JP2005236896A - ビーム形成回路およびこれを用いたマルチビームアンテナ並びにビーム走査アンテナ - Google Patents

ビーム形成回路およびこれを用いたマルチビームアンテナ並びにビーム走査アンテナ Download PDF

Info

Publication number
JP2005236896A
JP2005236896A JP2004046731A JP2004046731A JP2005236896A JP 2005236896 A JP2005236896 A JP 2005236896A JP 2004046731 A JP2004046731 A JP 2004046731A JP 2004046731 A JP2004046731 A JP 2004046731A JP 2005236896 A JP2005236896 A JP 2005236896A
Authority
JP
Japan
Prior art keywords
matrix circuit
circuit
phase
antenna
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004046731A
Other languages
English (en)
Inventor
Fumio Kira
文夫 吉良
Tamami Maruyama
珠美 丸山
Keizo Cho
敬三 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2004046731A priority Critical patent/JP2005236896A/ja
Publication of JP2005236896A publication Critical patent/JP2005236896A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

【課題】 位相歪を調整することによりアンテナ素子を直線的または平面的に配列する。
【手段】 マトリクス回路1,2において、一方の円弧の中央から他方の円弧に設置されたポートまでの行路長が等しくなるように設置される第1および第2の移相器5,6と、第1のマトリクス回路1の第1の移相器5が設置される側のポートを給電ポート3とし、第2のマトリクス回路2の第2の移相器6が設置される側のポートをアンテナ素子104に接続するためのアンテナ素子接続用ポートとし、マトリクス回路の第1および第2の移相器5,6が設置されていない側のポートを接続用ポートとした場合、マトリクス回路1の接続用ポートとマトリクス回路2の接続用ポートとの間に設置される第3の移相器7を具備し、マトリクス回路の各々を、2つの円の半径をR、2つの円の中心間の距離をtとすると、0<t<Rに調整する。
【選択図】 図1

Description

本発明は、ビーム形成回路およびこれを用いたマルチビームアンテナ並びにビーム走査アンテナに関し、特に、開口面アンテナ形式のマルチビームアンテナおよびこれを用いたマルチビームアンテナ並びにビーム走査アンテナに関する。
図19は、反射鏡を用いたマルチビームアンテナの従来技術を説明する図である。
この従来技術は、ビーム数は、ビームB1〜B3の3個であり、アンテナは、反射鏡131や誘電体レンズなどを用いてビームを収束するマルチビームアンテナであり、その放射電磁界が有限な幾何学面(反射鏡や誘電体レンズ)における電磁界から求められ、開口面アンテナと呼ばれる(非特許文献1を参照)。
同図に示すように、アンテナとして配置された3個の一次放射器104は、ビームB1〜B3の3方向それぞれのビームに対応しており、一次放射器104の数を増やすことによって、より多くのビームを形成することが可能である。この例の場合、一次放射ビーム(一次放射器から放射されるビーム)を反射的に効果的に照射するためには、一次放射器104にはある程度の大きさ(波長の数倍程度以上)が必要であり、それぞれの一次放射器104は、近接して配置することはできない。すなわち、個々の一次放射器104がそれぞれのビームB1〜B3に一対一対応している場合は、アンテナから放射されるそれぞれのビームを近接させることができない。仮に、それぞれのビームを近接させるために、一次放射器104を小さくした場合は、一次放射ビームのパターンが広がってしまうために、放射された信号電力の多くが反射鏡131にあたらずに漏れてしまうことになり、低いアンテナ効率しか得られない(非特許文献2を参照)。
上記の問題を解決するために、複数の比較的小さなアンテナを用いてビームを形成する手法が提案されている(非特許文献3を参照)。この手法は、クラスタ給電またはアレー給電と呼ばれており、個々の小さなアンテナは、アンテナ素子(または素子アンテナ)と呼ばれる。
図20は、クラスタ給電により個々のビームを形成するマルチビームアンテナを説明する図である。この例もビームB1〜B3の3方向のビームに対応し、個々のビームB1〜B3は、ビーム形成回路100の複数のアンテナ素子104により形成されるとともに、個々のアンテナ素子104は、一般に異なるビームで重複して使用される。ここで、この回路は、信号を複数のアンテナ素子104に分配/合成するために、ビーム形成回路(Beam forming Network:BFN)と呼ばれる。このようにクラスタ給電を行うことにより、近接した方向にビームを形成するとともに高いアンテナ効率を得る(入力された信号電力S1〜S3を効果的に反射鏡に照射する)ことが可能になる。なお、複数のビームをある角度範囲において近接して隙間無く形成することが可能であれば、これらのビームを切り替えて使用することで、この角度範囲内で連続的にビーム方向が変えられることになり、ビーム走査アンテナとして機能する。
図21は、従来技術のBFNの一例である(非特許文献4,5を参照)。
なお、同図のBFNは、マルチビームアンテナ用であり、ビーム走査アンテナのBFNとして用いるためには、このBFNにおいて複数の給電ポート103を切り替えて使用するための切替スイッチなどが必要となる。
図21は、説明を簡単にするために、送信の場合を例にしている。図21において、レンズはプリント基板(または複数の金属板)を用いて構成されるものであり、信号があるポートに入力された場合そのポート位置に応じた位相傾きを有して反対側のポートに分配されて出力され、逆にある位相傾き(位相差)を有した信号が片側の全てのポートに入力された場合はその位相傾きに応じたポートに信号が集束されて出力される。そのため、1つ目のレンズ101で信号が入力ポート位置に応じた位相傾きで複数のポートに分配され、これらの信号が二つ目のレンズ102でその位相傾きに応じたポート位置に集束されることとなる。なお、アンテナ素子104側に出力される信号分布は、2つのレンズ101,102の間を通る信号振幅を調整することで制御可能であり、一般に、2つのレンズ101,102の間に増幅率の異なる増幅器121を設置することで、励振分布に幅を持たせて複数アンテナ素子104を励振するようにしている。
