JP2005239452A - Ga COMPOUND-DOPED POLYCRYSTALLINE SILICON AND METHOD OF MANUFACTURING THE SAME - Google Patents

Ga COMPOUND-DOPED POLYCRYSTALLINE SILICON AND METHOD OF MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2005239452A
JP2005239452A JP2004048434A JP2004048434A JP2005239452A JP 2005239452 A JP2005239452 A JP 2005239452A JP 2004048434 A JP2004048434 A JP 2004048434A JP 2004048434 A JP2004048434 A JP 2004048434A JP 2005239452 A JP2005239452 A JP 2005239452A
Authority
JP
Japan
Prior art keywords
compound
polycrystalline silicon
silicon
doped polycrystalline
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004048434A
Other languages
Japanese (ja)
Other versions
JP4599067B2 (en
Inventor
Teruhiko Hirasawa
照彦 平沢
Norio Yamaga
功雄 山鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIICHI KIDEN KK
Dai Ichi Kiden Co Ltd
Original Assignee
DAIICHI KIDEN KK
Dai Ichi Kiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIICHI KIDEN KK, Dai Ichi Kiden Co Ltd filed Critical DAIICHI KIDEN KK
Priority to JP2004048434A priority Critical patent/JP4599067B2/en
Publication of JP2005239452A publication Critical patent/JP2005239452A/en
Application granted granted Critical
Publication of JP4599067B2 publication Critical patent/JP4599067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a Ga compound-doped polycrystalline silicon, in which the accuracy of the measurement and the workability of Ga doping are improved and to provide the Ga compound-doped polycrystalline silicon hardly causing photo-degradation and having high conversion efficiency stably. <P>SOLUTION: A polycrystalline silicon is grown by doping a Ga compound which is solid at a temperature higher than the ordinary temperature. As a result, the accuracy and workability in weighing are improved compared to that in a conventional one. When the Ga compound-doped polycrystalline silicon is used for a solar cell, photo-degradation is hardly caused and high conversion efficiency is stably provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、太陽電池材料として有用なGa化合物ドープ多結晶シリコンとその製造方法に関する。   The present invention relates to a Ga compound-doped polycrystalline silicon useful as a solar cell material and a method for producing the same.

太陽電池材料は、大きく分類すると「結晶シリコン」、「アモルファスシリコン」、「化合物半導体」の3つがあり、更に、「結晶シリコン」には、「単結晶シリコン」と「多結晶シリコン」がある。この中で「アモルファスシリコン」は、製造コストは安いものの太陽電池性能を表す変換効率が6〜8(%)と低く、一方、「化合物半導体」は、変換効率が20〜25(%)と高いものの、材料コストが高く、低コスト化が困難である。更に、「単結晶シリコン」は、変換効率が、15〜20(%)と化合物半導体に次いで高いが、太陽電池基板を得るために、チョクラルスキー法(CZ法)あるいは、フローティング・ゾーン法(FZ法)で得られた円柱状結晶を角型基板に加工する必要があり、低材料収率による基板の高コスト化が問題となっている。   Solar cell materials can be broadly classified into “crystalline silicon”, “amorphous silicon”, and “compound semiconductor”, and “crystalline silicon” includes “single crystal silicon” and “polycrystalline silicon”. Among them, “amorphous silicon” has low conversion cost but low conversion efficiency representing solar cell performance of 6 to 8 (%), while “compound semiconductor” has high conversion efficiency of 20 to 25 (%). However, the material cost is high and it is difficult to reduce the cost. Furthermore, “single crystal silicon” has a conversion efficiency of 15-20 (%), which is the second highest after compound semiconductors. In order to obtain a solar cell substrate, the Czochralski method (CZ method) or the floating zone method ( It is necessary to process the columnar crystal obtained by the FZ method into a square substrate, and the cost of the substrate due to the low material yield is a problem.

最後に「多結晶シリコン」であるが、現在のその製造方法の主流は、石英等の角型ルツボ内でのシリコンの溶解・一方向凝固であり、得られる結晶が角型で、単結晶シリコンのような加工が不要なため、基板コストが安価でかつ、変換効率が、12〜17(%)と比較的高い事から、現在太陽電池材料の主流となっている。   Finally, “polycrystalline silicon”, the current mainstream manufacturing method is melting and unidirectional solidification of silicon in a square crucible such as quartz, and the resulting crystal is square and single crystal silicon. Since such processing is unnecessary, the substrate cost is low and the conversion efficiency is relatively high at 12 to 17 (%).

