JP2008036585A - Apparatus and method for separating suspended matter in liquid - Google Patents

Apparatus and method for separating suspended matter in liquid Download PDF

Info

Publication number
JP2008036585A
JP2008036585A JP2006217256A JP2006217256A JP2008036585A JP 2008036585 A JP2008036585 A JP 2008036585A JP 2006217256 A JP2006217256 A JP 2006217256A JP 2006217256 A JP2006217256 A JP 2006217256A JP 2008036585 A JP2008036585 A JP 2008036585A
Authority
JP
Japan
Prior art keywords
microbubbles
suspension
floating
fine particles
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006217256A
Other languages
Japanese (ja)
Inventor
Etsuro Shibata
悦郎 柴田
Takashi Nakamura
崇 中村
Shun Saito
駿 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2006217256A priority Critical patent/JP2008036585A/en
Publication of JP2008036585A publication Critical patent/JP2008036585A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for promoting the surfacing of micro bubbles when suspended matter in a suspension is subjected to flotation by using micro bubbles. <P>SOLUTION: The flotation of the suspended matter is promoted by dispersing micro bubbles having the diameter of 1-100 μm in the suspension by using a micro bubble generator 4 to stick the suspended matter to the surfaces of the dispersed micro bubbles and irradiating the micro bubble-dispersed suspension with the ultrasonic wave, which is emitted from an ultrasonic transmitter 3 and has the frequency of 20 kHz to 1 MHz, to promote the agglomeration among micro bubbles. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

公知技術。現在でも一部の廃水汚泥(スラリー)は浮遊選別で濃縮されている。大規模な下水処理場などで使用されている。その他、製紙工場廃水や畜産場、食品工場などで油脂や繊維の多い廃水に対しても使用されている。汚泥の浮遊選別では、微細な気泡を得る方法としては加圧浮上法が用いられている。気泡の大きさはマイクロバブルからそれよりも大きなものと様々である。マイクロバブル状態のものは分散性が良く、比表面積が大きいため多くの微粒子を吸着して浮上することができる。しかし、その分散性が良い反面、浮上速度が著しく遅くなることが問題である。   Known technology. Even now, some wastewater sludge (slurry) is concentrated by floating selection. Used in large-scale sewage treatment plants. In addition, it is also used for wastewater containing a lot of fats and fibers in paper mill wastewater, livestock farms and food factories. In sludge flotation, a pressurized flotation method is used as a method for obtaining fine bubbles. Bubble sizes vary from microbubbles to larger. In the microbubble state, the dispersibility is good and the specific surface area is large, so that many fine particles can be adsorbed and floated. However, while its dispersibility is good, it is a problem that the flying speed is remarkably slow.

その他、工業廃水中の重金属の処理では、水に難溶な化合物、たとえば水酸化物、硫化物あるいはフェライト化合物などを生成させて、それに吸着させる凝集沈殿(共沈)で沈殿分離する。通常、共沈により生成する水酸化鉄などの金属水酸化鉄は非晶質のゲル状微粒子であり非常に沈降分離性が悪い。そのため、長時間、場合によっては高温(〜80℃)で熟成され結晶化を促すことにより沈降分離性を向上させることとなる。そのため、沈降分離よりも処理速度が速い浮遊選別が有効と考えられるが、多量の微粒子を浮上させるためには導入する気泡をマイクロバブルにしなければならない。しかし、浮上速度が著しく遅いため実用化はされていない。マイクロバブルを利用した浮遊選別技術としては以下の特許が公表されている。   In addition, in the treatment of heavy metals in industrial wastewater, compounds that are hardly soluble in water, such as hydroxides, sulfides, or ferrite compounds, are generated and separated by coagulation precipitation (coprecipitation) that is adsorbed thereto. Usually, metal iron hydroxide such as iron hydroxide produced by coprecipitation is amorphous gel-like fine particles and has very poor sedimentation separation. Therefore, the sedimentation separation property is improved by aging at high temperature (up to 80 ° C.) for a long time and in some cases promoting crystallization. For this reason, floating sorting, which has a higher processing speed than sedimentation separation, is considered effective, but in order to float a large amount of fine particles, the bubbles to be introduced must be microbubbles. However, it has not been put into practical use because of the extremely low ascent rate. The following patents have been published as floating sorting technology using microbubbles.

特表平8−511472号公報Japanese National Patent Publication No. 8-511472

業種:例えば、めっき業廃水。めっきは、鉄その他の素材の表面を清浄にした後、金属の薄い膜を付けて、素材の表面の性質を向上させる。使用する薬品、資材には重金属類、シアン、クロム酸など有害なものが多い。廃水は表面処理及びめっきに用いる薬液の老化した廃液と、素材を加工したものを水洗する低濃度の常時廃水とがある。また成分的には、酸洗、アルカリ処理系統、シアン系統、クロム系統、その他有害重金属を含む系統などに分けられる。表1にめっき廃水水質の一例を示す。   Industry: For example, plating industry wastewater. Plating cleans the surface of the iron or other material and then applies a thin film of metal to improve the surface properties of the material. Many chemicals and materials used are harmful, such as heavy metals, cyanide and chromic acid. There are two types of waste water: waste liquid with aging chemicals used for surface treatment and plating, and low-concentration continuous waste water for washing processed materials. The components are divided into pickling, alkali treatment systems, cyan systems, chromium systems, and other systems containing toxic heavy metals. Table 1 shows an example of plating wastewater quality.

