JP2005244007A - Method for manufacturing printed wiring board with cavity - Google Patents

Method for manufacturing printed wiring board with cavity Download PDF

Info

Publication number
JP2005244007A
JP2005244007A JP2004053150A JP2004053150A JP2005244007A JP 2005244007 A JP2005244007 A JP 2005244007A JP 2004053150 A JP2004053150 A JP 2004053150A JP 2004053150 A JP2004053150 A JP 2004053150A JP 2005244007 A JP2005244007 A JP 2005244007A
Authority
JP
Japan
Prior art keywords
cavity
wiring board
printed wiring
line width
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004053150A
Other languages
Japanese (ja)
Inventor
Osamu Oonagane
修 太長根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Circuit Solutions Inc
Original Assignee
NEC Toppan Circuit Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Toppan Circuit Solutions Inc filed Critical NEC Toppan Circuit Solutions Inc
Priority to JP2004053150A priority Critical patent/JP2005244007A/en
Publication of JP2005244007A publication Critical patent/JP2005244007A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a printed wiring board with a cavity for preventing the disconnection of a wiring layer applied to a cavity peripheral part formed in the cavity. <P>SOLUTION: In the method for manufacturing the printed wiring board with the cavity which is obtained by forming the cavity on which a semiconductor chip, a passive component, etc. are to be mounted by the spotfacing of an NC working machine, a line width correction area is previously formed on a prescribed position of the wiring layer applied to the cavity peripheral part formed by spotfacing and the cavity is formed by the spotfacing to produce the printed wiring board with the cavity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体チップ及び受動部品等を実装するためのキャビティーを有するキャビティー付プリント配線板の製造方法に関する。   The present invention relates to a method for manufacturing a printed wiring board with a cavity having a cavity for mounting a semiconductor chip, a passive component, and the like.

半導体装置の高集積化は年々高まる傾向にあり、また、この種の半導体装置を高密度にプリント配線板に実装することが求められている。半導体装置のプリント配線板への高密度実装を実現するために、パッケージングされた半導体装置をプリント配線板に実装するのではなく、プリント配線板にパッケージングされていない半導体チップ及び受動部品等を直接実装する技術がいくつか提案されている(例えば、特許文献1参照)。   High integration of semiconductor devices tends to increase year by year, and it is required to mount this type of semiconductor device on a printed wiring board at high density. In order to realize high-density mounting of a semiconductor device on a printed wiring board, a packaged semiconductor device is not mounted on a printed wiring board, but semiconductor chips and passive components that are not packaged on the printed wiring board are mounted. Several techniques for direct mounting have been proposed (see, for example, Patent Document 1).

また、プリント配線板の表面上に各種の電子部品を実装する、いわゆる面実装においても、片面実装や両面実装のような平面による2次元的な実装構造では、同一平面内で幾種類ものベアチップ実装を駆使しても、実装の更なる高密度化へは対応が難しくなってきている。このため、最近では実装形態を同一平面に限らない、3次元実装構造や積層型実装構造が提案されるようになってきた。3次元あるいは積層型実装構造を実現する手段として、プリント配線板を多層配線板とし、この多層配線板に対して、予めキャビティーと呼ばれる凹型の窪みを施しておき、そのキャビティーに半導体チップ及び受動部品等を実装するキャビティー構造が多く使用されるようになっている。   Also, in the so-called surface mounting, where various electronic components are mounted on the surface of a printed wiring board, two-dimensional mounting structures using a flat surface such as single-sided mounting or double-sided mounting, several types of bare chip mounting are performed within the same plane. Even if it makes full use of it, it has become difficult to respond to further higher density mounting. For this reason, recently, a three-dimensional mounting structure and a stacked mounting structure, in which the mounting form is not limited to the same plane, have been proposed. As a means for realizing a three-dimensional or stacked type mounting structure, a printed wiring board is a multilayer wiring board, and a concave depression called a cavity is applied to the multilayer wiring board in advance, and a semiconductor chip and a cavity are formed in the cavity. A cavity structure for mounting passive components and the like is often used.