しかしながら、多結晶シリコン太陽電池に占める基板コストの割合は、現状で40(%)程度と高く、更なる基板コストの低減が求められている。多結晶シリコン太陽電池のコストを下げるためには、基板コストを下げる一方でその変換効率を単結晶シリコン太陽電池なみに高める事が要求されている。更に、結晶シリコン太陽電池では、太陽光を照射すると基板ライフタイムの低下に伴う変換効率の低下という現象が生じ、安定した太陽電池が得られないと言う問題も生じている。   However, the ratio of the substrate cost to the polycrystalline silicon solar cell is currently as high as about 40%, and further reduction of the substrate cost is required. In order to reduce the cost of a polycrystalline silicon solar cell, it is required to reduce the substrate cost while increasing its conversion efficiency to that of a single crystal silicon solar cell. Furthermore, in a crystalline silicon solar cell, when sunlight is irradiated, a phenomenon of a decrease in conversion efficiency accompanying a decrease in substrate lifetime occurs, and there is a problem that a stable solar cell cannot be obtained.

この結晶シリコン太陽電池に太陽光を照射した時に基板ライフタイムが低下し、光劣化による変換効率の低下が生じる原因は、基板中に存在するB(ボロン)と酸素が光照射により複合体を生成し、キャリア再結合中心となるためと考えられている。現在、太陽電池用結晶シリコン基板の伝導型はP型が主流であり、通常はB(ボロン)がドープされているため、光劣化が生じてしまう。   When the crystalline silicon solar cell is irradiated with sunlight, the lifetime of the substrate is reduced, and the reason why the conversion efficiency is reduced due to photodegradation is that B (boron) and oxygen present in the substrate form a composite by light irradiation. It is thought that it becomes a carrier recombination center. At present, the P-type is the main type of crystalline silicon substrate for solar cells, and since B (boron) is usually doped, photodegradation occurs.

このような問題点を解決するために、P型ドーパントとして、B(ボロン)の代わりにGa(ガリウム)をドープする製造方法が特許文献1に提案され、これにより、光劣化が生じにくく、高い変換効率を有する多結晶シリコン太陽電池が得られたと記載されている。
特開2001−64007
In order to solve such problems, a manufacturing method in which Ga (gallium) is doped instead of B (boron) as a P-type dopant has been proposed in Patent Document 1, which makes it difficult to cause photodegradation and is high. It is described that a polycrystalline silicon solar cell having conversion efficiency was obtained.
JP 2001-64007 A

しかしながら、Gaの融点は30℃と低く、秤量およびドープ作業では、液体Gaを取り扱う必要がある。液体では、微量Ga濃度を精度良く調整する事が困難であるばかりか、作業性の低下原因となっている。   However, the melting point of Ga is as low as 30 ° C., and it is necessary to handle liquid Ga for weighing and dope operations. In the liquid, it is difficult not only to adjust the trace amount Ga concentration with high accuracy, but also to decrease workability.

本発明はこのような問題点に鑑みてなされたもので、Gaドープの計測の正確性および作業性を向上させたGa化合物ドープ多結晶シリコンの製造方法と、光劣化が生じにくく、高い変換効率が安定的に得られるGa化合物ドープ多結晶シリコンとを提供する事を目的としている。   The present invention has been made in view of such problems, a Ga compound-doped polycrystalline silicon manufacturing method with improved Ga-doping measurement accuracy and workability, and a high conversion efficiency that hardly causes photodegradation. It aims at providing Ga compound dope polycrystalline silicon from which can be obtained stably.

本発明に係るGa化合物ドープ多結晶シリコンの製造方法は、常温以上で固体であるGa化合物をドープして育成するものである。本発明は、前記Ga化合物をGa(酸化ガリウム)とするものである。本発明は、多結晶シリコン中のGa濃度が、3×1015(atoms/cm)〜2×1017(atoms/cm)となるように結晶育成するものである。 The method for producing a Ga compound-doped polycrystalline silicon according to the present invention is to grow by doping a Ga compound that is solid at room temperature or higher. In the present invention, the Ga compound is Ga 2 O 3 (gallium oxide). In the present invention, crystals are grown so that the Ga concentration in the polycrystalline silicon is 3 × 10 15 (atoms / cm 3 ) to 2 × 10 17 (atoms / cm 3 ).

本発明に係るGa化合物ドープ多結晶シリコンは、常温以上で固体であるGa化合物をドープして育成したものである。本発明は、前記Ga化合物をGa(酸化ガリウム)としたものである。本発明は、多結晶シリコン中のGa濃度が、3×1015(atoms/cm)〜2×1017(atoms/cm)となるように結晶育成したものである。 The Ga compound doped polycrystalline silicon according to the present invention is grown by doping a Ga compound that is solid at room temperature or higher. In the present invention, the Ga compound is Ga 2 O 3 (gallium oxide). In the present invention, crystals are grown so that the Ga concentration in the polycrystalline silicon is 3 × 10 15 (atoms / cm 3 ) to 2 × 10 17 (atoms / cm 3 ).

本発明Ga化合物ドープ多結晶シリコンの製造方法では、常温で固体であるGa化合物を使用する事で、従来のような低融点(30℃)の液体金属Gaと比べて格段に秤量時の正確性と作業性を向上させる事が出来る。更に、Ga化合物であるため、金属Ga単体よりも式量が増加する事でドープ重量が増加し、秤量精度の向上が併せて得られる。Ga化合物としてGa(酸化ガリウム)を使用することで、高純度かつ低コストで入手可能なため、経済上等からも好ましい。Ga濃度としては、太陽3×1015(atoms/cm)〜2×1017(atoms/cm)となるように結晶育成を行う事で、電池セルの変換効率が安定させることができる。 The Ga compound-doped polycrystalline silicon production method of the present invention uses a Ga compound that is solid at room temperature, so that it is much more accurate when weighed than conventional liquid metal Ga having a low melting point (30 ° C.). And workability can be improved. Furthermore, since it is a Ga compound, the dope weight is increased by increasing the formula weight as compared with the metal Ga simple substance, and an improvement in weighing accuracy is also obtained. Since Ga 2 O 3 (gallium oxide) is used as the Ga compound, it can be obtained with high purity and low cost. By performing crystal growth so that the Ga concentration is 3 × 10 15 (atoms / cm 3 ) to 2 × 10 17 (atoms / cm 3 ), the conversion efficiency of the battery cell can be stabilized.

本発明のGa化合物ドープ多結晶シリコンを太陽電池用材料として使用すれば、Bドープで発生する光照射による酸素と複合体起因のキャリア再結合中心による基板ライフタイム低下の発生が防止され、光劣化が生じにくく、高い変換効率が安定に得られる太陽電池の製造が可能となる。   If the Ga compound-doped polycrystalline silicon of the present invention is used as a solar cell material, it is possible to prevent the occurrence of a decrease in the substrate lifetime due to the oxygen and the carrier recombination center caused by the complex due to the light irradiation generated in the B doping, and the photodegradation This makes it possible to manufacture a solar cell in which high conversion efficiency is stably obtained.

以下、本発明の実施形態について、詳細に説明する。先ず、本発明で使用する一方向凝固法による多結晶シリコン製造装置の構成例を図1に示す。多結晶シリコン製造装置は、炉のチャンバー1と、そのチャンバー1内の中央に原料シリコンの溶解と結晶育成とを行なう石英ルツボ2と、その石英ルツボ2を内部に収容しかつ石英ルツボ2が破損した場合のシリコン漏れ防止の役割を果たすカーボンルツボ3と、石英ルツボ2内の原料シリコンを溶解するためのカーボンヒーター4と、そのヒーター4による輻射熱が外部に逃げるのを防ぐカーボン断熱材5と、前記カーボンルツボ3を保持するカーボン台6と、そのカーボン台6を支持する上下動可能なものであって水冷されるルツボ支持シャフト7とを有する。チャンバー1には排気口8とガス供給口9とが形成され、排気口8からはチャンバー1内を真空引きさせ、ガス供給口9からチャンバー1内にArガス等の不活性ガスをパージおよびフローさせる。前記石英ルツボ2内面にはSi離型剤のコート・焼付けを行う。この離型剤のコート・焼付けは、石英ルツボ2内で生成する多結晶シリコンと石英ルツボの反応を抑えて、多結晶シリコンインゴットが石英ルツボ2内から容易に取り出せるようにするためのものである。 Hereinafter, embodiments of the present invention will be described in detail. First, FIG. 1 shows a configuration example of a polycrystalline silicon manufacturing apparatus using a unidirectional solidification method used in the present invention. The polycrystalline silicon manufacturing apparatus includes a furnace chamber 1, a quartz crucible 2 for melting and crystal growth of raw material silicon in the center of the chamber 1, and the quartz crucible 2 accommodated therein and the quartz crucible 2 is damaged. A carbon crucible 3 that plays a role in preventing silicon leakage in the case of carbon dioxide, a carbon heater 4 for melting raw material silicon in the quartz crucible 2, a carbon heat insulating material 5 for preventing the radiant heat from the heater 4 from escaping to the outside, It has a carbon base 6 that holds the carbon crucible 3 and a crucible support shaft 7 that supports the carbon base 6 and that can move up and down and is water-cooled. An exhaust port 8 and a gas supply port 9 are formed in the chamber 1. The chamber 1 is evacuated from the exhaust port 8, and an inert gas such as Ar gas is purged and flowed into the chamber 1 from the gas supply port 9. Let The inner surface of the quartz crucible 2 is coated and baked with a Si 3 N 4 release agent. This release agent coating / baking is intended to suppress the reaction between the polycrystalline silicon generated in the quartz crucible 2 and the quartz crucible so that the polycrystalline silicon ingot can be easily taken out from the quartz crucible 2. .

