JP2005243222A - 汎用書き込みプリコンペンセイションを行うための方法及び装置 - Google Patents

汎用書き込みプリコンペンセイションを行うための方法及び装置 Download PDF

Info

Publication number
JP2005243222A
JP2005243222A JP2005022705A JP2005022705A JP2005243222A JP 2005243222 A JP2005243222 A JP 2005243222A JP 2005022705 A JP2005022705 A JP 2005022705A JP 2005022705 A JP2005022705 A JP 2005022705A JP 2005243222 A JP2005243222 A JP 2005243222A
Authority
JP
Japan
Prior art keywords
signals
compensation
fine phase
write data
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005022705A
Other languages
English (en)
Inventor
Firmin M Musungu
ファーミン・エム・ミューサング
Joey M Poss
ジョーイ・エム・ポス
Brent A Sadowy
ブレント・エイ・サドウイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Publication of JP2005243222A publication Critical patent/JP2005243222A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • G11B20/10194Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter using predistortion during writing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/09Digital recording

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Digital Magnetic Recording (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

【課題】非線形ビット・シフトなどの望ましくないシフトは、PRMLチャネルの性能を劣化させる。
【解決手段】汎用書き込みプリコンペンセイションを行うための回路400は、N個の粗フェーズ信号を発生する粗フェーズ発生装置410と、粗フェーズ発生装置に連結され、N個の粗フェーズ信号を用いてM個の密フェーズ信号を発生するため密フェーズ発生装置412と、密フェーズ発生装置に連結され、M個の密フェーズ信号から1つの密フェーズ信号を選択して受信した書き込みデータにシフトをもたらし第1の所望のプレコンペンセイションを達成するためのプリコンペンセイション・デコーダ420,24ラッチ430,データMUX440,書き込みドライバ450とを含む。
【選択図】図4

Description

本発明は一般的にはデータ処理に関するものであり、より具体的には汎用書き込みプリコンペンセイションを行うための方法及び装置に関するものである。
磁気ディスク・ドライブ装置(ハード・ディスク・ドライブなど)の最近開発されたデータ記憶装置では記憶容量とデータ・アクセス速度が増大してきている。こうした利点によって、磁気ディスク・ドライブはコンピュータ・システム用の補助記憶装置として広く用いられるようになってきている。より一般的には、ディスク・ドライブ技術におけるこうした改良に関連するパルス通信における発展は、最近、広範囲のパルス通信システムにおける速度と信頼性の増大をもたらしている。以下に本発明を磁気ディスク・ドライブ装置との関連で詳細に説明するが、パルス通信の分野の当業者であれば、本発明が多様なパルス通信におけるデータ・パルス検出のための改良された方法を提供していることは容易に理解するであろう。
記憶容量及びアクセス速度に影響を及ぼす磁気ディスク・ドライブ装置の基本的な特徴はヘッド、記録媒体、サーボ機構、読み取り/書き込みチャネルで用いられる信号処理技術などである。これらのうちで、PRML(部分応答最尤度復号)検出を用いた信号処理技術が最近のディスク・ドライブ装置において認められる記憶容量の増大及び高アクセス速度に大きく貢献している。
磁気ディスク・ドライブ装置の一般的な読み取り/書き込みチャネル回路における読み取りチャネル回路はその装置の記録/再生ヘッドによって発生されたアナログ読み取り信号の初期処理用の構成部品を含む。この処理は自動ゲイン制御(AGC)増幅、フィルタリング、及び等化、さらにアナログ−デジタル変換を行う。
磁気ディスクあるいはテープ記憶装置においては、データは通常飽和記録によって磁気媒体上に記憶され、その媒体の各部分は2つの方向のうちの1の飽和点まで磁気化される。記憶されるデータは通常一定の制約を満たすように符号化され、符号化されたデータは磁気化の方向を調節するために用いられる。NRZI(非ゼロ復帰インバート)として知られている符号化表示においては、符号化されたデータの各“1”ビットが磁気化の方向における遷移をもたらし、その符号化されたデータの各“0”ビットが磁気化方向を無変化のままにする。NRZの場合、強度変調(AM)におけるゼロ強度、フェーズ・シフト・キーイング(PSK)におけるゼロ・フェーズ・シフト、あるいは周波数シフト・キーイング(FSK)における中間周波数などのように中立、あるいは静止状態は存在しない。注:任意のデータ・シグナリング速度、つまりビット・レートで、NRZはマンチェスター・コーディングが必要とする帯域幅の半分だけを必要とする。NRZコーディングの場合、磁石極性変化を示すために“1”を、そして極性変化がないことを示すために“0”を用いることができる。記録ヘッドが媒体上のトラックに沿って移動する際に一連の符号化されたNRZIビットが各クロック毎に1ビットが書き込まれるように、クロック信号が用いられる。
記録されたデータ・トラック上を再生ヘッドが通過すると、磁気化の各遷移毎に電圧パルスが生じる。連続的な磁気遷移は反対方向であるから、連続した電圧パルスは反対の極性を有している。 “1”ビットをパルスが発生したクロック、そして“0”ビットをパルスが発生しなかったクロックと関連付けることで、得られた電圧波形から、書き込まれたNRZIデータ配列を再構成することができる。そして最初のユーザ・データをそのNRZIデータから復号することができる。
書き込まれた、あるいは送信されたデータ配列を復元するためには、受信装置はクロック信号と受信された波形との同期化を必要とする。この同期化されたクロック信号毎に、受信装置あるいは読み取り回路は取り囲んでいる波形を処理して1ビット分のNRZIデータ配列を発生させる。個別の同期化クロック信号をデータ波形と共に記憶あるいは送信することは不可能であるか、あるいは少なくとも望ましくない場合が往々にしてある。その代わり、タイミング情報をそのデータ波形自体から取り出して同期化されたクロック信号を「復元」するために用いることができるようにするために、符号化されたNRZIデータ配列には一定の制約が課される。そうした方式は「自己クロッキング」と呼ばれる。
磁気記録における非線形ビット・シフト(NLBS)は先行する遷移の近接効果による書き込み遷移の位置のシフトである。PRMLにおいては、読み出された波形が同期的に規則正しい時間間隔でサンプリングされる。サンプル値は書き込み遷移の位置に依存している。従って、非線形ビット・シフトなどの望ましくないシフトはサンプル値に誤差を発生させ、それがPRMLチャネルの性能を劣化させる。
書き込みプリコンペンセイションとは信号の事前等化を助けるために書き込みデータ・タイミングの方向をシフトさせる方法である。これによって最終的な読み出し信号が最適化される、つまり、物理的/磁気的特性の理解に基づいて、磁気媒体上に磁気を書き込む前にその位置の前後の磁気からの歪み効果を予測して、どんな書き込み信号が最も鮮明な読み出し信号を作り出すかについての予測に基づいて修正された書き込み信号が得られる。ディスク媒体には磁気が書き込まれているので、近接した磁気は相互を望ましくない信号タイミング・シフトとして部分的に消去しあう場合がある。書き込みプリコンペンセイションはこの問題を解決するのに役立つ。媒体上の磁気は隣接磁気に基づいて相当量の書き込みプリコンペンセイションを必要とする場合がある。磁気が2あるいは3磁気分離れていても(1001)、この部分消去による影響が読み出し性能に悪影響を及ぼすほど大きくなってしまう可能性もある。
別の現象は、「北」及び「南」(NあるいはS)が書き込みドライバ、ヘッド、あるいは媒体の影響のいずれかからタイミング非対称をもってしまう可能性があることである。タイミング非対称補正は、タイミング非対象補正が異なった理由/要因で行われるとは言え、書き込み信号タイミングのシフティングを含むという点で書き込みプリコンペンセイションと類似している。タイミング非対称補正は磁気的要素に代わってコンピュータやHDD読み取りチャネルの電子的特性によって決められるタイミング・シフトを行う。書き込みタイミング非対称を補正して書き込みプリコンペンセイションを行えることは読み取り信号性能を向上させる。書き込み配列に基づいて磁気毎にプリコンペンセイションの量を変化させることができるのが望ましい。
今日の高密度記録は書き込みプリコンペンセイションにおける一層の柔軟性を必要としている。現在、書き込みプリコンペンセイションの方法は余分な設計時間を必要とする独立型回路に依存している。公知のソリューションはすべてサイクル毎ベースで利用できるプリコンペンセイション状態の数を制限するアーキテクチャを有している。
従って、汎用書き込みプリコンペンセイションを行う方法及び装置が必要であることが理解されよう。
上に述べた従来技術における制約を克服するため、そして、本明細書を読み進め理解すれば明らかになるその他の制約を克服するために、本発明は汎用書き込みプリコンペンセイションを行うための方法及び装置を開示する。
本発明は受信された書き込みデータにシフトをもたらし所望のプリコンペンセイションを達成するために選択できる複数のフェーズ信号を提供することで上記の問題を解決する。
本発明の原理に基づくシステムはN個の粗フェーズ信号を発生する粗フェーズ発生装置と、上記粗フェーズ発生装置に連結され、上記N個の粗フェーズ信号を用いてM個の密フェーズ信号を発生するため密フェーズ発生装置と、上記密フェーズ発生装置に連結され、上記M個の密フェーズ信号から1つの密フェーズ信号を選択して受信書き込みデータにシフトをもたらし第1の所望のプレコンペンセイションを達成するための書き込みプリコンペンセイション回路とを含む。
本発明の別の実施形態では、磁気記憶装置が提供される。その磁気記憶装置はデータを記録するための磁気記憶媒体と、上記磁気記憶媒体を動かすためのモータと、上記磁気記憶媒体からデータを読み取り、上記媒体にデータを書き込むためのヘッドと、磁気記憶媒体に対して上記ヘッドの位置を合わせるためのアクチュエータと、そして上記磁気記憶媒体上で符号化された信号を処理するためのデータ・チャネルとを含んでおり、上記データ・チャネルは、N個の粗フェーズ信号を発生するための粗フェーズ発生装置と、上記粗フェーズ発生装置に連結され、N個の粗フェーズ信号を用いてM個の密フェーズ信号を発生する密フェーズ発生装置と、上記密フェーズ発生装置に連結され、上記M個の密フェーズ信号から1つの密フェーズ信号を選んで受信された書き込みデータにシフトをもたらし、第1の所望のプリコンペンセイションを行うための書き込みプリコンペンセイション回路とを含む。
本発明の別の実施形態で、汎用書き込みプリコンペンセイションを行う方法が提供される。その方法はN個の粗フェーズ信号を発生するステップと、上記N個の粗フェーズ信号を用いてM個の密フェーズ信号を発生するステップと、上記M個の密フェーズ信号から1つの密フェーズ信号を選んで受信された書き込みデータにシフトをもたらし、第1の所望のプリコンペンセイションを達成するステップとを含む。
これらの、そして他の種々の、本発明を特徴付ける新規性の利点及び特徴が本明細書に添付されその一部を構成している特許請求の範囲に指摘されている。しかしながら、本発明とその利用によって得られる利点や目的をよりよく理解するためには、明細書の一部を形成する図面と、それに伴う本発明による装置の具体例を図示、説明している記述部分を参照するべきであろう。
本発明によれば、書き込みタイミング非対称を補正して書き込みプリコンペンセイションを行うことができるので、読み取り信号の品質を向上させることができる。
本発明の実施の形態についての以下の説明で、本明細書の一部を構成し、本発明の実施が可能な具体的な実施形態を図示した添付図面を参照する。以下の図面全体で、同じ参照番号は対応する部分を示す。なお、本発明の範囲から逸脱せずに構造的変更を行うことができるので、その他の実施の形態も可能である。
本発明は汎用書き込みプリコンペンセイションを行うための方法及び装置を提供する。本発明は受信した書き込みデータにシフトをもたらして所望のプリコンペンセイションを達成するため選択される複数のフェーズ信号を提供する。
図1は本発明の一実施形態による記憶システム100を示している。図1で、トランスデューサ110はアクチュエータ120の制御下にある。上記アクチュエータ120はトランスデューサ110の位置を制御する。トランスデューサ110は磁気ディスク130上にデータを書き込んだりそれからデータを読み取ったりする。この読み取り/書き込み信号はデータ・チャネル140に送られる。信号処理システム150はアクチュエータ120を制御し、データ・チャネル140の信号を処理する。加えて、メディア・トランスレータ160は信号処理システム150に制御されて、磁気ディスク130をトランスデューサ110に対して移動させる。しかしながら、本発明は、特定のタイプの記憶システム100あるいはその記憶システム100で用いられる媒体130のタイプには限定されない。
図2は本発明の一実施形態による磁気ディスク・ドライブ装置200の構成図である。図2で、ディスク210はスピンドル・モータ234によって回転され、ヘッド212はディスク210の対応する面にそれぞれ配置される。ヘッド212はE型ブロック・アセンブリ214からディスク210に延びる対応するサーボ・アーム上に取り付けられている。ブロック・アセンブリ214は対応する回転ボイス・コイル・アクチュエータ230を有している。ボイス・コイル・アクチュエータ230はブロック・アセンブリ214を駆動し、それによってヘッドの位置を変化させ、1つあるいは複数のディスク210上の特定の位置からデータを読み取ったり、その特定の位置にデータを書き込む。
プリアンプ216はヘッド212によってピックアップされた信号を事前増幅して、それによって読み取り/書き込みチャネル回路218に読み取り動作中に増幅された信号を提供する。書き込み動作中には、プリアンプ216は符号化された書き込みデータ信号を読み取り/書き込みチャネル回路218からヘッド212に送る。読み取り動作において、読み取り/書き込みチャネル回路218はプリアンプ216によって出力された読み取り信号からデータ・パルスを検出し、そのデータ・パスルを復号する。読み取り/書き込みチャネル回路218はその復号されたデータ・パルスをディスク・データ制御装置(DDC)20に送る。さらに、読み取り/書き込みチャネル回路218はDDC220から受信した書き込みデータを符号化し、その符号化したデータをプリアンプ216に出力する。
DDC220はホスト・コンピュータ(図示せず)から受信したデータを、読み取り/書き込みチャネル回路218及びプリアンプ216を介してディスク210上に書き込むと同時に、ディスク210からの読み取りデータを上記ホスト・コンピュータに転送する。DDC220は上記ホスト・コンピュータとマイクロコントローラ224と間のインターフェイスも行う。バッファRAM(ランダム・アクセス・メモリー)222はDDC220とホスト・コンピュータ、マイクロコントローラ224、及び読み取り/書き込みチャネル回路218間で転送されるデータを一時的に保存する。マイクロコントローラ224はホスト・コンピュータからの読み取り及び書き込みコマンドに応じて、トラック・シーキング及びトラック追従機能を制御する。
ROM(読み取り専用メモリー)226はマイクロコントローラ224用の制御プログラム及び種々の設定値を記憶する。サーボ・ドライバ228はヘッド212の位置を制御するマイクロコントローラ224から発生される制御信号に応じてアクチュエータ230を駆動する駆動電流を発生する。この駆動電流はアクチュエータ230のボイスコイルに与えられる。アクチュエータ230はサーボ・ドライバ228から供給される駆動電流の方向と量に従って、ディスク210に対するヘッド212の位置決めを行う。スピンドル・モータ・ドライバ232はスピンドル・モータ234を駆動し、このスピンドル・モータ234はディスク210を制御するためのマイクロコントローラ224によって発生される制御値に従ってディスク210を回転させる。
図3は本発明の一実施形態による汎用プリコンペンセイション300を示す図である。図3で、NRZI書き込みデータに対してはプリコンペンセイション310及びタイミング非対称補正312が行われている。図3に示されているパターンは一連の“0”320及び“1”322を含む。最適読み出し信号は、例えば1ビット・セルあるいは1フル・レート期間の図に示されているような率でシフトされる第一の磁気を必要としている。5%の北(N)磁気に対してタイミング非対称が必要な場合、全タイミング・シフトはプリコンペンセイション+タイミング非対称補正312の合計である。従って、北(N)磁気350に対するプリコンペンセイションは−12%352である。しかしながら、5%の北(N)磁気に対してタイミング非対称が必要なのであるから、非対称補正によるプリコンペンセイションの複合的調整は−7%354となる。
図4は本発明の一実施形態によるプリコンペンセイションを行うための回路の構成図400である。図4で、粗フェーズ発生装置410は密フェーズ発生装置412を駆動する。粗フェーズ発生装置410は第1レベル・フェーズ信号である。図4で、粗フェーズ発生装置410は密フェーズ発生装置412を駆動するためのフェーズ信号を提供する。密フェーズ発生装置412は第2のレベル即ち「より緻密な」レベルのフェーズ信号発生装置である。フェーズ発生装置410、412をインターポレータと呼ぶこともある。
プリコンペンセイション・デコーダ420は書き込みデータ・パターン422に基づきフル・レートでどのフェーズを選択すべきかを決定する。フェーズ・ステップ量は所望のプリコンペンセイション・ステップ・サイズによって決められる。密フェーズ信号414はFP0−FP23までのラベルが付されている。密フェーズ信号414は24xラッチ430でプリコンペンセイション・データをラッチするために用いられる。各FPX信号414は同じ書き込みデータ426をラッチして、FPXデータ432と呼ばれる信号を出力する。一度データがラッチされると、プリコンペンセイション・デコーダ420がデータ・パターンに基づいてどのフェーズが必要であるかを選択する424。プリコンペンセイション・デコーダ420は書き込みデータ入力パターン422に基づいてデータMux440の線を選択し、書き込みドライバ450に対してプリコンペンセイション・データ442を出力する。プリコンペンセイションNRZI書き込みデータ452は書き込みドライバ450によって提供される。
従って、粗フェーズ及び密フェーズ発生装置回路410,412はデータをシフトさせるために複数のタイミング遅延を出力する。そのタイミング遅延はプリコンペンセイトされたフェーズでの選択によって作られる信号遅延を示す。この遅延ステップは0−360度の範囲で所定の数の異なったフェーズを提供するが、360度未満の異なった設計を用いてもよい。図4で、24の遅延設定を示しているが、その24の遅延の種々の組み合わせは示されていない。正確な要求通りの遅延を用いることができるようにするためには、すべての遅延を発生させて、書き込みデータ配列に基づいて1つの遅延を選択できるようにすることが必要である。
図5は本発明の一実施形態による図4の粗フェーズ発生装置410のブロック構成図500を示すものである。図5に、4段階VCO510及び4遅延段階512−518が示されている。遅延段階512−518の出力はバッファ520−526に提供される。この粗フェーズ発生装置ブロック500は粗フェーズを発生させる手段を提供する。4段階差分VCOで利用することができるフェーズは45度増分540で0−360度である。VCOが2xFあるいはその書き込みデータに必要とされるフル・レートの2倍で作動する場合、差分分周器を用いて22.5度ステップ530で0−360度のフェーズを発生させることができる。
必要とされるプリコンペンセイションの量は媒体及びヘッドによる。+/−36%の書き込みプリコンペンセイションが必要な場合、必要とされる最大粗フェーズは0.36×(360)=129.6度である。この場合、プリコンペンセイションに必要な最も近い粗フェーズは135度となる。図5は1F周波数レートで、例えば0、22.5、45、67.5、90、112.5、135、157.5、180、202.5、225、247.5、270、292.5、315、337.5など22.5度刻み530で0−135度のフェーズをどのように発生することができるかを示している。この場合のプリコンペンセイションでは135度以上のフェーズは用いられないが、所望のプリコンペンセイションの程度に応じてどんなフェーズでも用いることができる。VCOが2xFあるいは書き込みデータに必要なフル・レートの2倍で作動する場合、ステップ・サイズ(刻み)540は0、180、45、225、90、270、135、315となる。図6は本発明の1つの実施の形態による1F 610及び2F 620粗フェーズ信号を示している。
図7は本発明の一実施形態による密フェーズ回路700の構成図である。図7で、粗フェーズ入力710がドライバ712−724に与えられる。フェーズ・ステップの量は所望のプリコンペンセイション・ステップ・サイズで決められる。密フェーズ信号はFP0−FP23 730のラベルが付されており、電圧平均化技術で生成される。上記のドライバ712−724間では直列に連結された抵抗器740が用いられている。各抵抗器740からのノードはFP0−FP23 730を発生するために用いられる。出力インバータ750がこの信号をより明確にして次の段階を駆動する。
図8は本発明の一実施形態で中間ノードFP0s−FP4sがどのように発生されるかを示している。図8で、線830−834は密フェーズ信号FP1s−FP3s、つまり、図7の抵抗器を有する電圧分周器アレイであって、粗フェーズ入力840、842は平均化、インターポレートを行って密フェーズ信号を作るために用いられる。
この平均化技術を適切に作動させるためには、電圧が正しく平均化するようFPXのスルー・レートを適切に設定する必要がある。ドライバは信号強度を最大化しなければならないが、フル・サプライ・スイングを行ってはならない。シリコン・プロセスを通じてドライバを調節したり、周波数範囲に応じて温度を調整する必要があるかもしれない。各フェーズ・ステップは22.5/4=5.625度で、これはクロック期間Tの1.5625%である。このような設計の場合は、24フェーズ信号のすべてが生成される。粗フェーズ信号P157.5及びP337.5は抵抗器配列を駆動するための余剰フェーズである。これらのエンドFP信号、FP0及びFP23はその抵抗器配列の端部での電圧平均化を正しいフェーズ遅延ステップ・サイズ量に対して適切な量に保つ役割を果たす。
図9は本発明の一実施形態による密フェーズ信号の別の構成図900を示している。この図は、Tの35.9%までの総フェーズ移動と、出力インバータで処理された後のより先鋭なエッジを示している。この密フェーズ信号は図4で示す24xラッチでプリコンペンセイションをラッチするために用いられる。
図10は本発明の一実施形態による24xラッチブロック1000の構成図である。密フェーズ入力1010は24ラッチ1020、1022をクロックするために提供される。書き込みデータ1030はこれら24ラッチ1020、1022のデータ入力ポートに提供される。書き込みデータ1030はすべての24ラッチ1020、1022に対して共通である。各FPX信号1010は同じ書き込みデータ1030をラッチして、FPXデータ1040と呼ばれる信号を出力する。
図11は本発明の一実施形態による図4に示すプリコンペンセイションMuxの構成図1100である。ラッチされると、プリコンペンセイション・デコーダがデータ・パターンに基づいてどのフェーズが必要かを選択する。上記プリコンペンセイション・デコーダは正しいFPXデータ1120を選択してプリコンペンセイション・データ1140として書き込みドライバに出力するためにどのパス・ゲート1110を短絡させるべきかを選択する。
図12は本発明の一実施形態によるMux選択タイミングがどのように行われるかを示すタイミング図1200である。FP0(1210)、FP8(1212)、FP23(1214)はこの例で選択される密フェーズ信号であり、FP0データ1220、FP8データ1222、及びFP23データ1224をラッチするために用いられるクロックである。このプリコンペンセイション・デコーダは適切な配列をピックするためにデータMuxセレクト1240を駆動する。図12で、NRZI書き込みデータのタイミング移動は0%(1230)、12.5%(1232)、12.5%(1234)そして35.9%(1236)である。図4に示すプリコンペンセイション・デコーダは書き込みデータ入力パターン1250に基づいてデータMuxセレクト・ラインを選択する。設計者はメディア記録技術に基づいてどのようにパターン認識を行うかを決めることができる。その設計は、2、4、8あるいは16状態のプリコンペンセイションを選べる程柔軟に行えるようになっている。
図13は本発明の一実施形態におけるプリコンペンセイションのためのカスタマー設定の一例と4状態プリコンペンセイション1300のためのNRZI書き込みデータに基づくデコーダ・セレクトとを示している。中央(下線1)のNRZIデータ遷移1310は1312の1ビット・セル前、そして1314の1ビット・セル後の隣接遷移状態に基づいて与えられた量だけシフトされたビットである。従って、プリコンペンセイション状態1の場合、−12.5%プリコンペンセイション・シフト(1320)するためのカスタマー設定はその遷移のためにFP0(1330)を選択することが必要となるであろう。どれだけの状態が選ばれようと、この設計例では、プリコンペンセイション量の違いは最大35.9%である。従って、FP23−FP0=23.5%−(−12.5%)=35.9%となる。カスタマーが0%基準を設定するのは任意である。各プリコンペンセイション状態は0%から35.9%の相対可変範囲を有する。
図14は本発明の一実施形態において、8状態プリコンペンセイション(1400)がどのようにデコードされるかを示している。8状態プリコンペンセイションはシフト量が2つ前のビット・セル(1412)と1つ後のビット・セル(1414)に基づいて行われることを除けば、同様の方法で行うことができる。
図15は本発明の一実施形態で16状態デコーダ1500がどのように実施できるかを示す表の一部である。今後の記録技術は16状態プリコンペンセイションを必要とする可能性があり、その場合、シフトの量は2ビット前のセル(1512)と2ビット後のセル(1514)によって決まる。
状態の量は必要性や利用できる遅延ステップの数によっては制約されるだけである。本発明については24の利用できる遅延設定を参照して上に説明したが、状態の数は増やすことも減らすこともできる。これらの状態のいずれにおいても、デコーダはタイミング非対称の必要性に基づいて変化することが必要となるかもしれない。前にも述べたように、その遷移のためのプリコンペンセイション量に磁気Nをシフトさせたり加えることができる。従って、実際には、タイミング非対称補正が付加されると、4状態プリコンペンセイションは二倍化されて8状態プリコンペンセイションになる。デコーダは交互に現れる1を追跡し、選択された非対称量を加えればよいだけである。
さらに、本発明の実施の形態を実施して、これらのコンセプトを拡張することによって広い周波数範囲を提供することができる。上にも述べたように、FPXノードでのスルー・レートが正しい作動範囲にある場合に、密フェーズ発生装置は正しく作動する。しかしながら、周波数が増大すると、FPXノード信号スイングは帯域幅に制約があり、低下してしまう。実際に利用できる周波数範囲は約2−1である。こうした周波数範囲はFPXノードのスルー・レートの変更を必要とするであろう。1つの解決方法はその密フェーズ発生装置に可変エッジ・レート・ドライバを備えることである。しかしながら、これにはプロセス速度及び温度を調べるための一定の較正が必要になる。4−1程度のより広い周波数範囲を得るためのより良い方法は密フェーズ発生装置を駆動する粗フェーズ信号を切り換えること、及び基準クロックにM分周器を加えることであろう。
図16は本発明の一実施形態でM分周器1670を用いて汎用プリコンペンセイションを行うための回路の構成図1600である。M分周器1670は好ましくは1あるいは2のいずれかである。M分周器1670が2の場合、書き込みデータ1622は2で分周されて、ビット・セルは2xTとなる。ビット・セルの長さが2倍なので、このプリコンペンセイション率は効果的に2で分周される。従って、M=2の場合、最大プリコンペンセイションは35.9%/2、つまり18.0%程度に過ぎないであろう。M=2に対して35.9%の同じ最大プリコンペンセイション率を得るためには、違った組み合わせの粗フェーズを選択することができる。図17はM=2の時に粗フェーズの異なった組み合わせを選択する粗フェーズMuxブロック1700を示している。図17は1のM分周器(1710)及び2のM分周器(1712)のための粗フェーズ選択を示す表である。M=2(1712)の場合、同じプリコンペンセイション率シフトを維持するために粗フェーズを2倍にする必要がある。
図18は本発明の一実施形態による汎用書き込みプリコンペンセイションを行うための方法を示すフローチャート1800である。第一に、N個の粗フェーズ信号を発生する(1810)。このN個の粗フェーズ信号を用いてM個の密フェーズ信号を発生させる(1820)。そのM個の密フェーズ信号から1つの密フェーズ信号を選択して受信した書き込みデータにシフトをもたらし、第1の所望のプリコンペンセイションを達成する(1830)。
図1−18を参照して上述したプロセスは、例えば、図1に示す1台以上の固定及び/又は取り外し可能データ記憶装置188、あるいはその他のデータ記憶またはデータ通信装置など、コンピュータで読み取り可能な媒体あるいは担体に具体的に組み込むことができる。コンピュータ・プログラム190をメモリ170にロードして、そのコンピュータ・プログラム190を実行させるようにプロセッサ172を構成することもできる。このコンピュータ・プログラム190は、図1のプロセッサ172によって読み出され実行されると、その装置により本発明の一実施形態のステップあるいは要素を実行するのに必要なステップを行わせる命令を含む。
本発明の例示的な実施の形態に関する上記の説明は説明の目的で提示されたものである。すべての可能な実施の形態を述べている訳ではなく、開示されている具体的な形態に本発明を限定する意図もない。上記の教示に照らせば、多くの修正や変更が可能である。本発明の範囲は、上記の詳細な説明ではなく、附属の特許請求の範囲によって限定される。
本発明の一実施形態による記憶システムを示すブロック図である。 本発明の一実施形態による磁気ディスク・ドライブ装置の構成図である。 本発明の一実施形態による汎用プリコンペンセイションを示す図である。 本発明の一実施形態によるプリコンペンセイションを行うための回路の構成図である。 本発明の一実施形態による図4の粗フェーズ発生装置の回路図である。 本発明の一実施形態による1F及び2F粗フェーズ信号を示す図である。 本発明の一実施形態による密フェーズ発生装置の回路図である。 本発明の一実施形態によるFP0からFP4までの中間ノードがどのように発生されるかを示す図である。 本発明の一実施形態による密フェーズ信号の別の例を示す図である。 本発明の一実施形態による24xラッチ・ブロックの構成図である。 本発明の一実施形態による図4のプリコンペンセイションMuxの構成図である。 本発明の一実施形態によるMux選択タイミングがどのように行われるかを示すタイミング図である。 本発明の一実施形態によるプリコンペンセイションのカスタマー設定と4状態プリコンペンセイションのためのNRZI書き込みデータに基づくデコーダ選択の一例を示す図である。 本発明の一実施形態による8状態プリコンペンセイションがどのようにデコードされるかを示す図である。 本発明の一実施形態による16状態デコーダがどのようにインプリメントされるかを示す表の一部を示す図である。 本発明の一実施形態によるM分周器によって汎用プリコンペンセイションを行うための回路の構成図である。 図16においてMが2の場合の異なった組み合わせの粗フェーズを選択する粗フェーズMuxブロックを示す図である。 本発明の一実施形態による汎用書き込みプリコンペンセイションを行うための方法のフローチャートである。
符号の説明
100…記憶システム、
110…トランスデューサ、
120…アクチュエータ、
130…媒体、
140…データ・チャネル、
150…信号処理システム、
160…メディア・トランスレータ、
170…メモリ、
172…プロセッサ、
188…固定及び/又は取り外し可能データ記憶装置、
190…コンピュータ・プログラム、
200…磁気ディスク・ドライブ装置、
210…ディスク、
212…ヘッド、
214…E型ブロック・アセンブリ、
216…プリアンプ、
218…読み取り/書き込みチャネル回路、
220…ディスク・データ制御装置(DDC)、
222…バッファRAM、
224…マイクロコントローラ、
226…ROM、
228…サーボ・ドライバ、
230…アクチュエータ、
232…スピンドル・モータ・ドライバ、
234…スピンドル・モータ、
300…汎用プリコンペンセイション、
310…プリコンペンセイション補正、
312…非対称補正、
400…プリコンペンセイション回路、
410…粗フェーズ発生装置、
412…蜜フェーズ発生装置、
414…蜜フェーズ信号、
420…プリコンペンセイション・デコーダ、
426…書き込みデータ、
430…24ラッチ、
440…データMUX、
450…書き込みドライバ、
452…NRZI書き込みデータ、
500…粗フェーズ回路、
510…4段階VCO、
512,514,516,518…遅延段階、
520,522,524,526…バッファ、
530…1Fレートで使えるフェーズ、
540…2Fレートで使えるフェーズ、
610…1F粗フェーズ、
620…2F粗フェーズ、
700…蜜フェーズ回路、
710…粗フェーズ入力、
712,714,716,718,720,722,724…ドライバ、
740…抵抗器、
830,832,834…蜜フェーズ信号、
840,842…粗フェーズ入力、
1000…24ラッチブロック、
1010…蜜フェーズ入力、
1020,1022…ラッチ、
1030…書き込みデータ、
1040…FPXデータ、
1100…プリコンペンセイションMUX、
1110…パス・ゲート・スイッチ、
1140…プリコンペンセイション・データ、
1240…データMUX選択、
1310,1312,1314…NRZIデータ遷移、
1320…プリコンペンセイション・シフト、
1600…汎用プリコンペンセイション回路、
1670…M分周器。

Claims (34)

  1. N個の粗フェーズ信号を発生するための粗フェーズ発生装置と、
    前記粗フェーズ発生装置に連結され、前記N個の粗フェーズ信号を用いてM個の密フェーズ信号を発生するための密フェーズ発生装置と、
    前記密フェーズ発生装置に連結され、前記M個の密フェーズ信号から1つの密フェーズ信号を選択して受信した書き込みデータにシフトをもたらし、第1の所望のプリコンペンセイションを達成するための書き込みプリコンペンセイション回路と、
    を有することを特徴とする汎用書き込みプリコンペンセイションを行うための回路。
  2. 前記選択された密フェーズ信号が受信した書き込みデータにシフトをもたらし、第1の所望のポジティブ・プリコンペンセイションを達成することを特徴とする請求項1記載の回路。
  3. 前記選択された密フェーズ信号が受信した書き込みデータにシフトをもたらし、第1の所望のネガティブ・プリコンペンセイションを達成することを特徴とする請求項1記載の回路。
  4. 前記密フェーズ信号を選択することにより、さらに受信した書き込みデータにシフトをもたらしてポジティブ又はネガティブ・タイミング非対称補正を達成することを特徴とする請求項1記載の回路。
  5. 前記粗フェーズ発生装置が、第1の周波数で作動し360度/(2X)の増分で0−360度の範囲の2X個のフェーズ信号を提供するX段階差分環状VCO(電圧制御発振器)を有することを特徴とする請求項1記載の回路。
  6. 前記粗フェーズ発生装置が第2の周波数で作動するX段階差分環状VCOを有し、さらに前記粗フェーズ発生装置が差分分周器を有し、360度/(8X)の増分で0−360度の範囲の4X個のフェーズ信号を提供することを特徴とする請求項1記載の回路。
  7. 前記密フェーズ発生装置が電圧を平均化してM個の密フェーズ信号を発生するためのインターポレータを有することを特徴とする請求項1記載の回路。
  8. 前記密フェーズ発生装置がさらに前記N個の粗フェーズ信号のうちの1つを受信するドライバと、前記M個の密フェーズ信号を発生するための前記ドライバ間に配置された直列に連結された抵抗器を有することを特徴とする請求項7記載の回路。
  9. 前記プリコンペンセイション回路がさらに、
    前記密フェーズ発生装置に連結され、該密フェーズ発生装置から1つの基準クロックを受信すると共に書き込みデータを受信するプリコンペンセイション・デコーダと、
    前記密フェーズ発生装置及びプリコンペンセイション・デコーダに連結され、前記プリコンペンセイション・デコーダからの前記書き込みデータとM個の密フェーズ・クロック信号を供給され、そのM個の密フェーズ・クロック信号によってシフトされたM個のラッチされた書き込みデータ信号を出力するラッチ回路と、
    前記ラッチ回路およびプリコンペンセイション・デコーダに連結されるデータ・セレクタであって、前記プリコンペンセイション・デコーダから、前記シフトされたM個のラッチされた書き込みデータ信号のうちのどれをプリコンペンセイトされた書き込みデータとして当該データ・セレクタに提供するかを示す1つのデータ選択信号を受信するデータ・セレクタと、
    を有することを特徴とする請求項1記載の回路。
  10. さらに前記プリコンペンセイトされた書き込みデータを受信してNRZI書き込みデータを出力する書き込みドライバを有することを特徴とする請求項9記載の回路。
  11. シフトされたM個のラッチされた書き込みデータのうちの1つを選択して受信した書き込みデータにシフトをもたらし、タイミング非対称補正を達成することを特徴とする請求項10記載の回路。
  12. さらに、基準クロックを分周してM個の密フェーズ・クロック信号のスルー・レートを増大すると共に、前記M個の密フェーズ・クロック信号に対してより広い周波数範囲を提供するための分周器を有し、前記の用いられた粗フェーズ・クロック信号を変化させることにより前記第1の所望のプリコンペンセイションを行うことを特徴とする請求項9記載の回路。
  13. データを記録するための磁気記憶媒体と、
    前記磁気記憶媒体を動かすためのモータと、
    前記磁気記憶媒体からデータを読み取り、前記媒体にデータを書き込むためのヘッドと、
    前記磁気記憶媒体に対して前記ヘッドの位置決めを行うためのアクチュエータと、
    前記磁気記憶媒体上で符号化された信号を処理するためのデータ・チャネルとを有し、
    前記データ・チャネルがN個の粗フェーズ信号を発生するための粗フェーズ発生装置と、該粗フェーズ発生装置に連結され、N個の粗フェーズ信号を用いてM個の密フェーズ信号を発生する密フェーズ発生装置と、該密フェーズ発生装置に連結される書き込みプリコンペンセイション回路であって、前記M個の密フェーズ信号から1つの密フェーズ信号を選んで受信した書き込みデータにシフトをもたらし、第一の所望のプリコンペンセイションを行うための書き込みプリコンペンセイション回路とを有することを特徴とする磁気記憶装置。
  14. 前記選択された密フェーズ信号が受信した書き込みデータにシフトをもたらし、第1の所望のポジティブ・プリコンペンセイションを達成することを特徴とする請求項13記載の磁気記憶装置。
  15. 前記選択された密フェーズ信号が受信した書き込みデータにシフトをもたらし、第1の所望のネガティブ・プリコンペンセイションを達成することを特徴とする請求項13記載の磁気記憶装置。
  16. さらに、前記密フェーズ信号を選択することにより、受信した書き込みデータにシフトをもたらしてタイミング非対称補正を達成することを特徴とする請求項13記載の磁気記憶装置。
  17. 前記粗フェーズ発生装置が第1の周波数で作動し360度/(2X)の増分で0−360度の範囲の2X個のフェーズ信号を提供するX段階差分環状VCOを有することを特徴とする請求項13記載の磁気記憶装置。
  18. 前記粗フェーズ発生装置が第2の周波数で作動するX段階差分環状VCOを有し、さらに前記粗フェーズ発生装置が差分分周器を有し、360度/(8X)の増分で0−360度の範囲の4X個のフェーズ信号を提供することを特徴とする請求項13記載の磁気記憶装置。
  19. 前記密フェーズ発生装置が電圧を平均化してM個の密フェーズ信号を発生するインターポレータを有することを特徴とする請求項13記載の磁気記憶装置。
  20. 前記密フェーズ発生装置がさらに前記N個の粗フェーズ信号のうちの1つを受信するドライバと、前記M個の密フェーズ信号を発生するための前記ドライバ間に配置された直列に連結された抵抗器を有することを特徴とする請求項19記載の磁気記憶装置。
  21. 前記書き込みプリコンペンセイション回路がさらに、
    前記密フェーズ発生装置に連結されており、該密フェーズ発生装置から基準クロックを受信すると共に、前記書き込みデータを受信するプリコンペンセイション・デコーダと、
    前記密フェーズ発生装置及びプリコンペンセイション・デコーダと連結されており、前記プリコンペンセイション・デコーダからの書き込みデータと前記M個の密フェーズ・クロック信号を供給されると共に、前記M個の密フェーズ・クロック信号によってシフトされたM個のラッチされた書き込みデータ信号を供給するラッチ回路と、
    前記ラッチ回路及びプリコンペンセイション・デコーダと連結されるデータ・セレクタであって、前記プリコンペンセイション・デコーダから、前記シフトされたM個のラッチされた書き込みデータ信号のどれをプリコンペンセイトされた書き込みデータとして当該データ・セレクタに提供するかを示すデータ選択信号を受信するデータ・セレクタと、
    を有することを特徴とする請求項13記載の磁気記憶装置。
  22. さらに、前記プリコンペンセイトされた書き込みデータを受信して、NRZI書き込みデータを出力する書き込みドライバを有することを特徴とする請求項21記載の磁気記憶装置。
  23. さらにシフトされたM個のラッチされた書き込みデータ信号のうちの1つを選択して受信した書き込みデータにシフトをもたらしてタイミング非対称補正を達成することを特徴とする請求項22記載の磁気記憶装置。
  24. さらに、前記基準クロックを分周して前記M個の密フェーズ・クロック信号のスルー・レートを増大させ、前記密フェーズ・クロック信号に対して広い周波数範囲を提供するための分周器を有し、前記用いられた粗フェーズ・クロック信号を変化させることにより前記第1の所望のプリコンペンセイションを行うことを特徴とする請求項21記載の磁気記憶装置。
  25. N個の粗フェーズ信号を発生するステップと、
    前記N個の粗フェーズ信号を用いてM個の密フェーズ信号を発生するステップと、
    前記M個の密フェーズ信号から1つの密フェーズ信号を選んで受信した書き込みデータにシフトをもたらし、第1の所望のプリコンペンセイションを達成するステップと、
    を含むことを特徴とする汎用書き込みプリコンペンセイションを行うための方法。
  26. 前記1つの密フェーズ信号を選択するステップがさらに1つの密フェーズ信号を選択して第1の所望のポジティブ・プリコンペンセイションを達成するステップを含むことを特徴とする請求項25記載の方法。
  27. 前記1つの密フェーズ信号を選択するステップがさらに1つの密フェーズ信号を選択して第1の所望のネガティブ・プリコンペンセイションを達成するステップを含むことを特徴とする請求項25記載の方法。
  28. 前記1つの密フェーズ信号を選択するステップがさらに、1つの密フェーズ信号を選択して、さらに受信した書き込みデータにシフトをもたらしポジティブあるいはネガティブ・タイミング非対称補正を達成するステップを含むことを特徴とする請求項25記載の方法。
  29. 前記N個の粗フェーズ信号を発生するステップがさらに、360度/Xの増分で0−360度の範囲のX個のフェーズ信号を提供するステップを含むことを特徴とする請求項25記載の方法。
  30. 前記N個の粗フェーズ信号を発生するステップがさらに、360度/(2X)の増分で0−360度の範囲の2X個のフェーズ信号を提供するステップを含むことを特徴とする請求項25記載の方法。
  31. 前記N個の粗フェーズ信号を用いてM個の密フェーズ信号を発生させるためのステップがさらに、前記N個の粗フェーズ信号に対して電圧を平均化して前記M個の密フェーズ信号を発生させるステップを含むことを特徴とする請求項25記載の方法。
  32. 前記M個の密フェーズ信号から1つの密フェーズ信号を選択して受信した書き込みデータにシフトをもたらし、第1の所望のプリコンペンセイションを達成するためのステップがさらに、
    前記M個の密フェーズ・クロック信号に基づいて書き込みデータをシフトさせM個のシフトされた書き込みデータ信号を生成するステップと、
    基準クロック及び書き込みデータを受信すると、データ選択信号を出力して前記M個のシフトされた書き込みデータ信号の1つを選択してプリコンペンセイトされた書き込みデータとして提供するステップと
    を含むことを特徴とする請求項25記載の方法。
  33. 前記1つのデータ選択信号を出力して前記M個のシフトされた書き込みデータ信号の1つを選択するステップがさらに前記書き込みデータのタイミング非対称補正を達成するステップを含むことを特徴とする請求項32記載の方法。
  34. 前記基準クロックを分周して前記M個の密フェーズ・クロック信号のスルー・レートを増大し、そして、前記M個の密フェーズ・クロック信号に対して広い周波数範囲を提供するステップと、
    前記用いられた粗フェーズ・クロック信号を変更して前記第1の所望のプリコンペンセイションを行うステップと、
    をさらに含むことを特徴とする請求項32記載の方法。
JP2005022705A 2004-02-26 2005-01-31 汎用書き込みプリコンペンセイションを行うための方法及び装置 Pending JP2005243222A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/787,291 US7002764B2 (en) 2004-02-26 2004-02-26 Method and apparatus for providing generalized write pre-compensation

Publications (1)

Publication Number Publication Date
JP2005243222A true JP2005243222A (ja) 2005-09-08

Family

ID=34886744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022705A Pending JP2005243222A (ja) 2004-02-26 2005-01-31 汎用書き込みプリコンペンセイションを行うための方法及び装置

Country Status (3)

Country Link
US (1) US7002764B2 (ja)
JP (1) JP2005243222A (ja)
CN (1) CN100414632C (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1758067A2 (en) 2005-08-24 2007-02-28 Sony Corporation Pop label and electronic device
JP2007157184A (ja) * 2005-11-30 2007-06-21 Samsung Electronics Co Ltd 情報記録再生装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583459B1 (en) * 2004-11-18 2009-09-01 Marvell International Ltd. Method and apparatus for write precompensation in a magnetic recording system
US20080186618A1 (en) * 2007-02-05 2008-08-07 Broadcom Corporation, A California Corporation Architecture for write pre-compensation
US9502469B2 (en) * 2014-10-29 2016-11-22 Qualcomm Incorporated Electrically reconfigurable interposer with built-in resistive memory

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352307A (ja) 1986-08-20 1988-03-05 Toshiba Corp 磁気デイスク装置
US5359631A (en) 1992-09-30 1994-10-25 Cirrus Logic, Inc. Timing recovery circuit for synchronous waveform sampling
US5872665A (en) 1995-07-28 1999-02-16 Hewlett-Packard Company Programmable write equalization for magnetic data recording
US5734680A (en) * 1995-08-09 1998-03-31 Hewlett-Packard Co. Analog implementation of a partial response maximum likelihood (PRML) read channel
TW369648B (en) 1996-09-02 1999-09-11 Koninkl Philips Electronics Nv Device for write compensation in magnetic media recording
US20020015247A1 (en) 1997-07-02 2002-02-07 David S. Rosky High resolution wide range write precompensation
US5986830A (en) 1997-07-30 1999-11-16 Cirrus Logic, Inc. Read/write channel write precompensation system and method using one or more delay clocks
JPH11250407A (ja) 1998-02-27 1999-09-17 Hewlett Packard Japan Ltd Nlts補正回路
US6337778B1 (en) * 1999-05-25 2002-01-08 Western Digital Technologies, Inc. Disk drive employing vector addition of primary phase write clock signals for generating secondary phase write clock signal
US6369661B1 (en) 2000-11-20 2002-04-09 Cirrus Logic, Inc. Phase interpolation circuits and methods and systems using the same
US6426662B1 (en) 2001-11-12 2002-07-30 Pericom Semiconductor Corp. Twisted-ring oscillator and delay line generating multiple phases using differential dividers and comparators to match delays

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1758067A2 (en) 2005-08-24 2007-02-28 Sony Corporation Pop label and electronic device
JP2007157184A (ja) * 2005-11-30 2007-06-21 Samsung Electronics Co Ltd 情報記録再生装置

Also Published As

Publication number Publication date
US20050190473A1 (en) 2005-09-01
US7002764B2 (en) 2006-02-21
CN1661705A (zh) 2005-08-31
CN100414632C (zh) 2008-08-27

Similar Documents

Publication Publication Date Title
US7123430B2 (en) Method and apparatus for providing write pre-compensation using a read timing path
TWI536374B (zh) 利用多等級寫入電流之磁性記錄系統
US6337778B1 (en) Disk drive employing vector addition of primary phase write clock signals for generating secondary phase write clock signal
JP3677141B2 (ja) 記録等化器及びそれを用いた磁気記録再生装置
US6621648B2 (en) Look ahead write precompensation
KR20130081632A (ko) 열 지원 자기 기록 시스템
US7880986B1 (en) Method and apparatus for write precompensation in a magnetic recording system
US20070183072A1 (en) High-density recording method for hard disk drives and a pre-amplifier circuit suitable for use with same
US7271969B2 (en) Apparatus for providing high speed, linear-phase interpolation
JP2005243222A (ja) 汎用書き込みプリコンペンセイションを行うための方法及び装置
US9715887B2 (en) Magnetic recording system using pattern dependent writer having register pages for storing write currents
US20170236534A1 (en) Write Current Switching in a Data Storage Device
US8994407B1 (en) Method and system for removing a pulse having a different pulse width relative to that of other pulses in a clock signal of an analog to digital converter
US9275656B1 (en) Disk drive with channel and preamp with dynamic write-current control for write head
US6493161B1 (en) Pulse-mode writer
US10074398B2 (en) Storage device, controller circuit, and writing and reading method
US10991391B1 (en) Circuits and methods for modifying the write current waveform to improve track density in HDD
US6760171B2 (en) Magnetic medium precompensation method and apparatus
US20100002337A1 (en) Magnetic recording apparatus, recording head, and magnetic recording method
JPH11203608A (ja) 記録等化器およびそれを用いた磁気記録再生装置
JPH0395705A (ja) 垂直磁気記録方式
JPH03100904A (ja) 垂直磁気記録方式
JPH03100905A (ja) 垂直磁気記録方式
JPH11238205A (ja) Mrヘッド用の信号波形制御装置
JP2000331307A (ja) 磁気記録における書込み補償方法および磁気記録装置