図5(a)に従来のキャビティー付プリント配線板の一例を示す模式構成断面図を、図5(b)に、図5(a)をB−B’面で見た模式上面図をそれぞれ示す。
図5(a)において、キャビティー付プリント配線板200は、絶縁材112の所定位置にキャビティー151が形成されたもので、キャビティー151内には、電極パッド122’と電極パッド122’に接続された配線層123’が形成されている。
さらに、キャビティー151には半導体チップ及び受動部品等が実装され、キャビティー型実装基板装置を得ることができる。
FIG. 5 (a) is a schematic cross-sectional view showing an example of a conventional printed wiring board with a cavity, FIG. 5 (b) is a schematic top view of FIG. 5 (a) as seen from the BB ′ plane, respectively. Show.
In FIG. 5A, a printed wiring board 200 with a cavity is formed by forming a cavity 151 at a predetermined position of an insulating material 112. In the cavity 151, an electrode pad 122 ′ and an electrode pad 122 ′ are provided. A connected wiring layer 123 ′ is formed.
Furthermore, a semiconductor chip, passive components, etc. are mounted in the cavity 151, and a cavity type mounting substrate apparatus can be obtained.

以下、上記キャビティー付プリント配線板200の製造方法について説明する。
図6(a)〜(e)及び図7(f)〜(i)は、上記キャビティー付プリント配線板200の製造方法の一例を示す模式構成部分断面図である。
Hereinafter, the manufacturing method of the printed wiring board 200 with a cavity is demonstrated.
6 (a) to 6 (e) and FIGS. 7 (f) to (i) are schematic configuration partial cross-sectional views illustrating an example of a method for manufacturing the printed wiring board 200 with a cavity.

まず、ガラスエポキシからなる絶縁基材111の両面に銅箔121を積層した両面銅張り積層板を準備する(図6(a)参照)。
次に、この両面銅張り積層板の両面に、ドライフィルム等をラミネートする等の方法で感光層131を形成し(図6(b)参照)、パターン露光、現像等のパターニング処理を行って、レジストパターン131a及び131bを形成する(図6(c)参照)。
First, a double-sided copper-clad laminate in which copper foils 121 are laminated on both sides of an insulating base 111 made of glass epoxy is prepared (see FIG. 6A).
Next, a photosensitive layer 131 is formed on both sides of the double-sided copper-clad laminate by a method such as laminating a dry film (see FIG. 6B), and patterning treatment such as pattern exposure and development is performed. Resist patterns 131a and 131b are formed (see FIG. 6C).

次に、レジストパターン131a及び131bをエッチングマスクにして、塩化第2鉄液等のエッチング液を用いて銅箔121をエッチングし、レジストパターン131a及び131bを専用の剥離液で剥離処理し、絶縁基材111の一方の面にパッド電極122、パッド電極122に接続された配線層123及び配線層124を、絶縁基材111の他方の面にランド125を形成する(図6(d)参照)。   Next, using the resist patterns 131a and 131b as an etching mask, the copper foil 121 is etched using an etching solution such as ferric chloride solution, and the resist patterns 131a and 131b are stripped with a dedicated stripping solution. A pad electrode 122, a wiring layer 123 and a wiring layer 124 connected to the pad electrode 122 are formed on one surface of the material 111, and a land 125 is formed on the other surface of the insulating substrate 111 (see FIG. 6D).

次に、プリプレグ(ガラスエポキシ)シート及び銅箔141を加熱、加圧して積層し、絶縁層112及び銅箔141が積層された積層板を得る(図6(d)参照)。
次に、積層板の銅箔141上に、ドライフィルム等をラミネートする等の方法で感光層1
32を形成し(図7(f)参照)、パターン露光、現像等のパターニング処理を行って、レジストパターン132aを形成する(図7(g)参照)。
Next, the prepreg (glass epoxy) sheet and the copper foil 141 are laminated by heating and pressing to obtain a laminate on which the insulating layer 112 and the copper foil 141 are laminated (see FIG. 6D).
Next, the photosensitive layer 1 is laminated by a method such as laminating a dry film on the copper foil 141 of the laminate.
32 is formed (see FIG. 7F), and a patterning process such as pattern exposure and development is performed to form a resist pattern 132a (see FIG. 7G).

次に、絶縁基材111のランド125上にマスクテープを貼付して保護層151を形成し、、レジストパターン132aをエッチングマスクにして、塩化第2銅等のエッチング液を用いて銅箔141をエッチングし、レジストパターン132aを専用の剥離液で剥離処理し、保護層151を剥離し、絶縁層112上の所定位置にランド142を形成する(図7(h)参照)。   Next, a protective layer 151 is formed by applying a mask tape on the land 125 of the insulating substrate 111, and the copper foil 141 is formed using an etching solution such as cupric chloride using the resist pattern 132a as an etching mask. Etching is performed, and the resist pattern 132a is stripped with a dedicated stripping solution, the protective layer 151 is stripped, and a land 142 is formed at a predetermined position on the insulating layer 112 (see FIG. 7H).