次に、上記装置を使用した多結晶シリコンの製造方法について説明する。先ず最初に、次に原料シリコンとドーパントであるGa化合物を石英ルツボ2内に入れ、炉(チャンバー1)内を真空引きし、Arガスを注入する。その後、ヒーター4で石英ルツボ2を加熱して、原料シリコンを溶解する。なおGa化合物としては、常温以上で固体であるGa化合物を使用する事で、30℃と低融点の液体金属Gaよりも格段に秤量時の正確性と作業性を向上させる事が出来る。更に、Ga化合物としてGa(酸化ガリウム)を使用すれば、高純度かつ低コストで入手が容易である。 Next, a method for producing polycrystalline silicon using the above apparatus will be described. First, raw material silicon and a Ga compound as a dopant are placed in the quartz crucible 2, the inside of the furnace (chamber 1) is evacuated, and Ar gas is injected. Thereafter, the quartz crucible 2 is heated by the heater 4 to dissolve the raw material silicon. In addition, as a Ga compound, the accuracy and workability | operativity at the time of weighing can be improved remarkably rather than 30 degreeC and low melting point liquid metal Ga by using a Ga compound which is solid at normal temperature or more. Furthermore, if Ga 2 O 3 (gallium oxide) is used as the Ga compound, it is easy to obtain with high purity and low cost.

次に、原料シリコンが溶解したら、石英ルツボ2を0.1〜1(mm/min)の速度でヒーター4により形成された加熱領域から引き下げて冷却固化させる事で石英ルツボ2内に柱状多結晶シリコンが育成される。石英ルツボ2内の溶解シリコンが完全に上部まで結晶化したら、炉内の温度の降下を開始し、多結晶シリコンインゴットが取り出し可能な温度まで冷却を行う。   Next, when the raw material silicon is melted, the quartz crucible 2 is pulled down from the heating region formed by the heater 4 at a speed of 0.1 to 1 (mm / min) to be cooled and solidified, whereby columnar polycrystals are formed in the quartz crucible 2. Silicon is grown. When the molten silicon in the quartz crucible 2 is completely crystallized to the upper part, the temperature in the furnace starts to drop and is cooled to a temperature at which the polycrystalline silicon ingot can be taken out.

以下、本発明の実施例を具体的に説明するが、本発明は、これらに限定されるものではない。図1に示したような多結晶シリコン製造装置を使用し、内面にSi離型剤が塗布された石英ルツボ2内に原料シリコン4KgとGaドープ剤0.26g(Gaは0.26gの70%)をセットし、ヒーター4により原料シリコンとGaOドープ剤を溶解後、石英ルツボ2を0.2(mm/min)の速度で加熱領域から引き下げて冷却固化させ、柱状の多結晶シリコンを育成した。このようにして得られた多結晶シリコンインゴットの中心部から、柱状結晶が発達している結晶方向平行にシリコン基板を切り出し、表面の加工歪みを酸エッチングにより除去後、基板の抵抗率およびライフタイム測定を行った。本発明に係るGa化合物ドープ多結晶シリコンの基板の抵抗率を図2に示し、そのライフタイムを図3に示す。 Examples of the present invention will be specifically described below, but the present invention is not limited to these. A polycrystalline silicon manufacturing apparatus as shown in FIG. 1 is used, and 4 kg of raw silicon and 0.26 g of Ga 2 O 3 dopant are added in a quartz crucible 2 having an inner surface coated with a Si 3 N 4 release agent (Ga is 0.26 g of 70%) is set, and after melting the raw material silicon and Ga 2 O dopant by the heater 4, the quartz crucible 2 is pulled down from the heating region at a rate of 0.2 (mm / min) to be cooled and solidified. Columnar polycrystalline silicon was grown. The silicon substrate is cut out from the central portion of the polycrystalline silicon ingot thus obtained in parallel with the crystal direction in which the columnar crystals are developed, and after processing distortion on the surface is removed by acid etching, the resistivity and lifetime of the substrate are removed. Measurements were made. The resistivity of the Ga compound-doped polycrystalline silicon substrate according to the present invention is shown in FIG. 2, and its lifetime is shown in FIG.

次に、従来の液体Gaを使用した比較例を示す。
[比較例]図1に示したような多結晶シリコン製造装置を使用し、内面にSi離型剤が塗布された石英ルツボ2内に原料シリコン4Kgと金属Gaドープ剤0.18gをセットし、ヒーター4により原料シリコンと金属Gaドープ剤を溶解する。その後、石英ルツボ2を0.2(mm/min)の速度で加熱領域から引き下げて冷却固化させ、柱状の多結晶シリコンを育成した。このようにして得られた多結晶シリコンインゴットの中心部から、柱状結晶が発達している結晶方向平行にシリコン基板を切り出し、表面の加工歪みを酸エッチングにより除去後、基板の抵抗率およびライフタイム測定を行った。液体Gaを使用して生成されたシリコンの基板の抵抗率を図4に示し、そのライフタイムを図5に示す。
Next, a comparative example using conventional liquid Ga is shown.
Using the polycrystalline silicon manufacturing apparatus as shown in Comparative Example 1, the raw material silicon 4Kg and metal Ga dopant 0.18g in Si 3 N 4 release agent in the coated quartz crucible 2 to the inner surface The raw material silicon and the metal Ga dopant are dissolved by the heater 4. Thereafter, the quartz crucible 2 was pulled down from the heating region at a rate of 0.2 (mm / min) to be cooled and solidified to grow columnar polycrystalline silicon. The silicon substrate is cut out from the central portion of the polycrystalline silicon ingot thus obtained in parallel with the crystal direction in which the columnar crystals are developed, and after processing distortion on the surface is removed by acid etching, the resistivity and lifetime of the substrate are removed. Measurements were made. The resistivity of a silicon substrate produced using liquid Ga is shown in FIG. 4, and its lifetime is shown in FIG.

本発明に係るGa化合物ドープ多結晶シリコンの抵抗率である図2と、従来の液体Gaドープ多結晶シリコンの抵抗率である図4とを比較する。本発明のシリコンの抵抗率(図2)では、1.5−1.7Ω−cmの領域が殆どであるのに対し、従来のものから生成するシリコンの抵抗率(図4)では、1.5−1.7Ω−cmの領域と1.7−1.9Ω−cmの領域とが混在している。これらの図からすれば、殆どの領域が均一である本発明のシリコンは、低効率のバラツキが少ないことが分る。従って、本発明に係るGa化合物ドープ多結晶シリコンを太陽電池に使用すれば、光劣化が生じにくく、高い変換効率を安定的に得ることが出来る。   FIG. 2 which is the resistivity of the Ga compound doped polycrystalline silicon according to the present invention is compared with FIG. 4 which is the resistivity of the conventional liquid Ga doped polycrystalline silicon. In the resistivity (FIG. 2) of the silicon of the present invention, the region of 1.5 to 1.7 Ω-cm is almost all, whereas in the resistivity (FIG. 4) of silicon generated from the conventional one, 1. A 5-1.7 Ω-cm region and a 1.7-1.9 Ω-cm region are mixed. From these figures, it can be seen that the silicon of the present invention, in which most regions are uniform, has little variation in low efficiency. Therefore, if the Ga compound-doped polycrystalline silicon according to the present invention is used for a solar cell, photodegradation hardly occurs and high conversion efficiency can be stably obtained.

本発明に係るGa化合物ドープ多結晶シリコンのライフタイムである図3と、従来の液体Gaドープ多結晶シリコンのライフタイムである図5とを比較する。本発明のシリコン(図3)では、15−20μS以上の領域が横軸の19−104mmと縦軸の16−100mmの間の中央部の殆どを占めているのに対し、従来のシリコン(図5)では、15−20μS以上の領域は横軸の18−92mmと縦軸の23−97mmの間の約半分しか占めていない。更に、本発明のシリコン(図3)では、20−25μSの領域が横軸の31−99mmと縦軸の18−97mmの間の領域に多数点在しているのに対し、従来のシリコン(図5)では、20−25μSの領域は横軸の20−80mmと縦軸の28−87mmの間に3箇所しか存在しない。このことから、本発明に係るGa化合物ドープ多結晶シリコンは、従来のシリコンよりもライフタイムが長く、光劣化が生じにくいことが分る。   FIG. 3 showing the lifetime of the Ga compound-doped polycrystalline silicon according to the present invention is compared with FIG. 5 showing the lifetime of the conventional liquid Ga-doped polycrystalline silicon. In the silicon of the present invention (FIG. 3), the region of 15-20 μS or more occupies most of the central portion between 19-104 mm on the horizontal axis and 16-100 mm on the vertical axis, whereas conventional silicon (FIG. 3). In 5), the region of 15-20 μS or more occupies only about half between 18-92 mm on the horizontal axis and 23-97 mm on the vertical axis. Furthermore, in the silicon according to the present invention (FIG. 3), many regions of 20-25 μS are scattered in a region between 31-99 mm on the horizontal axis and 18-97 mm on the vertical axis, whereas conventional silicon ( In FIG. 5), there are only three regions of 20-25 μS between 20-80 mm on the horizontal axis and 28-87 mm on the vertical axis. From this, it can be seen that the Ga compound-doped polycrystalline silicon according to the present invention has a longer lifetime than conventional silicon and is less susceptible to photodegradation.

本発明では、多結晶シリコンを育成する際のP型ドーパントとして、常温で固体であるGa化合物を使用する。これによって、従来のような30℃と低融点の液体金属Gaを使用するものと比べて、格段に秤量時の正確性と作業性を向上させる事が出来る。本発明では更に、Ga化合物のため、金属Ga単体よりも式量が増加する事でドープ重量が増加し、秤量精度の向上が併せて得ることができる。   In the present invention, a Ga compound that is solid at room temperature is used as a P-type dopant for growing polycrystalline silicon. As a result, the accuracy and workability at the time of weighing can be remarkably improved as compared with the conventional case using liquid metal Ga having a low melting point of 30 ° C. In the present invention, since the Ga compound is used, the dope weight is increased by increasing the formula weight as compared with the metal Ga simple substance, and the weighing accuracy can be improved.

Ga化合物としては、有機および無機の多くのGa化合物が考えられるが、有機Ga化合物では、その成分元素であるC(炭素)の多結晶シリコン内へのコンタミによる基板ライフタイム低下の恐れがあるため、その使用は好ましくない。更に、無機Ga化合物としても、多くの酸化物、塩化物、硫化物等々があるが、なかでもGGG等の酸化物単結晶用材料として実績があり、高純度かつ低コストで入手可能なGa(酸化ガリウム)の使用が好ましい。 As Ga compounds, many organic and inorganic Ga compounds are conceivable. However, in organic Ga compounds, there is a risk that the lifetime of the substrate may be reduced due to contamination of C (carbon), which is a component element, into the polycrystalline silicon. , Its use is not preferred. Furthermore, as an inorganic Ga compound, there are many oxides, chlorides, sulfides, etc. Among them, there is a track record as an oxide single crystal material such as GGG, and Ga 2 which is available with high purity and low cost. The use of O 3 (gallium oxide) is preferred.

Ga濃度が3×1015(atoms/cm)より小さい場合には、多結晶シリコン基板の抵抗率が高くなりすぎ、太陽電池セルにした場合の内部抵抗による電力損失が大きくなり変換効率の低下が生じる。一方、Ga濃度が2×1017(atoms/cm)より大きい場合にも、基板内部のオージェ再結合に起因する基板ライフタイムの低下による変換効率の低下が生じてしまう。従って、Ga濃度としては、太陽電池セルの変換効率が安定な3×1015(atoms/cm)〜2×1017(atoms/cm)となるように結晶育成を行う事が好ましい。 When the Ga concentration is smaller than 3 × 10 15 (atoms / cm 3 ), the resistivity of the polycrystalline silicon substrate becomes too high, and the power loss due to the internal resistance in the case of a solar cell increases, resulting in a decrease in conversion efficiency. Occurs. On the other hand, even when the Ga concentration is higher than 2 × 10 17 (atoms / cm 3 ), the conversion efficiency is reduced due to the reduction in the substrate lifetime due to Auger recombination inside the substrate. Therefore, it is preferable to carry out crystal growth so that the Ga concentration is 3 × 10 15 (atoms / cm 3 ) to 2 × 10 17 (atoms / cm 3 ) where the conversion efficiency of the solar battery cell is stable.

本発明に係るGa化合物多結晶シリコンを太陽電池用材料として使用すれば、Bドープで発生する光照射による酸素と複合体起因のキャリア再結合中心による基板ライフタイム低下の発生が防止され、光劣化が生じにくく、高い変換効率が安定に得られる太陽電池の製造が可能となる。   If the Ga compound polycrystalline silicon according to the present invention is used as a solar cell material, it is possible to prevent the occurrence of reduction in substrate lifetime due to oxygen and the carrier recombination center caused by the complex due to the light irradiation generated in the B doping, and the photodegradation. This makes it possible to manufacture a solar cell in which high conversion efficiency is stably obtained.

