質を拘束水に抗して吸着させ、凝集除
去することが出来る。
That is, according to the present invention, if fine bubbles are formed in wastewater, not only microorganisms existing in the wastewater but which could not be removed by the conventional pressure flotation method, but also organic compounds, nitrogen, phosphoric acid and the like can be used. The solute substance can be adsorbed against the confined water and removed by aggregation.

【0018】直径10μm以下の微細な気泡を含んだ気
泡群とともに、10MHzから1GHzの高周波、複数
の周波数域にピーク値を有する超音波若しくは0.1モ
ル/リットル以上の塩化物イオン若しくはこれらを組み
合わせると効果的である。
Along with a bubble group containing fine bubbles having a diameter of 10 μm or less, a high frequency of 10 MHz to 1 GHz, ultrasonic waves having peak values in a plurality of frequency ranges, or chloride ions of 0.1 mol / liter or more, or a combination thereof. And effective.

【0019】この理由は、10μm以下の微細な気泡
は、排水中の微細な固形物、微生物、有機化合物、溶質
物質と吸着するが、気泡サイズが小さいために浮力が小
さく浮上してくるのに時間を要するが、超音波による疎
密波や高周波を利用し音圧により気泡を移動させること
により、気泡に吸着した溶解物質の濃縮分離を効率よく
行なうことが出来る。そしてこの場合、前記高周波は、
10MHzから1GHzの周波数域の高周波が好まし
く、又超音波は例えば定在波と進行波を組み合わせ、複
数の周波数域にピーク値を有する超音波が好ましい。又
このような物理的手段を用いなくても0.1モル/リッ
トル以上の塩化物イオンを含んだ状態で微細気泡を発生
するようにしてもよい。
The reason for this is that fine bubbles of 10 μm or less adsorb to fine solids, microorganisms, organic compounds, and solutes in the wastewater, but because of the small size of the bubbles, the bubbles have a small buoyancy and float. Although it takes time, the bubbles are moved by sound pressure using compression waves or high frequencies of ultrasonic waves, whereby the dissolved substance adsorbed on the bubbles can be efficiently concentrated and separated. And in this case, the high frequency is
A high frequency in the frequency range of 10 MHz to 1 GHz is preferable, and the ultrasonic wave is preferably an ultrasonic wave which combines a standing wave and a traveling wave and has peak values in a plurality of frequency ranges. Even without using such physical means, fine bubbles may be generated in a state containing 0.1 mol / liter or more of chloride ions.

【0020】請求項6記載の発明は、直径10μm以下
の微細な気泡を含んだ気泡群を発生させる手段として、
超音波印加による生じるキャビテーションにより微細な
気泡を発生させることを特徴とする。すなわち、非常に
微細な気泡がキャビテーションによって形成され、その
気泡が超音波の音圧によって集められて凝集される。
According to a sixth aspect of the present invention, as means for generating a bubble group including fine bubbles having a diameter of 10 μm or less,
It is characterized in that fine bubbles are generated by cavitation caused by application of ultrasonic waves. That is, very fine bubbles are formed by cavitation, and the bubbles are collected and aggregated by the sound pressure of the ultrasonic wave.

【0021】又0.1モル/リットル以上の塩化物イオ
ンを含んだ状態で微細気泡を発生する手段として、請求
項7〜9記載の発明を提案する。即ち、請求項7記載の
発明は、直径10μm以下の微細な気泡を含んだ気泡群
を発生させる手段として、0.1モル/リットル以上の
塩化物イオンを含んだ水溶液を、前記水溶液の水処理部
内に供給しつつ、該塩化物イオンを含んだ水溶液中に濾
過板を介して空気を吹き込み前記水処理部内に気泡群を
形成することを特徴とする。
Further, as means for generating fine bubbles in a state containing chloride ions of 0.1 mol / liter or more, the inventions according to claims 7 to 9 are proposed. In other words, the invention according to claim 7 is a method of generating a bubble group containing fine bubbles having a diameter of 10 μm or less, by treating an aqueous solution containing 0.1 mol / L or more of chloride ions with the aqueous solution. Air is blown into the aqueous solution containing chloride ions through a filter plate while supplying the solution into the inside of the water treatment section to form bubbles in the water treatment section.

【0022】請求項8記載の発明は、直径10μm以下
の微細な気泡を含んだ気泡群を発生させる手段として、
前記水溶液の水処理部内に電極板を設け、0.1モル/
リットル以上の塩化物イオンを含んだ水溶液を前記電極
板間に供給しながら、前記電極板に電圧を印加させて電
気分解を起こして気泡群を形成することを特徴とする。
According to the present invention, as means for generating a bubble group including fine bubbles having a diameter of 10 μm or less,
An electrode plate was provided in the water treatment section of the aqueous solution, and 0.1 mol /
While supplying an aqueous solution containing liters or more of chloride ions between the electrode plates, a voltage is applied to the electrode plates to cause electrolysis to form bubbles.

【0023】更に請求項9記載の発明は、直径10μm
以下の微細な気泡を含んだ気泡群を発生させる手段とし
て、0.1モル/リットル以上の塩化物イオンを含んだ
水溶液に空気を加圧溶解させた加圧水を、前記水溶液の
水処理部内に供給し、加圧浮上法にて気泡群を形成する
ことを特徴とする。
Further, the invention according to claim 9 has a diameter of 10 μm.
As means for generating a bubble group containing the following fine bubbles, pressurized water obtained by pressurizing and dissolving air in an aqueous solution containing 0.1 mol / L or more of chloride ions is supplied into a water treatment section of the aqueous solution. In addition, a bubble group is formed by a pressure flotation method.

【0024】前記夫々の発明は、0.1モル/リットル
以上の塩化物イオンが共存する水溶液中では、微細な気
泡が形成され易いことを利用して直径10μm以下の気
泡が多く含まれる微細気泡群を発生させ得ることを実験
にて確かめたものである。
Each of the above-mentioned inventions is based on the fact that fine bubbles containing a large amount of bubbles of 10 μm or less are contained in an aqueous solution in which chloride ions of 0.1 mol / liter or more coexist, by utilizing the fact that fine bubbles are easily formed. It was confirmed by experiments that a group could be generated.

【0025】そしてこのような塩化物イオンを用いた場
合は、請求項10に記載のように、前記水溶液の水処理
部の後段に脱塩処理部を設け、該脱塩処理部にて塩化物
イオンが濃縮排出された水溶液を塩化物イオンを含んだ
水溶液として用いるのがよい。
In the case where such chloride ions are used, a desalting section is provided at a stage subsequent to the water treating section of the aqueous solution, and the chloride ion is provided in the desalting section. The aqueous solution from which the ions have been concentrated and discharged is preferably used as an aqueous solution containing chloride ions.

【0026】かかる発明によれば、塩化物イオンを含ん
だ水溶液として再利用することで、塩化物イオンを系内
に循環させて繰り返し使用する事が出来る。尚脱塩装置
としては逆浸透膜法や電気透析法等により塩濃度を凝集
できるものを使用すればよい。又脱塩装置後の浄化水
は、放流または浄化水として再利用される。
According to this invention, chloride ions can be circulated in the system and reused by reusing them as an aqueous solution containing chloride ions. As the desalting device, a device capable of coagulating the salt concentration by a reverse osmosis membrane method or an electrodialysis method may be used. The purified water after the desalination apparatus is discharged or reused as purified water.

【0027】請求項11記載の発明は、前記水溶液中
に、直径10μm以下の微細な気泡を含んだ気泡群とと
もに、10MHzから1GHzの高周波を印加すること
で、気泡群と水溶液中の溶質物質との吸着作用を向上さ
せる事を特徴とする。
The invention according to claim 11 is that, by applying a high frequency of 10 MHz to 1 GHz together with a bubble group including fine bubbles having a diameter of 10 μm or less to the aqueous solution, the bubble group and the solute substance in the aqueous solution are reduced. It is characterized by improving the adsorbing action.

【0028】かかる発明は、水処理部内に10MHzか
ら1GHzの高周波を印加することにより、水溶液中で
の溶解物のまわりに存在している水和の水分子(拘束
水)を壊し、水和で緩和されている溶解物に電気双極子
を露出させることで気泡との吸着力をより大きくし、分
離効率を高めるものである。
According to the invention, by applying a high frequency of 10 MHz to 1 GHz to the water treatment section, water molecules (bound water) of hydration existing around the dissolved substance in the aqueous solution are broken, and By exposing the electric dipole to the relaxed melt, the adsorption power with bubbles is increased and the separation efficiency is increased.