次に、絶縁層112の所定位置をルータービットで座ぐり加工して、キャビティー151を形成する(図7(i)参照)。
ここで、パッド電極122及びパッド電極122に接続された配線層123の上部はパッド電極122の電気的接続面を確保するためにルータービットで削られる。切削量は銅箔121の厚みにもよるが、6〜12μm程度になる。銅箔121として35μmの銅箔を使用した場合キャビティー151内のパッド電極122’及びパッド電極122’に接続された一部の配線層123’の膜厚は29〜23μmとなる。
特開2001−223322号公報
Next, a predetermined position of the insulating layer 112 is countersunk with a router bit to form a cavity 151 (see FIG. 7I).
Here, the pad electrode 122 and the upper portion of the wiring layer 123 connected to the pad electrode 122 are scraped with a router bit in order to secure an electrical connection surface of the pad electrode 122. Although the amount of cutting depends on the thickness of the copper foil 121, it is about 6 to 12 μm. When a 35 μm copper foil is used as the copper foil 121, the film thickness of the pad electrode 122 ′ in the cavity 151 and a part of the wiring layer 123 ′ connected to the pad electrode 122 ′ is 29 to 23 μm.
JP 2001-223322 A

上記したように、絶縁材をルータービットで座ぐり加工して、キャビティーを形成する方法は、ルータービットで座ぐり加工する際パッド電極及び配線層の一部が削られること及びキャビティー周辺部ではルータービットのストレスが大きくかかり、積層板の反り等により、加工面高さのバラツキが発生すると、キャビティーを形成した後キャビティー周辺部の配線層が部分的に欠損したり、ディッシュダウン(皿のように凹んだ欠損)が発生し、配線層の断線につながるような問題が発生することがある。   As described above, the method of forming the cavity by spotting the insulating material with the router bit is that the pad electrode and a part of the wiring layer are scraped when the router bit is spotted and the periphery of the cavity. Then, when the stress of the router bit is greatly applied and the processed surface height varies due to the warping of the laminated board, the wiring layer around the cavity is partially lost or dished down ( There is a case in which a deficient defect such as a dish occurs) and a problem that leads to disconnection of the wiring layer may occur.

そこで本発明は、キャビティー内に形成されたキャビティー周辺部かかる配線層の断線を防止するためのキャビティー付プリント配線板の製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for manufacturing a printed wiring board with a cavity for preventing disconnection of a wiring layer around the cavity formed in the cavity.

本発明は、上記課題を達成するために、半導体チップ及び受動部品等を実装するためのキャビティーをNC加工機の座ぐり加工にて形成してなるキャビティー付プリント配線板の製造方法において、キャビティー周辺部にかかる配線層の所定位置に線幅補正領域を設け、予め前記線幅補正領域の配線層の線幅を大きくして座ぐり加工を行うことを特徴とするキャビティー付プリント配線板の製造方法としたものである。   In order to achieve the above object, the present invention provides a method for manufacturing a printed wiring board with a cavity, in which a cavity for mounting a semiconductor chip, a passive component, and the like is formed by spot facing of an NC processing machine. A printed wiring with a cavity, characterized in that a line width correction region is provided at a predetermined position of the wiring layer on the periphery of the cavity, and the line width of the wiring layer in the line width correction region is increased in advance to perform spot facing processing. This is a method for manufacturing a plate.

本発明のキャビティー付プリント配線板の製造方法は、半導体チップ及び受動部品等を実装するためのキャビティーをNC加工機の座ぐり加工にて形成する際キャビティー周辺部にかかる配線層の所定位置に線幅補正領域を設けて、予め線幅補正領域の配線層の線幅を太く補正しておくことにより、欠損・ディッシュダウン等が発生しても配線層の断線までに至らない信頼性のあるプリント配線板を提供することが可能となる。   The method for manufacturing a printed wiring board with a cavity according to the present invention provides a predetermined wiring layer applied to the periphery of the cavity when a cavity for mounting a semiconductor chip, a passive component, or the like is formed by spot facing of an NC processing machine. By providing a line width correction area at the position and correcting the line width of the wiring layer in the line width correction area thickly in advance, reliability that does not lead to disconnection of the wiring layer even if loss or dishdown occurs It is possible to provide a printed wiring board having the same.

図1(a)は、本発明のキャビティー付プリント配線板の製造方法で得られたキャビティー付プリント配線板の一例を示す模式構成断面図である。図1(b)は、図1(a)をA−A’面で見た模式上面図で、キャビティー51周辺部の配線層23及び線幅補正領域
23aの形状を示す説明図である。
図1(a)に示すキャビティー付プリント配線板100は、絶縁材12の所定位置にキャビティー51を形成した4層プリント配線板の事例である。
図1(b)には、キャビティー51内に形成されたパッド電極及びキャビティー51周辺部にかかる配線層23及び線幅補正領域23aの形状を示したもので、キャビティー51周辺部にかかる配線層23の一部の線幅が太く補正されているのが分かる。
FIG. 1A is a schematic cross-sectional view showing an example of a printed wiring board with cavities obtained by the method for manufacturing a printed wiring board with cavities of the present invention. FIG. 1B is a schematic top view of FIG. 1A viewed along the plane AA ′, and is an explanatory view showing the shapes of the wiring layer 23 and the line width correction region 23 a around the cavity 51.
A printed wiring board with a cavity 100 shown in FIG. 1A is an example of a four-layer printed wiring board in which a cavity 51 is formed at a predetermined position of an insulating material 12.
FIG. 1B shows the shape of the pad electrode formed in the cavity 51 and the shape of the wiring layer 23 and the line width correction region 23a in the periphery of the cavity 51. It can be seen that a part of the line width of the wiring layer 23 is corrected to be thick.

以下本発明のキャビティー付プリント配線板の製造方法について説明する。
図2(a)〜(e)及び図3(f)〜(i)は、本発明のキャビティー付プリント配線板の製造方法の一実施例を工程順に示す模式構成断面図である。
Hereinafter, a method for producing a printed wiring board with a cavity according to the present invention will be described.
2 (a) to 2 (e) and FIGS. 3 (f) to 3 (i) are schematic cross-sectional views showing an embodiment of the method for producing a printed wiring board with a cavity according to the present invention in the order of steps.

まず、ガラスエポキシ等からなる絶縁基材11の両面に銅箔21を積層した両面銅張り積層板を準備する(図2(a)参照)。
次に、この両面銅張り積層板の両面に、ドライフィルム等をラミネートする等の方法で感光層31を形成し(図2(b)参照)、パターン露光、現像等のパターニング処理を行って、レジストパターン31a及び31bを形成する(図2(c)参照)。
First, a double-sided copper-clad laminate in which copper foils 21 are laminated on both sides of an insulating base material 11 made of glass epoxy or the like is prepared (see FIG. 2 (a)).
Next, on both sides of this double-sided copper-clad laminate, a photosensitive layer 31 is formed by a method such as laminating a dry film or the like (see FIG. 2B), and patterning treatment such as pattern exposure and development is performed. Resist patterns 31a and 31b are formed (see FIG. 2C).

次に、レジストパターン31a及び31bをエッチングマスクにして、塩化第2鉄液等のエッチング液を用いて銅箔21をエッチングし、レジストパターン31a及び31bを専用の剥離液で剥離処理し、絶縁基材11の一方の面にパッド電極22、パッド電極22に接続された配線層23及び線幅補正領域23aを、絶縁基材11の他方の面に配線層25を形成する(図2(d)及び図4参照)。   Next, using the resist patterns 31a and 31b as an etching mask, the copper foil 21 is etched using an etching solution such as ferric chloride, and the resist patterns 31a and 31b are stripped with a dedicated stripping solution to form an insulating group. A pad electrode 22, a wiring layer 23 connected to the pad electrode 22 and a line width correction region 23a are formed on one surface of the material 11, and a wiring layer 25 is formed on the other surface of the insulating base 11 (FIG. 2D). And FIG. 4).

ここで、配線層23及び線幅補正領域23aについて説明する。
図4に、絶縁基材11上のキャビティー内に形成されたパッド電極22、配線層23及び線幅補正領域23aの部分拡大平面図を示す。
パッド電極22に接続された配線層23は、通常であれば同じ線幅で形成されるが、配線層23の一部がキャビティー51形成領域(特に、キャビティー周辺部)にかかる場合キャビティー51周辺部にかかる配線層23の所定位置に線幅補正領域23aを設け、配線層23の線幅を太く補正する。
線幅補正領域23aの線幅は配線層23の1.5〜2倍程度が好ましい。
Here, the wiring layer 23 and the line width correction region 23a will be described.
FIG. 4 shows a partially enlarged plan view of the pad electrode 22, the wiring layer 23, and the line width correction region 23 a formed in the cavity on the insulating base material 11.
The wiring layer 23 connected to the pad electrode 22 is normally formed with the same line width. However, when a part of the wiring layer 23 covers the cavity 51 formation region (particularly, the cavity peripheral portion), the cavity is formed. 51. A line width correction region 23a is provided at a predetermined position of the wiring layer 23 around the periphery, and the line width of the wiring layer 23 is corrected to be thick.
The line width of the line width correction region 23 a is preferably about 1.5 to 2 times that of the wiring layer 23.