廃水中重金属処理:水酸化物生成−凝集沈殿処理(凝集沈殿法)。凝集沈殿法は、水処理における単位操作の一つであり、水中に懸濁状態で存在する物質を凝集剤により凝集し、沈殿させた後に液中から分離する方法である。すなわち、廃液中の重金属イオンの除去は、水に難溶な化合物、たとえば水酸化物、硫化物あるいはフェライト化合物などを生成させて、凝集沈殿法で沈殿分離することになる。   Waste metal heavy metal treatment: Hydroxide generation-coagulation precipitation treatment (coagulation precipitation method). The coagulation sedimentation method is one of unit operations in water treatment, and is a method in which substances existing in a suspended state in water are aggregated with a coagulant and precipitated, and then separated from the liquid. That is, the removal of heavy metal ions in the waste liquid generates a compound that is hardly soluble in water, such as a hydroxide, sulfide, or ferrite compound, and precipitates and separates by a coagulation precipitation method.

重金属処理方法例。廃液中の重金属を除去する場合、重金属がすでに不溶性化合物の状態で存在していれば固液分離をすることにより重金属を液中から取り除くことができるが、イオン状態で液中に溶解しているときは、水に不溶な水酸化物、硫化物などを生成させて沈殿させた後除去しなければならない。通常は、重金属を水酸化物として沈殿させる方法が用いられる。   Example of heavy metal processing method. When removing heavy metals in waste liquid, heavy metals can be removed from the liquid by solid-liquid separation if the heavy metals already exist in the form of insoluble compounds, but they are dissolved in the liquid in an ionic state. In some cases, water-insoluble hydroxides, sulfides, etc. must be generated and precipitated and then removed. Usually, a method of precipitating heavy metals as hydroxides is used.

水中に存在する重金属イオンはpHの上昇(OH-イオン濃度の増加)とともに金属水酸化物となり沈殿する。一方、凝集剤(共沈剤)として加えられている第二鉄イオン(Fe3+)も水酸化第二鉄(Fe(OH)3)として沈殿するが、そのときに他の金属水酸化物と凝集しながら沈殿をする。この沈殿を液中から取り除けば液中には重金属イオンは存在しなくなる。 Heavy metal ions present in water precipitate as metal hydroxides with increasing pH (increased OH - ion concentration). On the other hand, ferric ion (Fe 3+ ) added as a coagulant (coprecipitant) also precipitates as ferric hydroxide (Fe (OH) 3 ). Precipitate while agglomerating. If this precipitate is removed from the liquid, heavy metal ions will not be present in the liquid.

重金属イオンの不溶性化合物生成を利用する沈殿除去は、溶解度積の原理に基づいている。すなわち、重金属水酸化物の水に対する溶解度は非常に小さいものが多く、酸性でイオン状態で溶解していた重金属はアルカリで中和すると水酸化物となり沈殿するようになる。金属水酸化物が沈殿するために必要な条件は、金属イオン濃度と水酸基イオン濃度の積がその水酸化物の溶解度積より大きくなることである。   Precipitation removal utilizing the production of insoluble compounds of heavy metal ions is based on the principle of solubility products. In other words, the solubility of heavy metal hydroxides in water is often very low, and heavy metals that are acidic and dissolved in an ionic state become hydroxides and precipitate when neutralized with alkali. A necessary condition for the precipitation of the metal hydroxide is that the product of the metal ion concentration and the hydroxyl ion concentration is larger than the solubility product of the hydroxide.

多くの物質が共存している場合の沈殿生成においては、一般に特定物質のみが析出・沈殿することはまれであり、多少の他物質を伴って沈殿する。このような他物質を伴うような沈殿現象を共沈という。単独に存在するときには沈殿しないような条件でも、ある種の沈殿に誘われて沈殿する現象を誘発沈殿という。たとえば、廃液中からカドミウムを除去する場合、溶解度積から計算するとpH10以下では排水基準値の0.1 mg/l 以下にはならないが、多量の鉄、亜鉛などが共存していると共沈現象によってpH10以下でも基準値以下になる場合がある。共沈現象は沈殿への金属イオンの吸着あるいは沈殿生成のとき沈殿に包み込まれることによるものであるといわれている。通常は、廃液中に第二鉄イオン(Fe3+)を加え共沈現象を利用して処理能力を向上させている。なお、ひ素は水酸化物としては沈殿除去することはできないが、水酸化鉄(Fe(OH)3)に吸着されて除去される。As(III)よりもAs(V)の方が除去性が良いことが明らかとなっているため、ヒ素を含有している廃液については前処理でAs(III)を酸化してから共沈除去される。 In the formation of a precipitate when many substances coexist, it is rare that only a specific substance precipitates and precipitates, and precipitates with some other substances. Such precipitation with other substances is called coprecipitation. The phenomenon of precipitation induced by some kind of precipitation even under conditions that do not precipitate when present alone is called induced precipitation. For example, when cadmium is removed from waste liquid, it is not less than 0.1 mg / l of the effluent standard value at a pH of 10 or less as calculated from the solubility product. Even below, it may be below the reference value. The coprecipitation phenomenon is said to be due to the metal ions adsorbed on the precipitate or encapsulated in the precipitate when it is formed. Usually, ferric ions (Fe 3+ ) are added to the waste liquid to improve the treatment capacity by utilizing the coprecipitation phenomenon. Arsenic cannot be precipitated and removed as a hydroxide, but is adsorbed and removed by iron hydroxide (Fe (OH) 3 ). Since it is clear that As (V) has better removability than As (III), co-precipitation removal is performed after oxidizing As (III) in the pretreatment for waste liquid containing arsenic. Is done.