図22は、プリント基板を用いてレンズを構成する場合の例を示す図である。(a)は平面図、(b)は断面図を示す。
このようにプリント基板を用いて構成した場合、図22(b)に示すように、導体板よりなる地板121上に誘電体板122が配置され、誘電体板122上に導体板よりなるレンズ101が配置されている。また、図22(a)に示すように、このレンズ101への入力信号は、一般に、信号線としてのストリップ線路109を用いて給電されることとなり、線路幅が急激に変化するなどの理由で線路のインピーダンスが急激に変化する箇所(インピーダンスの不連続点)が存在する場合は、その箇所(インピーダンスの不連続点)で信号の大部分が反射してしまうので、一般にこれを回避するためストリップ線路109は、インピーダンス整合用のテーパ線路部108を介して接続される。
図23は、対称レンズの原理を説明する概略図である。前述したプリント基板上に構成した金属パターンがレンズとして動作するための設計として最も代表的なものは、対称レンズ(symmetry lens)と呼ばれるものである。
対称レンズ110は、同一半径Rの2つの円Q1,Q2において、中心間の距離(点C〜点Eまでの距離)が半径Rだけ離れて配置された場合の重なり合う部分として設計される。円Q2の円弧Aの中央(点C)から入力された信号は、様々な方向に向かって略一定の速度で対称レンズ110内を伝播するが、円Q1の円弧B上の点は全て点Cから等距離に位置しているため、これら信号は略同時に円弧B上の各点に達する。たとえば、信号の入力位置が点Dのように円弧Aの中心でない場合は、ある時間差(位相遅れ)を有して円弧B上の点に達することとなる。このように、対称レンズ110の出力における信号位相は、信号を入力するポート位置に応じた位相傾きを有する概ね直線的な分布を示すが、円弧の中央から外れた場所(上述した点Dの位置)に設置したポートから給電した場合の位相傾きは厳密には一定ではなく、その位相面は歪んだものとなる。
しかしながら、図24に示すように、同一設計のレンズ101,102を対向させて配置することによって位相歪のうち奇数次の成分は相殺されることとなり、位相歪の影響が緩和されることが報告されている。(非特許文献4,5を参照)なお、位相歪が大きな場合は、分配された信号を同相で合成する過程において、大きな位相誤差が生じるため、所望のアンテナ素子104を効果的に励振できなくなり、振幅分布に大きな乱れが生じる。対称レンズ110を用いたBFN回路は、中央付近のポートから給電した場合において、位相歪が小さくなっていることから、アンテナ素子104において最も効果的に信号を合成できるのは、中央付近のポートから給電した場合である。
図25は、2つのレンズ間に移相器107を設置した場合を示す図である。上述したように、中央付近のポートから給電された場合の励振位相を改善するための手段としては、図25に示すように、2つのレンズ101,102間に移相器107を設置することで、特定のポートから給電された場合の出力位相歪を補償することが考えられる。すなわち、移相器107を付加することにより、アンテナ素子の励振位相の調整を行うことができる。なお、図21に示した増幅器121は、ここでも使用し、増幅器121に隣接して移相器107が設置される。なお、2つのレンズ101,102の間を通る信号の振幅分布に大きなテーパを与えている場合は、2つのレンズ101,102の向かい合う側のポートの両端(上端と下端)には小さな信号しか通らないので、図25に示すように、数箇所に終端部Eを設けて終端することも可能である。
図26および図27は、対称レンズを2つ用いた従来BFNのアンテナ素子104(18×18個)に現れる励振の振幅分布と位相分布を示している(横軸は、アンテナ素子104が接続される側のポート位置を示しており、図中の#9、#10は、それぞれ9番目および10番面の給電ポート103から信号入力されたことを示している)。なお、2つのレンズ101,102の間を通る信号の振幅分布は、−40dΒエッジのガウス関数型とした。これらの結果からも中央付近のポートである9番目および10番目のポートから給電した場合の励振分布が最も励振振幅が大きく、位相歪も小さいことが確認できる。
図28および図29は、対称レンズを2つ用いた従来BFNのアンテナ素子(18×18個)において、2つのレンズ101,102の間に図25で示した移相器107を設置し、5番目および14番目のポートから給電された場合の出力位相歪を補償した場合のアンテナ素子に現れる励振の振幅分布と位相分布を示している。これらの結果から、5番目および14番目のポートから給電した場合の励振振幅と位相歪が改善されることが確認できる。しかし、この場合は5番目および14番目のポートから給電した場合の励振分布を改善する代わりに、中央付近のポートから給電した場合の励振分布が劣化して位相歪が大きくなることが分かる。特に、開口アンテナでは、一次放射ビームは、所望とするアンテナビーム方向に対応するアンテナ焦点位置から正しく給電する必要があり、給電位置が焦点位置から外れた場合は、ビームを正しく収束させることができなくなることから利得の劣化を招くと共にサイドロープ特性の劣化やビーム指向誤差の原因となる。よって、給電に用いる複数アンテナ素子(一次放射器アレー)の振幅分布に注意するとともに位相分布にも大きな注意を払う必要がある。しかし、一次放射器アレーの励振位相分布に位相歪が存在する場合は、アレーから放射されるビーム(一次放射ビーム)の位相中心位置と一次放射器アレーの位置との間に大きな誤差が生じることとなる。
図30は、励振分布の位相分布と位相中心位置との関係を説明する図であり、励振分布の位相歪によって位相中心の位置がどのように変化するかを示している。以下の説明では、アンテナ素子104を単にアレーと呼ぶ。図30(a)は位相面が直線、図30(b)は位相面が凸、図30(c)は位相面が凹の形状となっている。図30(a)に示すように、アレー104が同相で励振されている場合においては、遠方解(アレー104から充分に離れた観測点)におけるアレー104から放射されるビームの位相中心P1は、アレー104の配置位置と一致する。しかし、図30(b)に示すように、励振分布の位相面が凸(周辺部で位相が遅れている)となっている場合、ビームの位相中心P2は、アレー104の配置位置から後退し、図30(c)に示すように、位相面が凹(周辺部で位相が進んでいる)となっている場合は、ビームの位相中心P3は、アレー104の配置位置から前方にずれることとなる。