【0029】請求項12〜16記載の発明は前記発明を
好適に実施するための装置に関する発明で、請求項12
記載の発明において、分子間力によって拘束水と結合し
ている窒素、燐若しくは有機系水溶性溶解物等の溶質を
含んだ水溶液中より、前記溶質を分離若しくは濃縮を行
う水処理装置において、前記水溶液が貯留されている貯
留槽内で、前記溶質に結合している拘束水を破壊若しく
は分離するとともに、該貯留槽内に前記溶質に拘束水の
再拘束を阻害する手段を付与しながら該溶質を水溶液中
より凝集分離若しくは該溶質を含む溶解物の濃縮を行う
ことを特徴とする。
The invention according to claims 12 to 16 relates to an apparatus for suitably carrying out the invention, and is described in claim 12.
In the invention described in the above, in a water treatment apparatus for separating or concentrating the solute from an aqueous solution containing a solute such as nitrogen, phosphorus, or an organic water-soluble dissolved substance bound to bound water by an intermolecular force, In the storage tank in which the aqueous solution is stored, the bound water bound to the solute is destroyed or separated, and the solute is added to the solute with means for inhibiting the bound water from re-binding. From the aqueous solution by coagulation or concentration of a dissolved substance containing the solute.

【0030】この場合、前記拘束水の再拘束を阻害する
手段が、直径10μm以下の微細気泡群であるのがよい
ことも、又前記拘束水を破壊若しくは分離する手段が、
10MHzから1GHzの高周波、複数の周波数域にピ
ーク値を有する超音波若しくは0.1モル/リットル以
上の塩化物イオン、直径10μm以下の微細気泡群若し
くはこれらの組み合わせであるのが良いことも既述済み
である。
In this case, it is preferable that the means for inhibiting the re-constraint of the confined water is a group of fine bubbles having a diameter of 10 μm or less.
It is also mentioned that a high frequency of 10 MHz to 1 GHz, an ultrasonic wave having a peak value in a plurality of frequency ranges, a chloride ion of 0.1 mol / liter or more, a group of fine bubbles having a diameter of 10 μm or less, or a combination thereof is preferable. Has already been done.

【0031】そして更に、直径10μm以下の微細な気
泡を含んだ気泡群を発生させる手段が、超音波印加によ
る生じるキャビテーションにより微細な気泡を発生させ
る手段、0.1モル/リットル以上の塩化物イオンを含
んだ水溶液を、前記水溶液の水処理部内に供給しつつ、
該塩化物イオンを含んだ水溶液中に濾過板を介して空気
を吹き込み前記水処理部内に気泡群を形成する手段、前
記水溶液の水処理部内に電極板を設け、0.1モル/リ
ットル以上の塩化物イオンを含んだ水溶液を前記電極板
間に供給しながら、前記電極板に電圧を印加させて電気
分解を起こして気泡群を形成する手段、0.1モル/リ
ットル以上の塩化物イオンを含んだ水溶液に空気を加圧
溶解させた加圧水を、前記水溶液の水処理部内に供給
し、加圧浮上法にて気泡群を形成する手段のいずれか1
若しくは複数の組み合わせであることも既述されてお
り、更に請求項16に記載のように、直径10μm以下
の微細な気泡を含んだ気泡群を発生させる手段が、0.
1モル/リットル以上の塩化物イオンを含んだ水溶液を
前記貯留槽の下部に供給し、該塩化物イオン水溶液貯留
部に気泡発生用の物理的手段を付与して行われるととも
に、前記貯留槽の後段に脱塩処理槽を設け、該脱塩処理
槽にて塩化物イオンが濃縮排出された水溶液を前記貯留
槽の下部に再供給することを特徴とする事も既述済みで
ある。
Further, means for generating a bubble group including fine bubbles having a diameter of 10 μm or less include means for generating fine bubbles by cavitation generated by application of ultrasonic waves, and chloride ions of 0.1 mol / liter or more. While supplying the aqueous solution containing
A means for blowing air into the aqueous solution containing the chloride ions through a filter plate to form bubbles in the water treatment unit, and providing an electrode plate in the water treatment unit for the aqueous solution, and providing at least 0.1 mol / liter or more. Means for applying a voltage to the electrode plates to cause electrolysis while forming an aqueous solution containing chloride ions between the electrode plates to form a bubble group; Pressurized water in which air is dissolved in the aqueous solution under pressure is supplied into a water treatment section of the aqueous solution, and any one of means for forming a bubble group by a pressurized levitation method;
Or a combination of a plurality of bubbles, and as described in claim 16, the means for generating a bubble group including fine bubbles having a diameter of 10 μm or less is 0.1.
An aqueous solution containing 1 mol / liter or more of chloride ions is supplied to the lower part of the storage tank, and the chloride ion aqueous solution storage section is provided with physical means for generating air bubbles. It has already been described that a desalination treatment tank is provided in the subsequent stage, and the aqueous solution in which chloride ions are concentrated and discharged in the desalination treatment tank is resupplied to the lower part of the storage tank.

【0032】[0032]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、形状、その相対配置などは特に特定
的な記載がない限り、この発明の範囲をそれのみに限定
する趣旨ではなく単なる説明例に過ぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, unless otherwise specified, dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the invention, but are merely illustrative examples.

【0033】上記本発明を実証するために行なった実験
について図1乃至図3に基づいて説明する。図1は、超
音波によるキャビテーションを利用して微細な気泡を形
成し、さらに、定在波を形成させることにより超音波に
よる音圧にて、気泡と共に溶解物質を凝集できることを
実証した実験装置の概要図である。図中1は実験対象水
溶液2が注入されている円筒状のガラス管で、ガラス管
1の上端は開放されており、下端は実験対象水溶液2が
こぼれないようガラス、または、ゴム膜等で封じて閉塞
されている。4はシャーレ状の容器で超音波伝達用とし
ての水3が満たされており、該水3に前記ガラス管底部
が浸付けされている。5は超音波振動子で、前記容器の
底部に接触配置されている。6は超音波発振電源、7は
前記ガラス管1上部側面に設けた超音波センサーであ
る。
An experiment performed to demonstrate the present invention will be described with reference to FIGS. Fig. 1 shows an experimental device that demonstrates that microbubbles are formed using cavitation by ultrasonic waves, and that a dissolved substance can be aggregated together with the bubbles by the sound pressure of ultrasonic waves by forming standing waves. FIG. In the figure, reference numeral 1 denotes a cylindrical glass tube into which an aqueous solution 2 to be tested is injected. The upper end of the glass tube 1 is open, and the lower end is sealed with glass or a rubber film so that the aqueous solution 2 to be tested is not spilled. Is closed. Reference numeral 4 denotes a petri dish-like container which is filled with water 3 for transmitting ultrasonic waves, and the glass tube bottom is immersed in the water 3. Reference numeral 5 denotes an ultrasonic vibrator, which is disposed in contact with the bottom of the container. Reference numeral 6 denotes an ultrasonic oscillation power supply, and reference numeral 7 denotes an ultrasonic sensor provided on the upper side surface of the glass tube 1.

【0034】かかる装置により次のような実験を行っ
た。超音波振動子5を底部に装着した容器4内に、超音
波伝達用としての水3を入れ、その中に、実験対象水溶
液2を入れたガラス管1を設置する。実験で使用したガ
ラス管1の内径は20mmφであり、超音波発振電源6
から超音波振動子5に、周波数38kHzの正弦波を6
0Wの出力で供給した。実験対象水溶液2として、有機
化合物の一つである10重量%の砂糖水を入れ超音波を
印加した。印加と同時に水溶液中には屈折率の異なる部
分が発生し濃度の違いが屈折率の違いとして目視でき
た。分離した部分は比較的安定しており超音波を止めて
も形状を維持していた。
The following experiment was conducted using such an apparatus. Water 3 for transmitting ultrasonic waves is placed in a container 4 having an ultrasonic transducer 5 attached to the bottom, and a glass tube 1 containing an aqueous solution 2 to be tested is placed therein. The inner diameter of the glass tube 1 used in the experiment was 20 mmφ, and the ultrasonic oscillation power source 6 was used.
A sine wave with a frequency of 38 kHz from the
Supplied at an output of 0W. As the aqueous solution 2 to be tested, 10% by weight of sugar water, which is one of the organic compounds, was added and ultrasonic waves were applied. Simultaneously with the application, a portion having a different refractive index was generated in the aqueous solution, and a difference in concentration was visually observed as a difference in refractive index. The separated portion was relatively stable and maintained its shape even when the ultrasonic wave was stopped.

【0035】実験結果の一例を図2に示す。図2には、
超音波印加によってガラス管1内に形成された定在波の
節部(水溶液高さ略4/5の位置と略2/5の位置)に砂
糖分子が濃縮されていることが分かる。定在波の節に相
当する部分と腹に相当する部分から溶液を採取し、有機
炭素計(島津製作所製TOC-500)を用いて溶液中
に含まれる炭素量を測定したところ、節部分が腹部分に
比較して3割程度、炭素量が増加していた。この結果
は、溶液中の砂糖が節部分に濃縮したことを意味する。
なお、超音波を停止した直後に、節部分から非常に微細
な気泡が上昇していくのが観測された。脱気した水溶液
ではこのような凝集分離現象が観測できないことから、
非常に微細な気泡がキャビテーションによって形成さ
れ、その気泡が超音波の音圧によって集められて凝集さ
れたことが分かる。
FIG. 2 shows an example of the experimental results. In FIG.
It can be seen that the sugar molecules are concentrated at the nodes of the standing wave formed in the glass tube 1 by the application of the ultrasonic wave (at approximately 4/5 and approximately 2/5 of the height of the aqueous solution). The solution was collected from the portion corresponding to the node of the standing wave and the portion corresponding to the antinode, and the amount of carbon contained in the solution was measured using an organic carbon meter (TOC-500 manufactured by Shimadzu Corporation). The carbon content was increased by about 30% compared to the minute. This result means that the sugar in the solution was concentrated in the nodes.
Immediately after the ultrasonic wave was stopped, very fine bubbles were observed to rise from the nodes. Since such a cohesive separation phenomenon cannot be observed in the degassed aqueous solution,
It can be seen that very fine bubbles were formed by cavitation, and the bubbles were collected and aggregated by the sound pressure of the ultrasonic wave.

【0036】図3に図1のガラス管1の側部に設けた超
音波センサにて計測した超音波周波数のスペクトル図を
示す。発振周波数は38kHzであるが、発振周波数3
8kHz以外にも強度が小さい高調波である57kH
z、76kHz,95kHzのピーク波形信号が現れて
いることが分かる。これらは38kHzの定在波と該定
在波の反射共鳴に起因して生成される進行波の組み合わ
せにより、57kHz、76kHz,95kHzのピー
ク波形信号が現れるものと推定される。また、既知の実
験で38kHzだけのスペクトルでは分離現象が起こり
にくいことを確認している。
FIG. 3 shows a spectrum diagram of the ultrasonic frequency measured by the ultrasonic sensor provided on the side of the glass tube 1 of FIG. The oscillation frequency is 38 kHz, but the oscillation frequency is 3 kHz.
In addition to 8 kHz, 57 kHz which is a harmonic with a small intensity
It can be seen that peak waveform signals of z, 76 kHz and 95 kHz appear. It is presumed that peak waveform signals of 57 kHz, 76 kHz, and 95 kHz appear due to a combination of a standing wave of 38 kHz and a traveling wave generated by reflection resonance of the standing wave. Also, it has been confirmed by a known experiment that the separation phenomenon does not easily occur in the spectrum of only 38 kHz.

【0037】以上の実験事実から、定在波を形成する周
波数より高い周波数成分でキャビテーションを起こし直
径10μm以下の気泡が多く含まれる微細気泡群を発生
させると、その気泡は、水溶液に溶解している有機化合
物、この実験では砂糖分子と吸着するため、その塊を定
在波を形成する音圧、この実験では38kHzの超音波
で節部に凝集させることにより、水溶液に溶解した溶質
物質であっても凝集分離可能であることが知見された。
なお、本実験例では、砂糖水を用いたがエタノール等の
アルコール水、食塩水でも同様な凝集分離作用があるこ
とを確認している。また、定在波を形成する周波数とし
て、100kHzでも同様な現象が起こることを確認し
ており、周波数帯に対しては制限が無いため、通常超音
波として利用される20KHz〜500KHzの範囲を
利用することが望ましい。
From the above experimental facts, when cavitation occurs at a frequency component higher than the frequency at which a standing wave is formed to generate microbubbles containing a large number of bubbles having a diameter of 10 μm or less, the bubbles are dissolved in an aqueous solution. In this experiment, the mass was adsorbed with sugar molecules, so that the mass was a solute substance dissolved in the aqueous solution by agglomerating the nodes with sound pressure that forms a standing wave, and in this experiment, 38 kHz ultrasonic waves. It was also found that aggregation separation was possible.
In this experimental example, sugar water was used, but it has been confirmed that alcohol water such as ethanol or a saline solution has a similar coagulation / separation effect. In addition, it has been confirmed that the same phenomenon occurs at a frequency of 100 kHz as a frequency for forming a standing wave, and there is no limit to the frequency band. Therefore, a frequency range of 20 kHz to 500 kHz which is usually used as an ultrasonic wave is used. It is desirable to do.

【0038】図4は、上記原理を適用した超音波による
排水処理装置の概略図を示したものである。図中11は
排水処理槽、12は該処理槽11底部に設けた凝集部抜
き取り口で定在波の節部と対応する位置に凝集部抜き取
り口12を設けるのがよい。13は処理槽11側壁下部
に設けた排水口、5は処理槽11側壁両側に設けた一対
の超音波振動子、6は超音波発振電源である。超音波発
振電源にて、図3に示したような複数の振動数を持った
高周波を発生、増幅させて超音波振動子5に印加する。
尚、超音波振動子5は、図示したように対面に向き合わ
せた状態で配置してもよく、又1個でもよいが、処理槽
11内に定在波だけではなく、うなりによって生成され
る波の進行性分もあわせて混在されるのが良い。
FIG. 4 is a schematic diagram of an ultrasonic wastewater treatment apparatus to which the above principle is applied. In the figure, reference numeral 11 denotes a wastewater treatment tank, and reference numeral 12 denotes an aggregation part extraction port provided at the bottom of the treatment tank 11, and an aggregation part extraction port 12 is preferably provided at a position corresponding to a node of a standing wave. Reference numeral 13 denotes a drain port provided at the lower part of the side wall of the processing tank 11, 5 denotes a pair of ultrasonic vibrators provided on both sides of the side wall of the processing tank 11, and 6 denotes an ultrasonic oscillation power supply. A high frequency having a plurality of frequencies as shown in FIG. 3 is generated, amplified and applied to the ultrasonic vibrator 5 by an ultrasonic oscillation power supply.
The ultrasonic transducers 5 may be arranged facing each other as shown in the figure, or may be provided alone. However, the ultrasonic transducers 5 are generated not only by standing waves but also by beats in the processing tank 11. It is good to mix the wave progression.

【0039】かかる構成において、超音波振動子5を側
面に装着した排水処理槽11に処理すべき原水を供給し
て満水にした状態で、超音波発振電源6により超音波振
動子5を振動させ、排水処理槽11内に超音波に基づく
キャビテーションによる微細な気泡と定在波、及びうな
りによって生成される進行性分を形成させる。これによ
り、定在波節部に凝集した溶解物質を凝集部抜き取り口
12から抜き取り、汚泥処理工程に給送する。
In such a configuration, the ultrasonic oscillator 5 is vibrated by the ultrasonic oscillation power supply 6 in a state where the raw water to be treated is supplied to the wastewater treatment tank 11 having the ultrasonic oscillator 5 attached to the side and is filled with water. In the wastewater treatment tank 11, fine bubbles and standing waves due to cavitation based on ultrasonic waves, and progressive components generated by beats are formed. As a result, the dissolved substance agglomerated in the standing node is extracted from the aggregating section extraction port 12 and fed to the sludge treatment step.

【0040】一方、前記溶解物質が除去された水溶液は
排水口13から装置外に排出して後段側の浄化装置で排
水浄化を行なう。なお、本装置を多段にすることにより
原水の浄化性能を上げることができ、後段側の負担軽減
につながる。
On the other hand, the aqueous solution from which the dissolved substances have been removed is discharged to the outside of the apparatus through the drain port 13 and the waste water is purified by a downstream purifier. In addition, the purification performance of raw water can be improved by using this apparatus in multiple stages, which leads to a reduction in the burden on the downstream side.

【0041】図5は、超音波印加でキャビテーションに
より気泡を作成し、溶液を濃縮し溶解物を分離する装置
図を示す。(a)は超音波振動子5を処理塔23底部に
取り付けた場合、(b)は超音波振動子5を処理塔23
側面両側に取り付けた場合の概略図を示したものであ
る。図中24はタンク、22は反射板で、超音波振動子
5を処理塔23底部に取り付けた(a)の場合は、塔上
部に下向きで超音波振動子5と対抗配置し、又超音波振
動子5を処理塔23側面両側に取り付けた(b)の場合
は、塔中央部に垂直方向に上下に配置し、超音波振動子
5と対抗配置している。
FIG. 5 shows an apparatus diagram for forming bubbles by cavitation by applying ultrasonic waves, concentrating the solution and separating the dissolved matter. (A) is a case where the ultrasonic vibrator 5 is attached to the bottom of the processing tower 23, and (b) is a case where the ultrasonic vibrator 5 is attached to the processing tower 23.
FIG. 3 is a schematic view showing a case where the camera is attached to both side surfaces. In the figure, 24 is a tank, 22 is a reflector, and in the case of (a) in which the ultrasonic oscillator 5 is attached to the bottom of the processing tower 23, the ultrasonic oscillator 5 is disposed downward at the top of the tower to oppose the ultrasonic oscillator 5. In the case of (b) in which the vibrators 5 are attached to both sides of the side of the processing tower 23, the vibrators 5 are vertically arranged vertically in the center of the tower and opposed to the ultrasonic vibrator 5.

【0042】かかる構成において、タンクに供給された
処理液の一部を処理塔23に導いた後、該処理塔23内
の底部若しくは側面一側に、超音波振動子5を設置し、
超音波発振電源6を用いて振動させ、超音波21を印加
する。水溶液中に超音波が印加されたことにより、水溶
液中にキャビテーションにより微細な気泡が生成すると
ともに、対抗配置した反射板により超音波が繰り返し反
射され、超音波振動子5と反射板22の間でさらに圧力
の疎密部分が増幅され、気泡が生成しやすくなる。な
お、反射板22はキャビテーションが発生するような状
況下が作り出されれば必ずしも必須要件ではない。
In such a configuration, after a part of the processing liquid supplied to the tank is guided to the processing tower 23, the ultrasonic vibrator 5 is installed at the bottom or one side of the processing tower 23,
Vibration is performed using the ultrasonic oscillation power supply 6 to apply ultrasonic waves 21. By applying ultrasonic waves to the aqueous solution, fine bubbles are generated by cavitation in the aqueous solution, and the ultrasonic waves are repeatedly reflected by the reflectors arranged opposite to each other. Further, the pressure sparse portion is amplified, and bubbles are easily generated. The reflection plate 22 is not always an essential requirement as long as a situation where cavitation occurs is created.

【0043】そしてキャビテーション等により生成され
た気泡は溶解物を吸着させ浮上してくるため、オーバフ
ロー型の貯留部で、処理塔23の上部で浮上した気泡と
溶質物質を集め汚泥処理工程に回し、一方浄化された処
理液は処理塔23下部の排出口25から排水として抜き
取ることにより排水浄化が行なえる。
Since bubbles generated by cavitation and the like float by adsorbing the dissolved matter, the bubbles and solutes floating on the upper part of the treatment tower 23 are collected in an overflow type storage part and sent to a sludge treatment step. On the other hand, the purified processing liquid is drained from the discharge port 25 at the lower part of the processing tower 23 as drainage, so that drainage can be purified.

【0044】また、本発明人等はイオン濃度が高い水溶
液、特に塩化物イオン濃度が高い場合には水溶液中に微
細な気泡が形成されることに着眼した。淡水に比べ海水
の方が微細な気泡が形成されることは公知の事実であ
る。実際に、空気をバブリングしながら塩濃度を濃くし
ていくと微細な気泡が形成され水溶液が白濁してくるこ
とが分かる。10μm以下の気泡形成は、目視で確認出
来ないため図6(A)、(B)に示す実験手順で行なった。
Further, the present inventors have noticed that fine bubbles are formed in an aqueous solution having a high ion concentration, particularly when the chloride ion concentration is high. It is a known fact that fine bubbles are formed in seawater as compared to freshwater. Actually, it can be seen that when the salt concentration is increased while bubbling air, fine bubbles are formed and the aqueous solution becomes cloudy. Since the formation of bubbles of 10 μm or less cannot be visually confirmed, the experiment was performed according to the experimental procedure shown in FIGS. 6 (A) and 6 (B).

【0045】実験は先ず、図6(A)に示すように、容器
31内に塩化物イオン濃度を調整した蒸留水32を入
れ、ボールフィルタ33にて空気ボンベ34より空気を
バブリングし、その後、図6(B)に示すように、液面上
部に窒素ガス36をフローしながら水溶液の溶存酸素濃
度を計測し、脱酸素過程を観測した。もし、非常に微細
な気泡が空気バブリングにより形成され溶解していれ
ば、溶存酸素濃度の減少に伴い、水溶液中に滞留してい
る微細な気泡から酸素の再溶解が起こるため脱酸素速度
が遅くなるはずである。
In the experiment, first, as shown in FIG. 6A, distilled water 32 of which chloride ion concentration was adjusted was placed in a container 31, air was bubbled from an air cylinder 34 with a ball filter 33, and thereafter, As shown in FIG. 6B, the dissolved oxygen concentration of the aqueous solution was measured while flowing a nitrogen gas 36 above the liquid surface, and the deoxygenation process was observed. If very fine bubbles are formed and dissolved by air bubbling, the oxygen removal rate decreases due to the re-dissolution of oxygen from the fine bubbles remaining in the aqueous solution as the concentration of dissolved oxygen decreases. Should be.

【0046】より具体的に説明するに、図6(A)に示す
ように、塩としてはNaClを用い予め塩濃度を調整し
た蒸留水:250ccを攪拌子35にて攪拌しながら、
キノシタボールフィルタG4(木下理化学工業(株)
製)33を介して空気ボンベ34より空気を300CC
/minでバブリングする。その後、バブリングを停止
し、(B)に示すように、窒素ガス36を300CC/m
inで液面に供給し、溶存酸素濃度の時間的な減少傾向
を計測する。
More specifically, as shown in FIG. 6 (A), 250 cc of distilled water whose salt concentration was previously adjusted using NaCl as the salt was stirred with a stirrer 35 while stirring.
Kinoshita Ball Filter G4 (Kinoshita Chemical Co., Ltd.)
300cc air from the air cylinder 34 through the
Bubbling at / min. Thereafter, bubbling was stopped, and nitrogen gas 36 was supplied at 300 CC / m as shown in FIG.
The liquid oxygen is supplied to the liquid surface at "in", and the decreasing tendency of the dissolved oxygen concentration over time is measured.

【0047】Nacl濃度0〜1.0mol/lの水溶
液に対し測定した結果を図6(C)に示す。本グラフ図よ
り明らかなように、Nacl濃度が0.2mol/lを
超えた時点から水溶液からの脱酸素速度が遅くなってき
ており、塩濃度濃くなるほど顕著になってきていること
が分かる。これは、目に見えないような微細な気泡が空
気バブリングにより水溶液内に形成され、脱酸素過程に
伴い、気泡から水溶液側に酸素の再溶解が起こるため
に、脱酸素過程が遅くなって観測されたことによる。従
って、塩化物イオン濃度0.2mol/l以上の水溶液
を利用すれば、微細な気泡形成が出来る。
FIG. 6C shows the result of measurement on an aqueous solution having a NaCl concentration of 0 to 1.0 mol / l. As is clear from this graph, the deoxygenation rate from the aqueous solution has been slowed from the time when the NaCl concentration exceeded 0.2 mol / l, and it became clear that the salt concentration became more pronounced. This is because fine bubbles that are invisible are formed in the aqueous solution by air bubbling, and oxygen is redissolved from the bubbles to the aqueous solution side during the deoxygenation process. It depends. Therefore, when an aqueous solution having a chloride ion concentration of 0.2 mol / l or more is used, fine bubbles can be formed.

【0048】図7は、バブリングによって直径10μm
以下の微細な気泡を形成する装置の概略図を示したもの
である。排水処理槽101内下部に塩化物イオン含有水
203の貯留部210を設け、該貯留部210に0.1
モル/リットル以上の塩化物イオン含有水203を供給
し、そこにコンプレッサ202からの空気を、貯留部2
10底面に設けたろ過板201を介して供給することに
より直径10μm以下の気泡が多く含まれる微細気泡群
が形成されるものである。
FIG. 7 shows that the diameter is 10 μm by bubbling.
FIG. 1 is a schematic view of an apparatus for forming the following fine bubbles. A storage section 210 for the chloride ion-containing water 203 is provided in the lower portion of the wastewater treatment tank 101, and the storage section 210 has a capacity of 0.1%.
At least mol / liter of chloride ion-containing water 203 is supplied, and air from the compressor 202 is supplied to the storage unit 2.
By supplying the fine bubbles through a filter plate 201 provided on the bottom face 10, a group of fine bubbles containing many bubbles with a diameter of 10 μm or less is formed.

【0049】図8は、電気分解によって直径10μm以
下の微細気泡群を形成する装置の概略図を示したもので
ある。排水処理槽101内下部に塩化物イオン含有水2
03の貯留部210を設け、該貯留部210に0.1モ
ル/リットル以上の塩化物イオン含有水203を供給す
るとともに、該貯留部210に一対の電極205を対面
配置し、電源206から直流または交流電圧を印加する
ことにより電気分解を起こして直径10μm以下の気泡
が多く含まれる微細気泡群を形成するものである。
FIG. 8 is a schematic view of an apparatus for forming a group of fine bubbles having a diameter of 10 μm or less by electrolysis. Chloride ion-containing water 2
03 is provided, a chloride ion-containing water 203 of 0.1 mol / L or more is supplied to the storage unit 210, and a pair of electrodes 205 are arranged in the storage unit 210 to face each other. Alternatively, by applying an AC voltage, electrolysis is caused to form a fine bubble group containing many bubbles having a diameter of 10 μm or less.