廃液処理に使用される凝集剤(共沈剤)には数多くの種類があるが、凝集沈殿法における凝集主剤としては一般に無機凝集剤が使用される。無機凝集剤の凝集能力は金属イオンの原子価により変化し、価数が高いほど凝集力が強くなる。凝集沈殿処理に使用される無機凝集剤としては、処理コストや凝集効果の面から三価の鉄やアルミニウムが使用されているが、ひ素の処理を考えた場合には鉄塩の方が有利である。   There are many types of flocculants (coprecipitants) used for waste liquid treatment, but inorganic flocculants are generally used as the main flocculants in the flocculant precipitation method. The aggregation ability of the inorganic flocculant varies depending on the valence of the metal ion, and the higher the valence, the stronger the aggregation force. Trivalent iron and aluminum are used as the inorganic flocculant used for the coagulation and precipitation treatment from the viewpoint of treatment cost and coagulation effect. However, when considering the treatment of arsenic, iron salts are more advantageous. is there.

凝集沈殿法により金属水酸化物が生成してもフロック(沈殿粒子の凝集体)が細かく、沈降し難いときは、沈降促進のためにフロック同士を結びつけ沈殿を大きくしてやらなければならない。この目的のために凝集助剤として高分子凝集剤が使用される。高分子凝集剤にはカチオン系、アニオン系及びノニオン系のものがあるが、金属水酸化物に対してはアニオン系またはノニオン系の効果が高い。その後、全液を熟成槽に移してフロックの熟成のため静置する。熟成後の沈殿はろ過機により固液分離される。   If flocs (aggregates of precipitated particles) are fine and difficult to settle even when metal hydroxide is produced by the coagulation precipitation method, the precipitates must be enlarged by linking the flocs to promote sedimentation. For this purpose, a polymer flocculant is used as an agglomeration aid. There are cationic, anionic and nonionic polymer flocculants, but anionic or nonionic effects are high for metal hydroxides. Thereafter, the entire solution is transferred to an aging tank and allowed to stand for aging of floc. The precipitate after aging is solid-liquid separated by a filter.

通常、凝集沈殿法(共沈法)により生成する水酸化鉄などの金属水酸化鉄は非晶質のゲル状であり非常に沈降分離性が悪い。そのため、長時間、場合によっては高温(〜80℃)で熟成され結晶化を促すことにより沈降分離性を向上させることとなる。図1に、従来の廃水中重金属の凝集沈殿法処理フローの一例を示す。   Usually, metal iron hydroxides such as iron hydroxide produced by the coagulation precipitation method (coprecipitation method) are amorphous gels and have very poor sedimentation separation properties. Therefore, the sedimentation separation property is improved by aging at high temperature (up to 80 ° C.) for a long time and in some cases promoting crystallization. FIG. 1 shows an example of a conventional treatment flow of heavy metal coagulation sedimentation method in wastewater.

発明内容。目的および概念。液体中の懸濁物の高速浮遊選別の新規方法とその装置の発明である。懸濁物は上記したような廃水中重金属の凝集沈殿処理で生じる沈降分離性の悪い金属水酸化物や、その他、液体中の微粒子全般を対象とする(例えば、溶液中で作製した磁性材料などの機能性微粒子)。通常、沈降分離よりも気泡を用いた浮遊選別の方が大幅に処理が早い。しかし、ミリオーダーの気泡は、非晶質金属水酸化物などの微粒子を多量に含む溶液(スラリー)中に効率良く分散してその表面に微粒子を付着することが出来ないため、沈降分離などの他の方法が多く採用されている。そこで、本発明では、まず、マイクロバブル発生装置を用いて、粒径が数μmから100μmのマイクロバブルをスラリー中に分散させる。マイクロバブルは粒径が小さいため分散性が良く、スラリー中に長時間安定して分散する。そのマイクロバブルは粒径が小さいため表面積が大きく、その表面に多量の懸濁物(微粒子)を吸着する。しかし、マイクロバブルはその高い分散性のため浮上が著しく遅く、高速浮遊選別の妨げとなる。そこで、マイクロバブルが分散したスラリーに周波数と出力を制御した超音波を照射することで、マイクロバブル同士が凝集して浮上が促進され、結果として懸濁物の浮遊選別が著しく促進される。超音波の周波数と出力を制御することで浮遊選別の速度をコントロールできる。   Invention content. Purpose and concept. It is an invention of a novel method and apparatus for high-speed floating sorting of a suspension in a liquid. Suspensions are intended for metal hydroxides with poor sedimentation and separation properties caused by heavy metal coagulation sedimentation treatment as described above, and other fine particles in liquids (for example, magnetic materials prepared in solution, etc.) Functional fine particles). Usually, floating sorting using bubbles is much faster than sedimentation separation. However, since millimeter-order bubbles cannot efficiently disperse in a solution (slurry) containing a large amount of fine particles such as amorphous metal hydroxide and adhere to the surface, such as sedimentation separation. Many other methods have been adopted. Therefore, in the present invention, first, microbubbles having a particle size of several μm to 100 μm are dispersed in the slurry using a microbubble generator. Since microbubbles have a small particle size, they have good dispersibility and are stably dispersed in the slurry for a long time. Since the microbubbles have a small particle size, they have a large surface area and adsorb a large amount of suspension (fine particles) on the surface. However, microbubbles are extremely slow to float due to their high dispersibility, which hinders high-speed floating sorting. Therefore, by irradiating the slurry in which the microbubbles are dispersed with ultrasonic waves whose frequency and output are controlled, the microbubbles are aggregated to promote the floating, and as a result, the floating sorting of the suspended matter is remarkably promoted. By controlling the frequency and output of the ultrasonic wave, the floating sorting speed can be controlled.