図31は、2つの対称レンズを用いた従来BFNのアンテナ素子アレーの位置と励振分布の位相中心との関係を説明するものである。図中、点線Xは移相器がない場合、点線Yは移相器がある場合を示す。点線Xで示すように、2つのレンズ101,102の間に移相器を設置しない場合は、図26および図27に対応し、アレー中央付近の励振においてはアレー104の配置位置と位相中心とが一致するが、周辺のアレー104を励振した場合においては位相中心がアレー配置位置から後方に大きくずれる結果となる。また、点線Yで示すように、2つのレンズ101,102間に移相器を設置した場合は、図28および図29に対応し、この場合も、周辺のアレーを励振した場合の位相中心が前方に移動すると同時に中央付近のアレー励振における位相中心もまた前方に移動することになり根本的な解決には至らないことが分かる。
従って、前述したように、開口面アンテナにおいて効率的にビームを形成するためには、一次放射器を所望とするビーム方向に対応するアンテナ焦点位置から正しく給電する必要があり、焦点位置からずれた位置から給電された場合には、正しくビーム形成を行うことはできず、パターン特性の劣化やアンテナ利得(アンテナ効率)の劣化を招くこととなる。対称レンズを用いた従来BFNでアンテナ素子アレーを励振した場合、アレー周辺部の励振における位相中心がアレー中央部の励振における位相中心位置よりも大きく後方に下がることとなり、この位相中心位置の描く軌跡は鏡面に向かって凸の形状になる。一方、ビーム走査アンテナやマルチビームアンテナに一般に用いられるパラボラ反射鏡や多焦点反射鏡の焦線は鏡面に向かって凹の形状になる場合が多く、前述した位相中心の軌跡とは逆の傾向を示すことから一次放射ビームの位相中心とアンテナ焦点位置との間に大きな食い違いが生じる。
図32は、対称レンズを用いる従来技術のビーム形成回路を用いたアンテナの一例である。この場合、周辺部のアンテナ素子104を用いて給電した場合は、励振分布における位相中心の位置とアンテナの焦線位置との間にずれが生じるため、アンテナの特性が大きく劣化する。励振分布における位相面の歪を無くすためには、収差の少ないレンズを用いることが有効であり、Rotmanレンズを用いてBFNを構成することが考えられる。(非特許文献6を参照)
しかし、一部の特殊な反射鏡を除いて一般に開口面アンテナの焦線(または焦点面)は直線(または平面)にならず、曲線(または曲面)となるため、たとえアンテナの配置位置と一次放射ビームの位相中心とが一致したとしても、励振分布の位相中心の位置をアンテナの焦線(または焦点面)と一致させるためには、アンテナ素子104を曲線状(または曲面状)に配置しなければならない。(非特許文献7を参照)
上述のように、従来技術のBFN回路を用いた開口面アンテナでは、アンテナ素子を曲線状あるいは曲面状に配置する必要がある。このため、一次放射器の設計&配置が難しく、直線的に一次放射器を配置した場合と比べて構造が複雑になる。さらに、対称レンズを用いてBFNを構成した場合は、一般にアンテナの焦点位置と給電位置(一次放射ビームの位相中心)とのずれが大きくなるために、パターン劣化や利得劣化に代表されるアンテナ特性の劣化を招くという欠点がある。
電子通信学会編「アンテナ光学ハンドブック」,4章,オーム社 手代木,゛マルチビーム移動体衛星通信システム゛,信学技報SAT83−17,1983年9月) 牧野,゛アレー給電反射鏡形式マルチスポットビームアンテナにおける給電クラスタ簡易設計法゛,信学技報A・P200−157,SANE2000−138,2001年1月) 吉良他,゛マイクロストリップレンズを用いたクラスタ給電用BFN゛,信学会2003総合大会,B−1−224 F.Kira et al,゛Beamforming Network Design Using Microstrip Lens Cluster Feeding゛,2003 IEEE Int.Symp.on Phased Array Systems and Technology,pp,523−528,October 2003 W.Rotman and R.F.Turner,゛Wide−Angle Microwave Lens for Line Source Applications,゛IEEE Trans.,Ap−11,pp.623−630,1963 吉良他,゛修整多焦点パラボラ鏡面による広角マルチビームアンテナの設計゛,2002 信学総大,B−1−159
上述のように、従来技術のBFNを用いた開口面アンテナでは、アンテナ素子を曲線状あるいは曲面状に配置する必要がある。このため一次放射器の設計&配置が難しく、直線的に一次放射器を配置した場合と比較して構造が複雑になる。さらに、対称レンズを用いてBFNを構成した場合は、一般にアンテナの焦点位置と給電位置(一次放射ビームの位相中心)とのずれが大きくなるためには、パターン劣化や利得劣化に代表されるアンテナ特性の劣化を招くという欠点があった。
本発明は、上記事情を鑑みてなされたものであって、位相歪を制御することによりアンテナ素子を直線的または平面的に配列でき、アンテナ特性の劣化しないビーム形成回路、これを用いたマルチビームアンテナおよびビーム走査アンテナを提供することを目的としている。
本発明によれば、上述の課題は、特許請求の範囲に記載した手段により解決される。
すなわち、請求項1のビーム形成回路は、
プリント基板または複数の金属板からなる2つの円の半径をR、中心間の距離をtとすると、0<t<Rとなるように前記2つの円を重ね合わせて構成される同一設計の2つのマトリクス回路を具備し、当該2つのマトリクス回路は、信号入出力用の複数のポートに接続され、信号を分配する分配用レンズとして作用する第1のマトリクス回路と、分配された信号を集束する集束用レンズとして作用する第2のマトリクス回路とからなり、
前記第1のマトリクス回路の信号入力側の複数のポートに対応して設置され、前記第1のマトリクス回路の一方の円弧の中央から他方の円弧上の任意の点までの行路長を略等しくするための移層量を有する複数の第1の移相器と、
前記第2のマトリクス回路の信号出力側の複数のポートに対応して設置され、前記第2のマトリクス回路の一方の円弧の中央から他方の円弧上の任意の点までの行路長を略等しくするための移相量を有する複数の第2の移相器と、
前記第1のマトリクス回路の信号出力側の複数のポートと、前記第2のマトリクス回路の信号入力側の複数のポートとの間に設置され、前記第1のマトリクス回路と第2のマトリクス回路との間の行路長を調整する移相量を有する複数の第3の移相器と、
を具備することを特徴とする。
この構成によれば、前記2つのマトリクス回路の各々が、前記2つの円の半径をR、前記2つの円の中心間の距離をtとすると、0<t<Rであり、半径Rの2つの円が重なり合った部分の出力信号(特に偶数次)の位相歪成分を調整することが可能であり、これらマトリクス回路を用いたビーム形成回路のアンテナ素子の励振分布に現れる位相歪を制御することが可能となる。このことから一次放射器を直線的に配置した場合でも、アンテナの焦点位置と給電位置(一次放射ビームの位相中心)を一致させるか、または、これらの位置のずれを小さく抑えることが可能になり、良好なアンテナ特性を得ることが可能になるという効果が得られる。
請求項2のビーム形成回路は、請求項1において、
前記第1のマトリクス回路と前記第2のマトリクス回路との間に設置される前記第3の移送器は、前記第1のマトリクス回路の信号入力側の円弧の中央から前記第2のマトリクス回路の信号出力側の円弧の中央までの行路長を略等しくするための移相量を有することを特徴とする。
この構成によれば、前記第1のマトリクス回路と前記第2のマトリクス回路との間に設置される前記第3の移相器が、第1のマトリクス回路の給電ポートが設置された円弧の中央に対応する給電ポートから第2のマトリクス回路のアンテナ素子接続用ポートが設置された円弧の中央に対応するアンテナ素子接続用ポートまでの行路長が等しくなるように調整されるので、アンテナ素子の励振分布に現れる位相歪の調整が可能であり、様々な焦線形状を有する反射鏡と組み合わせて、マルチビームアンテナを形成することが可能になるという効果が得られる。
請求項3のビーム形成回路は、請求項1において、
前記第1のマトリクス回路と前記第2のマトリクス回路との間に設置される前記第3の移送器は、前記第1のマトリクス回路の信号入力用のポートのうちk(kは自然数)番目のポートから前記第2のマトリクス回路の信号出力用のポートのうちk番目のポートまでの行路長を略等しくするための移相量を有することを特徴とする。
この構成によれば、第1のマトリクス回路と第2のマトリクス回路との間に設置される第3の移送器が、第1のマトリクス回路の給電ポートのうちk(kは自然数)番目の給電ポートから第2のマトリクス回路のアンテナ素子接続用ポートのうちk番目のアンテナ素子接続用ポートまでの行路長が等しくなるように調整されているので、アンテナ素子の励振分布に現れる位相歪の調整が可能であり、様々な焦線形状を有する反射鏡と組み合わせて、マルチビームアンテナを形成することが可能になるという効果が得られる。
請求項4のビーム形成回路は、請求項1〜3のいずれか1項において、
前記第1のマトリクス回路と、前記第2のマトリクス回路との間に設置される増幅率の異なる複数の増幅器を具備し、前記複数の増幅器を用いて、前記第1および第2のマトリクス回路との間を通る信号の振幅を調整することを特徴とする。
この構成によれば、前記第1のマトリクス回路の接続用ポートと、前記第2のマトリクス回路の接続用ポートとの間に設置される増幅器を具備しているので、2つのマトリクス回路より構成されるレンズの間に増幅率の異なる増幅器を設置すると、2つのレンズの間を通る信号振幅を調整することができ、アンテナ素子側に出力される信号分布の制御が可能となり、励振分布に幅を持たせて複数のアンテナ素子を励振することができるという効果が得られる。
請求項5のマルチビームアンテナまたはビーム走査アンテナは、
請求項1〜4のいずれか1項のビーム形成回路を具備することを特徴とする。
この構成によれば、励振分布に現れる位相歪の調整が可能なことから、アンテナ設計の自由度が大きくなり、様々なビーム特性を有するアンテナを作ることが可能となり、様々な焦線形状を有する反射鏡と組み合わせることが可能となる。例えば、パラボラ鏡面を反射鏡として用いた場合、ビーム形成回路を構成するマトリクス回路の設計パラメータtの値として小さな値(例えば、t=0.25R)を採用して設計することで励振分布の位相中心の描く軌跡が鏡面に向かって凹になるように構成することができる。また、複数のビームをある角度範囲において近接して隙間無く形成することが可能であれば、ビーム走査アンテナとして機能し、これにより、これらのビームを切り替えて使用することで、この角度範囲内で連続的にビーム方向が変えられるという効果が得られる。
請求項6のマルチビームアンテナまたはビーム走査アンテナは、請求項5において、
前記第2のマトリクス回路の信号出力側に配列されるアンテナ素子が、略直線的または略平面的に配列されることを特徴とする。
この構成によれば、位相歪を調整することにより、アンテナ素子の先端部分が略直線的または略平面的に配列することができるので、一次放射器の設計&配置が容易になり、平面基板などを用いて構成することも可能となり、アンテナ装置の低コスト化が可能になるという効果が得られる。
以上説明したように、本発明のビーム形成回路およびアンテナ装置は、マトリクス回路が、前記2つの円の半径をR、前記2つの円の中心間の距離をtとすると、0<t<Rに調整することによりアンテナ素子に現れる位相歪を制御可能なことから、アンテナ素子を直線的に配置した場合でもアンテナの焦点位置と給電位置(一次放射ビームの位相中心を一致させるか、またはこれらの位置のずれを小さく抑える)ことが可能になり、良好なアンテナ特性を得ることが可能となる。
また、様々な焦線形状を有する反射鏡と組み合わせることが可能となり、アンテナ設計の自由度が大きくなることから様々なビーム特性を有するアンテナを作ることが可能となる。
また、一次放射器を構成するアンテナ素子は直線的に配置することが可能であり、平面基板などを用いて構成することも可能となる。よって、一次放射器の設計&配置が容易になり、アンテナ装置の低コスト化が可能となる。
以下、図面を参照して、本発明の実施の形態について詳細に説明する。
〔第1の実施の形態〕
図1は、本発明の第1の実施の形態に係るビーム形成回路の構成を説明する概略図である。
このビーム形成回路(BFN:Beam forming Network)10は、半径Rの2つの円が重なり合った部分を用いて構成される同一設計の2つのマトリクス回路1,2を用いて構成される。2つのマトリクス回路の各々は、二つの円の半径をR、2つの円の中心間の距離をtとすると、0<t<Rとなるように作製される。
すなわち、このビーム形成回路10は、2つの円が重なり合った部分をマトリクス回路1,2とし、この回路に信号入出力用のポートを設置した後に、片側の円弧の中央から反対側の円弧に設置されたポートまでの行路長が等しくなるように、行路差(L−L)に対応する第1および第2の移相器5,6が設置されている。第1のマトリクス回路1の第1の移相器5が設置された側のポートを給電ポート3とし、第2のマトリクス回路2の第2の移相器6が設置された側のポートをアンテナ素子4側の接続用のポートとし、これらマトリクス回路1,2の移相器5,6が設置されていない側のポートを接続用ポートとした場合、第1のマトリクス回路1の接続用ポートは、第2のマトリクス回路2の接続用ポートと第3の移相器7を介して接続されている。この第3の移相器7は、行路差2×(L−L)に対応する移相器である。ここで、Lは、2つの円が重なり合った部分で構成されるマトリクス回路1,2において、2つの円の中心点を結ぶ線と両円弧の交点との間の線分の長さ、すなわち両円弧の中央部を結ぶ線分の長さであり、LおよびLは、その交点から円弧までの任意の線分の長さである。アンテナ素子4における励振分布の位相中心位置の形状は、パラメータtの値で制御することができる。従って、位相中心位置をパラメータtを変えて、中間部、後方部、前方部に配置することにより、励振分布の位相面を直線、凸状、凹状に形成することができる。
なお、図中では、第1および第2の移送器5,6は、それぞれ上下に5個ずつ、第3の移相器7は、上下に6個ずつ設置されているが、第1,第2,第3の移相器5,6,7の移相量は、上下で対称的である。
図2および図3は、図1のマトリクス回路について説明する図である。
図2は、マトリクス回路を形成するパターンの形状を示す概略図である。同図に示すように、マトリクス回路を構成するパターンの形状は、半径Rの2つの円Q1,Q2の重なり合う部分であり、2つの円Q1,Q2の中心点C1,C2の間の距離tをパラメータとして設計される。但し、0<t<Rである。ここで、Lは、2つの円Q1,Q2が重なり合った部分で構成されるマトリクス回路1において、2つの円の中心点C1,C2を結ぶ中心線と両円弧との交点E1,E2の間の線分の長さ、すなわち、両円弧の中央部を結ぶ線分の長さであり、Lは、その交点E1,E2から円弧までの任意の線分の長さである。したがって、行路差は、(L−L)である。
ちなみに、t=Rとした場合は、対称レンズ(symmetrical lens)と同一形状となり、両側の円弧上にポートを設置すれば、レンズとして動作する。
図3は、マトリクス回路をプリント基板を用いて構成した例を示す概略図である。同図に示すように、プリント基板を用いて構成した場合、一般に信号はストリップ線路9を用いて給電されることとなり、線路幅が急激に変化するなどの理由で線路のインピーダンスが急激に変化する箇所(インピーダンスの不連続点)が存在する場合は、その箇所(インピーダンスの不連続点)で信号の大部分が反射してしまうので、一般にこれを回避するためストリップ線路9は、テーパ線路部8を介して接続される。この例では、マトリクス回路をプリント基板を用いて、0<t<Rとした場合のパターンの両側にポートを設置した例であり、片方の円弧の中心線との交点E1から反対側の円弧までの行路長を考慮すると、2つの円の中心線との交点E1とE2との間の距離である行路Lが最も長くなり、それ以外の行路Lは、これよりも短くなる。図中の点線は、同心円を示すものである。そのため、片側のポートにおいては、遅延線などにより実現される移相器5を設置し、移相器5により行路差(L−L)を補償したものをマトリクス回路1として用いる。
図4および図5は、本発明に係るビーム形成回路における2つの円の重なりとして設計されるパターンの出力位相を示すグラフである。この例は、t=0.25Rとして設計された回路における出力位相を示す。図4は、行路差の補正を行わない場合であり、図5は、移相器によって行路差の補正を行った場合(信号は、移相器を設置した側から入力)
結果を示す。なお、ポート数は、片側18個ずつとし、ポート1個あたりの幅が0.5波長となるように円の半径Rは、31.1波長として計算を行った。
図4に示すように、行路差の補正を行わない場合は出力側のポートの中央における出力信号の位相差がばらばらで一致せず、出力信号の位相分布は、直線的な位相傾きから大きく歪んでいることが確認できる。これに対して、図5に示した出力信号の位相分布では行路差の補正を行うことで、出力側のポートの中央における出力信号の位相値を一致させている。概ね直線的な位相傾きを実現するレンズ回路(対称レンズやRotmanレンズ)と比較して大きな収差を有しているこのマトリクス回路を用いてビーム形成回路を構成するためには、2つのマトリクス回路1,2の間の線路に、前述した第3の移相器7を設置して全ての給電ポートに共通した全体的な位相歪の補償を行う必要がある。この第3の位移相器7により、給電ポート3が設置されたマトリクス回路1の円弧の中央からもう一方のマトリクス回路2のアンテナ素子接続用ポート4が設置された円弧の中央までの行路長が等しくなるように構成している。
図6および図7は、本発明に係るビーム形成回路のアンテナ素子に現れる励振分布を示すグラフである。図6は振動分布、図7は位相分布を示す。
この例は、t=0.25Rとして設計(ポート数は、片側18個ずつとし、ポート幅が0.5波長となるように円の半径Rは31.1波長)したマトリクス回路1,2を用いて、マトリクス回路1,2間に第3の移相器7を設定した場合を示している。すなわち、給電ポート3が設置された第1のマトリクス回路1の円弧の中央からもう第2のマトリクス回路2のアンテナ素子4側の接続用ポートが設置された円弧の中央までの行路長が等しくなるように構成したビーム形成回路10のアンテナ素子4に現れる励振分布の振幅分布と位相分布を示している。これらの図において、横軸はアンテナ素子4が接続される側のポート位置を示しており、図中の#9、#10は、それぞれ9番目および10番目の給電ポート3から信号入力されたことを示している。なお、2つのレンズの間を通る信号の振幅分布は、入力信号の振幅を1とした場合の−40dΒエッジのガウス関数型として計算した。
図8および図9は、本発明に係るビーム形成回路のアンテナ素子に現れる励振分布を示すグラフである。図8は振動分布、図9は位相分布を示す。
この例は、t=0.75Rとして設計(ポート数は、片側18個ずつとし、ポート幅が0.5波長となるように円の半径Rは、37.9波長)したマトリクス回路1,2を用いて、マトリクス回路1,2間に第3の移相器7を設定した場合を示している。すなわち、給電ポート3が設置された第1のマトリクス回路1の円弧の中央から第2のマトリクス回路2のアンテナ素子4側の接続用ポートが設置された円弧の中央までの行路長が等しくなるように構成したビーム形成回路10のアンテナ素子4に現れる励振の振幅分布と位相分布を示している。これらの図において、横軸はアンテナ素子が接続される側のポート位置を示しており、図中の#9、#10は、それぞれ9番目および10番目の給電ポートから信号入力されたことを示している。なお、2つのレンズの間を通る信号の振幅分布は、−40dΒエッジのガウス関数型として計算した。
これらの結果から、図6,図7においてt=0.25Rとして設計した場合と、図8,図9においてt=0,75Rとして設計した場合とでは、励振における振幅分布は似通っているのものの位相分布は全く異なったものが得られることが確認できる。すなわち、パラメータtの値がt=0,75RとRに近づいた場合、図8,図9に示すように、マトリクス回路の形状が対称レンズに近づくことからも理解できるように、その位相歪の表れ方は、対称レンズを用いた従来BFNの場合と似通っており、周辺部のアンテナ素子を励振した場合の位相歪は凸の形状となっている。このように、t=0.75Rとした場合では、対称レンズを用いた従来BFNの場合よりも位相歪が低く抑えられているものの、アレー周辺部の励振における位相中心がアレー中央部の励振における位相中心よりも後方に下げることとなる。一方、図6,図7に示すように、パラメータtの値がt=0.25RとRから離れている場合は、その位相歪の表れ方は対称レンズを用いた従来BFNの場合とは逆の傾向を示しており、周辺部のアンテナ素子を励振した場合の位相歪は凹の形状となっている。よって、アレー周辺部の励振における位相中心がアレー中央部の励振における位相中心よりも前方に上げることとなる。
図10および図11は、同様に、本発明に係るビーム形成回路のアンテナ素子に現れる励振分布を示すグラフである。図10は振動分布、図11は位相分布を示す。
この例は、t=0.5Rとして設計(ポート数は片側18個ずつとし、ポート幅が0,5波長となるように円の半径Rは34.1波長)したマトリクス回路を用いて構成したビーム形成回路10のアンテナ素子4に現れる励振分布の振幅分布と位相分布を示したものであり、この場合は、アレー全体の励振にわたって位相歪が小さく抑えられ。ほぼ直線状に分布していることが確認できる。
これらの結果からマトリクス回路の設計パラメータtの値を変えることで、ビーム形成回路10のアンテナ素子4に現れる位相歪を制御することが可能であることが分かる。パラメータtの値として小さな値(概ね0.5R以下)を採用した場合は、アレー周辺部の励振における位相中心がアレー中央部の励振における位相中心位置よりも前方に位置することになり、パラメータtの値として大きな値(概ね0.5R以上)を採用した場合は、アレー周辺部の励振における位相中心がアレー中央部の励振における位相中心位置よりも後方に位置するようになる。
〔第2の実施の形態〕
図12は、本発明の第2の実施の形態に係るビーム形成回路の構成を説明する概略図である。
この例は、半径Rの2つの円が重なり合った部分(2つの円の中心間の距離tは、0<t<R)を用いて構成される同一設計のマトリクス回路11,12を2つ用いて構成されるビーム形成回路20を示している。この実施の形態では、第1のマトリクス回路11の接続用ポートは、第2のマトリクス回路12の接続用ポートと増幅器21を介して接続されることを特徴とする。
前述した第1の実施の形態と同様に、ビーム形成回路20は、2つの円が重なり合った部分をマトリクス回路11,12とし、この回路に信号入出力用のポートを設置した後に、片側の円弧の中央から反対側の円弧に設置されたポートまでの行路長が等しくなるように、第1および第2の移相器15,16が設置されている。第1のマトリクス回路11の第1の移相器15が設置された側のポートを給電ポート13とし、第2のマトリクス回路12の第2の移相器16が設置された側のポートをアンテナ素子14接続用のポートとし、これらマトリクス回路11,12の移相器15,16が設置されていない側のポートを接続用ポートとした場合、第1のマトリクス回路11の接続用ポートは、第2のマトリクス回路12の接続用ポートと第3の移相器17を介して接続されている。
図中において、第1の移相器は、給電ポート側のレンズに関して、右側の円弧中央部から個々の給電ポートまでの行路長を調整するものであり、第2の移相器は、アンテナ素子側のレンズに関して、左側の円弧中央部から個々のアンテナ素子(側のポート)までの行路長を調整するものであり、これら移相器は、図3で説明した移相器5に相当する(ちなみに、アンテナ素子側のレンズに関しては180度反転している)。したがって、第1および第2の移相器の移相量は、第3の移相器の移相量設定とは無関係であり、(L−L)に対応する値が設定される。
第3の移送器は、BFN特性の調整のために基準とした給電ポートkおよび給電ポートkに対応する励振分布位置に対応するポートk(180度反転している)に関して、2つのレンズの行路長を調整するものである。すなわち、給電ポート側のレンズに関して、基準とした給電ポートkから右側の個々のポートまでの行路長と、アンテナ素子側のレンズに関して、給電ポートkに対応する励振分布位置に対応するポートkから左側の個々のポートまでの行路長を併せて補正するものである。したがって、第3の移相器に関しては、k番目の給電ポートを基準とした場合(図では下から3番目)の個々の移相量は、行路差(Lk0−L)+(Lk0−Lk’)(L、Lk’は移相器の位置に対応)となる。
ここで、Lは、k番目の給電ポートに対応する円弧上の点から対向する円弧上の任意の給電ポートに対応する点までの線分の長さであり、Lk’は、Lk0に対してLと対称的な角度で延びる線の対向する円弧までの線分の長さである。
本実施の形態では、この第3の移相器17に隣接して、増幅器21を設置している。このように、2つのマトリクス回路11,12より構成されるレンズの間に増幅率の異なる増幅器21を設置することで、2つのレンズの間を通る信号振幅を調整することができ、アンテナ素子14側に出力される信号分布の制御が可能となり、励振分布に幅を持たせて複数のアンテナ素子14を励振することができる。
なお、図中では、第1および第2の移送器15,16は、それぞれ上下に5個ずつ、第3の移相器7および増幅器21は、上下に6個ずつ設置されているが、第1,第2,第3の移相器5,6,7の移相量は、上下で対称的である。
図13および図14は、t=0.25Rとして設計(ポート数は片側18個ずつとし、ポート幅が0.5波長となるように円の半径Rは31.1波長)したマトリクス回路を用いて、本実施の形態に従って構成したビーム形成回路20のアンテナ素子14に現れる励振分布を示す。図13は振幅分布、図14は位相分布を示す。マトリクス回路11,12間の第3の移相器17の移相量は、5番目および14番目のポート位置を基準としている。
図15および図16は、t=0.6Rとして設計(ポート数は片側18個ずつとし、ポート幅が0.5波長となるように円の半径Rは35.5波長)したマトリクス回路を用いて、同図にしたがって構成したビーム形成回路20のアンテナ素子14に現れる励振分布分布を示す。図15は振幅分布、図16は位相分布を示す。マトリクス回路11,12間の第3の移相器21の移相量は5番目および14番目のポート位置を基準としている。これらの図において、横軸はアンテナ素子が接続される側のポート位置を示しており、図中の#5、#14は、それぞれ5番目、14番目の給電ポート13から信号入力されたことを示している。なお、2つのレンズの間を通る信号の振幅分布は、−40dΒエッジのガウス関数型として計算した。
これらの結果から、図13,図14のt=0.25Rとして設計した場合も、図15,図16のt=0.6Rとして計算した場合も、振幅分布については概ね均一な特性が得られるが、マトリクス間の移相量の基準とした5番目(および14番目)のポートから給電した場合の位相歪が小さくなっていることが確認できる。
〔第3の実施の形態〕
図17および図18は、本発明の第3の実施の形態に係るビーム形成回路を用いたマルチビームアンテナの構成を説明する概略図である。
図17は、パラボラ鏡面31を反射鏡として用いた場合であり、ビーム形成回路10を構成するマトリクス回路の設計パラメータtの値として小さな値(例えば、t=0.25R)を採用して設計することで励振分布の位相中心の描く軌跡が鏡面に向かって凹になるようにした場合を示している。パラボラ鏡面31は、放射素子と放射出力をビームに集中するために放物状の反射器を用いて構成された鏡面である。
図18は、トーラス鏡面41を反射鏡として用いた場合であり、ビーム形成回路10を構成するマトリクス回路の設計パラメータtの値として大きな値(例えばt=0.6R)を採用して設計することで、励振分布の位相中心の描く軌跡が鏡面に向かって凸になるようにした場合を示している。トーラス鏡面41は、ドーナツの円環曲面である。このように、励振分布の位相中心の位置が反射鏡の焦線(あるいは焦点面)に一致するように設計することで、様々な反射鏡を用いたアンテナにおいて良好な特性を得ることが可能になる
また、複数のビームをある角度範囲において近接して隙間無く形成することが可能であれば、これらのビームを切り替えて使用することで、この角度範囲内で連続的にビーム方向が変えられることになり、ビーム走査アンテナとして機能する。
また、本発明においては、アンテナ素子の励振分布の位相中心の位置を設計パラメータtの値によって調整することが可能なことから、曲線状(または曲面状)の焦線(または焦点面)形状を有する反射鏡と組み合わせる場合においても、アンテナ素子を直線的(または平面的)に配置することが可能になり、一次放射器の設計&配置が容易となるため、アンテナ装置の低コスト化が可能となる。
本発明の第1の実施の形態に係るビーム形成回路の構成を説明する概略図である。 マトリクス回路を形成するパターンの形状を示す概略図である。 マトリクス回路をプリント基板を用いて構成する例を示す図である。 本発明の第1の実施の形態に係るビーム形成回路(移相器がない場合)を説明する図であり、2つの円の重なりとして設計されるパターンの出力位相を示す図である。 本発明の第1の実施の形態に係るビーム形成回路(移相器がある場合)を説明する図である。 本発明の第1の実施の形態に係るビーム形成回路による励振の振幅分布(t=0.25R)を示す図である。 本発明の第1の実施の形態に係るビーム形成回路による励振の位相分布(t=0.25R)を示す図である。 本発明の第1の実施の形態に係るビーム形成回路による励振の振幅分布(t=0.75R)を示す図である。 本発明の第1の実施の形態に係るビーム形成回路による励振の位相分布(t=0.75R)を示す図である。 本発明の第1の実施の形態に係るビーム形成回路による励振の振動分布(t=0.5R)を説明する図である。 本発明の第1の実施の形態に係るビーム形成回路による励振の位相分布(t=0.5R)を説明する図である。 本発明の第2の実施の形態に係るビーム形成回路を説明する図である。 本発明の第2の実施の形態に係るビーム形成回路による励振の振動分布(t=0.25R)を示す図である。 本発明の第2の実施の形態に係るビーム形成回路による励振の位相分布(t=0.25R)を示す図である。 本発明の第2の実施の形態に係るビーム形成回路による励振の振動分布(t=0.6R)を示す図である。 本発明の第2の実施の形態に係るビーム形成回路による励振の位相分布(t=0.6R)を示す図である。 本発明の第3の実施の形態に係るビーム形成回路を用いたマルチビームアンテナを示す図である。 本発明の第3の実施の形態に係るビーム形成回路を用いたマルチビームアンテナを示す図である。 従来技術のマルチビームアンテナを説明する図である。 クラスタ給電によりビームを形成するマルチビームアンテナを説明する図である。 従来技術のビーム形成回路を説明する図である。 プリント基板を用いて構成された従来技術のビーム形成回路を説明する図である。(a)は平面図、(b)は断面図である。 対称レンズの原理を説明する図である。 従来技術のビーム形成回路を説明する図である。 従来技術のビーム形成回路(レンズ間に移相器および増幅器を設置した例)を説明する図である。 従来技術のビーム形成回路による励振の振幅分布(補正なし)を説明する図である。 従来技術のビーム形成回路による励振の位相分布(補正なし)を説明する図である。 従来技術のビーム形成回路による励振の振幅分布(補正あり)を説明する図である。 従来技術のビーム形成回路による励振の位相分布(補正あり)を説明する図である。 励振の位相分布と位相中心位置との関係を説明する図である。(a)は位相面が直線、(b)は位相面が凸、(c)は位相面が凹の形状であることを示す。 アレー位置と位相中心との関係を説明する図である。 従来技術のビーム形成回路を用いたアンテナを説明する図である。
符号の説明
1,11…第1のマトリクス回路、 2,12…第2のマトリクス回路、 3,13…給電ポート、 4,14…アンテナ素子、 5,15…第1の移相器、 6,16…第2の移相器、 7,17…第3の移相器、 8,18…インピーダンス整合用のテーパ線路部、9,19…信号線(ストリップ線路)、 10,20…ビーム形成回路、 21…増幅器、31…反射鏡(パラボラ鏡面)、 41…トーラス鏡面

Claims (6)

  1. プリント基板または複数の金属板からなる2つの円の半径をR、中心間の距離をtとすると、0<t<Rとなるように前記2つの円を重ね合わせて構成される同一設計の2つのマトリクス回路を具備し、当該2つのマトリクス回路は、信号入出力用の複数のポートに接続され、信号を分配する分配用レンズとして作用する第1のマトリクス回路と、分配された信号を集束する集束用レンズとして作用する第2のマトリクス回路とからなり、
    前記第1のマトリクス回路の信号入力側の複数のポートに対応して設置され、前記第1のマトリクス回路の一方の円弧の中央から他方の円弧上の任意の点までの行路長を略等しくするための移層量を有する複数の第1の移相器と、
    前記第2のマトリクス回路の信号出力側の複数のポートに対応して設置され、前記第2のマトリクス回路の一方の円弧の中央から他方の円弧上の任意の点までの行路長を略等しくするための移相量を有する複数の第2の移相器と、
    前記第1のマトリクス回路の信号出力側の複数のポートと、前記第2のマトリクス回路の信号入力側の複数のポートとの間に設置され、前記第1のマトリクス回路と第2のマトリクス回路との間の行路長を調整する移相量を有する複数の第3の移相器と、
    を具備することを特徴とするビーム形成回路。
  2. 請求項1のビーム形成回路において、
    前記第1のマトリクス回路と前記第2のマトリクス回路との間に設置される前記第3の移送器は、前記第1のマトリクス回路の信号入力側の円弧の中央から前記第2のマトリクス回路の信号出力側の円弧の中央までの行路長を略等しくするための移相量を有することを特徴とするビーム形成回路。
  3. 請求項1のビーム形成回路において、