【0050】図9は、加圧法によって直径10μm以下
の微細な気泡を形成する装置の概略図を示したもので、
0.1モル/リットル以上の塩化物イオンを含有した水
203を加圧タンク103に供給し、コンプレッサ20
2にて空気を加圧溶解させた加圧水を排水処理槽101
下部に供給することにより、直径10μm以下の気泡が
多く含まれる微細気泡群を形成させるものである。
FIG. 9 is a schematic view of an apparatus for forming fine bubbles having a diameter of 10 μm or less by a pressurizing method.
Water 203 containing 0.1 mol / L or more of chloride ions is supplied to the pressurized tank 103,
The pressurized water obtained by pressurizing and dissolving the air in 2 is discharged into a wastewater treatment tank 101.
By supplying it to the lower part, a fine bubble group containing a large number of bubbles having a diameter of 10 μm or less is formed.

【0051】図7、図8、図9で排水処理槽101内に
形成された気泡は、処理水内に溶解している微細な固形
物、微生物、有機化合物、溶質物質等と結合し、上昇し
ていくことにより分離浄化され、オーバフロー部217
を介して汚泥処理工程に送られる。
The air bubbles formed in the wastewater treatment tank 101 in FIGS. 7, 8 and 9 combine with fine solids, microorganisms, organic compounds, solutes and the like dissolved in the treated water and rise. The separation and purification is performed by the
Through to the sludge treatment process.

【0052】図10は、図9の装置に脱塩装置を加えた
装置の概略図を示す。排水処理装置101で処理された
水溶液を脱塩装置207に導き、脱塩装置207にて水
溶液内の塩を分離し、塩を除去された水溶液は排水と
し、塩が濃縮された水溶液は、塩化物イオンが0.1モ
ル/リットル以上含有した水203として前記系内で再
利用するものである。塩化物イオン含有水203は、加
圧タンク103にてコンプレッサ202による空気で加
圧され、加圧水として排水処理槽101に供給される。
塩化物イオンを含んだ加圧水は排水処理槽101で圧力
が開放されるために、直径10μm以下の気泡が多く含
まれる微細気泡群が形成され、該微細な気泡に吸着する
有機物や溶質分子を除去することができる。
FIG. 10 is a schematic diagram of an apparatus obtained by adding a desalination apparatus to the apparatus of FIG. The aqueous solution treated by the wastewater treatment device 101 is guided to the desalination device 207, the salt in the aqueous solution is separated by the desalination device 207, the aqueous solution from which the salt has been removed is drained, and the aqueous solution in which the salt is concentrated is converted into a chloride solution. The substance is reused in the system as water 203 containing 0.1 mol / l or more of substance ions. The chloride ion-containing water 203 is pressurized by air from a compressor 202 in a pressurized tank 103 and supplied to the wastewater treatment tank 101 as pressurized water.
Since the pressure of the pressurized water containing chloride ions is released in the wastewater treatment tank 101, a group of fine bubbles containing a large number of bubbles having a diameter of 10 μm or less is formed, and organic substances and solute molecules adsorbed by the fine bubbles are removed. can do.

【0053】脱塩装置としては逆浸透膜法や電気透析法
等により塩濃度を凝集できるものを使用すればよい。又
脱塩装置後の浄化水は、放流または浄化水として再利用
される。図10の脱塩装置を加えた装置には、加圧法に
よる場合を示したが、図7のバブリング法、図8の電気
分解法の場合にも同様に適用できることは当然である。
尚、装置外に出る脱塩装置207からの排水における塩
濃度と、処理槽101に入る処理水における塩濃度を同
程度のものとし、脱塩装置207における0.1モル/
リットル以上の塩化物イオン含有水203の塩化物イオ
ン濃度をコントロールすれば、装置立上げ時を除き、外
部から塩を供給することなく塩濃度を系内で高く保持で
きるため、処理能力を一定に維持することが出来る。
As the desalting device, a device capable of coagulating the salt concentration by a reverse osmosis membrane method, an electrodialysis method or the like may be used. The purified water after the desalination apparatus is discharged or reused as purified water. The apparatus to which the desalination apparatus of FIG. 10 is added is shown by the pressurization method, but it is needless to say that the same can be applied to the bubbling method of FIG. 7 and the electrolysis method of FIG.
In addition, the salt concentration in the wastewater from the desalination unit 207 that goes out of the apparatus and the salt concentration in the treated water that enters the treatment tank 101 are set to be substantially the same, and 0.1 mol / mol in the desalination unit 207 is used.
By controlling the chloride ion concentration of the chloride ion-containing water 203 of 1 liter or more, the salt concentration can be kept high in the system without supplying salt from the outside except when the apparatus is started up, so that the processing capacity can be kept constant. Can be maintained.

【0054】なお、0.1モル/リットル以上の塩化物
イオン含有水203に海水も利用でき、放流に関しても
許され得る場所に対しては、脱塩装置207を設けずに
海水をそのまま利用することも可能である。この場合に
は、図7、図8、図9に示す装置構成が直接適用でき
る。
It should be noted that seawater can also be used for the chloride ion-containing water 203 of 0.1 mol / liter or more, and in places where discharge is permitted, seawater is used without providing a desalination device 207. It is also possible. In this case, the device configuration shown in FIGS. 7, 8 and 9 can be directly applied.

【0055】次に、水溶液中に溶解している溶質物質の
周りには、拘束水と呼ばれる水分子が吸着しており、こ
の拘束水は、自由水と異なり溶質物質により動きが拘束
されていることは前記した通りであるが、本発明人ら
は、有機物化合物の場合には、10MHzから1GHz
の高周波を拘束水が吸収することを見出した。
Next, water molecules called bound water are adsorbed around the solute substance dissolved in the aqueous solution, and the movement of this bound water is restricted by the solute substance unlike free water. As described above, the present inventors have found that in the case of an organic compound, 10 MHz to 1 GHz
It was found that the high frequency was absorbed by the confined water.

【0056】図12に図10の加圧法を適用した場合を
例に、高周波印加を併用した場合の構成図を示す。本実
施例においては、排水処理槽101内に対面配置して一
対の高周波電極208を設置し、高周波電源209によ
り、10MHzから1GHzの高周波を排水処理槽10
1内部の溶質物質に照射し、溶質物質まわりの拘束水の
構造を破壊して、溶質物質自身の電気双極子を顕にする
ことで気泡との吸着を加速させ分離効率を加速するもの
である。
FIG. 12 shows a configuration diagram in the case of using the pressurizing method of FIG. 10 and applying high-frequency application together. In the present embodiment, a pair of high-frequency electrodes 208 are installed facing each other in the wastewater treatment tank 101, and a high-frequency power supply 209 is used to supply a high frequency of 10 MHz to 1 GHz to the wastewater treatment tank 10.
1 Irradiates the solute material inside, destroys the structure of the bound water around the solute material, and reveals the electric dipole of the solute material itself, thereby accelerating the adsorption with bubbles and accelerating the separation efficiency. .

【0057】そしてかかる装置に基づくシミュレーショ
ン実験として、有機化合物の一つとして、グルコース水
溶液を使用し行なった。測定は同軸プローブを試料溶液
に投入し、そこから高周波を印加し、試料溶液の印加し
た高周波の吸収を測定した。印加周波数は、400MH
zを用い入射パワーとして1Wから100Wまで変化さ
せて実験した。実験結果は図11に示すように、グルコ
ースの濃度が高くなるに連れ吸収量が増加していること
が分かる。また、入射パワーの増大とともに吸収量が減
少したのは、グルコース周囲の拘束水が破壊されたため
である。自由水の吸収は約18GHzにあるため、数1
00MHzの高周波は多量に存在する自由水にそれほど
吸収されることなく、溶質物質の拘束水のみを小さな電
力で狙い撃ちできる。
As a simulation experiment based on such an apparatus, an aqueous glucose solution was used as one of the organic compounds. For the measurement, a coaxial probe was put into the sample solution, a high frequency was applied from there, and the absorption of the high frequency applied by the sample solution was measured. The applied frequency is 400 MH
The experiment was performed by changing the incident power from 1 W to 100 W using z. The experimental results show that as shown in FIG. 11, the absorption amount increases as the glucose concentration increases. Also, the reason why the absorption amount decreased with the increase in the incident power is that the bound water around glucose was destroyed. Since the absorption of free water is at about 18 GHz,
The high frequency of 00 MHz is not so much absorbed by the large amount of free water, and can target only the restricted water of the solute substance with small electric power.

【0058】[0058]

【発明の効果】以上記載の如く本発明によれば、後工程
における生物的処理手段の負荷低減と、又環境上問題と
なる凝集剤をほとんど用いずに、分子間力によって拘束
水が結合している溶質物質を容易に凝集分離できる水処
理方法とその装置を提供することが出来、特に、固形
物、微生物、有機化合物のみならず水溶液中に溶解して
いる有機系、燐系、窒素系等の溶質物質も含めて積極的
に除去し得る水処理方法とその装置を提供出来る。
As described above, according to the present invention, the load of the biological treatment means in the post-process can be reduced, and the bound water can be bound by the intermolecular force without using any flocculant which is environmentally problematic. It is possible to provide a water treatment method and a water treatment method capable of easily coagulating and separating a solute substance contained therein, and in particular, an organic system, a phosphorus system, and a nitrogen system dissolved in an aqueous solution as well as solids, microorganisms, and organic compounds. And a water treatment method capable of positively removing solute substances including the solute substance.

【0059】この結果、下水道処理設備、屎尿処理設
備、畜産排水処理設備、水産加工排水処理設備、食品加
工排水処理設備、洗浄排水処理設備、工場排水処理設
備、湖水浄化設備等の排水処理設備のみならず、水溶液
からの溶解物質の濃縮精製プロセスにも適用出来る。そ
して本発明を廃水処理設備に適用した場合は、活性汚泥
法等の装置に変わる排水浄化方法を提供出来るのみなら
ず、装置がコンパクトとともに残余活性汚泥の固形廃棄
物量も低減され、屎尿処理等では肥料等への再利用化も
可能になる。
As a result, only wastewater treatment facilities such as sewage treatment facilities, human waste treatment facilities, livestock wastewater treatment facilities, marine processing wastewater treatment facilities, food processing wastewater treatment facilities, washing wastewater treatment facilities, factory wastewater treatment facilities, lake water purification facilities, etc. However, the present invention is also applicable to a process for concentrating and purifying dissolved substances from an aqueous solution. When the present invention is applied to a wastewater treatment facility, not only can a wastewater purification method be replaced by an apparatus such as an activated sludge method, but also the apparatus is compact and the amount of solid waste of residual activated sludge is reduced, and in the case of excreta treatment, etc. It can be reused for fertilizers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の原理を示す実験装置の概略図であ
る。
FIG. 1 is a schematic diagram of an experimental apparatus illustrating the principle of the present invention.

【図2】 図1で行った砂糖水溶液の濃縮分離状態を示
す概要図である。
FIG. 2 is a schematic diagram showing the state of concentration and separation of the aqueous sugar solution performed in FIG.

【図3】 図1の実験装置に取り付けた超音波センサ出
力の周波数スペクトル図である。
FIG. 3 is a frequency spectrum diagram of an ultrasonic sensor output attached to the experimental apparatus of FIG.

【図4】 本発明の第1実施形態に係る超音波による排
水処理装置の概要図である。
FIG. 4 is a schematic diagram of an ultrasonic wastewater treatment apparatus according to the first embodiment of the present invention.

【図5】 本発明の第2実施形態に係る超音波による排
水処理装置の概要図である。
FIG. 5 is a schematic diagram of an ultrasonic wastewater treatment apparatus according to a second embodiment of the present invention.

【図6】 塩濃度差による脱気試験概略図で、図6
(A)、(B)は実験装置、図6(C)はその実験結果を示す
グラフ図である。
FIG. 6 is a schematic diagram of a degassing test based on a difference in salt concentration.
(A) and (B) are experimental devices, and FIG. 6 (C) is a graph showing the experimental results.

【図7】 本発明の第2実施形態に係るバブリング法に
よる排水処理装置の概要図である。
FIG. 7 is a schematic diagram of a wastewater treatment apparatus using a bubbling method according to a second embodiment of the present invention.

【図8】 本発明の第2実施形態に係る電気分解法によ
る排水処理装置の概要図である。
FIG. 8 is a schematic diagram of a wastewater treatment apparatus using an electrolysis method according to a second embodiment of the present invention.

【図9】 本発明の第2実施形態に係る加圧水による排
水処理装置の概要図である。
FIG. 9 is a schematic view of a wastewater treatment apparatus using pressurized water according to a second embodiment of the present invention.

【図10】 本発明の第2実施形態に係る脱塩装置を加
えた加圧水による排水処理装置の概要図である。
FIG. 10 is a schematic diagram of a wastewater treatment apparatus using pressurized water to which a desalination apparatus according to a second embodiment of the present invention is added.

【図11】 グルコースと蒸留水に夫々の高周波吸収試
験結果を示すグラフ図である。
FIG. 11 is a graph showing the results of a high-frequency absorption test for glucose and distilled water.

【図12】 本発明の第2実施形態に係る高周波併用し
た加圧水による排水処理装置の概要図である。
FIG. 12 is a schematic diagram of a pressurized water wastewater treatment apparatus according to a second embodiment of the present invention.

【図13】 従来技術に係るに係る加圧浮上法による排
水処理装置の概要図である。
FIG. 13 is a schematic diagram of a wastewater treatment apparatus according to the related art, which employs a pressurized flotation method.

【符号の説明】[Explanation of symbols]

1 ガラス管 2 実験対象水溶液 3 超音波伝達用としての水 4 容器 5 超音波振動子 6 超音波発振電源 7 超音波センサ 11 排水処理装置 12 凝集部抜き取り口 21 超音波進行方向 22 反射板 23 処理塔 24 タンク 101 排水処理槽 102 活性汚泥処理槽 103 加圧タンク 201 ろ過板 202 コンプレッサ 203 塩化物イオン含有水 205 電気分解用電極 206 電源 207 脱塩装置 208 高周波電極 209 高周波電源 DESCRIPTION OF SYMBOLS 1 Glass tube 2 Experimental aqueous solution 3 Water for ultrasonic transmission 4 Container 5 Ultrasonic vibrator 6 Ultrasonic oscillation power supply 7 Ultrasonic sensor 11 Drainage treatment device 12 Aggregation part extraction port 21 Ultrasonic traveling direction 22 Reflection plate 23 Processing Tower 24 Tank 101 Wastewater treatment tank 102 Activated sludge treatment tank 103 Pressurized tank 201 Filter plate 202 Compressor 203 Chloride ion-containing water 205 Electrolysis electrode 206 Power supply 207 Desalination device 208 High-frequency electrode 209 High-frequency power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 龍原 潔 横浜市金沢区幸浦一丁目8番地1 三菱重 工業株式会社基盤技術研究所内 (72)発明者 菅田 清 横浜市金沢区幸浦一丁目8番地1 三菱重 工業株式会社横浜研究所内 (72)発明者 山下 一郎 横浜市金沢区幸浦一丁目8番地1 三菱重 工業株式会社横浜研究所内 Fターム(参考) 4D037 AA05 AA11 AB02 AB03 AB11 AB12 AB15 BA02 BA03 BA26 BB04 BB05 BB09 CA04 CA07 CA08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyoshi Tatsuhara 1-8-1 Koura, Kanazawa-ku, Yokohama-shi Mitsubishi Heavy Industries, Ltd. Basic Technology Research Laboratory (72) Inventor Kiyoshi Sugata 1-8-8 Koura, Kanazawa-ku, Yokohama-shi 1 Mitsubishi Heavy Industries, Ltd. Yokohama Research Laboratory (72) Inventor Ichiro Yamashita 1-8-1, Koura, Kanazawa-ku, Yokohama-shi F-term, Mitsubishi Heavy Industries, Ltd. Yokohama Research Laboratory 4D037 AA05 AA11 AB02 AB03 AB11 AB12 AB15 BA02 BA03 BA26 BB04 BB05 BB09 CA04 CA07 CA08

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 分子間力によって拘束水と結合している
溶質を含んだ水溶液中より、前記溶質を分離する水処理
方法において、 前記溶質に結合している拘束水を破壊若しくは分離する
とともに、該溶質に拘束水の再拘束を阻害する手段を付
与しながら該溶質を水溶液中より凝集分離することを特
徴とする水処理方法。
1. A water treatment method for separating a solute from an aqueous solution containing a solute bound to bound water by an intermolecular force, wherein the bound water bound to the solute is destroyed or separated; A water treatment method, wherein the solute is aggregated and separated from an aqueous solution while providing the solute with a means for inhibiting re-constraint of bound water.
【請求項2】 窒素、燐若しくは有機系水溶性溶解物
を、水溶液中より凝集分離する水処理方法において、 水溶性溶解物に分子間力によって結合している拘束水を
破壊若しくは分離するとともに、該拘束水の再拘束を阻
害する手段を、前記水溶液中に付与しながら該溶解物を
水溶液中より凝集分離することを特徴とする水処理方
法。
2. A water treatment method for coagulating and separating nitrogen, phosphorus or an organic water-soluble solution from an aqueous solution, wherein the water-soluble solution is destroyed or separated from bound water bound to the water-soluble solution by an intermolecular force. A water treatment method, wherein the dissolved substance is aggregated and separated from the aqueous solution while providing a means for inhibiting re-restraint of the bound water in the aqueous solution.
【請求項3】 水溶液からの溶解物質の濃縮を行う水処
理方法において、 水溶性溶解物に分子間力によって結合している拘束水を
破壊若しくは分離するとともに、該拘束水の再拘束を阻
害する手段を、前記水溶液中に付与しながら該溶解物の
濃縮を行うことを特徴とする水処理方法。
3. A water treatment method for concentrating a dissolved substance from an aqueous solution, the method comprising destroying or separating bound water bound to a water-soluble dissolved substance by an intermolecular force and inhibiting rebinding of the bound water. A water treatment method, wherein the dissolving substance is concentrated while applying means to the aqueous solution.
【請求項4】 前記拘束水の再拘束を阻害する手段が、
直径10μm以下の微細気泡群であることを特徴とする
請求項1、2、3記載の水処理方法。
4. The means for inhibiting re-constraint of the confined water,
4. The water treatment method according to claim 1, wherein the group of microbubbles has a diameter of 10 μm or less.
【請求項5】 前記拘束水を破壊若しくは分離する手段
が、10MHzから1GHzの高周波、複数の周波数域
にピーク値を有する超音波若しくは0.1モル/リット
ル以上の塩化物イオン、直径10μm以下の微細気泡群
若しくはこれらの組み合わせである事を特徴とする請求
項1、2、3記載の水処理方法。
5. The means for destroying or separating the confined water includes high-frequency waves of 10 MHz to 1 GHz, ultrasonic waves having peak values in a plurality of frequency ranges or chloride ions of 0.1 mol / liter or more, and a diameter of 10 μm or less. 4. The water treatment method according to claim 1, wherein the water treatment method is a group of fine bubbles or a combination thereof.
【請求項6】 直径10μm以下の微細な気泡を含んだ
気泡群を発生させる手段として、超音波印加により生じ
るキャビテーションにより微細な気泡を発生させること
を特徴とする請求項4記載の水処理方法。
6. The water treatment method according to claim 4, wherein, as means for generating a bubble group containing fine bubbles having a diameter of 10 μm or less, fine bubbles are generated by cavitation generated by applying ultrasonic waves.
【請求項7】 直径10μm以下の微細な気泡を含んだ
気泡群を発生させる手段として、0.1モル/リットル
以上の塩化物イオンを含んだ水溶液を、前記水溶液の水
処理部内に供給しつつ、該塩化物イオンを含んだ水溶液
中に濾過板を介して空気を吹き込み前記水処理部内に気
泡群を形成することを特徴とする請求項4記載の水処理
方法。
7. As a means for generating a bubble group containing fine bubbles having a diameter of 10 μm or less, an aqueous solution containing 0.1 mol / liter or more of chloride ions is supplied into a water treatment section of the aqueous solution. 5. The water treatment method according to claim 4, wherein air is blown into said aqueous solution containing chloride ions through a filter plate to form bubbles in said water treatment section.
【請求項8】 直径10μm以下の微細な気泡を含んだ
気泡群を発生させる手段として、前記水溶液の水処理部
内に電極板を設け、0.1モル/リットル以上の塩化物
イオンを含んだ水溶液を前記電極板間に供給しながら、
前記電極板に電圧を印加させて電気分解を起こして気泡
群を形成することを特徴とする請求項4記載の水処理方
法。
8. An aqueous solution containing 0.1 mol / liter or more of chloride ions, wherein an electrode plate is provided in a water treatment part of the aqueous solution as means for generating a bubble group containing fine bubbles having a diameter of 10 μm or less. While supplying between the electrode plates,
The water treatment method according to claim 4, wherein a voltage is applied to the electrode plate to cause electrolysis to form a bubble group.
【請求項9】 直径10μm以下の微細な気泡を含んだ
気泡群を発生させる手段として、0.1モル/リットル
以上の塩化物イオンを含んだ水溶液に空気を加圧溶解さ
せた加圧水を、前記水溶液の水処理部内に供給し、加圧
浮上法にて気泡群を形成することを特徴とする請求項4
記載の水処理方法。
9. As means for generating a bubble group containing fine bubbles having a diameter of 10 μm or less, pressurized water obtained by pressurizing and dissolving air in an aqueous solution containing 0.1 mol / L or more of chloride ions is used. An aqueous solution is supplied into a water treatment section, and bubbles are formed by a pressure flotation method.
Water treatment method as described.
【請求項10】 前記水溶液の水処理部の後段に脱塩処
理部を設け、該脱塩処理部にて塩化物イオンが濃縮排出
された水溶液を塩化物イオンを含んだ水溶液として用い
ることを特徴とする請求項7、8。9記載の水処理方
法。
10. A desalination treatment section is provided at a stage subsequent to the water treatment section for the aqueous solution, and an aqueous solution in which chloride ions are concentrated and discharged in the desalination treatment section is used as an aqueous solution containing chloride ions. 10. The water treatment method according to claim 7, 8.9.
【請求項11】 前記水溶液中に、直径10μm以下の
微細な気泡を含んだ気泡群とともに、10MHzから1
GHzの高周波を印加することで、気泡群と水溶液中の
溶質物質との吸着作用を向上させる事を特徴とする請求
項1、2,3記載の水処理方法。
11. An aqueous solution containing a group of fine bubbles having a diameter of 10 μm or less, together with a group of bubbles of 10 MHz to 1 MHz.
The water treatment method according to any one of claims 1 to 3, wherein a high frequency of GHz is applied to improve a function of adsorbing bubbles and a solute substance in an aqueous solution.
【請求項12】 分子間力によって拘束水と結合してい
る窒素、燐若しくは有機系水溶性溶解物等の溶質を含ん
だ水溶液中より、前記溶質を分離若しくは濃縮を行う水
処理装置において、 前記水溶液が貯留されている貯留槽内で、前記溶質に結
合している拘束水を破壊若しくは分離するとともに、該
貯留槽内に前記溶質に拘束水の再拘束を阻害する手段を
付与しながら該溶質を水溶液中より凝集分離若しくは該
溶質を含む溶解物の濃縮を行うことを特徴とする水処理
装置。
12. A water treatment apparatus for separating or concentrating a solute from an aqueous solution containing a solute such as nitrogen, phosphorus, or an organic water-soluble dissolved substance bound to bound water by an intermolecular force. In the storage tank in which the aqueous solution is stored, the bound water bound to the solute is destroyed or separated, and the solute is added to the solute with means for inhibiting the bound water from re-binding. A water treatment apparatus, wherein coagulation is separated from an aqueous solution or a solution containing the solute is concentrated.
【請求項13】 前記拘束水の再拘束を阻害する手段
が、直径10μm以下の微細気泡群であることを特徴と
する請求項12記載の水処理装置。
13. The water treatment apparatus according to claim 12, wherein the means for inhibiting the re-constraint of the confined water is a group of fine bubbles having a diameter of 10 μm or less.
【請求項14】 前記拘束水を破壊若しくは分離する手
段が、10MHzから1GHzの高周波、複数の周波数
域にピーク値を有する超音波若しくは0.1モル/リッ
トル以上の塩化物イオン、直径10μm以下の微細気泡
群若しくはこれらの組み合わせである事を特徴とする請
求項12記載の水処理装置。
14. The means for destroying or separating the confined water includes a high frequency of 10 MHz to 1 GHz, an ultrasonic wave having a peak value in a plurality of frequency ranges or a chloride ion of 0.1 mol / liter or more, and a diameter of 10 μm or less. The water treatment apparatus according to claim 12, wherein the water treatment apparatus is a group of fine bubbles or a combination thereof.
【請求項15】 直径10μm以下の微細な気泡を含ん
だ気泡群を発生させる手段が、超音波印加により生じる
キャビテーションにより微細な気泡を発生させる手段、
0.1モル/リットル以上の塩化物イオンを含んだ水溶
液を、前記水溶液の水処理部内に供給しつつ、該塩化物
イオンを含んだ水溶液中に濾過板を介して空気を吹き込
み前記水処理部内に気泡群を形成する手段、前記水溶液
の水処理部内に電極板を設け、0.1モル/リットル以
上の塩化物イオンを含んだ水溶液を前記電極板間に供給
しながら、前記電極板に電圧を印加させて電気分解を起
こして気泡群を形成する手段、0.1モル/リットル以
上の塩化物イオンを含んだ水溶液に空気を加圧溶解させ
た加圧水を、前記水溶液の水処理部内に供給し、加圧浮
上法にて気泡群を形成する手段のいずれか1若しくは複
数の組み合わせである請求項13,若しくは14記載の
水処理装置。
15. A means for generating a bubble group including fine bubbles having a diameter of 10 μm or less, comprising: means for generating fine bubbles by cavitation generated by application of ultrasonic waves;
While supplying an aqueous solution containing 0.1 mol / L or more of chloride ions into the water treatment section of the aqueous solution, air is blown into the aqueous solution containing the chloride ions through a filter plate, and the air is blown into the water treatment section. Means for forming a group of bubbles in an electrode plate, an electrode plate is provided in a water treatment part of the aqueous solution, and an aqueous solution containing 0.1 mol / l or more of chloride ions is supplied between the electrode plates while a voltage is applied to the electrode plate. Is applied to cause electrolysis to form bubbles, and pressurized water obtained by pressurizing and dissolving air in an aqueous solution containing 0.1 mol / L or more of chloride ions is supplied to the water treatment section of the aqueous solution. The water treatment apparatus according to claim 13, wherein the water treatment apparatus is any one or a combination of a plurality of means for forming a bubble group by a pressure flotation method.
【請求項16】 直径10μm以下の微細な気泡を含ん
だ気泡群を発生させる手段が、0.1モル/リットル以
上の塩化物イオンを含んだ水溶液を前記貯留槽の下部に
供給し、該塩化物イオン水溶液貯留部に気泡発生用の物
理的手段を付与して行われるとともに、前記貯留槽の後
段に脱塩処理槽を設け、該脱塩処理槽にて塩化物イオン
が濃縮排出された水溶液を前記貯留槽の下部に再供給す
ることを特徴とする請求項13若しくは14記載の水処
理装置。
16. A means for generating a bubble group containing fine bubbles having a diameter of 10 μm or less supplies an aqueous solution containing 0.1 mol / liter or more of chloride ions to a lower portion of the storage tank, and An aqueous solution in which chloride ions are concentrated and discharged in the desalting treatment tank is provided while providing a physical means for generating bubbles in the storage section of the target ion aqueous solution, and providing a desalting treatment tank at a stage subsequent to the storage tank. The water treatment apparatus according to claim 13, wherein the water is resupplied to a lower portion of the storage tank.
JP37513299A 1999-12-08 1999-12-28 Water treatment method and its device Withdrawn JP2001225060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37513299A JP2001225060A (en) 1999-12-08 1999-12-28 Water treatment method and its device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-349113 1999-12-08
JP34911399 1999-12-08
JP37513299A JP2001225060A (en) 1999-12-08 1999-12-28 Water treatment method and its device

Publications (1)

Publication Number Publication Date
JP2001225060A true JP2001225060A (en) 2001-08-21

Family

ID=26578886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37513299A Withdrawn JP2001225060A (en) 1999-12-08 1999-12-28 Water treatment method and its device

Country Status (1)

Country Link
JP (1) JP2001225060A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334548A (en) * 2002-05-20 2003-11-25 National Institute Of Advanced Industrial & Technology Method for producing nanometer air bubble
WO2004004881A1 (en) * 2002-07-09 2004-01-15 Toshiba Plant Systems & Services Corporation Liquid mixing apparatus and method of liquid mixing
JP2005230775A (en) * 2004-02-23 2005-09-02 Kurita Water Ind Ltd Water treatment apparatus and water treatment method
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Production method of nano-bubble
JP2005246294A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Oxygen-nanobubble water and production method therefor
JP2005329397A (en) * 2004-04-23 2005-12-02 Mitsubishi Rayon Co Ltd Method and apparatus for separation
JP2007054655A (en) * 2006-11-24 2007-03-08 National Institute Of Advanced Industrial & Technology Method and device for utilizing nano-bubbles
JP2007136255A (en) * 2005-11-14 2007-06-07 Chiken Kk Nano-bubble producing apparatus
JP2007283300A (en) * 2007-05-14 2007-11-01 National Institute Of Advanced Industrial & Technology Method for forming nano-bubble
JP2008029955A (en) * 2006-07-28 2008-02-14 Sharp Corp Liquid transfer method and liquid transfer system
JP2008036585A (en) * 2006-08-09 2008-02-21 Tohoku Univ Apparatus and method for separating suspended matter in liquid
JP2015029968A (en) * 2013-08-05 2015-02-16 国立大学法人京都大学 Method and apparatus for removing microorganism and organic matter in water
KR20160120766A (en) * 2014-03-26 2016-10-18 토스렉 가부시키가이샤 Nanobubble producing device
JP6123013B1 (en) * 2016-10-19 2017-04-26 トスレック株式会社 Bubble-containing liquid manufacturing apparatus and bubble-containing liquid manufacturing method
JP2018065124A (en) * 2017-04-03 2018-04-26 トスレック株式会社 Bubble-containing liquid manufacturing apparatus and bubble-containing liquid manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334548A (en) * 2002-05-20 2003-11-25 National Institute Of Advanced Industrial & Technology Method for producing nanometer air bubble
WO2004004881A1 (en) * 2002-07-09 2004-01-15 Toshiba Plant Systems & Services Corporation Liquid mixing apparatus and method of liquid mixing
US7841762B2 (en) 2002-07-09 2010-11-30 Toshiba Plant Systems & Services Corporation Liquid mixing apparatus and method of liquid mixing
JP2005230775A (en) * 2004-02-23 2005-09-02 Kurita Water Ind Ltd Water treatment apparatus and water treatment method
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Production method of nano-bubble
JP2005246294A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Oxygen-nanobubble water and production method therefor
JP2005329397A (en) * 2004-04-23 2005-12-02 Mitsubishi Rayon Co Ltd Method and apparatus for separation
JP2007136255A (en) * 2005-11-14 2007-06-07 Chiken Kk Nano-bubble producing apparatus
JP2008029955A (en) * 2006-07-28 2008-02-14 Sharp Corp Liquid transfer method and liquid transfer system
JP2008036585A (en) * 2006-08-09 2008-02-21 Tohoku Univ Apparatus and method for separating suspended matter in liquid
JP4538612B2 (en) * 2006-11-24 2010-09-08 独立行政法人産業技術総合研究所 Cleaning device
JP2007054655A (en) * 2006-11-24 2007-03-08 National Institute Of Advanced Industrial & Technology Method and device for utilizing nano-bubbles
JP2007283300A (en) * 2007-05-14 2007-11-01 National Institute Of Advanced Industrial & Technology Method for forming nano-bubble
JP2015029968A (en) * 2013-08-05 2015-02-16 国立大学法人京都大学 Method and apparatus for removing microorganism and organic matter in water
KR20160120766A (en) * 2014-03-26 2016-10-18 토스렉 가부시키가이샤 Nanobubble producing device
KR101886944B1 (en) * 2014-03-26 2018-08-08 토스렉 가부시키가이샤 Nanobubble producing device
US10596528B2 (en) 2014-03-26 2020-03-24 Tosslec Co., Ltd. Nanobubble-producing apparatus
JP6123013B1 (en) * 2016-10-19 2017-04-26 トスレック株式会社 Bubble-containing liquid manufacturing apparatus and bubble-containing liquid manufacturing method
JP2018065095A (en) * 2016-10-19 2018-04-26 トスレック株式会社 Bubble-containing liquid manufacturing apparatus and bubble-containing liquid manufacturing method
JP2018065124A (en) * 2017-04-03 2018-04-26 トスレック株式会社 Bubble-containing liquid manufacturing apparatus and bubble-containing liquid manufacturing method
JP2022023974A (en) * 2017-04-03 2022-02-08 トスレック株式会社 Bubble-containing liquid manufacturing apparatus and bubble-containing liquid manufacturing method

Similar Documents

Publication Publication Date Title
US11254589B2 (en) Systems and methods for separating surface materials from a fluid using acoustic pressure shock waves
JP2001225060A (en) Water treatment method and its device
US20110284475A1 (en) Apparatus and Method for Treatment of a Contaminated Water-Based Fluid
CN101565251B (en) Technique for using composite demulsification-membrane method to treat high-concentration emulsified liquid waste water and device
NO171539B (en) PROCEDURE FOR SEPARATION OF SUBSTANCES CONTAINED IN A FLUID, AND APPARATUS FOR EXECUTION OF THE PROCEDURE
JP6155783B2 (en) Waste water treatment apparatus and waste water treatment method provided with solid-liquid separation unit
JP6381412B2 (en) Seawater desalination apparatus and method
KR100694191B1 (en) Apparatus for watertreatment
JP2002177990A (en) Water cleaning method and water cleaning plant
JPH05345192A (en) Method for treating waste water
JP2008036585A (en) Apparatus and method for separating suspended matter in liquid
JP2007111627A (en) Method and system for treating waste water
JP2001246366A (en) Process for removing oily component in wastewater
JPH10323674A (en) Organic matter-containing water treatment apparatus
JP2002177956A (en) Water cleaning method and water cleaning plant
JP5754017B2 (en) Method for producing organic sludge and organic sludge produced by the production method
JP4549000B2 (en) Water purification equipment for suspended solids
RU2467956C1 (en) Method of water treatment
RU2813075C1 (en) Method for purification of waste and produced water
JP6882425B2 (en) How to purify livestock manure mixed wastewater
Hidayah et al. Combination of solid-liquid separation process to remove grease, oil and organic from food and dairy wastewater
JP2003112189A (en) Contact apparatus and liquid treatment system
JP4405286B2 (en) Fishery processing wastewater scum treatment method
JP2003112043A (en) Material treating system
JP5782628B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306