対象とする懸濁物の一つは、廃水中の重金属の凝集沈殿処理で生成した非晶質の水酸化鉄微粒子であるが、上記したように、通常、凝集沈殿処理で生成した水酸化鉄微粒子は長時間熟成、場合には高温(〜80℃)で長時間熟成されて沈降分離されるが、高速で浮遊選別できればこのような長時間・高エネルギー負荷のプロセスを回避できる。   One of the target suspensions is amorphous iron hydroxide fine particles generated by the coagulation-precipitation treatment of heavy metals in wastewater. As described above, the iron hydroxide produced by the coagulation-precipitation treatment is usually used. Fine particles are aged for a long time, and in some cases, aged for a long time at a high temperature (up to 80 ° C.) and separated by sedimentation.

理論背景(超音波照射下におけるマイクロバブルの挙動)。超音波照射下の気泡はBjerknes力と呼ばれる放射力を受け、進行波中では超音波の進行方向へ流され、定在波中では音圧や気泡の共振半径に応じて、圧力の腹または節に引き寄せられる。また、そこに集まった気泡が凝集したりする。図2に示すように、気泡径が超音波周波数によって決まる共振気泡径よりも大きい場合は、圧力変動の少ない節に集まる。その反対に、気泡径が共振半径よりも小さい場合は圧力変動の大きい腹に集まる。例えば、発明者らの実験では、マイクロバブル(気泡径約10 μmから60 μm)が分散した水溶液に38kHz(共振気泡径 約170 μm)と430kHz(共振気泡径 約15 μm)の超音波を照射したところ、38kHzの場合はマイクロバブルが共振気泡径よりも小さいため圧力変動の激しい腹に集まる。そのため、図3に示すように、高速で移動してお互いがクラスター状に凝集し、コンマ数秒という極短時間で浮上する。この場合、浮遊選別では、せっかく泡の表面に付着した微粒子が離れてしまい浮遊選別がうまく行かない。これは後に示す水酸化鉄微粒子を用いた実験で確認済みである。浮遊選別のためにはある程度、マイクロバブルの動きと浮上速度を制御する必要がある。そこで、430kHzの超音波を照射したところ、図4に示すように、マイクロバブルが共振気泡径よりも大きいため圧力変動の少ない節に吸い寄せられる。そのため、ゆっくりと移動し、幅広くお互いが凝集する。凝集しながら、音圧と浮力により徐々に浮上していく。この場合、後に示す実験結果のように微粒子が泡に付着した状態で浮上するため浮遊選別が成功する。   Theoretical background (behavior of microbubbles under ultrasonic irradiation). Bubbles under ultrasonic irradiation receive a radiation force called Bjerknes force, and they flow in the traveling direction of the ultrasonic waves in the traveling wave, and in the standing wave, depending on the sound pressure and the resonance radius of the bubble, the belly or node of the pressure Be drawn to. In addition, bubbles gathered there may aggregate. As shown in FIG. 2, when the bubble diameter is larger than the resonance bubble diameter determined by the ultrasonic frequency, the bubbles gather at nodes with little pressure fluctuation. On the other hand, when the bubble diameter is smaller than the resonance radius, the bubbles gather in the belly where the pressure fluctuation is large. For example, in our experiments, ultrasonic waves of 38 kHz (resonant bubble diameter of about 170 μm) and 430 kHz (resonant bubble diameter of about 15 μm) are irradiated to an aqueous solution in which microbubbles (bubble diameter of about 10 μm to 60 μm) are dispersed. As a result, in the case of 38 kHz, the microbubbles are smaller than the resonant bubble diameter, and therefore gather in the belly where the pressure fluctuation is severe. For this reason, as shown in FIG. 3, they move at high speed and aggregate each other in a cluster, and rise in a very short time of a few seconds of commas. In this case, in the floating sorting, the fine particles adhering to the surface of the bubbles are separated and the floating sorting does not work well. This has been confirmed in an experiment using iron hydroxide fine particles described later. For floating selection, it is necessary to control the movement of the microbubbles and the flying speed to some extent. Therefore, when 430 kHz ultrasonic waves are irradiated, the microbubbles are larger than the resonant bubble diameter as shown in FIG. Therefore, it moves slowly and agglomerates each other widely. While aggregating, it gradually rises due to sound pressure and buoyancy. In this case, as shown in the experimental results to be described later, the floating selection succeeds because the fine particles float while attached to the bubbles.

実験室レベル試験。実験では、ガラスカラム(内径10mm、長さ150mm)に接続したシリンジを用いて界面活性剤(TritonX100)を0.01ppm添加した約20mlの蒸留水中にマイクロバブル(気泡径約10 μmから60 μm)を分散させた。そのマイクロバブルを分散したガラスカラムを投込み式超音波振動子を設置した水槽に浸漬した。超音波(周波数:38kHzまたは430kHz、出力:0~600W)を照射すると、上記したように超音波の周波数に応じて個々のマイクロバブルが活発に運動してお互いに凝集し、著しく浮上が促進されることを見出した。図5に実験装置の概略を示す。   Laboratory level test. In the experiment, using a syringe connected to a glass column (inner diameter: 10 mm, length: 150 mm), microbubbles (bubble diameter: about 10 μm to 60 μm) were added in about 20 ml of distilled water to which 0.01 ppm of surfactant (TritonX100) was added. Dispersed. The glass column in which the microbubbles were dispersed was immersed in a water tank provided with a throw-in type ultrasonic vibrator. When irradiated with ultrasonic waves (frequency: 38 kHz or 430 kHz, output: 0 to 600 W), as described above, the individual microbubbles actively move according to the frequency of the ultrasonic waves and agglomerate with each other, which significantly promotes the ascent. I found out. Fig. 5 shows an outline of the experimental apparatus.

次に、pH=7で作製したゲル状の水酸化鉄(2 line-Ferrihydrite、FeOOH・0.801H2O)微粒子が分散したスラリー中に同様にマイクロバブルを分散させて超音波を照射した。実験に用いる水酸化鉄スラリーは以下の方法で調製した。50mlの蒸留水中に硝酸鉄九水和物(Fe(NO3)3・9H2O)2.02gを溶解した。1mol/Lの水酸化ナトリウム(NaOH)水溶液を0.125mol/Lに希釈した。そして、室温25℃、マグネチックスターラーで撹拌しながら120mlのNaOH水溶液をFe(NO3)3水溶液中に滴定した。pHが7となるところで滴定をやめ、25℃で保存した。この方法にでは、Ferrihydrite(FeOOH・0.801H2O)という一種の非晶質水酸化鉄微粒子が生成する。続いて、水酸化鉄スラリー20mlに界面活性剤(TritonX-100)を0.01ppmの濃度となるように添加し、図5に示したカラム式実験装置内に取込む。カラムを超音波洗浄槽に漬け込み、周囲温度は25℃に保つ。シリンジをそれぞれ10回ずつ撹拌し、カラム内のスラリーにマイクロバブルを分散させる。撹拌後、20秒後に超音波した。 Next, in the same manner, microbubbles were dispersed in a slurry in which gel-like iron hydroxide (2 line-Ferrihydrite, FeOOH · 0.801H 2 O) fine particles prepared at pH = 7 were dispersed, and ultrasonic waves were applied. The iron hydroxide slurry used in the experiment was prepared by the following method. In 50 ml of distilled water, 2.02 g of iron nitrate nonahydrate (Fe (NO 3 ) 3 · 9H 2 O) was dissolved. A 1 mol / L sodium hydroxide (NaOH) aqueous solution was diluted to 0.125 mol / L. Then, 120 ml of NaOH aqueous solution was titrated into Fe (NO 3 ) 3 aqueous solution while stirring with a magnetic stirrer at room temperature of 25 ° C. Titration was stopped when the pH reached 7, and the solution was stored at 25 ° C. In this method, a kind of amorphous iron hydroxide fine particles called Ferrihydrite (FeOOH · 0.801H 2 O) is formed. Subsequently, a surfactant (TritonX-100) is added to 20 ml of iron hydroxide slurry so as to have a concentration of 0.01 ppm, and is taken into the column type experimental apparatus shown in FIG. Soak the column in an ultrasonic bath and keep the ambient temperature at 25 ° C. Stir the syringe 10 times each to disperse the microbubbles in the slurry in the column. After stirring, the mixture was sonicated 20 seconds later.

マイクロバブルは微粒子を付着した状態で凝集浮上し、微粒子の浮遊選別の速度が著しく促進された。例えば、周波数430kHzで出力が0W(超音波照射無し)、100W、600Wで、比較用に撮影した写真を図6に示している。430kHzの超音波を照射することにより著しく浮上分離が促進された。1分後、超音波照射無しではほとんど浮上分離は進んでいないが、100Wではカラムの1/4程、600Wではカラムの半分近くまで浮上分離が進んでいく。20分以上経って最終的に浮上する高さは、それぞれほとんど変わらないが超音波を照射することにより浮上速度が著しく促進されることがわかる。しかし、上記したように周波数38kHzで同様の実験を行ったところ、マイクロバブルのみが高速で凝集浮上し、水酸化鉄微粒子はそのまま溶液中に分散したままであった。また、マイクロバブルならびに超音波も用いず、静置で沈降分離を行った場合、水酸化鉄微粒子の沈降が終了するのに30分以上要した。これより、超音波照射下でのマイクロバブル浮上分離が沈降分離に比べて著しく処理が早いことがわかる。   The microbubbles floated and agglomerated with the fine particles attached, and the speed of the fine particle floating selection was remarkably accelerated. For example, FIG. 6 shows photographs taken for comparison at a frequency of 430 kHz and an output of 0 W (no ultrasonic irradiation), 100 W, and 600 W. The levitation separation was remarkably promoted by irradiating 430 kHz ultrasonic waves. After 1 minute, levitation separation hardly progressed without ultrasonic irradiation, but at 100W, levitation separation progresses to about 1/4 of the column, and at 600W, nearly half of the column. It can be seen that although the height of the final ascent after 20 minutes is almost unchanged, the ascent rate is remarkably accelerated by irradiating ultrasonic waves. However, when the same experiment was performed at a frequency of 38 kHz as described above, only the microbubbles aggregated and floated at a high speed, and the iron hydroxide fine particles remained as they were in the solution. Further, when the sedimentation separation was performed without using microbubbles and ultrasonic waves, it took 30 minutes or more to complete the sedimentation of the iron hydroxide fine particles. From this, it can be seen that microbubble floating separation under ultrasonic irradiation is significantly faster than sedimentation separation.