    前記第1のマトリクス回路と前記第2のマトリクス回路との間に設置される前記第3の移送器は、前記第1のマトリクス回路の信号入力用のポートのうちk(kは自然数)番目のポートから前記第2のマトリクス回路の信号出力用のポートのうちk番目のポートまでの行路長を略等しくするための移相量を有することを特徴とするビーム形成回路。
  4. 請求項1〜3のいずれか1項のビーム形成回路において、
    前記第1のマトリクス回路と前記第2のマトリクス回路との間に設置される増幅率の異なる複数の増幅器を具備し、前記複数の増幅器を用いて、前記第1および第2のマトリクス回路との間を通る信号の振幅を調整することを特徴とするビーム形成回路。
  5. 請求項1〜4のいずれか1項のビーム形成回路を具備することを特徴とするマルチビームアンテナまたはビーム走査アンテナ。
  6. 請求項5のマルチビームアンテナまたはビーム走査アンテナにおいて、
    前記第2のマトリクス回路の信号出力側に配列されるアンテナ素子が、略直線的または略平面的に配列されることを特徴とするマルチビームアンテナまたはビーム走査アンテナ。
JP2004046731A 2004-02-23 2004-02-23 ビーム形成回路およびこれを用いたマルチビームアンテナ並びにビーム走査アンテナ Pending JP2005236896A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046731A JP2005236896A (ja) 2004-02-23 2004-02-23 ビーム形成回路およびこれを用いたマルチビームアンテナ並びにビーム走査アンテナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004046731A JP2005236896A (ja) 2004-02-23 2004-02-23 ビーム形成回路およびこれを用いたマルチビームアンテナ並びにビーム走査アンテナ

Publications (1)

Publication Number Publication Date
JP2005236896A true JP2005236896A (ja) 2005-09-02

Family

ID=35019362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046731A Pending JP2005236896A (ja) 2004-02-23 2004-02-23 ビーム形成回路およびこれを用いたマルチビームアンテナ並びにビーム走査アンテナ

Country Status (1)

Country Link
JP (1) JP2005236896A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614259A (zh) * 2020-12-09 2022-06-10 中国联合网络通信集团有限公司 龙伯透镜天线赋型控制方法、装置、设备及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614259A (zh) * 2020-12-09 2022-06-10 中国联合网络通信集团有限公司 龙伯透镜天线赋型控制方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
US20190334636A1 (en) Calibration circuits for beam-forming antennas and related base station antennas
JP4943583B2 (ja) 二重モード切替ビームアンテナ
US11917427B2 (en) Multi-beam base station antennas having wideband radiating elements
US7609205B2 (en) Electrically steerable phased array antenna system
US11056773B2 (en) Twin-beam base station antennas having thinned arrays with triangular sub-arrays
US8362967B2 (en) Low power multi-beam active array for cellular communications
US20090262037A1 (en) Space segment payload architecture for mobile satellite services (mss) systems
JP2776918B2 (ja) 電子走査アンテナ
JP3089088B2 (ja) 宇宙の分野における有効負荷のアーキテクチャ
Toso et al. Multibeam antennas based on phased arrays: An overview on recent ESA developments
JPH01276803A (ja) 電子走査アンテナ
US20020163480A1 (en) Cylindrical ray imaging steered beam array (CRISBA) antenna
KR101937820B1 (ko) 다중 빔 배열 안테나 장치
WO2023226528A1 (zh) 用于天线的频率选择表面以及天线系统
JP4745686B2 (ja) アレー給電反射鏡マルチビームアンテナの指向誤差補償方法及びその装置
US20230291121A1 (en) Base station antennas having calibration circuit connections that provide improved in-column and/or adjacent cross-column isolation
JP2005236896A (ja) ビーム形成回路およびこれを用いたマルチビームアンテナ並びにビーム走査アンテナ
KR101080893B1 (ko) 엔포트 피딩 시스템 및 이에 포함된 페이즈 쉬프터, 지연 소자
US20230036249A1 (en) Multibeam antenna
Greda et al. Beamforming capabilities of array-fed reflector antennas
WO2022087832A1 (zh) 基站天线及基站天馈系统
CN114465012A (zh) 一种产生偏转贝塞尔多波束的宽带透镜及调控方法
US10777903B2 (en) Multi-beam antenna (variants)
JP3564353B2 (ja) 給電方法およびビーム走査アンテナ
JP2000022439A (ja) 給電方法およびフェーズドアレーアンテナ