本発明に係るGa化合物ドープ多結晶シリコンを製造するための製造装置の構成図である。It is a block diagram of the manufacturing apparatus for manufacturing Ga compound dope polycrystalline silicon which concerns on this invention. 本発明に係るGa化合物ドープ多結晶シリコンの抵抗比を示す特性図である。It is a characteristic view which shows the resistance ratio of Ga compound dope polycrystalline silicon concerning the present invention. 本発明に係るGa化合物ドープ多結晶シリコンのライフタイムを示す特性図である。It is a characteristic view which shows the lifetime of Ga compound dope polycrystalline silicon which concerns on this invention. 従来のGa多結晶シリコンの抵抗比を示す特性図である。It is a characteristic view which shows the resistance ratio of the conventional Ga polycrystalline silicon. 従来のGa多結晶シリコンのライフタイムを示す特性図である。It is a characteristic view which shows the lifetime of the conventional Ga polycrystalline silicon.

符号の説明Explanation of symbols

1 チャンバー
2 石英ルツボ
3 カーボンルツボ
4 カーボンヒーター
5 カーボン断熱材
6 カーボン台
7 ルツボ支持シャフト
1 Chamber 2 Quartz crucible 3 Carbon crucible 4 Carbon heater 5 Carbon insulation 6 Carbon base 7 Crucible support shaft

Claims (6)

多結晶シリコンの製造方法において、常温以上で固体であるGa化合物をドープして多結晶シリコンを育成することを特徴とするGa化合物ドープ多結晶シリコンの製造方法。   A method for producing polycrystalline silicon, comprising: doping a Ga compound that is solid at room temperature or higher to grow polycrystalline silicon. 前記Ga化合物として、Ga(酸化ガリウム)を使用することを特徴とする請求項1記載のGa化合物ドープ多結晶シリコンの製造方法。 The method for producing a Ga compound-doped polycrystalline silicon according to claim 1, wherein Ga 2 O 3 (gallium oxide) is used as the Ga compound. 多結晶シリコン中のGa濃度が、3×1015(atoms/cm)〜2×1017(atoms/cm)となるように結晶育成することを特徴とする請求項1または2記載のGa化合物ドープシリコンの製造方法。 3. The Ga crystal according to claim 1, wherein the crystal is grown so that a Ga concentration in the polycrystalline silicon is 3 × 10 15 (atoms / cm 3 ) to 2 × 10 17 (atoms / cm 3 ). A method for producing compound-doped silicon. 常温以上で固体であるGa化合物をドープして育成したことを特徴とするGa化合物ドープ多結晶シリコン。   A Ga compound-doped polycrystalline silicon grown by doping a Ga compound that is solid at room temperature or higher. 前記Ga化合物をGa(酸化ガリウム)とすることを特徴とする請求項4記載のGa化合物ドープ多結晶シリコン。 The Ga compound-doped polycrystalline silicon according to claim 4, wherein the Ga compound is Ga 2 O 3 (gallium oxide). 多結晶シリコン中のGa濃度が、3×1015(atoms/cm)〜2×1017(atoms/cm)となるように結晶育成したことを特徴とする請求項4または5記載のGa化合物ドープシリコン。 6. The Ga according to claim 4, wherein the crystal is grown so that a Ga concentration in the polycrystalline silicon is 3 × 10 15 (atoms / cm 3 ) to 2 × 10 17 (atoms / cm 3 ). Compound doped silicon.
JP2004048434A 2004-02-24 2004-02-24 Ga compound doped polycrystalline silicon and manufacturing method thereof Expired - Fee Related JP4599067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048434A JP4599067B2 (en) 2004-02-24 2004-02-24 Ga compound doped polycrystalline silicon and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048434A JP4599067B2 (en) 2004-02-24 2004-02-24 Ga compound doped polycrystalline silicon and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005239452A true JP2005239452A (en) 2005-09-08
JP4599067B2 JP4599067B2 (en) 2010-12-15