図7に水酸化鉄微粒子が浮上分離する際の底部の写真を示している。超音波を照射しない場合は、マイクロバブルは溶液中に分散したまま、それぞれの浮力で徐々に浮上している。一方で430kHzの超音波を照射した場合、マイクロバブルが凝集しながら浮上していることがわかる。マイクロバブルが疎な部分は音波の腹、凝集している部分は音波の節と考えられる。図8には水酸化鉄微粒子が付着した状態でのマイクロバブル挙動の拡大写真を示している。水酸化鉄微粒子はナノオーダーであり、マイクロバブルよりも相当に小さい。写真をみると水酸化鉄微粒子の凝集物がマイクロバブルに付着した状態で浮上していることがわかる。   FIG. 7 shows a photograph of the bottom when the iron hydroxide fine particles float and separate. When the ultrasonic waves are not irradiated, the microbubbles gradually float with their buoyancy while being dispersed in the solution. On the other hand, when 430 kHz ultrasonic waves are irradiated, it can be seen that the microbubbles float while agglomerating. The part where the microbubbles are sparse is considered as the antinode of the sound wave, and the part where the microbubbles are aggregated is considered as the node of the sound wave. FIG. 8 shows an enlarged photograph of microbubble behavior with iron hydroxide fine particles attached. Iron hydroxide fine particles are on the order of nanometers and are considerably smaller than microbubbles. When the photograph is seen, it turns out that the aggregate of iron hydroxide fine particles has floated in the state adhering to the microbubble.

発明の意図。廃水処理で生成する様々な汚泥(スラリー)の分離濃縮には浮遊選別が速度も速く有効な方法である。浮遊選別はスラリー中に導入した気泡の表面に微粒子を吸着させ、その状態で浮上することで行われる。しかし、親水性のゲル状微粒子に対しては通常のミリオーダーの気泡ではスラリー中に分散させることさえも難しく、表面に微粒子を効率よく吸着させて浮上させることができない。そこで、スラリー中への分散性ならびに微粒子の吸着量を著しく向上させるためにマイクロバブルが用いられるが、その場合、気泡の浮上速度が著しく遅くなり、浮遊選別の利点を損なうこととなる。   Intent of the invention. For separation and concentration of various sludges (slurries) produced by wastewater treatment, floating sorting is a fast and effective method. The floating selection is performed by adsorbing fine particles on the surface of bubbles introduced into the slurry and floating in that state. However, with respect to hydrophilic gel-like fine particles, it is difficult to disperse them in the slurry with ordinary millimeter-order bubbles, and the fine particles cannot be efficiently adsorbed on the surface and floated. Thus, microbubbles are used to remarkably improve the dispersibility in the slurry and the adsorption amount of the fine particles, but in that case, the bubble floating speed is remarkably slowed, and the advantages of floating selection are impaired.

申請者らは、上記したようにマイクロバブルを分散したガラスカラムを水槽に浸漬して、超音波(38kHzまたは430kHz、0~600W)を投込み式振動子を用いて照射すると、個々のマイクロバブルが活発に運動してお互いに凝集し、著しく浮上が促進されることを高速度カメラによる観察で見出した。そこで、この現象をマイクロバブルを用いた懸濁物(スラリー)の浮遊選別に応用した。つまり、非晶質の水酸化鉄(2 line-Ferrihydrite、FeOOH・0.801H2O)微粒子が分散したスラリー中に同様にマイクロバブルを分散させて超音波を照射したところ、マイクロバブルは微粒子を付着した状態で凝集浮上し、微粒子の浮遊選別の速度が著しく促進されることを確認した。 When the applicant immerses a glass column in which microbubbles are dispersed as described above in a water tank and irradiates with ultrasonic waves (38 kHz or 430 kHz, 0 to 600 W) using a vibrator, individual microbubbles It was found by observation with a high-speed camera that the waters vigorously move and aggregate each other, and the flying is remarkably promoted. Therefore, this phenomenon was applied to the floating selection of suspension (slurry) using microbubbles. In other words, when microbubbles are similarly dispersed in a slurry in which amorphous iron hydroxide (2 line-Ferrihydrite, FeOOH · 0.801H 2 O) fine particles are dispersed and irradiated with ultrasonic waves, the microbubbles adhere to the fine particles. In this state, the particles floated and agglomerated, and it was confirmed that the speed of fine particle floating selection was significantly accelerated.

製品イメージ。製品イメージ図を図8と図9に示している。図8に浮遊選別槽式装置の概略図を示す。懸濁物(微粒子)を分散した液体(スラリー)を槽内に供給する。浮遊選別槽にはマイクロバブル発生装置が設置されている。例えば、マイクロバブルの発生方式は旋回流方式ならびに加圧溶解方式のものである。槽内の底部には超音波振動子が設置されている。超音波発信器により照射する周波数(10kHz~2MHz)と出力を調整する。浮遊選別した懸濁物は槽上部から回収される。   Product image. Product image diagrams are shown in Figs. FIG. 8 shows a schematic diagram of the floating sorting tank type apparatus. A liquid (slurry) in which suspensions (fine particles) are dispersed is supplied into the tank. A microbubble generator is installed in the floating sorting tank. For example, the microbubble generation method is a swirl flow method or a pressure dissolution method. An ultrasonic transducer is installed at the bottom of the tank. Adjust the frequency (10kHz ~ 2MHz) and output by the ultrasonic transmitter. The suspension selected by floating is collected from the upper part of the tank.

図9にカラム式浮遊選別装置の概略図を示す。懸濁物を分散した液体(スラリー)をカラム内に供給する。カラムにはマイクロバブル発生装置が設置されている。例えば、マイクロバブルの発生方式は旋回流方式ならびに加圧溶解方式のものである。槽内の底部には超音波振動子が設置されている。超音波発信器により照射する周波数(10kHz~2MHz)と出力を調整する。浮遊選別した懸濁物は槽上部から回収される。   FIG. 9 shows a schematic diagram of a column type floating sorting apparatus. A liquid (slurry) in which the suspension is dispersed is supplied into the column. A microbubble generator is installed in the column. For example, the microbubble generation method is a swirl flow method or a pressure dissolution method. An ultrasonic transducer is installed at the bottom of the tank. Adjust the frequency (10kHz ~ 2MHz) and output by the ultrasonic transmitter. The suspension selected by floating is collected from the upper part of the tank.

従来の廃水中重金属の凝集沈殿法処理フローの一例。An example of the conventional coagulation-precipitation process flow of heavy metals in wastewater. 超音波照射下における気泡の挙動と超音波振動との関係(Bjerknes力)。Relationship between bubble behavior and ultrasonic vibration under ultrasonic irradiation (Bjerknes force). 超音波照射下(38kHz)におけるマイクロバブル挙動の写真。Photo of microbubble behavior under ultrasonic irradiation (38kHz). 超音波照射下(430kHz)におけるマイクロバブル挙動の写真。Photograph of microbubble behavior under ultrasonic irradiation (430kHz). 非晶質水酸化鉄微粒子のマイクロバブル浮上挙動(超音波出力による比較)。Microbubble levitation behavior of amorphous iron hydroxide fine particles (comparison by ultrasonic output). 非晶質水酸化鉄微粒子のマイクロバブル浮上挙動(浮上底部の拡大写真)。Microbubble levitation behavior of amorphous iron hydroxide fine particles (enlarged photo of levitation bottom). 超音波照射下における水酸化鉄微粒子付着状態でのマイクロバブル挙動の写真。A photograph of microbubble behavior with iron hydroxide fine particles attached under ultrasonic irradiation. 浮遊選別槽式装置の概略図。Schematic of a floating sorting tank type device. カラム式浮遊選別装置の概略図。Schematic of a column type floating sorting apparatus.

Claims (2)

懸濁物溶液内にマイクロバブル発生装置を用いて、気泡径が1μmから100μmマイクロバブルを懸濁物溶液内に分散させ、マイクロバブル表面に懸濁物を付着させ、懸濁物を浮上分離し、その際、マイクロバブルを分散させた懸濁物溶液に周波数が20kHzから1MHzの超音波を照射し、マイクロバブル同士の凝集浮上を促し、懸濁物の浮上分離を促進させることを特徴とする液体中懸濁物の分離装置。   Use a microbubble generator in the suspension solution to disperse microbubbles with a bubble size of 1 μm to 100 μm in the suspension solution, attach the suspension to the surface of the microbubble, and separate the suspension by floating. In that case, the suspension solution in which the microbubbles are dispersed is irradiated with ultrasonic waves having a frequency of 20 kHz to 1 MHz to promote the aggregation and floating of the microbubbles and promote the floating separation of the suspension. Separation device for suspension in liquid. 懸濁物溶液内にマイクロバブル発生装置を用いて、気泡径が1μmから100μmマイクロバブルを懸濁物溶液内に分散させ、マイクロバブル表面に懸濁物を付着させ、懸濁物を浮上分離し、その際、マイクロバブルを分散させた懸濁物溶液に周波数が20kHzから1MHzの超音波を照射し、マイクロバブル同士の凝集浮上を促し、懸濁物の浮上分離を促進させることを特徴とする液体中懸濁物の分離方法。   Use a microbubble generator in the suspension solution to disperse microbubbles with a bubble size of 1 μm to 100 μm in the suspension solution, attach the suspension to the surface of the microbubble, and separate the suspension by floating. In that case, the suspension solution in which the microbubbles are dispersed is irradiated with ultrasonic waves having a frequency of 20 kHz to 1 MHz to promote the aggregation and floating of the microbubbles and promote the floating separation of the suspension. Separation method of suspension in liquid.
JP2006217256A 2006-08-09 2006-08-09 Apparatus and method for separating suspended matter in liquid Pending JP2008036585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217256A JP2008036585A (en) 2006-08-09 2006-08-09 Apparatus and method for separating suspended matter in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217256A JP2008036585A (en) 2006-08-09 2006-08-09 Apparatus and method for separating suspended matter in liquid

Publications (1)

Publication Number Publication Date
JP2008036585A true JP2008036585A (en) 2008-02-21

Family

ID=39172204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217256A Pending JP2008036585A (en) 2006-08-09 2006-08-09 Apparatus and method for separating suspended matter in liquid

Country Status (1)

Country Link
JP (1) JP2008036585A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161407A (en) * 2010-02-15 2011-08-25 Panasonic Environmental Systems & Engineering Co Ltd Method and apparatus for separating cationic metal or cationic compound
JP2012081152A (en) * 2010-10-14 2012-04-26 Tokyo Univ Of Agriculture & Technology Ultrasonic therapeutic system
JP2012106214A (en) * 2010-11-19 2012-06-07 Oshu Bussan Unyu Kk Method for producing organic substance sludge and organic substance produced by the producing method
CN102923816A (en) * 2012-11-05 2013-02-13 航天环境工程有限公司 Outgassing demulsification device of ultrasonic air floatation system
JP2017109145A (en) * 2015-12-14 2017-06-22 国立大学法人静岡大学 Particle separation method and particle separation device
JP2020032321A (en) * 2018-08-27 2020-03-05 パナソニックIpマネジメント株式会社 Ion removal system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151255A (en) * 1976-06-09 1977-12-15 Kubota Ltd Floatation/separation method
JPS5443368A (en) * 1977-09-10 1979-04-05 Kubota Ltd Solid/liquid separator
JP2001225060A (en) * 1999-12-08 2001-08-21 Mitsubishi Heavy Ind Ltd Water treatment method and its device
JP2003251336A (en) * 2002-02-28 2003-09-09 Mitsubishi Heavy Ind Ltd Floatation separation method and apparatus used for the same
JP2006136767A (en) * 2004-11-10 2006-06-01 Sanyo Electric Co Ltd Sewage treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151255A (en) * 1976-06-09 1977-12-15 Kubota Ltd Floatation/separation method
JPS5443368A (en) * 1977-09-10 1979-04-05 Kubota Ltd Solid/liquid separator
JP2001225060A (en) * 1999-12-08 2001-08-21 Mitsubishi Heavy Ind Ltd Water treatment method and its device
JP2003251336A (en) * 2002-02-28 2003-09-09 Mitsubishi Heavy Ind Ltd Floatation separation method and apparatus used for the same
JP2006136767A (en) * 2004-11-10 2006-06-01 Sanyo Electric Co Ltd Sewage treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161407A (en) * 2010-02-15 2011-08-25 Panasonic Environmental Systems & Engineering Co Ltd Method and apparatus for separating cationic metal or cationic compound
JP2012081152A (en) * 2010-10-14 2012-04-26 Tokyo Univ Of Agriculture & Technology Ultrasonic therapeutic system
JP2012106214A (en) * 2010-11-19 2012-06-07 Oshu Bussan Unyu Kk Method for producing organic substance sludge and organic substance produced by the producing method
CN102923816A (en) * 2012-11-05 2013-02-13 航天环境工程有限公司 Outgassing demulsification device of ultrasonic air floatation system
JP2017109145A (en) * 2015-12-14 2017-06-22 国立大学法人静岡大学 Particle separation method and particle separation device
JP2020032321A (en) * 2018-08-27 2020-03-05 パナソニックIpマネジメント株式会社 Ion removal system

Similar Documents

Publication Publication Date Title
US6896815B2 (en) Methods for removing heavy metals from water using chemical precipitation and field separation methods
US7255793B2 (en) Methods for removing heavy metals from water using chemical precipitation and field separation methods
KR101581681B1 (en) Method and apparatus for high-rate coagulative precipitation using polymer beads containing magnetic material
JP2004512937A (en) Method and apparatus for treating water and sewage
US20110168639A1 (en) Wastewater treatment method and wastewater treatment apparatus
KR101681309B1 (en) High-rate coagulative precipitation method for coagulated sludge using magnetism
JP2008036585A (en) Apparatus and method for separating suspended matter in liquid
JP2006000718A (en) Magnetic separation and cleaning apparatus
JP2011177640A (en) Metal-containing water treatment method and metal-containing water treatment apparatus
Xiong et al. Coupling magnetic particles with flocculants to enhance demulsification and separation of waste cutting emulsion for engineering applications
JP2007111627A (en) Method and system for treating waste water
JP2005177532A (en) Oil-polluted water treatment apparatus
JP5560447B2 (en) Plating drainage treatment method using microbubbles and plating wastewater treatment chemical used in the method
JP4625894B2 (en) Wastewater treatment method and treatment apparatus
JP5994781B2 (en) Method for separating and collecting microalgae
JP2019198806A (en) Water treatment method, and water treatment device
JP5452677B2 (en) Water purifier
JP2012179578A (en) Method for separating and recovering microalgae
JP5565686B2 (en) Coagulation sedimentation treatment method and coagulation sedimentation treatment system for slurry containing dissolved heavy metal
JP6118077B2 (en) Method for recovering microalgae with hydrocarbon production ability
JP6745582B2 (en) Method for treating dilute slurry containing organic matter
JP6882425B2 (en) How to purify livestock manure mixed wastewater
JP7117101B2 (en) Water treatment method and device
Esmeli et al. Enhancement of shear flocculation of a galena suspension by ultrasonic treatment
JP2003112189A (en) Contact apparatus and liquid treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426