次に、プリプレグ(ガラスエポキシ)シート及び銅箔41を加熱、加圧して積層し、絶縁材12及び銅箔41が積層された積層板を得る(図2(d)参照)。
次に、積層板の銅箔41上に、ドライフィルム等をラミネートする等の方法で感光層32を形成し(図3(f)参照)、パターン露光、現像等のパターニング処理を行って、レジストパターン32a及びレジストパターン32bを形成する(図3(g)参照)。
Next, the prepreg (glass epoxy) sheet and the copper foil 41 are laminated by heating and pressing to obtain a laminate on which the insulating material 12 and the copper foil 41 are laminated (see FIG. 2D).
Next, a photosensitive layer 32 is formed on the copper foil 41 of the laminated board by a method such as laminating a dry film or the like (see FIG. 3F), and patterning treatment such as pattern exposure and development is performed to form a resist. A pattern 32a and a resist pattern 32b are formed (see FIG. 3G).

次に、レジストパターン32a及びレジストパターン32bをエッチングマスクにして、塩化第2鉄液等のエッチング液を用いて銅箔41をエッチングし、レジストパターン32a及びレジストパターン32bを専用の剥離液で剥離処理し、絶縁材12上の所定位置にランド42及びランド43を形成する(図3(h)参照)。   Next, using the resist pattern 32a and the resist pattern 32b as an etching mask, the copper foil 41 is etched using an etching solution such as ferric chloride, and the resist pattern 32a and the resist pattern 32b are stripped with a dedicated stripping solution. Then, lands 42 and lands 43 are formed at predetermined positions on the insulating material 12 (see FIG. 3H).

次に、絶縁材12の所定位置をルータービットで座ぐり加工して、キャビティー51を形成し、キャビティー51内に電極及び配線層の上部がルータービットで削り取られたパッド電極22’、配線層23’及び線幅補正領域23a’を形成する(図3(i)及び図1(b)参照)。また、キャビティー51内のパッド電極22’、配線層23’及び線幅補正領域23a’の周辺部にはパッド電極22’、配線層23’及び線幅補正領域23a’と同一高さの絶縁層12aが形成される。
ここで、絶縁基材11上に形成されたパッド電極22、配線層23及び線幅補正領域23
aは、絶縁材12をルータービットで座ぐり加工する際びパッド電極22、配線層23及び線幅補正領域23aの上部が、パッド電極22の上部に電気的接続面を確保するためルータービットで所定量削られる。切削量は銅箔21の厚みにもよるが、6〜12μm程度になる。銅箔21として35μmの銅箔を使用した場合キャビティー51内のパッド電極22’、配線層23’及び線幅補正領域23a’の膜厚は29〜23μmとなる。
Next, a predetermined position of the insulating material 12 is countersunk with a router bit to form a cavity 51, and a pad electrode 22 ′ in which the upper part of the electrode and wiring layer is scraped off with the router bit in the cavity 51, wiring A layer 23 ′ and a line width correction region 23a ′ are formed (see FIGS. 3I and 1B). Further, in the periphery of the pad electrode 22 ′, the wiring layer 23 ′, and the line width correction region 23 a ′ in the cavity 51, insulation having the same height as the pad electrode 22 ′, the wiring layer 23 ′, and the line width correction region 23 a ′ is provided. Layer 12a is formed.
Here, the pad electrode 22, the wiring layer 23, and the line width correction region 23 formed on the insulating base material 11.
a is a router bit when the insulating material 12 is countersunk with a router bit so that the upper part of the pad electrode 22, the wiring layer 23 and the line width correction region 23 a secures an electrical connection surface above the pad electrode 22. A predetermined amount is cut. Although the amount of cutting depends on the thickness of the copper foil 21, it is about 6 to 12 μm. When a 35 μm copper foil is used as the copper foil 21, the film thicknesses of the pad electrode 22 ′, the wiring layer 23 ′, and the line width correction region 23a ′ in the cavity 51 are 29 to 23 μm.

上記したように、本発明のキャビティー付プリント配線板の製造方法は、半導体チップ及び受動部品等を実装するためのキャビティーをNC加工機の座ぐり加工にて形成する際キャビティー周辺部にかかる配線層の所定位置に線幅補正領域を設け、予め線幅補正領域の配線層の線幅を太く補正しておくことにより、欠損・ディッシュダウン等が発生しても配線層の断線までに至らない信頼性のあるプリント配線板を提供することが可能となる。   As described above, the method for manufacturing a printed wiring board with a cavity according to the present invention has a cavity for mounting a semiconductor chip, a passive component, and the like in a cavity peripheral portion when the cavity is formed by a spot machining of an NC processing machine. By providing a line width correction area at a predetermined position in such a wiring layer and correcting the line width of the wiring layer in the line width correction area to be large in advance, even if a defect or dishdown occurs, the wiring layer is disconnected. It is possible to provide an unreliable printed wiring board.

まず、エポキシ樹脂系からなる絶縁基材11に35μmの銅箔21を積層した両面銅張り積層板の両面に、感光性ドライフィルムを圧力1.5MPa、ラミネートスピード1.0m/minにてラミネートして、25μm厚の感光層31を形成した(図2(a)及び(b)参照)。   First, a photosensitive dry film was laminated at a pressure of 1.5 MPa and a laminating speed of 1.0 m / min on both sides of a double-sided copper-clad laminate obtained by laminating a 35 μm copper foil 21 on an insulating base material 11 made of an epoxy resin. Thus, a photosensitive layer 31 having a thickness of 25 μm was formed (see FIGS. 2A and 2B).

次に、露光マスクを用いて50mj/cm2の露光量の紫外線でパターン露光し、30℃の1%炭酸化ナトリウム水溶液を1.5MPaの圧力にてスプレー現像し、レジストパターン31a及び31bを形成した(図2(c)参照)。 Next, pattern exposure is performed with an ultraviolet ray having an exposure amount of 50 mj / cm 2 using an exposure mask, and a 1% sodium carbonate aqueous solution at 30 ° C. is spray-developed at a pressure of 1.5 MPa to form resist patterns 31a and 31b. (See FIG. 2 (c)).

次に、レジストパターン31a及び31bをエッチングマスクにして、塩化第2銅からなる銅エッチング液を1.5MPaの圧力で、60秒間スプレーエッチングすることにより、銅箔21をエッチングした。さらに、レジストパターン31a及び31bを50℃、2.5%の水酸化ナトリウム水溶液を1.5MPaの圧力でスプレー剥離処理し、絶縁基材11の一方の面にパッド電極22、パッド電極22に接続された配線層23及び線幅補正領域23aを、絶縁基材11の他方の面に配線層25を形成した(図2(d)及び図4参照)。   Next, using the resist patterns 31a and 31b as an etching mask, the copper foil 21 was etched by spray-etching a copper etching solution made of cupric chloride at a pressure of 1.5 MPa for 60 seconds. Further, the resist patterns 31a and 31b are spray-stripped with a 2.5% sodium hydroxide aqueous solution at 50 ° C. and a pressure of 1.5 MPa, and connected to one surface of the insulating substrate 11 with the pad electrode 22 and the pad electrode 22. The wiring layer 25 and the line width correction region 23a thus formed were formed on the other surface of the insulating substrate 11 (see FIG. 2D and FIG. 4).

次に、プリプレグ(ガラスエポキシ)シート及び35μmの銅箔41を加熱、加圧して、絶縁材12及び銅箔41が積層された積層板を得た(図2(d)参照)。
次に、積層板の銅箔41上に、感光性ドライフィルムを圧力1.5MPa、ラミネートスピード1.0m/minにてラミネートして、25μm厚の感光層32を形成した(図3(f)参照)。
Next, the prepreg (glass epoxy) sheet and the 35 μm copper foil 41 were heated and pressurized to obtain a laminated plate on which the insulating material 12 and the copper foil 41 were laminated (see FIG. 2D).
Next, the photosensitive dry film was laminated on the copper foil 41 of the laminated plate at a pressure of 1.5 MPa and a lamination speed of 1.0 m / min to form a photosensitive layer 32 having a thickness of 25 μm (FIG. 3F). reference).

次に、露光マスクを用いて50mj/cm2の露光量の紫外線でパターン露光し、30℃の1%炭酸化ナトリウム水溶液を1.5MPaの圧力にてスプレー現像し、レジストパターン32a及び32bを形成した(図3(g)参照)。 Next, pattern exposure is performed with an ultraviolet ray having an exposure amount of 50 mj / cm 2 using an exposure mask, and a 1% sodium carbonate aqueous solution at 30 ° C. is spray-developed at a pressure of 1.5 MPa to form resist patterns 32a and 32b. (See FIG. 3 (g)).

次に、レジストパターン32a及び32bをエッチングマスクにして、塩化第2銅からなる銅エッチング液を1.5MPaの圧力で、60秒間スプレーエッチングすることにより、銅箔41をエッチングした。さらに、レジストパターン31a及び31bを50℃、2.5%の水酸化ナトリウム水溶液を1.5MPaの圧力でスプレー剥離処理し、絶縁材12上の所定位置にランド42及びランド43を形成した(図3(h)参照)。   Next, using the resist patterns 32a and 32b as an etching mask, the copper foil 41 was etched by spray-etching a copper etching solution made of cupric chloride at a pressure of 1.5 MPa for 60 seconds. Further, the resist patterns 31a and 31b were spray-peeled with a 2.5% sodium hydroxide aqueous solution at 50 ° C. and a pressure of 1.5 MPa to form lands 42 and lands 43 at predetermined positions on the insulating material 12 (FIG. 3 (h)).

次に、絶縁材12の所定位置をNC加工機に取り付けられたルータービット径1.0mmφのルータービットを用いて、回転数20000〜30000rpm、送り速度0.1〜0.5m/minで絶縁材12の所定位置を座ぐり加工して、キャビティー51を形成し、キャビティー51内にパッド電極22’、配線層23’及び線幅補正領域23a’を
形成し、キャビティー付プリント配線板を得た(図3(i)及び図1(b)参照)。
ここで、パッド電極22’、配線層23’及び線幅補正領域23a’の厚みは26μmであった。
配線層23’及び線幅補正領域23a’の断線は確認されず、良好なキャビティー付プリント配線板が得られた。
Next, using a router bit having a router bit diameter of 1.0 mmφ attached to the NC processing machine at a predetermined position of the insulating material 12, the insulating material is rotated at a speed of 20000-30000 rpm and a feed rate of 0.1-0.5 m / min. 12 are spot-cut to form a cavity 51, a pad electrode 22 ′, a wiring layer 23 ′, and a line width correction region 23 a ′ are formed in the cavity 51, and a printed wiring board with a cavity is formed. It obtained (refer FIG.3 (i) and FIG.1 (b)).
Here, the thicknesses of the pad electrode 22 ′, the wiring layer 23 ′, and the line width correction region 23a ′ were 26 μm.
The disconnection of the wiring layer 23 ′ and the line width correction region 23a ′ was not confirmed, and a good printed wiring board with a cavity was obtained.

(a)は、本発明のキャビティー付プリント配線板の製造方法で得られたキャビティー付プリント配線板の一例を示す模式構成断面図である。(A) is a schematic structure sectional view showing an example of a printed wiring board with a cavity obtained by the method for producing a printed wiring board with a cavity of the present invention.

(b)は、(a)をA−A’面で見た模式上面図である。
(a)〜(e)は、本発明のキャビティー付プリント配線板の製造方法における工程の一部を模式的に示す部分構成断面図である。 (f)〜(i)は、本発明のキャビティー付プリント配線板の製造方法における工程の一部を模式的に示す部分構成断面図である。 キャビティー周辺部にかかる配線層及び線幅補正領域の一例を示す説明図である。 (a)は、従来のキャビティー付プリント配線板の一例を示す模式構成断面図である。
(B) is the model top view which looked at (a) in the AA 'surface.
(A)-(e) is a partial composition sectional view showing typically a part of process in a manufacturing method of a printed wiring board with a cavity of the present invention. (F)-(i) is a partial structure sectional view showing typically a part of process in a manufacturing method of a printed wiring board with a cavity of the present invention. It is explanatory drawing which shows an example of the wiring layer concerning a cavity peripheral part, and a line | wire width correction area | region. (A) is a schematic structure sectional view showing an example of a conventional printed wiring board with a cavity.

(b)は、(a)をB−B’面で見た上面図である。
(a)〜(e)は、従来のキャビティー付プリント配線板の製造方法における工程の一部を模式的に示す部分構成断面図である。 (f)〜(i)は、従来のキャビティー付プリント配線板の製造方法における工程の一部を模式的に示す部分構成断面図である。
(B) is the top view which looked at (a) in the BB 'surface.
(A)-(e) is a partial composition sectional view showing typically a part of process in the manufacturing method of the conventional printed wiring board with a cavity. (F)-(i) is a partial composition sectional view showing typically a part of process in the manufacturing method of the conventional printed wiring board with a cavity.

符号の説明Explanation of symbols

11、111……絶縁基材
12、112……絶縁材
12a、112a……絶縁層
21、41、121、141……銅箔
22、22’、122……パッド電極
23、23’、24、25、123、124……配線層
23a、23a’……線幅補正領域
31、32、131、132……感光層
31a、31b、32a、32b、131a、131b、132a……レジストパターン42、43、125……ランド
51……キャビティー
100、200……キャビティー付プリント配線板
151……保護層
11, 111 ...... Insulating base material 12, 112 ...... Insulating material 12 a, 112 a ...... Insulating layer 21, 41, 121, 141 ...... Copper foil 22, 22 ′, 122 ...... Pad electrode 23, 23 ′, 24, 25, 123, 124 ... wiring layers 23a, 23a '... line width correction regions 31, 32, 131, 132 ... photosensitive layers 31a, 31b, 32a, 32b, 131a, 131b, 132a ... resist patterns 42, 43 , 125 ... Land 51 ... Cavity 100, 200 ... Printed wiring board with cavity 151 ... Protective layer

Claims (1)

半導体チップ及び受動部品等を実装するためのキャビティーをNC加工機の座ぐり加工にて形成してなるキャビティー付プリント配線板の製造方法において、座ぐり加工されるキャビティー周辺部にかかる配線層の所定位置に線幅補正領域を設け、予め前記線幅補正領域の配線層の線幅を大きくして座ぐり加工を行うことを特徴とするキャビティー付プリント配線板の製造方法。   In a method for manufacturing a printed wiring board with a cavity, in which a cavity for mounting a semiconductor chip, passive components, etc. is formed by spot machining of an NC processing machine, wiring around the cavity to be spotted A method of manufacturing a printed wiring board with a cavity, wherein a line width correction region is provided at a predetermined position of a layer, and the line width of the wiring layer in the line width correction region is increased in advance to perform spot facing.
JP2004053150A 2004-02-27 2004-02-27 Method for manufacturing printed wiring board with cavity Pending JP2005244007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053150A JP2005244007A (en) 2004-02-27 2004-02-27 Method for manufacturing printed wiring board with cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053150A JP2005244007A (en) 2004-02-27 2004-02-27 Method for manufacturing printed wiring board with cavity

Publications (1)

Publication Number Publication Date
JP2005244007A true JP2005244007A (en) 2005-09-08

Family

ID=35025407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053150A Pending JP2005244007A (en) 2004-02-27 2004-02-27 Method for manufacturing printed wiring board with cavity

Country Status (1)

Country Link
JP (1) JP2005244007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119911A (en) * 2010-11-30 2012-06-21 Kyocera Kinseki Corp Piezoelectric device
JP2016208020A (en) * 2015-04-22 2016-12-08 株式会社半導体エネルギー研究所 Method of manufacturing circuit board, method of manufacturing light-emitting device, and light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119911A (en) * 2010-11-30 2012-06-21 Kyocera Kinseki Corp Piezoelectric device
JP2016208020A (en) * 2015-04-22 2016-12-08 株式会社半導体エネルギー研究所 Method of manufacturing circuit board, method of manufacturing light-emitting device, and light-emitting device

Similar Documents

Publication Publication Date Title
JP5461323B2 (en) Manufacturing method of semiconductor package substrate
US10356901B2 (en) Manufacturing method of circuit board structure
KR101999594B1 (en) Method for manufacturing semiconductor package substrate, semiconductor package substratemanufactured using the same, Method for manufacturing semiconductor package and semiconductor package manufactured using the same
JP5080234B2 (en) Wiring board and manufacturing method thereof
KR20120085673A (en) Multilayer wiring substrate
KR20130053289A (en) Manufacturing method of printed circuit board
TWI531291B (en) Package board and method for manufactuing same
JP2005244007A (en) Method for manufacturing printed wiring board with cavity
JP5317491B2 (en) Method for manufacturing printed wiring board
KR20120097327A (en) Multilayer wiring substrate
JP2019153668A (en) Circuit board and manufacturing method thereof
JP2020092210A (en) Printed wiring board and manufacturing method of the same
KR100305570B1 (en) A printed circuit board and a method of manufacturing there of
JP2005108941A (en) Multilayer wiring board and its manufacturing method
JP2005268416A (en) Printed wiring board and producing method thereof
JP2005191090A (en) Manufacturing method for wiring board and wiring-board raw material
JP2018082111A (en) Printed wiring board and manufacturing method of printed wiring board
KR101085576B1 (en) Method for fabricating printed-circuit-board using metal and printed-circuit-board fabricated using thereof
JP2008244336A (en) Manufacturing method of printed circuit board, and printed circuit board
JP2010010244A (en) Printed wiring board and method of manufacturing the same
JP2007088232A (en) Method of manufacturing printed wiring board
KR101492192B1 (en) Multi-Layer Printed Circuit Board And Its Manufacturing Method
JP5377792B1 (en) Circuit board manufacturing method
KR101420489B1 (en) Fabricating method of printed circuit board
JP2006210873A (en) Manufacturing method of partial build up wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202