Family

ID=35021587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048434A Expired - Fee Related JP4599067B2 (en) 2004-02-24 2004-02-24 Ga compound doped polycrystalline silicon and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4599067B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210860A (en) * 2006-02-10 2007-08-23 Nippon Steel Materials Co Ltd Casting mold for producing polycrystalline silicon cast piece
WO2013080624A1 (en) * 2011-11-30 2013-06-06 シャープ株式会社 Polycrystalline silicon ingot, manufacturing device for same, manufacturing method for same, and uses for same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064007A (en) * 1999-06-24 2001-03-13 Shin Etsu Chem Co Ltd Ga-ADDED POLYCRYSTALLINE SILICON, Ga-ADDED POLYCRYSTALLINE SILICON WAFER AND ITS PRODUCTION
JP2002068724A (en) * 2000-08-28 2002-03-08 Shin Etsu Handotai Co Ltd Polycrystalline silicon and silicon wafer for solar cell
JP2002104898A (en) * 2000-09-28 2002-04-10 Shin Etsu Handotai Co Ltd Silicon crystal and silicon crystal wafer and method of manufacturing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064007A (en) * 1999-06-24 2001-03-13 Shin Etsu Chem Co Ltd Ga-ADDED POLYCRYSTALLINE SILICON, Ga-ADDED POLYCRYSTALLINE SILICON WAFER AND ITS PRODUCTION
JP2002068724A (en) * 2000-08-28 2002-03-08 Shin Etsu Handotai Co Ltd Polycrystalline silicon and silicon wafer for solar cell
JP2002104898A (en) * 2000-09-28 2002-04-10 Shin Etsu Handotai Co Ltd Silicon crystal and silicon crystal wafer and method of manufacturing them

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210860A (en) * 2006-02-10 2007-08-23 Nippon Steel Materials Co Ltd Casting mold for producing polycrystalline silicon cast piece
WO2013080624A1 (en) * 2011-11-30 2013-06-06 シャープ株式会社 Polycrystalline silicon ingot, manufacturing device for same, manufacturing method for same, and uses for same
JP2013112593A (en) * 2011-11-30 2013-06-10 Sharp Corp Apparatus and method for producing polycrystalline silicon ingot
CN103974904A (en) * 2011-11-30 2014-08-06 夏普株式会社 Polycrystalline silicon ingot, manufacturing device for same, manufacturing method for same, and uses for same

Also Published As

Publication number Publication date
JP4599067B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
KR101070412B1 (en) Method of manufacturing silicon carbide single crystal
JP5815184B2 (en) Ingot and silicon wafer
US7955582B2 (en) Method for producing crystallized silicon as well as crystallized silicon
JP4723071B2 (en) Silicon crystal, silicon crystal wafer, and manufacturing method thereof
CN101694008A (en) Gallium-doped metallic silicon and directional solidification casting method thereof
JPWO2009025336A1 (en) Silicon single crystal wafer for IGBT and manufacturing method of silicon single crystal wafer for IGBT
TWI825959B (en) Manufacturing method of nitrogen-doped P-type single crystal silicon
CN105951173A (en) N type monocrystalline silicon crystal ingot and manufacturing method thereof
CN105239153B (en) Single crystal furnace with auxiliary charging structure and application thereof
CN105951172A (en) Manufacturing method of N type/P type monocrystalline silicon crystal ingot
JP4599067B2 (en) Ga compound doped polycrystalline silicon and manufacturing method thereof
CN102094236B (en) Czochralski method for growing long-lifetime P-type boron-doped silicon single crystal
US7175706B2 (en) Process of producing multicrystalline silicon substrate and solar cell
TW201623703A (en) Method of fabrication of an ingot of n-type single-crystal silicon with a controlled concentration of oxygen-based thermal donors
JP4534022B2 (en) Ga-doped crystalline silicon, method for producing the same, device for producing Ga-doped crystalline silicon used in the method for producing the same, solar cell using Ga-doped crystalline silicon substrate, and method for producing the same
Forster et al. Doping engineering to increase the material yield during crystallization of B and P compensated silicon
Gaspar et al. Silicon growth technologies for PV applications
JP4723082B2 (en) Method for producing Ga-doped silicon single crystal
Fiorito et al. A Possible Method for the Growth of Homogeneous Mercury Cadmium Telluride Single Crystals
JP3818023B2 (en) Method for producing GaAs single crystal
JPH0557239B2 (en)
KR100945668B1 (en) A method of growth for gaas single crystal by vgf
JP6095060B2 (en) Method for producing Si polycrystalline ingot
JP4778150B2 (en) Manufacturing method of ZnTe-based compound semiconductor single crystal and ZnTe-based compound semiconductor single crystal
JP2961340B2 (en) Method for producing high-purity silicon single crystal and high-purity silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

R150 Certificate of patent or registration of utility model

Ref document number: 4599067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees