JP2005246197A - Method for manufacturing molding of inorganic oxide - Google Patents

Method for manufacturing molding of inorganic oxide Download PDF

Info

Publication number
JP2005246197A
JP2005246197A JP2004058742A JP2004058742A JP2005246197A JP 2005246197 A JP2005246197 A JP 2005246197A JP 2004058742 A JP2004058742 A JP 2004058742A JP 2004058742 A JP2004058742 A JP 2004058742A JP 2005246197 A JP2005246197 A JP 2005246197A
Authority
JP
Japan
Prior art keywords
inorganic oxide
cerium
molded body
producing
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004058742A
Other languages
Japanese (ja)
Other versions
JP4452097B2 (en
Inventor
Kozo Takatsu
幸三 高津
Takeji Takekoshi
岳二 竹越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004058742A priority Critical patent/JP4452097B2/en
Publication of JP2005246197A publication Critical patent/JP2005246197A/en
Application granted granted Critical
Publication of JP4452097B2 publication Critical patent/JP4452097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a molding of an adsorbent for removing a sulfur compound, by which an inorganic oxide of a metal of group III or group IV of a periodic table such as cerium oxide can be molded even when the inorganic oxide is subjected to extrusion molding so that the desulfurizing performance of the molded inorganic oxide can be kept high. <P>SOLUTION: When the inorganic oxide of the metal of group III or group IV of the periodic table is molded, at least one compound of the metal selected from the group consisting of cerium, zirconium and titanium is added to the inorganic oxide as a binder, cellulose is added to the inorganic oxide as an auxiliary molding agent and the obtained mixture is molded. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、無機酸化物成形体の製造方法及び該製造方法で得られた無機酸化物成形体、並びに該成形体からなる硫黄化合物除去用吸着剤に関する。   The present invention relates to a method for producing an inorganic oxide molded body, an inorganic oxide molded body obtained by the production method, and a sulfur compound removing adsorbent comprising the molded body.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。
この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらにはLPG、ジメチルエーテル、ナフサ、灯油、軽油などの石油系炭化水素の使用について研究されている。
In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Alternatively, research into practical use is actively conducted for automobiles and the like.
For this fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, LPG, dimethyl ether, naphtha, kerosene, light oil The use of petroleum hydrocarbons such as

これらのガス状又は液状炭化水素を用いて水素を製造する場合、一般に、該炭化水素を、改質触媒の存在下に部分酸化改質、オートサーマル改質又は水蒸気改質などで処理する方法が用いられている。
LPG、都市ガス、灯油などの炭化水素燃料を改質して燃料用水素を製造する場合、改質触媒の被毒を抑制するためには、燃料中の硫黄分を0.1ppm以下に低減させることが要求される。また、プロピレンやブテンなどは、石油化学製品の原料として使用する場合、やはり触媒の被毒を防ぐためには、硫黄分を0.1ppm以下に低減させることが要求される。
前記LPG中には、硫黄化合物として、一般にメチルメルカプタンや硫化カルボニル(COS)などに加えて、着臭剤として添加されたジメチルサルファイド(DMS)、t−ブチルメルカプタン(TBM)、メチルエチルサルファイドなどが含まれている。また、最近ジメチルエーテルを燃料として利用する計画が進められている。このジメチルエーテル自体は、硫黄化合物を含有していないが、漏洩対策から意図的に上記着臭剤の添加が検討されている。
When producing hydrogen using these gaseous or liquid hydrocarbons, generally, there is a method of treating the hydrocarbons by partial oxidation reforming, autothermal reforming or steam reforming in the presence of a reforming catalyst. It is used.
When reforming hydrocarbon fuels such as LPG, city gas, and kerosene to produce hydrogen for fuel, the sulfur content in the fuel is reduced to 0.1 ppm or less in order to suppress poisoning of the reforming catalyst. Is required. Further, when propylene, butene, etc. are used as a raw material for petrochemical products, the sulfur content is required to be reduced to 0.1 ppm or less in order to prevent poisoning of the catalyst.
In the LPG, as a sulfur compound, dimethyl sulfide (DMS), t-butyl mercaptan (TBM), methyl ethyl sulfide, etc. added as an odorant in addition to methyl mercaptan and carbonyl sulfide (COS) are generally included. include. Recently, a plan to use dimethyl ether as a fuel is underway. Although this dimethyl ether itself does not contain a sulfur compound, the addition of the above odorant has been studied intentionally in order to prevent leakage.

LPGや都市ガスなどの炭化水素燃料中の硫黄化合物を吸着除去する各種吸着剤が知られている。しかしながら、これらの吸着剤は、150〜300℃程度では高い脱硫性能を示すものがあるが、常温での脱硫性能については、必ずしも十分に満足し得るものではないのが実状であった。
例えば、疎水性ゼオライトにAg、Cu、Zn、Fe、Co、Niなどをイオン交換により担持させた脱硫剤(例えば特許文献1参照)や、Y型ゼオライト、β型ゼオライト又はX型ゼオライトにAg又はCuを担持した脱硫剤(例えば、特許文献2参照)が開示されている。しかしながら、これらの脱硫剤は、メルカプタン類やサルファイド類を室温において効率的に吸着除去し得るものの、硫化カルボニルをほとんど吸着しない。
また、銅−亜鉛系脱硫剤が開示されている(例えば、特許文献3参照)が、この脱硫剤においては、150℃以上の温度では各種硫黄化合物を吸着除去できるが、100℃以下の低い温度では、硫黄化合物に対する吸着性能が低い。さらに、アルミナなどの多孔質担体に銅を担持した脱硫剤が開示されている(例えば、特許文献4参照)。この脱硫剤は100℃以下の温度でも使用できるとしているが、その吸着性能については十分に満足し得るものではない。
Various adsorbents that adsorb and remove sulfur compounds in hydrocarbon fuels such as LPG and city gas are known. However, some of these adsorbents exhibit high desulfurization performance at about 150 to 300 ° C., but the actual condition is that the desulfurization performance at room temperature is not always satisfactory.
For example, a desulfurization agent (for example, refer to Patent Document 1) in which Ag, Cu, Zn, Fe, Co, Ni, etc. are supported on a hydrophobic zeolite by ion exchange, or Ag or Cu is added to Y-type zeolite, β-type zeolite, or X-type zeolite. A desulfurization agent supporting Cu (for example, see Patent Document 2) is disclosed. However, although these desulfurization agents can efficiently adsorb and remove mercaptans and sulfides at room temperature, they hardly adsorb carbonyl sulfide.
Further, a copper-zinc desulfurization agent is disclosed (for example, see Patent Document 3). In this desulfurization agent, various sulfur compounds can be adsorbed and removed at a temperature of 150 ° C. or higher, but a low temperature of 100 ° C. or lower. Then, the adsorption | suction performance with respect to a sulfur compound is low. Furthermore, a desulfurization agent in which copper is supported on a porous carrier such as alumina is disclosed (for example, see Patent Document 4). Although this desulfurizing agent can be used even at a temperature of 100 ° C. or lower, its adsorption performance is not fully satisfactory.

特開2001−286753号公報JP 2001-286753 A 特開2001−305123号公報JP 2001-305123 A 特開平2−302496号公報JP-A-2-30296 特開2001−123188号公報JP 2001-123188 A

本発明者らは、このような状況下で、炭化水素燃料又は酸素含有炭化水素燃料中の各種の硫黄化合物を、室温においても低濃度まで効率よく除去し得る硫黄化合物除去用吸着剤として、酸化セリウムを含むものを見出した(特願2003−150293号明細書)。しかし、酸化セリウムを通常の押出し成形等でシリカやアルミナをバインダーとして用いて成形すると、成形ができなかったり、成形できても脱硫能が悪化するという問題があった。
本発明は、このような状況下でなされたもので、酸化セリウム等の周期律表第3族もしくは第4族金属の無機酸化物を、押出し成形する際においても、成形が可能で、かつ脱硫性能を高く維持できる硫黄化合物除去用吸着剤成形体の製造方法を提供することを目的とするものである。
Under these circumstances, the present inventors have oxidized oxidation compounds as sulfur compound removal adsorbents that can efficiently remove various sulfur compounds in hydrocarbon fuels or oxygen-containing hydrocarbon fuels to a low concentration even at room temperature. The thing containing cerium was discovered (Japanese Patent Application No. 2003-150293 specification). However, when cerium oxide is molded using silica or alumina as a binder by ordinary extrusion molding or the like, there is a problem that molding cannot be performed or desulfurization ability deteriorates even if molding can be performed.
The present invention has been made under such circumstances, and can be formed even when extruding an inorganic oxide of a Group 3 or Group 4 metal such as cerium oxide, and desulfurization. It is an object of the present invention to provide a method for producing an adsorbent molded body for removing sulfur compounds that can maintain high performance.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、成形時にセルロースを添加することにより本発明の目的を効率的に達成できることを見出した。本発明は、かかる知見に基づいて完成したものである。   As a result of intensive studies to achieve the above object, the present inventors have found that the object of the present invention can be efficiently achieved by adding cellulose at the time of molding. The present invention has been completed based on such findings.

すなわち、本発明は、
(1)周期律表第3族もしくは第4族金属の無機酸化物を成形するに際して、セリウム、ジルコニウム及びチタンからなる群から選ばれる少なくとも一種の化合物をバインダーとし、セルロースを成形助剤として添加して成形することを特徴とする無機酸化物成形体の製造方法、
(2)成形助剤として、さらに比表面積50m2/g以下の粉体を添加して成形することを特徴とする上記(1)記載の無機酸化物成形体の製造方法、
(3)無機酸化物が、酸化セリウムである上記(1)又は(2)に記載の無機酸化物成形体の製造方法、
(4)無機酸化物が、セリウムを含む複合酸化物である上記(1)又は(2)に記載の無機酸化物成形体の製造方法、
(5)粉体が、粘土鉱物及び/又はアルミナである上記(2)〜(4)のいずれかに記載の無機酸化物成形体の製造方法、
(6)セルロースの添加量が、得られる成形体の乾燥後の量に基づき3質量%以下である上記(1)〜(5)のいずれかに記載の無機酸化物成形体の製造方法、
(7)セルロースが、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースのいずれかである上記(1)〜(6)のいずれかに記載の無機酸化物成形体の製造方法、
(8)粘土鉱物が、カオリンである上記(5)〜(7)のいずれかに記載の無機酸化物成形体の製造方法、
(9)バインダーが、硝酸セリウム、酢酸セリウム、水酸化セリウム、塩化セリウム、酸化セリウムゾル、硫酸セリウム、塩化ジルコニウム、オキシ塩化ジルコニウム、ジルコニアゾル、水酸化ジルコニウム、硫酸ジルコニウム、塩化チタン、チタニアゾル又は硫酸チタンである上記(1)〜(8)のいずれかに記載の無機酸化物成形体の製造方法、
(10)バインダーの添加量が、得られる成形体の乾燥後の量に基づき20質量%以下である上記(1)〜(9)のいずれかに記載の無機酸化物成形体の製造方法、
(11)酸化セリウムとしての含有量が、得られる成形体の乾燥後の量に基づき85質量%以上である上記(3)又は(5)〜(10)のいずれかに記載の無機酸化物成形体の製造方法、
(12)成形方法が、押出し成形である上記(1)〜(11)のいずれかに記載の無機酸化物成形体の製造方法、
(13)上記(1)〜(12)のいずれかに記載の方法で成形したのち、300℃以上の温度で焼成し、添加したセルロースを除去することを特徴とする無機酸化物成形体の製造方法、
(14)周期律表第3族もしくは第4族金属の無機酸化物を成形するに際して、セルロースを成形助剤として添加して成形したのち、250℃以下の温度で乾燥させ、添加したセルロースの少なくとも一部を含有させることを特徴とする無機酸化物成形体の製造方法、
(15)上記(1)〜(14)のいずれかに記載の製造方法で得られた無機酸化物成形体、
(16)上記(15)に記載の成形体からなる触媒、
(17)上記(15)に記載の成形体からなる吸着剤、
(18)上記(15)に記載の成形体からなる硫黄化合物除去用吸着剤、
(19)硫黄化合物が、硫化カルボニルである上記(18)記載の硫黄化合物除去用吸着剤、
(20)硫黄化合物が、炭化水素原料又はジメチルエーテル中の硫黄化合物である上記(18)又は(19)に記載の硫黄化合物除去用吸着剤、及び
(21)炭化水素原料が、LPG、都市ガス、天然ガス、エタン、エチレン、プロパン、プロピレン、ブタン、ブテン、ナフサ、灯油及び軽油から選ばれる少なくとも一種である上記(20)記載の硫黄化合物除去用吸着剤、
を提供するものである。
That is, the present invention
(1) When molding an inorganic oxide of Group 3 or Group 4 metal of the periodic table, at least one compound selected from the group consisting of cerium, zirconium and titanium is used as a binder, and cellulose is added as a molding aid. A method for producing an inorganic oxide molded article,
(2) The method for producing an inorganic oxide molded article according to (1) above, wherein a powder having a specific surface area of 50 m 2 / g or less is further added and molded as a molding aid,
(3) The method for producing an inorganic oxide molded article according to (1) or (2), wherein the inorganic oxide is cerium oxide,
(4) The method for producing an inorganic oxide molded body according to (1) or (2), wherein the inorganic oxide is a composite oxide containing cerium,
(5) The method for producing an inorganic oxide molded body according to any one of (2) to (4), wherein the powder is a clay mineral and / or alumina.
(6) The method for producing an inorganic oxide molded body according to any one of (1) to (5) above, wherein the amount of cellulose added is 3% by mass or less based on the amount of the molded body obtained after drying.
(7) The method for producing an inorganic oxide molded body according to any one of (1) to (6), wherein the cellulose is any one of methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose;
(8) The method for producing an inorganic oxide molded body according to any one of (5) to (7), wherein the clay mineral is kaolin,
(9) The binder is cerium nitrate, cerium acetate, cerium hydroxide, cerium chloride, cerium oxide sol, cerium sulfate, zirconium chloride, zirconium oxychloride, zirconia sol, zirconium hydroxide, zirconium sulfate, titanium chloride, titania sol or titanium sulfate. A method for producing an inorganic oxide molded body according to any one of the above (1) to (8),
(10) The method for producing an inorganic oxide molded body according to any one of the above (1) to (9), wherein the addition amount of the binder is 20% by mass or less based on the amount after drying of the obtained molded body.
(11) The inorganic oxide molding according to any one of (3) or (5) to (10), wherein the content as cerium oxide is 85% by mass or more based on the amount after drying of the obtained molded body. Body manufacturing method,
(12) The method for producing an inorganic oxide molded body according to any one of (1) to (11), wherein the molding method is extrusion molding,
(13) Manufacture of the inorganic oxide molded body characterized by forming by the method according to any one of (1) to (12) above, followed by baking at a temperature of 300 ° C. or higher and removing the added cellulose. Method,
(14) When molding an inorganic oxide of Group 3 or Group 4 metal of the periodic table, after adding and molding cellulose as a molding aid, drying at a temperature of 250 ° C. or lower, and adding at least the added cellulose A method for producing an inorganic oxide molded article characterized by containing a part thereof;
(15) An inorganic oxide molded body obtained by the production method according to any one of (1) to (14),
(16) A catalyst comprising the molded article according to (15) above,
(17) An adsorbent comprising the molded article according to (15) above,
(18) An adsorbent for removing a sulfur compound comprising the molded article according to (15) above,
(19) The sulfur compound removing adsorbent according to (18), wherein the sulfur compound is carbonyl sulfide,
(20) The sulfur compound removing adsorbent according to (18) or (19) above, wherein the sulfur compound is a hydrocarbon compound or a sulfur compound in dimethyl ether, and (21) the hydrocarbon material is LPG, city gas, The adsorbent for removing sulfur compounds according to the above (20), which is at least one selected from natural gas, ethane, ethylene, propane, propylene, butane, butene, naphtha, kerosene and light oil,
Is to provide.

本発明によれば、周期律表第3族もしくは第4族金属の無機酸化物を、押出し成形する際においても、成形が可能で、かつ脱硫性能を高く維持できる硫黄化合物除去用吸着剤成形体の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the adsorbent molded object for sulfur compound removal which can be shape | molded and can maintain high desulfurization performance also at the time of extrusion molding the inorganic oxide of a group 3 or 4 metal of a periodic table. The manufacturing method of can be provided.

本発明を以下に説明する。
(1)周期律表第3族もしくは第4族金属の無機酸化物を成形するに際し、セリウム、ジルコニウム及びチタンからなる群から選ばれる少なくとも一種の化合物をバインダーとし、セルロースを成形助剤として添加して成形することを特徴とする無機酸化物成形体の製造方法。
(2)成形助剤として、さらに、比表面積50m2/g以下の粉体を添加して成形することを特徴とする無機酸化物成形体の製造方法。
周期律表第3族もしくは第4族金属として、Sc,Y,La,Ce,Pr,Nd,Ti,Zrなどの酸化物を挙げることができるが、硫黄化合物の吸着剤としては、Ceが好ましい。また、セリウムを含む複合酸化物も使用することができる。この場合、ジルコニウム及び/又はチタンとの複合酸化物が好ましい。
また、酸化セリウムの場合、酸化セリウムとしての含有量は、脱硫性能の点から、得られる成形体の乾燥後の量に基づき85質量%以上が好ましく、95質量%以上がより好ましい。
酸化セリウムを使用する場合、比表面積は100m2/g以上のものが好ましく、酸化セリウムを300〜600℃で焼成したものが好ましい。
The present invention will be described below.
(1) When forming an inorganic oxide of Group 3 or Group 4 metal of the periodic table, at least one compound selected from the group consisting of cerium, zirconium and titanium is used as a binder, and cellulose is added as a forming aid. A method for producing an inorganic oxide molded body, characterized by being molded.
(2) A method for producing an inorganic oxide molded body, wherein a powder having a specific surface area of 50 m 2 / g or less is further added and molded as a molding aid.
Examples of the Group 3 or Group 4 metal in the periodic table include oxides such as Sc, Y, La, Ce, Pr, Nd, Ti, and Zr. Ce is preferable as the adsorbent for the sulfur compound. . A composite oxide containing cerium can also be used. In this case, a composite oxide with zirconium and / or titanium is preferable.
In the case of cerium oxide, the content as cerium oxide is preferably 85% by mass or more, and more preferably 95% by mass or more based on the amount of the molded article obtained after drying from the viewpoint of desulfurization performance.
When cerium oxide is used, the specific surface area is preferably 100 m 2 / g or more, and cerium oxide fired at 300 to 600 ° C. is preferable.

ところで、触媒用途に用いる各種金属酸化物の押出し成形において、バインダーとしては通常アルミナバインダーやシリカバインダーが使用される。アルミナバインダーとしては、アルミニウムの水酸化物であるコロイダルアルミナ、擬ベーマイトゲルなどが使用される。シリカバインダーとしては、コロイダルシリカ、水ガラスと言われる珪酸ナトリウムが好適に使用される。これらのバインダーは200〜300℃で焼成すると、水酸基の脱水反応によって化学結合が生じ粒子間が結合する。特に、アルミナバインダーを20〜30%程度使用すると、強度的にも優れる押出し成形体を容易に得ることができる。しかし、酸化物表面が化学的に変質するため、本来の酸化物の特性が変化する可能性がある。特に酸化セリウムにおいては脱硫剤としての優れた性能が低下することがわかった。   By the way, in the extrusion molding of various metal oxides used for a catalyst, an alumina binder or a silica binder is usually used as a binder. As the alumina binder, colloidal alumina which is a hydroxide of aluminum, pseudo boehmite gel, or the like is used. As the silica binder, colloidal silica and sodium silicate called water glass are preferably used. When these binders are baked at 200 to 300 ° C., chemical bonds are generated by dehydration reaction of hydroxyl groups, and the particles are bonded. In particular, when an alumina binder is used in an amount of about 20 to 30%, an extruded molded body that is excellent in strength can be easily obtained. However, since the oxide surface is chemically altered, the characteristics of the original oxide may change. In particular, it has been found that cerium oxide has a poor performance as a desulfurizing agent.

本発明においては、バインダーとしては、セリウム、ジルコニウム及びチタンから選ばれる少なくとも一種の化合物を使用することができる。このセリウム、ジルコニウム及びチタンは、周期律表第3族又は第4族の元素であり、これらの化合物を周期律表第3族又は第4族元素の酸化物のバインダーとして使用した場合には焼成により、それぞれ酸化物となり、元素同士の性質も似ているため、第3族又は第4族元素の酸化物の本来の特性をあまり変化させずに押出し成形体を得ることができる。この場合、セリウム化合物として、硝酸セリウム、酢酸セリウム、水酸化セリウム、塩化セリウム、酸化セリウムゾル、硫酸セリウム等を挙げることができる。ジルコニウム化合物として、塩化ジルコニウム、オキシ塩化ジルコニウム、ジルコニアゾル、水酸化ジルコニウム、硫酸ジルコニウム等を挙げることができる。チタン化合物として、塩化チタン、チタニアゾル、硫酸チタン等を挙げることができる。
以上のように、バインダーを添加することにより、脱硫性能を悪化させることなく、酸化セリウム等の金属酸化物の成形性を改善するとともに成形体の強度を高めることができる。
上記バインダーの添加量は、脱硫活性の点から、得られる成形体の乾燥後の量に基づき20質量%以下が好ましい。
In the present invention, as the binder, at least one compound selected from cerium, zirconium and titanium can be used. This cerium, zirconium and titanium are elements of Group 3 or Group 4 of the Periodic Table, and when these compounds are used as binders for Group 3 or Group 4 element oxides, firing is performed. Thus, each becomes an oxide and the properties of the elements are similar, so that an extruded product can be obtained without much changing the original characteristics of the Group 3 or Group 4 element oxide. In this case, examples of the cerium compound include cerium nitrate, cerium acetate, cerium hydroxide, cerium chloride, cerium oxide sol, and cerium sulfate. Examples of the zirconium compound include zirconium chloride, zirconium oxychloride, zirconia sol, zirconium hydroxide, zirconium sulfate and the like. Examples of the titanium compound include titanium chloride, titania sol, and titanium sulfate.
As described above, by adding a binder, the moldability of a metal oxide such as cerium oxide can be improved and the strength of the molded body can be increased without deteriorating the desulfurization performance.
The addition amount of the binder is preferably 20% by mass or less based on the amount after drying of the obtained molded body from the viewpoint of desulfurization activity.

しかし、上記のセリウムなどのバインダーのみでは押出し成形が容易になされない。シリカやアルミナは保水性が高く、粘性のある軟らかい混合物を形成するが、セリウム化合物等のバインダーでは保水性が高い混合物は得られず、押出し成形が容易になされない。そこで、保水性を改善する成形助剤を添加すると、容易に押出し成形が可能となる。押出し成形用の混合物に軟化および可塑性を与える成形助剤として、グリセリン、ポリビニルアルコール、セルロース、粘土などが知られている。そこで、周期律表第3族、第4族元素の酸化物に適用すると、セルロースが最も効果的であることがわかった。また、添加したセルロースは、周期律表第3族、第4族の酸化物表面を覆い、混合物の潤滑性を与え(粒子間の摩擦を減少)、押出し成形を極めて容易にする。その場合、添加するセルロースとして、セルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース、アミノエチルセルロース、オキシエチルセルロースなどを挙げることができるが、一般に安価な点でメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースが使用される。セルロースの添加量は、性能低下を防ぐ点から、得られる成形体の乾燥後の量に基づき3質量%以下が好ましい。   However, extrusion molding is not easily performed only with the binder such as cerium. Silica and alumina have a high water retention and form a viscous soft mixture. However, a binder such as a cerium compound cannot provide a mixture having a high water retention and is not easily extruded. Therefore, when a molding aid for improving water retention is added, extrusion molding can be easily performed. As molding aids that soften and plasticize a mixture for extrusion molding, glycerin, polyvinyl alcohol, cellulose, clay and the like are known. Thus, it has been found that cellulose is most effective when applied to oxides of Group 3 and Group 4 elements of the Periodic Table. In addition, the added cellulose covers the surface of Group 3 and Group 4 oxides of the Periodic Table, imparts lubricity to the mixture (reduces friction between particles), and makes extrusion extremely easy. In this case, examples of cellulose to be added include cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, aminoethyl cellulose, and oxyethyl cellulose. Cellulose is used. The addition amount of cellulose is preferably 3% by mass or less based on the amount after drying of the obtained molded body from the viewpoint of preventing performance degradation.

乾燥した押出し成形体はセルロースを含有しているので、強度にも優れるが、触媒又は吸着剤として使用する場合には通常、焼成を行い、セルロースが除去されると、成形体の強度が低下する。しかし、セルロースとともに不活性な粉体を添加しておくと、焼成後も成形体の強度を保持できる。このような粉体としては、周期律表第3族、第4族の酸化物の特性に影響を及ぼさないもので成形体の強度を保持できることが必要である。
そこで、本発明においては、他の成形助剤として、比表面積が50m2/g以下の粉体を使用することができる。50m2/gを超えると、脱硫性能が低下するおそれがある。該粉体として、カオリン、アロフェン、タルク、雲母などの粘土鉱物やアルミナを好適に使用できる。これらは一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。粘土鉱物のなかでは、カオリンが成形体の強度の保持の点でより好適である。粉体の添加量は、脱硫性能及び成形体の強度の保持の点から、得られる成形体の乾燥後の量に基づき30質量%以下が好ましい。
Since the dried extruded molded article contains cellulose, it is excellent in strength. However, when used as a catalyst or an adsorbent, the strength of the molded article is reduced when firing is usually performed and the cellulose is removed. . However, if an inert powder is added together with cellulose, the strength of the molded product can be maintained even after firing. Such a powder is one that does not affect the characteristics of Group 3 and Group 4 oxides of the periodic table and needs to be able to maintain the strength of the compact.
Therefore, in the present invention, a powder having a specific surface area of 50 m 2 / g or less can be used as another forming aid. If it exceeds 50 m 2 / g, desulfurization performance may be reduced. As the powder, clay minerals such as kaolin, allophane, talc, mica and alumina can be preferably used. These may be used alone or in combination of two or more. Among clay minerals, kaolin is more preferable in terms of maintaining the strength of the molded body. The addition amount of the powder is preferably 30% by mass or less based on the amount after drying of the obtained molded body from the viewpoint of maintaining the desulfurization performance and the strength of the molded body.

成形方法については、押出し成形、打錠成形、転動造粒、スプレードライなどの通常の方法の成形方法を挙げることができるが、簡易さと脱硫活性の点で、押出し成形が好ましい。   Examples of the molding method include ordinary molding methods such as extrusion molding, tableting molding, rolling granulation, and spray drying. Extrusion molding is preferred in terms of simplicity and desulfurization activity.

本発明においては、上記のように成形したのち、成形体を、300℃以上の温度焼成し、添加したセルロースを除去して使用してもよい。また、周期律表第3族もしくは第4族金属の無機酸化物を成形するに際して、セルロースを成形助剤として添加して成形したのち、250℃以下の温度で乾燥させ、添加したセルロースの少なくとも一部を含有させる250℃以下の温度で乾燥させ、添加したセルロースの少なくとも一部を残存させておくと、成形体の強度を向上させることができる。なお、この場合、前記のバインダーや粉体を添加してもよいことは当然である。   In this invention, after shape | molding as mentioned above, you may use a molded object by baking the temperature of 300 degreeC or more, and removing the added cellulose. Further, when molding an inorganic oxide of Group 3 or Group 4 metal of the periodic table, after adding and molding cellulose as a molding aid, it is dried at a temperature of 250 ° C. or less, and at least one of the added celluloses. The strength of the molded body can be improved by drying at a temperature of 250 ° C. or less containing the part and leaving at least a part of the added cellulose. In this case, it is a matter of course that the above-mentioned binder or powder may be added.

本発明の方法で得られた成形体は、触媒、触媒担体、吸着剤等に用いることができる。特に、酸化セリウムを含有するものは、水性シフト反応、排ガス浄化触媒、CO酸化触媒、炭化水素酸化触媒の触媒又は触媒担体として、また硫黄化合物の吸着剤として使用することができる。   The molded product obtained by the method of the present invention can be used for a catalyst, a catalyst carrier, an adsorbent and the like. In particular, those containing cerium oxide can be used as an aqueous shift reaction, exhaust gas purification catalyst, CO oxidation catalyst, hydrocarbon oxidation catalyst or catalyst support, and as a sulfur compound adsorbent.

また、本発明の方法で得られた成形体に周期律表第1〜15の元素を、最終の成形体基準で、1〜10質量%、好ましくは1〜5質量%担持させることにより、酸化セリウムの脱硫性能を向上させることができる。上記の元素として、Cs,Ba,Yb,Ti,Zr,Hf,Nb,Mo,W,Mn,Re,Fe,Ru,Co,Rh,Ir,Ni,Pd,Pt,Cu,Ag,Au,Zn,Ga,In,Sn,Biを好適に挙げることができる。また、上記の元素の担持方法として、ポアフィリング法、浸漬法、蒸発乾固法などが採用でき、担持後、50〜200℃で乾燥させ、さらに250〜500℃で焼成すればよい。なお、100〜400℃の比較的低温度で焼成すると、脱硫性能がさらに改良される。   Further, the molded body obtained by the method of the present invention carries 1 to 15 mass%, preferably 1 to 5 mass%, preferably 1 to 5 mass% of the elements in the periodic table on the basis of the final molded body. The desulfurization performance of cerium can be improved. As the above elements, Cs, Ba, Yb, Ti, Zr, Hf, Nb, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn , Ga, In, Sn, Bi can be preferably mentioned. In addition, as a method for supporting the above elements, a pore filling method, a dipping method, an evaporation to dryness method, or the like can be adopted. After the support, drying at 50 to 200 ° C. and further firing at 250 to 500 ° C. may be performed. Note that desulfurization performance is further improved by firing at a relatively low temperature of 100 to 400 ° C.

前記のようにして得られた硫黄化合物除去用吸着剤成形体(以下、脱硫剤成形体ともいう。)は、天然ガス、都市ガス、LPG、エタン、プロパン、プロピレン、ブタン、ブチレン、ブタジエン、ジメチルエーテル等のガス状炭化水素化合物燃料やナフサ、灯油、軽油の液体燃料に適用される。
上記の除去される硫黄化合物として、硫化カルボニル、二硫化炭素、硫化水素、メルカプタン類、スルフィド類、チオフェン類をあげることができるが、本発明の成形体は常温での脱硫が困難な硫化カルボニルを除去する効果が大きい。
The adsorbent molded body for removing sulfur compounds (hereinafter also referred to as a desulfurizing agent molded body) obtained as described above is natural gas, city gas, LPG, ethane, propane, propylene, butane, butylene, butadiene, dimethyl ether. It is applied to liquid hydrocarbon fuels such as gaseous hydrocarbon compounds such as naphtha, kerosene and light oil.
Examples of the sulfur compound to be removed include carbonyl sulfide, carbon disulfide, hydrogen sulfide, mercaptans, sulfides, and thiophenes, but the molded article of the present invention contains carbonyl sulfide that is difficult to desulfurize at room temperature. The effect to remove is great.

本発明の脱硫剤成形体が適用されるガス状燃料中の硫黄化合物の濃度としては、0.001〜10,000容量ppmが好ましく、特に0.1〜100容量ppmが好ましい。また、脱硫条件としては、通常温度は−50〜350℃の範囲で選ばれ、GHSVは100〜1,000,000h-1の範囲で選ばれる。脱硫性能の点で、好ましい温度は−50〜120℃、より好ましくは−20〜100℃の範囲である。また、好ましいGHSVは100〜100,000h-1、より好ましくは100〜50,000h-1の範囲である。 As a density | concentration of the sulfur compound in the gaseous fuel to which the desulfurization agent molded object of this invention is applied, 0.001-10,000 volume ppm is preferable, and 0.1-100 volume ppm is especially preferable. As desulfurization conditions, the normal temperature is selected in the range of -50 to 350 ° C., and the GHSV is selected in the range of 100 to 1,000,000 h −1 . In terms of desulfurization performance, the preferred temperature is in the range of −50 to 120 ° C., more preferably −20 to 100 ° C. Also preferred GHSV is 100~100,000H -1, more preferably from 100~50,000h -1.

また、本発明の脱硫剤成形体が適用される液体燃料中の硫黄化合物の濃度としては、80質量ppm以下が好ましく、水素化脱硫などにより20質量ppm以下にしたものがより好ましい。脱硫条件としては、通常温度は20〜300℃、圧力は常圧〜10MPa、LHSVは0.1〜1,000h-1の範囲で選ばれる。 Moreover, as a density | concentration of the sulfur compound in the liquid fuel to which the desulfurization agent molded object of this invention is applied, 80 mass ppm or less is preferable, and what was 20 mass ppm or less by hydrodesulfurization etc. is more preferable. As desulfurization conditions, the normal temperature is 20 to 300 ° C., the pressure is normal pressure to 10 MPa, and the LHSV is selected in the range of 0.1 to 1,000 h −1 .

次に、燃料電池用水素の製造については、前述の本発明の脱硫剤成形体を用いて、燃料中の硫黄化合物を脱硫処理したのち、この脱硫処理燃料を改質することにより水素を製造する。
この際、改質方法として、部分酸化改質、オートサーマル改質、水蒸気改質などを用いることができる。この改質方法においては、脱硫燃料中の硫黄化合物の濃度は、各改質触媒の寿命の点から、ガス状燃料の場合、0.1容量ppm以下が好ましく、特に0.05容量ppm以下が好ましい。また、液体燃料の場合、0.1質量ppm以下が好ましく、特に0.05質量ppm以下が好ましい。
Next, with respect to the production of hydrogen for fuel cells, the sulfur compound in the fuel is desulfurized using the desulfurizing agent molded body of the present invention described above, and then hydrogen is produced by reforming the desulfurized fuel. .
At this time, partial oxidation reforming, autothermal reforming, steam reforming, or the like can be used as the reforming method. In this reforming method, the concentration of the sulfur compound in the desulfurized fuel is preferably 0.1 ppm by volume or less, particularly 0.05 ppm by volume or less in the case of gaseous fuel from the viewpoint of the life of each reforming catalyst. preferable. In the case of liquid fuel, 0.1 mass ppm or less is preferable, and 0.05 mass ppm or less is particularly preferable.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

〔調製例1〕酸化セリウム(CeO2)の調製
硝酸セリウム・6水和物(特級、和光純薬社製)470gを 50℃に加温したイオン交換水1Lに溶解させた(調製液A)。別に用意した3モル/L濃度の水酸化ナトリウム溶液を調合した(調製液B)。混合液をpH13に維持しながらA、B両液を滴下混合した。混合液を50℃に保持しながら1時間攪拌した。その後、イオン交換水20Lを用いて沈殿ケーキを洗浄・ろ過を行い、120℃送風乾燥機にて生成物を12時間乾燥させ、400℃で3時間焼成した。その後、打錠成形により成形し、粉砕することにより、平均粒径0.8mmの酸化セリウムの成形体を得た。
[Preparation Example 1] Preparation of cerium oxide (CeO 2 ) 470 g of cerium nitrate hexahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 1 L of ion-exchanged water heated to 50 ° C. (preparation solution A) . Separately prepared 3 mol / L sodium hydroxide solution was prepared (preparation solution B). While maintaining the mixed solution at pH 13, both A and B solutions were mixed dropwise. The mixture was stirred for 1 hour while maintaining at 50 ° C. Thereafter, the precipitated cake was washed and filtered using 20 L of ion-exchanged water, and the product was dried for 12 hours in a 120 ° C. blower dryer and calcined at 400 ° C. for 3 hours. Then, it shape | molded by tableting molding and grind | pulverized, and the molded object of the average particle diameter 0.8mm was obtained.

〔実施例1〕
調製例1で調製した酸化セリウム85g、硝酸セリウム溶液(CeO2、25質量%)40gおよびカオリン(ASP−170、エンゲルハルド社製)5g、メチルセルロース(SM4000、信越化学社製)3gに適度の水を加えて捏和したのち、押出し成形した。120℃で乾燥した後、400℃で焼成した。CeO2(95質量%)、カオリン(5質量%)の1mm径、長さ2mmの脱硫剤成形体を得た。この成形体について、下記の要領で脱硫性能テストを行った。その結果を第1表に示す。
[Example 1]
Appropriate water for 85 g of cerium oxide prepared in Preparation Example 1, 40 g of cerium nitrate solution (CeO 2 , 25% by mass), 5 g of kaolin (ASP-170, manufactured by Engelhard), 3 g of methylcellulose (SM4000, manufactured by Shin-Etsu Chemical) After kneading, extrusion molding was performed. After drying at 120 ° C., baking was performed at 400 ° C. A desulfurization agent molded body having a diameter of 1 mm and a length of 2 mm of CeO 2 (95% by mass) and kaolin (5% by mass) was obtained. This molded body was subjected to a desulfurization performance test in the following manner. The results are shown in Table 1.

<脱硫性能テスト>
脱硫剤成形体(製品)20cm3を内径20mmの脱硫管に充填した。常圧で脱硫剤温度を20℃とし、COSを40容量ppm含むプロパンガスをGHSV=30,000-1で流通させた。脱硫管出口ガスの硫黄化合物濃度をSCD(化学発光検出器)ガスクロにより測定し、15時間後のCOSの脱硫率を求めた。
<Desulfurization performance test>
A desulfurization tube (product) 20 cm 3 was filled into a desulfurization pipe having an inner diameter of 20 mm. Propane gas containing 40 ppm by volume of COS was circulated at GHSV = 30,000 −1 at normal pressure and a desulfurizing agent temperature of 20 ° C. The sulfur compound concentration in the desulfurization pipe outlet gas was measured by SCD (chemiluminescence detector) gas chromatography, and the desulfurization rate of COS after 15 hours was determined.

〔実施例2〕
実施例1において、カオリン5gの代わりに比表面積10m2/gのアルミナ5gを加えたこと以外、実施例1と同様に成形しCeO2(95質量%)、アルミナ(5質量%)の1mm径、長さ2mmの脱硫剤成形体を得た。この成形体について、実施例1と同様に脱硫性能テストを行った。その結果を第1表に示す。
[Example 2]
In Example 1, except that 5 g of alumina having a specific surface area of 10 m 2 / g was added instead of 5 g of kaolin, it was molded in the same manner as in Example 1 and CeO 2 (95% by mass), 1 mm diameter of alumina (5% by mass) A desulfurization agent molded body having a length of 2 mm was obtained. This molded body was tested for desulfurization performance in the same manner as in Example 1. The results are shown in Table 1.

〔実施例3〕
実施例1において、硝酸セリウム溶液(CeO2、25質量%)40gを20gにしたこと、カオリン5gの代わりに比表面積10m2/gのアルミナ10gを加えたこと以外、実施例1と同様に成形しCeO2(90質量%)、アルミナ(10質量%)の1mm径、長さ2mmの脱硫剤成形体を得た。この成形体について、実施例1と同様に脱硫性能テストを行った。その結果を第1表に示す。
Example 3
In Example 1, molding was performed in the same manner as in Example 1 except that 40 g of cerium nitrate solution (CeO 2 , 25 mass%) was changed to 20 g, and 10 g of alumina having a specific surface area of 10 m 2 / g was added instead of 5 g of kaolin. A desulfurizing agent molded body of 1 mm diameter and 2 mm length of CeO 2 (90 mass%) and alumina (10 mass%) was obtained. This molded body was tested for desulfurization performance in the same manner as in Example 1. The results are shown in Table 1.

〔実施例4〕
実施例1において、硝酸セリウム溶液(CeO2、25質量%)40gの代わりに酢酸セリウム溶液(CeO2、15質量%)67g使用したこと、カオリン5gの代わりに比表面積10m2/gのアルミナ5gを使用したこと以外、実施例1と同様に成形しCeO2(95質量%)、アルミナ(5質量%)の1mm径、長さ2mmの脱硫剤成形体を得た。この成形体について、実施例1と同様に脱硫性能テストを行った。その結果を第1表に示す。
Example 4
In Example 1, 67 g of cerium acetate solution (CeO 2 , 15% by mass) was used instead of 40 g of cerium nitrate solution (CeO 2 , 25% by mass), and 5 g of alumina having a specific surface area of 10 m 2 / g instead of 5 g of kaolin. The desulfurization agent molded body of 1 mm diameter and 2 mm length of CeO 2 (95% by mass) and alumina (5% by mass) was obtained in the same manner as Example 1 except that was used. This molded body was tested for desulfurization performance in the same manner as in Example 1. The results are shown in Table 1.

〔実施例5〕
実施例1において、硝酸セリウム溶液(CeO2、25質量%)溶液40gの代わりにジルコニアゾル液(ZrO2、20質量%)75gを用いたこと以外、実施例1と同様に成形しCeO2(85質量%)、ZrO2(15質量%)の1mm径、長さ2mmの脱硫剤成形体を得た。この成形体について、実施例1と同様に脱硫性能テストを行った。その結果を第1表に示す。
Example 5
In Example 1, except that 75 g of zirconia sol solution (ZrO 2 , 20% by mass) was used instead of 40 g of the cerium nitrate solution (CeO 2 , 25% by mass) solution, it was molded in the same manner as Example 1 and CeO 2 ( 85% by mass), ZrO 2 (15% by mass) having a 1 mm diameter and a length of 2 mm was obtained. This molded body was tested for desulfurization performance in the same manner as in Example 1. The results are shown in Table 1.

〔実施例6〕
調製例1で調製した酸化セリウム98g、メチルセルロース(SM4000、信越化学社製)2gに適度の水を加えて捏和したのち、押出し成形し、150℃で乾燥し、CeO2(98質量%)、メチルセルロース(2質量%)の1mm径、長さ2mmの脱硫剤成形体を得た。この成形体について、実施例1と同様に脱硫性能テストを行った。その結果を第1表に示す。
Example 6
After adding moderate water to 98 g of cerium oxide prepared in Preparation Example 1 and 2 g of methylcellulose (SM4000, manufactured by Shin-Etsu Chemical Co., Ltd.), the mixture was extruded, dried at 150 ° C., CeO 2 (98 mass%), A desulfurization agent molded body of 1 mm diameter and 2 mm length of methyl cellulose (2% by mass) was obtained. This molded body was tested for desulfurization performance in the same manner as in Example 1. The results are shown in Table 1.

〔比較例1〕
調製例1で調製した酸化セリウム80g、Al23含量71質量%のアルミナ(キャタロイドAP1、触媒化成社製、400℃焼成後の比表面積300m2/g)28gに適度の水を加えて捏和したのち、押出し成形し、120℃で乾燥および400℃で焼成して、CeO2(80質量%)、アルミナ(20質量%)の1mm径、長さ2mmの脱硫剤成形体を得た。この成形体について、実施例1と同様に脱硫性能テストを行った。その結果を第1表に示す。
[Comparative Example 1]
Appropriate water was added to 80 g of cerium oxide prepared in Preparation Example 1 and alumina having an Al 2 O 3 content of 71% by mass (Cataloid AP1, manufactured by Catalyst Kasei Co., Ltd., specific surface area of 300 m 2 / g after firing at 400 ° C.). After the addition, extrusion molding was performed, followed by drying at 120 ° C. and firing at 400 ° C. to obtain a desulfurization agent molded body of CeO 2 (80 mass%) and alumina (20 mass%) having a 1 mm diameter and a length of 2 mm. This molded body was tested for desulfurization performance in the same manner as in Example 1. The results are shown in Table 1.

〔比較例2〕
調製例1で調製した酸化セリウム90g、Al23含量71質量%のアルミナ(キャタロイドAP1、触媒化成社製、400℃焼成後の比表面積300m2/g)14g、メチルセルロース(SM4000、信越化学社製)3gに適度の水を加えて捏和したのち、押出し成形し、120℃で乾燥および400℃で焼成した、CeO2(90質量%)、アルミナ(10質量%)の1mm径、長さ2mmの脱硫剤成形体を得た。この成形体について、実施例1と同様に脱硫性能テストを行った。その結果を第1表に示す。
[Comparative Example 2]
90 g of cerium oxide prepared in Preparation Example 1, 71 g of alumina having an Al 2 O 3 content of 71% by mass (Cataloid AP1, manufactured by Catalyst Kasei Co., Ltd., specific surface area of 300 m 2 / g after baking at 400 ° C.), methylcellulose (SM4000, Shin-Etsu Chemical Co., Ltd.) (Made) 3g of moderate water added, kneaded, extruded, dried at 120 ° C and calcined at 400 ° C, 1mm diameter, length of CeO 2 (90% by mass), alumina (10% by mass) A 2 mm desulfurization agent molded body was obtained. This molded body was tested for desulfurization performance in the same manner as in Example 1. The results are shown in Table 1.

〔比較例3〕
実施例1において、カオリン(ASP−170、エンゲルハルド社製)5g、メチルセルロース(SM4000、信越化学社製)3gを加えないで実施例1と同様に押出し成形を試みたが成形できなかった。
[Comparative Example 3]
In Example 1, extrusion molding was attempted in the same manner as in Example 1 without adding 5 g of kaolin (ASP-170, manufactured by Engelhard) and 3 g of methylcellulose (SM4000, manufactured by Shin-Etsu Chemical Co., Ltd.), but could not be molded.

〔比較例4〕
実施例1において、硝酸セリウム25質量%溶液40g、メチルセルロース(SM4000、信越化学社製)3gを加えないで実施例1と同様に押出し成形を試みたが成形できなかった。
[Comparative Example 4]
In Example 1, 40 g of a cerium nitrate 25 mass% solution and 3 g of methylcellulose (SM4000, manufactured by Shin-Etsu Chemical Co., Ltd.) were added, but extrusion molding was attempted in the same manner as in Example 1, but molding was not possible.

〔比較例5〕
調製例1で調製した酸化セリウム80g、シリカゾル(SiO2、20質量%)100gを用いて、押出し成形を試みたが成形できなかった。
[Comparative Example 5]
Extrusion molding was attempted using 80 g of cerium oxide prepared in Preparation Example 1 and 100 g of silica sol (SiO 2 , 20 mass%), but could not be molded.

Figure 2005246197
Figure 2005246197

Claims (21)

周期律表第3族もしくは第4族金属の無機酸化物を成形するに際して、セリウム、ジルコニウム及びチタンからなる群から選ばれる少なくとも一種の化合物をバインダーとし、セルロースを成形助剤として添加して成形することを特徴とする無機酸化物成形体の製造方法。 When molding an inorganic oxide of Group 3 or Group 4 metal of the Periodic Table, at least one compound selected from the group consisting of cerium, zirconium and titanium is used as a binder, and cellulose is added as a molding aid. The manufacturing method of the inorganic oxide molded object characterized by the above-mentioned. 成形助剤として、さらに比表面積50m2/g以下の粉体を添加して成形することを特徴とする請求項1記載の無機酸化物成形体の製造方法。 2. The method for producing an inorganic oxide molded article according to claim 1, further comprising adding a powder having a specific surface area of 50 m < 2 > / g or less as a molding aid. 無機酸化物が、酸化セリウムである請求項1又は2に記載の無機酸化物成形体の製造方法。 The method for producing an inorganic oxide molded article according to claim 1 or 2, wherein the inorganic oxide is cerium oxide. 無機酸化物が、セリウムを含む複合酸化物である請求項1又は2に記載の無機酸化物成形体の製造方法。 The method for producing an inorganic oxide molded article according to claim 1 or 2, wherein the inorganic oxide is a composite oxide containing cerium. 粉体が、粘土鉱物及び/又はアルミナである請求項2〜4のいずれかに記載の無機酸化物成形体の製造方法。 The method for producing an inorganic oxide molded body according to any one of claims 2 to 4, wherein the powder is a clay mineral and / or alumina. セルロースの添加量が、得られる成形体の乾燥後の量に基づき3質量%以下である請求項1〜5のいずれかに記載の無機酸化物成形体の製造方法。 The method for producing an inorganic oxide molded body according to any one of claims 1 to 5, wherein the amount of cellulose added is 3% by mass or less based on the amount of the molded body obtained after drying. セルロースが、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースのいずれかである請求項1〜6のいずれかに記載の無機酸化物成形体の製造方法。 The method for producing an inorganic oxide molded article according to any one of claims 1 to 6, wherein the cellulose is any one of methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose. 粘土鉱物が、カオリンである請求項5〜7のいずれかに記載の無機酸化物成形体の製造方法。 The method for producing an inorganic oxide molded body according to any one of claims 5 to 7, wherein the clay mineral is kaolin. バインダーが、硝酸セリウム、酢酸セリウム、水酸化セリウム、塩化セリウム、酸化セリウムゾル、硫酸セリウム、塩化ジルコニウム、オキシ塩化ジルコニウム、ジルコニアゾル、水酸化ジルコニウム、硫酸ジルコニウム、塩化チタン、チタニアゾル又は硫酸チタンである請求項1〜8のいずれかに記載の無機酸化物成形体の製造方法。 The binder is cerium nitrate, cerium acetate, cerium hydroxide, cerium chloride, cerium oxide sol, cerium sulfate, zirconium chloride, zirconium oxychloride, zirconia sol, zirconium hydroxide, zirconium sulfate, titanium chloride, titania sol or titanium sulfate. The manufacturing method of the inorganic oxide molded object in any one of 1-8. バインダーの添加量が、得られる成形体の乾燥後の量に基づき20質量%以下である請求項1〜9のいずれかに記載の無機酸化物成形体の製造方法。 The method for producing an inorganic oxide molded body according to any one of claims 1 to 9, wherein the addition amount of the binder is 20% by mass or less based on the amount of the molded body obtained after drying. 酸化セリウムとしての含有量が、得られる成形体の乾燥後の量に基づき85質量%以上である請求項3又は5〜10のいずれかに記載の無機酸化物成形体の製造方法。 The method for producing an inorganic oxide molded body according to any one of claims 3 and 5 to 10, wherein the content as cerium oxide is 85% by mass or more based on the amount of the molded body obtained after drying. 成形方法が、押出し成形である請求項1〜11のいずれかに記載の無機酸化物成形体の製造方法。 The method for producing an inorganic oxide molded body according to any one of claims 1 to 11, wherein the molding method is extrusion molding. 請求項1〜12のいずれかに記載の方法で成形したのち、300℃以上の温度で焼成し、添加したセルロースを除去することを特徴とする無機酸化物成形体の製造方法。 A method for producing an inorganic oxide molded body, comprising: molding by the method according to any one of claims 1 to 12, followed by firing at a temperature of 300 ° C or higher, and removing added cellulose. 周期律表第3族もしくは第4族金属の無機酸化物を成形するに際して、セルロースを成形助剤として添加して成形したのち、250℃以下の温度で乾燥させ、添加したセルロースの少なくとも一部を含有させることを特徴とする無機酸化物成形体の製造方法。 When molding an inorganic oxide of Group 3 or Group 4 metal of the periodic table, after adding cellulose as a molding aid and molding, it is dried at a temperature of 250 ° C. or less, and at least a part of the added cellulose is The manufacturing method of the inorganic oxide molded object characterized by including. 請求項1〜14のいずれかに記載の製造方法で得られた無機酸化物成形体。 The inorganic oxide molded object obtained by the manufacturing method in any one of Claims 1-14. 請求項15に記載の成形体からなる触媒。 The catalyst which consists of a molded object of Claim 15. 請求項15に記載の成形体からなる吸着剤。 An adsorbent comprising the molded article according to claim 15. 請求項15に記載の成形体からなる硫黄化合物除去用吸着剤。 The adsorbent for sulfur compound removal which consists of a molded object of Claim 15. 硫黄化合物が、硫化カルボニルである請求項18記載の硫黄化合物除去用吸着剤。 The adsorbent for removing a sulfur compound according to claim 18, wherein the sulfur compound is carbonyl sulfide. 硫黄化合物が、炭化水素原料又はジメチルエーテル中の硫黄化合物である請求項18又は19に記載の硫黄化合物除去用吸着剤。 The sulfur compound removing adsorbent according to claim 18 or 19, wherein the sulfur compound is a sulfur compound in a hydrocarbon raw material or dimethyl ether. 炭化水素原料が、LPG、都市ガス、天然ガス、エタン、エチレン、プロパン、プロピレン、ブタン、ブテン、ナフサ、灯油及び軽油から選ばれる少なくとも一種である請求項20記載の硫黄化合物除去用吸着剤。



The adsorbent for removing sulfur compounds according to claim 20, wherein the hydrocarbon raw material is at least one selected from LPG, city gas, natural gas, ethane, ethylene, propane, propylene, butane, butene, naphtha, kerosene and light oil.



JP2004058742A 2004-03-03 2004-03-03 Method for producing cerium oxide molded body Expired - Fee Related JP4452097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058742A JP4452097B2 (en) 2004-03-03 2004-03-03 Method for producing cerium oxide molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058742A JP4452097B2 (en) 2004-03-03 2004-03-03 Method for producing cerium oxide molded body

Publications (2)

Publication Number Publication Date
JP2005246197A true JP2005246197A (en) 2005-09-15
JP4452097B2 JP4452097B2 (en) 2010-04-21

Family

ID=35027197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058742A Expired - Fee Related JP4452097B2 (en) 2004-03-03 2004-03-03 Method for producing cerium oxide molded body

Country Status (1)

Country Link
JP (1) JP4452097B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296521A (en) * 2006-05-02 2007-11-15 Argillon Gmbh Extrusion-molded solid catalyst and its manufacturing method
JP2010513019A (en) * 2006-12-21 2010-04-30 エクソンモービル・ケミカル・パテンツ・インク CATALYST COMPOSITION AND PROCESS FOR PRODUCING THE SAME, AND METHOD FOR ALKYLATION OF AROMATIC WITH THE CATALYST
WO2010060637A1 (en) * 2008-11-30 2010-06-03 Süd-Chemie AG Catalyst carrier, method for the production thereof, and use thereof
JP2011502045A (en) * 2007-10-31 2011-01-20 モリーコープ ミネラルズ エルエルシー Agglomerated composition for treating fluids containing contaminants
KR101026968B1 (en) 2008-03-27 2011-04-11 이비덴 가부시키가이샤 Honeycomb structure
JP2011224546A (en) * 2010-03-31 2011-11-10 Tokyo Metropolitan Industrial Technology Research Institute Inorganic oxide molded catalyst and method for manufacturing the same
KR101363253B1 (en) * 2005-11-28 2014-02-12 할도르 토프쉐 에이/에스 Process for the Preparation of a Paraffin Isomerisation Catalyst
US8927452B2 (en) 2007-05-31 2015-01-06 Sud-Chemie Ag Method for producing a shell catalyst and corresponding shell catalyst
US20150263366A1 (en) * 2012-08-01 2015-09-17 Kyushu University, National University Corporation Paper-structured catalyst, paper-structured catalyst array body, and solid oxide fuel cell provided with paper-structured catalyst or paper-structured catalyst array body
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
US9666034B2 (en) 2013-09-19 2017-05-30 Konami Gaming, Inc. System and method of allowing a player to play gaming machines having step-based changes and multiple pattern features
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
US10150099B2 (en) 2007-05-31 2018-12-11 Alfred Hagemeyer Zirconium oxide-doped catalyst support, method for producing the same and catalyst containing a zirconium oxide-doped catalyst support
CN109772354A (en) * 2017-11-14 2019-05-21 中国石油化工股份有限公司 A kind of dehydrogenation catalyst and its preparation method and application
CN109772322A (en) * 2017-11-14 2019-05-21 中国石油化工股份有限公司 A kind of coal gas layer dehydrogenation catalyst and preparation method thereof
JP2020180015A (en) * 2019-04-24 2020-11-05 新コスモス電機株式会社 Carbonyl sulfide decomposition apparatus and carbonyl sulfide detector
WO2022091792A1 (en) * 2020-10-26 2022-05-05 三井金属鉱業株式会社 Molded body, adsorbent material resulting from incorporating molded body, and method for anion removal using adsorbent material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112251265B (en) * 2020-10-21 2021-07-23 中国科学院西北生态环境资源研究院 Method for forming hydrate by clay medium

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363253B1 (en) * 2005-11-28 2014-02-12 할도르 토프쉐 에이/에스 Process for the Preparation of a Paraffin Isomerisation Catalyst
JP2007296521A (en) * 2006-05-02 2007-11-15 Argillon Gmbh Extrusion-molded solid catalyst and its manufacturing method
JP2010513019A (en) * 2006-12-21 2010-04-30 エクソンモービル・ケミカル・パテンツ・インク CATALYST COMPOSITION AND PROCESS FOR PRODUCING THE SAME, AND METHOD FOR ALKYLATION OF AROMATIC WITH THE CATALYST
US8927452B2 (en) 2007-05-31 2015-01-06 Sud-Chemie Ag Method for producing a shell catalyst and corresponding shell catalyst
US10150099B2 (en) 2007-05-31 2018-12-11 Alfred Hagemeyer Zirconium oxide-doped catalyst support, method for producing the same and catalyst containing a zirconium oxide-doped catalyst support
JP2011502045A (en) * 2007-10-31 2011-01-20 モリーコープ ミネラルズ エルエルシー Agglomerated composition for treating fluids containing contaminants
KR101026968B1 (en) 2008-03-27 2011-04-11 이비덴 가부시키가이샤 Honeycomb structure
US9617187B2 (en) 2008-11-30 2017-04-11 Sud-Chemie Ag Catalyst support, process for its preparation and use
WO2010060637A1 (en) * 2008-11-30 2010-06-03 Süd-Chemie AG Catalyst carrier, method for the production thereof, and use thereof
JP2012510354A (en) * 2008-11-30 2012-05-10 ズード−ケミー アーゲー Catalyst carrier, method for producing the same, and use thereof
JP2011224546A (en) * 2010-03-31 2011-11-10 Tokyo Metropolitan Industrial Technology Research Institute Inorganic oxide molded catalyst and method for manufacturing the same
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
US20150263366A1 (en) * 2012-08-01 2015-09-17 Kyushu University, National University Corporation Paper-structured catalyst, paper-structured catalyst array body, and solid oxide fuel cell provided with paper-structured catalyst or paper-structured catalyst array body
US9666034B2 (en) 2013-09-19 2017-05-30 Konami Gaming, Inc. System and method of allowing a player to play gaming machines having step-based changes and multiple pattern features
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
US10577259B2 (en) 2014-03-07 2020-03-03 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
CN109772354A (en) * 2017-11-14 2019-05-21 中国石油化工股份有限公司 A kind of dehydrogenation catalyst and its preparation method and application
CN109772322A (en) * 2017-11-14 2019-05-21 中国石油化工股份有限公司 A kind of coal gas layer dehydrogenation catalyst and preparation method thereof
JP2020180015A (en) * 2019-04-24 2020-11-05 新コスモス電機株式会社 Carbonyl sulfide decomposition apparatus and carbonyl sulfide detector
JP7297513B2 (en) 2019-04-24 2023-06-26 新コスモス電機株式会社 Carbonyl sulfide decomposition device and carbonyl sulfide detection device
WO2022091792A1 (en) * 2020-10-26 2022-05-05 三井金属鉱業株式会社 Molded body, adsorbent material resulting from incorporating molded body, and method for anion removal using adsorbent material

Also Published As

Publication number Publication date
JP4452097B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP4452097B2 (en) Method for producing cerium oxide molded body
JP5220265B2 (en) Method for removing sulfur compounds from hydrocarbon-containing gas
US20050121365A1 (en) Process for removal of sulfur compounds from a fuel cell feed stream
US8658321B2 (en) Desulfurization system and method for desulfurizing a fuel stream
KR100973876B1 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
US20060283780A1 (en) Desulfurization system and method for desulfurizing a fuel stream
US7268097B2 (en) Desulfurizing agent for hydrocarbon derived from petroleum, method for producing hydrogen for use in fuel cell and method for producing nickel-based desulfurizing agent
US8308848B1 (en) High temperature gas desulfurization sorbents
JP2006055771A (en) Production method for metal-supported zeolite molded material and adsorbent containing the same for removing sulfur compound
JP2008155147A (en) Catalyst for methanating carbon monoxide and method for methanating carbon monoxide by using the same
JP2013199534A (en) Method for producing desulfurized gaseous fuel
JP4079743B2 (en) Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell
JP4267483B2 (en) Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells
JP4322804B2 (en) Method for desulfurizing liquid hydrocarbon and method for producing hydrogen for fuel cell
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP5189736B2 (en) Method for producing solid molded adsorbent for removing sulfur-containing components and method for purifying components containing hydrocarbons
JP2004305869A (en) Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell
JP2015083525A (en) Metal-supported zeolite molded body, manufacturing method of metal-supported zeolite molded body, absorbent for removing sulfur compound, manufacturing method of hydrogen and fuel cell system
JP4722454B2 (en) Method for producing adsorbent for removing sulfur compound, adsorbent for removing sulfur compound, and method for removing sulfur compound
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
JP4216548B2 (en) Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cell
JP2003290660A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using it
JP2013199533A (en) Method for producing desulfurized gaseous fuel
JP2001262161A (en) Fuel oil for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees