WO2022087832A1 - 基站天线及基站天馈系统 - Google Patents

基站天线及基站天馈系统 Download PDF

Info

Publication number
WO2022087832A1
WO2022087832A1 PCT/CN2020/124041 CN2020124041W WO2022087832A1 WO 2022087832 A1 WO2022087832 A1 WO 2022087832A1 CN 2020124041 W CN2020124041 W CN 2020124041W WO 2022087832 A1 WO2022087832 A1 WO 2022087832A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
station antenna
lens
radio frequency
element array
Prior art date
Application number
PCT/CN2020/124041
Other languages
English (en)
French (fr)
Inventor
樊高强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080106283.1A priority Critical patent/CN116325361A/zh
Priority to PCT/CN2020/124041 priority patent/WO2022087832A1/zh
Publication of WO2022087832A1 publication Critical patent/WO2022087832A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens

Definitions

  • the embodiments of the present application relate to the field of radio communications, and in particular, to a base station antenna and a base station antenna feeder system.
  • the coverage area is often divided into individual cells, and each base station is often divided into three sectors.
  • the cell is divided into three 120° sectors, and each sector is served by one or more base station antennas, which requires each base station antenna to require a 3dB beam around 65° width and a 10dB beamwidth around 120°.
  • base station antennas which requires each base station antenna to require a 3dB beam around 65° width and a 10dB beamwidth around 120°.
  • MIMO can greatly increase the throughput and transmission distance of a system without increasing bandwidth or total transmit power expenditure, this technology has attracted a lot of attention in recent years.
  • the core concept of MIMO is to use the spatial degrees of freedom provided by multiple transmit antennas and multiple receive antennas to effectively improve the spectral efficiency of wireless communication systems to increase transmission rates and improve communication quality.
  • the multi-beam antenna cuts the existing cell into more cells on the premise of keeping the antenna aperture size unchanged, thereby improving the effective capacity of the original cell.
  • the present application provides a base station antenna, including a radiating element array and a radio frequency lens, the radiating element array including a plurality of radiating elements, and the plurality of radiating elements are arranged along a first direction.
  • the radio frequency lens is arranged above the radiation element array to receive the electromagnetic radiation emitted by the radiation element array.
  • a central portion and a plurality of lens portions are formed on the RF lens, the central portion and the plurality of lens portions both extend along the first direction, the central portion is arranged at the middle position of the RF lens, and the The plurality of lens portions are disposed on both sides of the central portion along a second direction, and are symmetrical with respect to the central portion, and the second direction is perpendicular to the first direction.
  • the radio frequency lens in the base station antenna provided in the embodiment of the present application has a specific structure, that is, the base station antenna is provided with an axisymmetric "tooth"-shaped structure according to the Fresnel lens principle, and the "teeth"-shaped structure is used to refract radiation Electromagnetic waves emitted by the element array to narrow the beam width.
  • the base station antenna can allow the thickness of the radio frequency lens to be reduced, or even be made into a thin sheet. In this way, it is beneficial to reduce the size of the base station antenna and improve heat dissipation.
  • both the center portion and the lens portion are in a tooth shape, the widths of the center portion and the lens portion gradually decrease along the third direction, and the end portion of the lens portion gradually decreases Near the central portion, the third direction is perpendicular to both the first direction and the second direction.
  • the radio frequency lens uses a "teeth" structure to replace the conventional dielectric lens, which has the advantages of low profile, light weight and low cost as a whole.
  • each lens portion and the bottom edge of the central portion are located on the same straight line, or together form an arc surface, a curved surface or a folded surface.
  • the radio frequency lens uses a "teeth" structure to replace the conventional dielectric lens, which has the advantages of low profile, light weight and low cost as a whole.
  • the two side edges of each lens portion and the two side edges of the central portion are both straight lines or have a certain arc.
  • the radio frequency lens uses a "teeth" structure to replace the conventional dielectric lens, which has the advantages of low profile, light weight and low cost as a whole.
  • the central portion and the plurality of lens portions are disposed toward the radiation element array.
  • the center part formed by the radio frequency lens and the surface where the lens part is located face the radiating element array, and the symmetry axis (for example, the normal line z) of the radio frequency lens is located at the center of the radiating element array
  • the radio frequency lens has the function of converging the beam width and improving the gain.
  • the central portion and the plurality of lens portions are disposed away from the radiation element array.
  • the center part formed by the radio frequency lens and the surface where the lens part is located face away from the radiation element array, and the symmetry axis (for example, the normal line z) of the radio frequency lens and the center of the radiation element array are made are located on the same straight line, so that the radio frequency lens has the function of converging the beam width and improving the gain.
  • the length of the radio frequency lens is greater than or equal to the length of the radiating element array. In this way, it is ensured that the radio frequency lens can completely receive the electromagnetic radiation of the corresponding radiating element array.
  • the base station antenna includes a plurality of the radio frequency lenses arranged along a preset direction, and the total length of the plurality of the radio frequency lenses is greater than or equal to the length of the radiating element array. In this way, it is ensured that the radio frequency lens can completely receive the electromagnetic radiation of the corresponding radiating element array.
  • the width of the radio frequency lens is greater than or equal to the width of the radiating element array. In this way, it is ensured that the radio frequency lens can completely receive the electromagnetic radiation of the corresponding radiating element array.
  • the radio frequency lens is made of a dielectric material with a dielectric constant greater than 1.
  • the base station antenna provided in the embodiment of the present application uses the "teeth"-shaped structure to refract the electromagnetic waves emitted by the radiating element array, so as to narrow the beam width.
  • the base station antenna can allow the thickness of the radio frequency lens to be reduced, or even be made into a thin sheet. In this way, it is beneficial to reduce the size of the base station antenna and improve heat dissipation.
  • the base station antenna includes a plurality of the radio frequency lenses and a plurality of the radiation element arrays, the plurality of the radio frequency lenses are integrally formed, and each of the radio frequency lenses corresponds to a radiation element array.
  • the base station antenna uses a "teeth" structure to replace the conventional dielectric lens, which has the advantages of low profile, light weight, and low cost as a whole.
  • the base station antenna further includes a radome, and the radiating element array and the radio frequency lens are accommodated in the radome.
  • the base station antenna uses a "teeth" structure to replace the conventional dielectric lens, which has the advantages of low profile, light weight, and low cost as a whole.
  • the base station antenna further includes a radome, and the radio frequency lens is integrated on the radome.
  • the radio frequency lens is integrated on the radome.
  • the base station antenna further includes a reflector, and the radiating element array is disposed on the reflector.
  • the base station antenna uses a "teeth" structure to replace the conventional dielectric lens, which has the advantages of low profile, light weight, and low cost as a whole.
  • the base station antenna further includes a feeding network, the feeding network is electrically connected to the radiating element array, and the feeding network includes a phase shifter, a combiner and a filter.
  • the base station antenna uses a "teeth" structure to replace the conventional dielectric lens, which has the advantages of low profile, light weight, and low cost as a whole.
  • the base station antenna further includes an extension module, the extension module includes a transmission part and a calibration network, the feeder network realizes different radiation beam directions through the transmission part, or the feeder network Connect to the calibration network to obtain calibration signals.
  • the base station antenna uses a "teeth" structure to replace the conventional dielectric lens, which has the advantages of low profile, light weight, and low cost as a whole.
  • the present application provides a base station antenna feeder system, including a pole, an adjustment bracket, and a base station antenna in the first aspect and any possible designs thereof, the base station antenna is mounted on the pole, and The position of the base station antenna is adjusted through the adjustment bracket.
  • a base station antenna feeder system including a pole, an adjustment bracket, and a base station antenna in the first aspect and any possible designs thereof, the base station antenna is mounted on the pole, and The position of the base station antenna is adjusted through the adjustment bracket.
  • 1 is a schematic diagram of the structural change from a conventional lens to a Fresnel lens
  • FIG. 2 is a schematic structural diagram of a base station antenna in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a radio frequency lens in the base station antenna shown in FIG. 2;
  • FIG. 4 is a schematic cross-sectional view of a radio frequency lens in the base station antenna shown in FIG. 2;
  • 5A to 5C are several schematic diagrams of the radio frequency lens in the base station antenna shown in FIG. 2;
  • FIG. 6 is a schematic diagram of applying a radio frequency lens to a plurality of radiation element arrays according to an embodiment of the present application
  • FIG. 7A and 7B are another schematic diagram of a base station antenna in an embodiment of the present application.
  • 8A and 8B are another schematic diagram of a base station antenna in an embodiment of the present application.
  • 9A and 9B are another schematic diagram of a base station antenna in an embodiment of the present application.
  • FIG. 10 is a functional block diagram of a base station antenna in an embodiment of the application.
  • FIG. 11 is a schematic diagram of applying a base station antenna to a base station antenna feeder system in an embodiment of the present application.
  • Second direction x Third direction (normal) z First reference line x1 Second reference line x2
  • Expansion module 18 Phase shifter 171 Expansion unit 173 Base station antenna feeder system 200
  • A/B can mean A or B.
  • a and/or B is only an association relationship that describes the associated objects, indicating that there may be three kinds of relationships: only A, only B, and A and B.
  • words such as “first” and “second” are only used for the purpose of distinguishing and describing, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating or implying order .
  • Features delimited with “first”, “second” may expressly or implicitly include one or more of the stated features.
  • words such as “exemplary” or “for example” are used to mean serving as an example, illustration or illustration. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • the term “height” refers to the projected length in the direction perpendicular to the reference formation.
  • the orientation or positional relationship indicated by “outside” is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, It is constructed and operated in a particular orientation and therefore should not be construed as a limitation of the present application.
  • FIG. 1 is a schematic diagram of the structural change from a conventional lens to a Fresnel lens.
  • a convex lens can focus light, and the refraction of light only occurs on the optical surface of the lens (ie, the lens surface).
  • the continuous part in the middle of the convex lens is removed, the remaining curved surface "collapses" into a plane to form a Fresnel lens.
  • the central part is an elliptical arc.
  • Each groove has a different angle from the adjacent groove, but the lens can still focus the light in one place, forming a central focus, which is the focal point of the lens.
  • Each groove can be thought of as an independent lenslet to adjust the light into parallel or focused light.
  • the dielectric lens when the lens is applied to the antenna, the dielectric lens can also focus the electromagnetic waves emitted by the antenna, thereby forming a narrower beam.
  • the Fresnel lens technology when the Fresnel lens technology is applied in the field of antennas, by placing the Fresnel lens above the antenna, similar to the Fresnel lens that can focus light beams, the Fresnel lens can also play the role of focusing electromagnetic waves, Thereby, the effect of narrowing the antenna beam width is realized.
  • the Fresnel lens is generally a circular structure.
  • an embodiment of the present application provides a base station antenna, where the base station antenna includes a radiating element array and a radio frequency lens.
  • the radiating element array includes a plurality of radiating elements arranged along a first direction.
  • the radio frequency lens is disposed above the radiation element array, and is used for receiving electromagnetic radiation emitted by the radiation element array.
  • the radio frequency lens is in strip shape, a surface of the radio frequency lens is formed with a plurality of grooves, and then a central part and a plurality of lens parts are formed on the radio frequency lens. Both the central portion and the plurality of lens portions extend along the first direction, and the central portion is disposed at a middle position of the radio frequency lens.
  • the plurality of lens portions are disposed on both sides of the central portion along a second direction, and are symmetrical with respect to the central portion, and the second direction is perpendicular to the first direction.
  • the radio frequency lens in the base station antenna provided in the embodiment of the present application has a specific structure, that is, the base station antenna is provided with an axisymmetric "tooth"-shaped structure according to the Fresnel lens principle, and the "teeth"-shaped structure is used to refract radiation Electromagnetic waves emitted by the element array to narrow the beam width.
  • the base station antenna can allow the thickness of the radio frequency lens to be reduced, or even be made into a thin sheet. In this way, it is beneficial to reduce the size of the base station antenna and improve heat dissipation.
  • FIG. 2 is a schematic diagram of a base station antenna according to an embodiment of the present application.
  • the base station antenna 100 at least includes a reflector 11 , a radiation element array 13 and a radio frequency lens 15 .
  • the reflecting plate 11 may also be called a bottom plate, a back plate, an antenna panel, a metal reflecting surface, or the like.
  • the reflecting plate 11 is used to improve the receiving sensitivity of the antenna signal, and to reflect the antenna signal and gather it on the receiving point.
  • the reflector 11 can not only enhance the receiving and/or transmitting capability of the antenna, but also block and shield the interference of other radio waves from the back (reverse direction) to the received signal.
  • the radiation element array 13 is disposed on one side of the reflector 11 .
  • the radiating element array 13 includes a plurality of radiating elements 131 (see FIG. 7A , FIG. 8A , and FIG. 9A ).
  • the radiating element 131 may also be referred to as an antenna element, an element, etc., which constitute the basic structure of the radiating element array 13, and are used to transmit and/or receive radio waves effectively. It can be understood that the number and arrangement of the radiation elements 131 can be designed according to specific needs.
  • the radiating element array 13 may constitute a linear array.
  • the linear array is a column of radiating elements oriented in a vertical direction or a row of radiating elements oriented in a horizontal direction.
  • the types of the radiation elements 131 in the radiation element array 13 are not limited.
  • the radiating element 131 may be, but not limited to, a dipole, a crossed dipole, and/or a patch radiating element, and the like.
  • the radio frequency lens 15 is disposed above the radiation element array 13 .
  • the radio frequency lens 15 is used to receive the electromagnetic radiation of the radiation element array 13 , so that the electromagnetic radiation generated by the corresponding radiation element array 13 is more concentrated toward its maximum radiation direction.
  • the radio frequency lens 15 may be made of a dielectric material with a dielectric constant greater than 1.
  • the dielectric material includes, but is not limited to, FRP, U-PVC or other dielectric materials.
  • the radio frequency lens 15 in order to ensure that the radio frequency lens 15 completely receives the electromagnetic radiation of the corresponding radiation element array 13 , the radio frequency lens 15 may be configured to have an overall length greater than or equal to the length of the corresponding radiation element array 13 . length, the overall width of which is greater than or equal to the width of the corresponding radiating element array 13 .
  • the radio frequency lens 15 may include a plurality of radio frequency lenses arranged along the arrangement direction of the radiation element array 13 , and the total length of the plurality of radio frequency lenses is greater than or equal to the length of the radiation element array 13 .
  • the distance from the radio frequency lens 15 to the corresponding radiation element array 13 is not limited, and it can be designed according to specific needs.
  • the radio frequency lens 15 may be positioned very close to the radiating element array 13 .
  • the frontmost part of the radiation elements 131 in the radiation element array 13 is made to contact (or almost contact) the inner surface of the radio frequency lens 15 .
  • the radio frequency lens 15 may be positioned to maintain a predetermined distance from the radiation element array 13 .
  • FIG. 3 is a schematic diagram of a specific structure of the radio frequency lens in the base station antenna shown in FIG. 2 .
  • the radio frequency lens 15 is a sheet with a rectangular strip shape as a whole.
  • the RF lens 15 includes a central portion 151 and a plurality of lens portions 153 .
  • the center portion 151 is disposed at the middle position of the RF lens 15 and extends along a first direction (eg, the y-axis direction).
  • the plurality of lens portions 153 are disposed on both sides of the central portion 151 along the second direction (eg, the x-axis direction), and are symmetrical with respect to the central portion 153 .
  • Each of the lens portions 153 also extends along the first direction (eg, the y-axis direction). It can be understood that the center portion 151 and the plurality of lens portions 153 can be formed by processing or treating the surface of a dielectric plate to form a group of tooth-shaped grooves on one surface thereof.
  • the first direction is perpendicular to the second direction.
  • the first direction is the arrangement direction of the radiation elements 131 in the radiation element array 13 . That is, the central portion 151 and the plurality of lens portions 153 both extend along the arrangement direction of the radiation elements 131 in the radiation element array 13 .
  • FIG. 4 is a schematic cross-sectional view of the RF lens shown in FIG. 3 .
  • the cross-section of the central portion 151 is substantially in the shape of an isosceles triangle.
  • the cross section of each of the lens portions 153 is in the shape of a right triangle.
  • One side of the center portion 151 such as the bottom side, and one side of the lens portion 153 , such as the bottom side, are located on the same straight line.
  • a plurality of the central portions 151 are respectively disposed on both sides of the central portion 151 and are axially symmetrical with respect to the central portion 151 .
  • the two symmetrically arranged lens portions 153 disposed at the middle position of the RF lens 15 together constitute the substantially isosceles triangle-shaped central portion 151 . That is, the central portion 151 may be composed of two symmetrically arranged lens portions 153 .
  • the RF lens 15 constitutes a tooth-shaped structure in which the center portion 151 is disposed in the middle portion of the RF lens 15 , and the lens portions 153 are disposed on both sides thereof facing the center portion 151 .
  • the widths of the center portion 151 and the lens portion 153 are along a third direction (eg, the z-axis direction), such as toward or away from The direction of the radiation element array 13 is gradually reduced, and the end of the lens portion 153 is gradually approached to the center portion 151 .
  • the third direction is perpendicular to both the first direction and the second direction.
  • the center line (third direction) of the central portion 151 is defined as the normal line z, and two reference lines are made in the direction perpendicular to the normal line z.
  • a first reference line x1 is formed at a first position of the lens portion 153 away from the radiation element array 13
  • a second reference line x2 is formed at a second position of the lens portion 153 close to the radiation element array 13 .
  • the first reference line x1 and the second reference line x2 are parallel to each other, both are perpendicular to the normal z, and the second reference line x2 is closer to the radiation than the first reference line x1 Element array 13 .
  • each lens portion 153 forms two intersection points with the first reference line x1 and the second reference line x2. Taking the center of the two intersection points as the reference point, respectively, two reference points, such as the first reference point a1 and the second reference point a2 , are formed on each lens portion 153 respectively.
  • the first reference point a1 is the center of two intersections between the lens portion 153 and the first reference line x1 .
  • the second reference point a2 is the center of two intersections between the lens portion 153 and the second reference line x2.
  • the second reference point a2 in each lens portion 153 is closer to the normal z than the first reference point a1.
  • each lens portion 153 and the central portion 151 are in the shape of a right triangle, that is, each side thereof is in a straight line.
  • the specific shapes of the lens portion 153 and the center portion 151 are not limited.
  • the edges (eg, sides) of the lens portion 153 and the center portion 151 and the vertices formed by the sides may also be based on specific conditions, such as Form a certain arc and/or carry out deformation design according to the requirements of the manufacturing process.
  • each lens portion 153 and the center portion 151 is located on the same straight line, for example, on a horizontal plane.
  • the specific shapes of the lens portion 153 and the center portion 151 are not limited.
  • each of the lens portion 153 and the portion of the central portion 151 away from the radiating element array 13 can be set as, but not limited to, arcs surface (see FIG. 5B ), folded surface (see FIG. 5C ), curved surface, or other surfaces, etc.
  • FIG. 2 is a scene in which the radio frequency lens 15 is applied to a single radiating element array 13 .
  • the radio frequency lens 15 can also be applied to multiple radiation element arrays 13 .
  • FIG. 6 which is a scene in which the RF lens 15 is applied to two radiating element arrays 13 .
  • each radio frequency lens 15 corresponds to a radiation element array 13 respectively, and a plurality of the radio frequency lenses 15 can be integrated into one body, that is, a plurality of radio frequency lenses 15 are formed thereon by processing a dielectric plate. And make each radio frequency lens 15 correspond to one radiation element array 13 respectively. Parameters such as the length and width of the radio frequency lens 15 can be designed and/or adjusted according to the specific structure of the radiation element array 13 .
  • the base station antenna 100 is not limited to include the reflector 11, the radiation element array 13 and the radio frequency lens 15 described in the above embodiments, and may also include other elements.
  • the base station antenna 100 may further include a radome 16 .
  • the radome 16 is used to accommodate the reflector 11 , the radiating element array 13 and the RF lens 15 to protect the base station antenna 100 from the external environment. It can be understood that the radome 16 has good electromagnetic wave penetration characteristics in terms of electrical performance, and can withstand the effects of external harsh environments in terms of mechanical performance.
  • the center portion 151 formed by the radio frequency lens 15 and the surface of the lens portion 153 may be disposed away from the radiation element array 13 , so
  • the symmetry axis (for example, the normal line z) of the RF lens 15 and the center of the radiation element array 13 are on the same line, so that the extension direction of the center portion 151 and the lens portion 153 is the same as that of the radiation element array 13 .
  • the radiating elements 131 are arranged in the same direction, so that the radio frequency lens 15 has the function of converging the wave width and improving the gain.
  • the radio frequency lens 15 may also be integrated into the radome 16 , that is, the radio frequency lens 15 and the radome 16 are integrally formed.
  • other relationships between the radio frequency lens 15 and the radiation element array 13 such as the positional relationship, are the same as those described in the above-mentioned embodiments, and are not repeated here. In this way, by integrating the RF lens 15 into the radome 16, no additional process and cost need to be added.
  • the base station antenna 100 is not limited to include the reflector 11, the radiating element array 13, the radio frequency lens 15 and the radome 16 described in the above embodiments, and it may also include other components, such as mounting multiple circuit elements within it.
  • the circuit elements may include, for example, phase shifters, remote electronic tilt (RET) actuators for mechanically adjusting the phase shifters, one or more controllers, cable connections, RF transmission lines, and the like.
  • FIG. 10 which is a functional block diagram of one embodiment of the base station antenna 100 .
  • the base station antenna 100 includes the above-mentioned reflector (not shown), radiating element array 13 , radio frequency lens (not shown) and radome 16 , and also includes a feeding network 17 and/or an expansion module 18 .
  • the feeding network 17 is a signal processing unit that feeds a signal to the radiation element array 13 according to a certain amplitude and phase, or sends a received wireless signal to the base station according to a certain amplitude and phase. That is, the radiation element array 13 can receive or transmit radio frequency signals through the corresponding feeding network 17 .
  • Said feed network 17 typically consists of a controlled impedance transmission line.
  • the feeding network 17 may include, but is not limited to, a phase shifter 171 , a combiner, a filter, and other expansion units 173 for expanding performance.
  • the specific type and structure of the feeding network 17 are not limited.
  • the expansion module 18 may include, but is not limited to, transmission components and/or calibration networks.
  • the expansion module 18 is electrically connected to the feed network 17 .
  • the feeding network 17 can realize different radiation beam directions through the transmission components, or be connected with the calibration network to obtain calibration signals required by the system.
  • a base station antenna feeder system 200 is also provided.
  • the base station antenna feeder system 200 at least includes the base station antenna 100, the pole 201 and the base station antenna described in the above embodiment. Adjust the bracket 202.
  • the base station antenna 100 is mounted on the pole 201 , and the position of the base station antenna 100 can be adjusted through the adjusting bracket 202 .
  • the base station antenna feeder system 200 may further include elements, such as an antenna joint 203, a joint seal 204 and/or a grounding device 205, and the like.
  • the base station antenna 100 at least has the following beneficial effects:
  • the radio frequency lens 15 has a specific structure. Specifically, according to the Fresnel lens principle, the base station antenna 100 is provided with an axisymmetric "tooth"-like structure, and the "tooth"-like structure is used to refract the electromagnetic waves emitted by the antenna (ie, the radiating element array 13 ), so as to play a role in The effect of narrowing the beamwidth.
  • the base station antenna 100 of the embodiment of the present application can allow the thickness of the radio frequency lens 15 to be reduced, or even be made into a thin sheet shape. In this way, it is beneficial to reduce the size of the base station antenna 100 and improve heat dissipation.
  • the RF lens 15 can be integrated on the radome 16, so that the beam width of the base station antenna 100 can be effectively converged without adding additional components.
  • the radio frequency lens 15 can use the "teeth" structure to replace the conventional dielectric lens, which has the advantages of low profile, light weight and low cost as a whole. Furthermore, the RF lens 15 has a uniform cross-sectional shape, and can be integrally formed by using the existing radome profile process without adding additional processes and costs.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本申请提供一种基站天线,包括辐射元件阵列及射频透镜,所述辐射元件阵列包括多个辐射元件,所述多个辐射元件沿第一方向设置。所述射频透镜设置于所述辐射元件阵列上方,用以接收所述辐射元件阵列发射的电磁辐射,所述射频透镜呈条状,所述射频透镜的一表面形成有若干凹槽,进而于所述射频透镜上形成一中心部及多个透镜部。所述中心部与所述多个透镜部均沿所述第一方向延伸。所述中心部设置于所述射频透镜的中间位置所述多个透镜部沿第二方向设置于所述中心部的两侧,且关于所述中心部对称,所述第二方向与所述第一方向垂直。本申请实施例提供的基站天线中所述射频透镜具有特定结构,可有效收窄波束宽度。

Description

基站天线及基站天馈系统 技术领域
本申请实施例涉及无线电通信领域,尤其涉及一种基站天线及基站天馈系统。
背景技术
在典型的蜂窝通信系统中,覆盖区域常常被划分成一个个单独的小区,每个基站常常被划分成三个扇区。在可能的最常见的配置中,小区被划分成三个120°扇区,并且每个扇区由一个或多个基站天线提供服务,这就要求每个基站天线需要大约65°左右的3dB波束宽度以及120°左右的10dB波束宽度。目前移动运行商对容量提升的需求非常迫切,但频谱资源有限。由于MIMO可以在不需要增加频宽或总发送功率耗损(transmit power expenditure)的情况下大幅地增加系统的资料吞吐量(throughput)及传送距离,使得此技术于近几年受到许多瞩目。MIMO的核心概念为利用多根发射天线与多根接收天线所提供的空间自由度来有效提升无线通信系统的频谱效率,以提升传输速率并改善通信品质。
目前,由于法律条例及天线塔的重量以及风力载荷限制等原因,增加基站天线的数量经常是不可能的,这就需要在一根天线内部塞入更多的天线数量。由于天线长度不能无限的加长,天线内部阵列更多的时候需要并排放置,这时阵列之间的信号耦合会导致波束宽度不期望的变宽。另外,作为扩充容量的另一种手段,多波束天线在保持天线口径尺寸不变的前提下,将现有小区切割为更多的小区,以此提升了原有小区的有效容量。目前,两发两收(2T2R)、四发四收(4T4R)双波束天线已经在全球广泛部署,可有效解决客户网络拥塞问题,扩容价值不言而喻。
然而,上述方案都需面临如何将天线波束宽度收窄的问题。
申请内容
有鉴于此,有必要提供一种基站天线及基站天馈系统,可有效收窄天线波束宽度。
为达到上述目的,第一方面,本申请提供一种基站天线,包括辐射元件阵列及射频透镜,所述辐射元件阵列包括多个辐射元件,所述多个辐射元件沿第一方向设置。所述射频透镜设置于所述辐射元件阵列上方,用以接收所述辐射元件阵列发射的电磁辐射,所述射频透镜呈条状,所述射频透镜的一表面形成有若干凹槽,进而于所述射频透镜上形成一中心部及多个透镜部,所述中心部与所述多个透镜部均沿所述第一方向延伸,所述中心部设置于所述射频透镜的中间位置,所述多个透镜部沿第二方向设置于所述中心部的两侧,且关于所述中心部对称,所述第二方向与所述第一方向垂直。本申请实 施例提供的基站天线中所述射频透镜具有特定结构,即所述基站天线根据菲涅尔透镜原理设置轴对称的“齿”状结构,并利用所述“齿”状结构来折射辐射元件阵列发射的电磁波,以起到收窄波束宽度的作用。另外,所述基站天线能够允许射频透镜的厚度的减小,甚至做成薄片状。如此,有利于减小基站天线的尺寸以及改善散热。
在一种可能的设计中,所述中心部及所述透镜部均呈齿状,所述中心部及所述透镜部的宽度沿第三方向逐渐减小,且所述透镜部的端部逐渐靠近所述中心部,所述第三方向与所述第一方向及所述第二方向均垂直。如此,所述射频透镜利用“齿”状结构来替代常规的介质透镜,其整体具有剖面低、重量轻、成本低等优势。
在一种可能的设计中,每一透镜部的底边及所述中心部的底边位于同一直线上,或者共同构成弧面,曲面或折面。如此,所述射频透镜利用“齿”状结构来替代常规的介质透镜,其整体具有剖面低、重量轻、成本低等优势。
在一种可能的设计中,每一透镜部的两条侧边及所述中心部的两条侧边均呈直线或具有一定的弧度。如此,所述射频透镜利用“齿”状结构来替代常规的介质透镜,其整体具有剖面低、重量轻、成本低等优势。
在一种可能的设计中,所述中心部与所述多个透镜部朝向所述辐射元件阵列设置。如此,通过使得所述射频透镜形成的中心部及所述透镜部所在表面朝向所述辐射元件阵列,且使得所述射频透镜的对称轴(例如法线z)与所述辐射元件阵列的中心位于同一直线上,进而使得所述射频透镜起到收敛波束宽度并提升增益的作用。
在一种可能的设计中,所述中心部与所述多个透镜部背向所述辐射元件阵列设置。如此,通过使得所述射频透镜形成的中心部及所述透镜部所在表面背向所述辐射元件阵列,且使得所述射频透镜的对称轴(例如法线z)与所述辐射元件阵列的中心位于同一直线上,进而使得所述射频透镜起到收敛波束宽度并提升增益的作用。
在一种可能的设计中,所述射频透镜的长度大于或等于所述辐射元件阵列的长度。如此,以确保所述射频透镜能完全接收相应的辐射元件阵列的电磁辐射。
在一种可能的设计中,所述基站天线包括沿预设方向布置的多个所述射频透镜,多个所述射频透镜的总长度大于或等于所述辐射元件阵列的长度。如此,以确保所述射频透镜能完全接收相应的辐射元件阵列的电磁辐射。
在一种可能的设计中,所述射频透镜的宽度大于或等于所述辐射元件阵列的宽度。如此,以确保所述射频透镜能完全接收相应的辐射元件阵列的电磁辐射。
在一种可能的设计中,所述射频透镜采用介电常数大于1的介质材料制成。如此,本申请实施例提供的基站天线利用所述“齿”状结构来折射辐射元件阵列发射的电磁波,以起到收窄波束宽度的作用。另外,所述基站天线能够允许射频透镜的厚度的减小,甚至做成薄片状。如此,有利于减小基站天 线的尺寸以及改善散热。
在一种可能的设计中,所述基站天线包括多个所述射频透镜及多个所述辐射元件阵列,多个所述射频透镜一体成型,且每一所述射频透镜对应一个辐射元件阵列。如此,所述基站天线利用“齿”状结构来替代常规的介质透镜,其整体具有剖面低、重量轻、成本低等优势。
在一种可能的设计中,所述基站天线还包括天线罩,所述辐射元件阵列及所述射频透镜收容于所述天线罩内。如此,所述基站天线利用“齿”状结构来替代常规的介质透镜,其整体具有剖面低、重量轻、成本低等优势。
在一种可能的设计中,所述基站天线还包括天线罩,所述射频透镜集成于所述天线罩上。如此,通过将所述射频透镜集成在天线罩上,如此不需要增加额外的部件便可有效收敛所述基站天线的波束宽度。
在一种可能的设计中,所述基站天线还包括反射板,所述辐射元件阵列设置于所述反射板上。如此,所述基站天线利用“齿”状结构来替代常规的介质透镜,其整体具有剖面低、重量轻、成本低等优势。
在一种可能的设计中,所述基站天线还包括馈电网络,所述馈电网络与所述辐射元件阵列电连接,所述馈电网络包括移相器,合路器和滤波器。如此,所述基站天线利用“齿”状结构来替代常规的介质透镜,其整体具有剖面低、重量轻、成本低等优势。
在一种可能的设计中,所述基站天线还包括扩展模块,所述扩展模块包括传动部件和校准网络,所述馈电网络通过所述传动部件实现不同辐射波束指向,或者所述馈电网络与所述校准网络连接以获取校准信号。如此,所述基站天线利用“齿”状结构来替代常规的介质透镜,其整体具有剖面低、重量轻、成本低等优势。
第二方面,本申请提供一种基站天馈系统,包括抱杆,调整支架和上述第一方面及其任一可能的设计中的基站天线,所述基站天线安装于所述抱杆上,且通过所述调整支架调整所述基站天线的位置。第二方面所带来的技术效果可参见上述第一方面各设计的基站天线相关的描述,此处不再赘述。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可根据这些附图获得其他的附图。
图1为传统透镜至菲涅尔透镜的结构变化示意图;
图2为本申请实施例中基站天线的结构示意图;
图3为图2所示基站天线中射频透镜的结构示意图;
图4为图2所示基站天线中射频透镜的截面示意图;
图5A至图5C为图2所示基站天线中射频透镜的几种示意图;
图6为本申请实施例中射频透镜应用至多个辐射单元阵列的示意图;
图7A及图7B为本申请实施例中基站天线的另一示意图;
图8A及图8B为本申请实施例中基站天线的另一示意图;
图9A及图9B为本申请实施例中基站天线的另一示意图;
图10为本申请实施例中基站天线的功能框图;
图11为本申请实施例中基站天线应用至基站天馈系统的示意图。
主要元件符号说明
基站天线100 反射板11 辐射单元阵列13 射频透镜15
辐射元件131 中心部151 透镜部153 第一方向y
第二方向x 第三方向(法线)z 第一参考线x1 第二参考线x2
第一参考点a1 第二参考点a2 天线罩16 馈电网络17
扩展模块18 移相器171 扩展单元173 基站天馈系统200
抱杆201 调整支架202 天线接头203 接头密封件204
接地装置205
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例中“至少一个”是指一个或者多个,多个是指两个或两个以上。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请中的技术领域的技术人员通常理解的含义相同。本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请申请。
应理解,本申请中除非另有说明,“/”表示或的意思。例如,A/B可以表示A或B。本申请中的“A和/或B”仅仅是一种描述关联对象的关联关系,表示可以存在只存在A、只存在B以及存在A和B这三种关系。
需要说明的是,本申请实施例中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请实施例的描述中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
需要说明的是,本申请实施例中,术语“高度”是指在垂直于参考地层的 方向上的投影长度。术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
请一并参阅图1,为传统透镜至菲涅尔透镜的结构变化示意图。其中,凸透镜可以聚焦光线,光的折射仅仅发生在透镜的光学表面(即透镜表面)。而当将凸透镜中间连续的部分去掉,保留的弯曲表面“坍陷”到一个平面上即可形成菲涅尔透镜。从菲涅尔透镜的剖面来看,其表面是由一系列锯齿型的凹槽组成,中心部分是椭圆型弧线。每个凹槽都与相邻凹槽之间角度不同,但透镜依然可以将光线集中一处,形成中心焦点,也就是透镜的焦点。每个凹槽都可以看做一个独立的小透镜,以将光线调整成平行光或聚光。
可以理解,与光学透镜类似,当将透镜应用至天线时,介质透镜也可以聚焦天线发射的电磁波,从而形成更窄的波束。例如,当菲涅尔透镜技术应用在天线领域时,通过将菲涅尔透镜放置于天线上方,与菲涅尔透镜可聚焦光束类似,所述菲涅尔透镜也可以起到聚焦电磁波的作用,从而实现收窄天线波束宽度的作用。然而,所述菲涅尔透镜通常为圆形结构。因此,当需要将菲涅尔透镜应用至由多个天线单元形成的天线阵列时,需要在每个天线单元上方设置单独的菲涅尔透镜。如此,其出现的加工难度、成本等问题都将使其应用受限。
另外,龙伯透镜是一种折射率不均匀的介质透镜。当基站天线系统的天线阵列上方设置所述龙伯透镜时,同样可起到收窄波束的作用,尤其可极大的收窄基站天线系统的H面波束。然而,龙伯天线亦具有透镜天线固有的问题,例如,重,体积大,成本较高,造成设备成本高等。
因此,本申请实施例提供一种基站天线,所述基站天线包括辐射元件阵列及射频透镜。所述辐射元件阵列包括多个辐射元件,所述多个辐射元件沿第一方向设置。所述射频透镜设置于所述辐射元件阵列上方,用以接收所述辐射元件阵列发射的电磁辐射。所述射频透镜呈条状,所述射频透镜的一表面形成有若干凹槽,进而于所述射频透镜上形成一中心部及多个透镜部。所述中心部与所述多个透镜部均沿所述第一方向延伸,所述中心部设置于所述射频透镜的中间位置。所述多个透镜部沿第二方向设置于所述中心部的两侧,且关于所述中心部对称,所述第二方向与所述第一方向垂直。本申请实施例提供的基站天线中所述射频透镜具有特定结构,即所述基站天线根据菲涅尔透镜原理设置轴对称的“齿”状结构,并利用所述“齿”状结构来折射辐射元件阵列发射的电磁波,以起到收窄波束宽度的作用。另外,所述基站天线能够允许射频透镜的厚度的减小,甚至做成薄片状。如此,有利于减小基站天线的尺寸以及改善散热。
请一并参阅图2,为本申请实施例提供的基站天线的示意图。所述基站天线100至少包括反射板11,辐射单元阵列13及射频透镜15。
所述反射板11也可以称为底板,背板,天线面板,或金属反射面等。所述反射板11用以提高天线信号的接收灵敏度,把天线信号反射聚集在接收点上。在本申请实施例中,所述反射板11不但可以增强天线的接收和/或发射能力,还可起到阻挡、屏蔽来自后背(反方向)的其它电波对接收信号的干扰作用。
所述辐射元件阵列13设置于所述反射板11的一侧。所述辐射元件阵列13包括多个辐射元件131(参图7A,图8A,图9A)。所述辐射元件131亦可称为天线振子,振子等,其构成所述辐射元件阵列13基本结构的单元,用以有效地发射和/或接收无线电波。可以理解,所述辐射元件131的数量及排列方式可以根据具体需要来设计。例如,所述辐射元件阵列13可以构成一线性阵列。所述线性阵列是沿垂直方向定向的一列辐射元件或者沿水平方向定向的一行辐射元件。
可以理解,在本申请实施例中,亦不对所述辐射单元阵列13中的辐射元件131的类型进行限制。例如,所述辐射元件131可以为,但不局限于,偶极子、交叉偶极子、和/或贴片(patch)辐射单元等。
所述射频透镜15设置于所述辐射元件阵列13上方。所述射频透镜15用以接收辐射元件阵列13的电磁辐射,使得相应的辐射元件阵列13所产生的电磁辐射更加向其最大辐射方向会聚。
可以理解,在本申请实施例中,所述射频透镜15可采用介电常数大于1的介质材料制成。所述介质材料,包括,但不局限于,玻璃钢、U-PVC或其他介质材料。
可以理解,在本申请实施例中,为确保所述射频透镜15完全接收相应的辐射元件阵列13的电磁辐射,所述射频透镜15可以被构造为整体长度大于或等于相应的辐射元件阵列13的长度,其整体宽度大于或等于相应的辐射元件阵列13的宽度。当然,在一些实施例中,所述射频透镜15可以包括沿所述辐射元件阵列13的布设方向布置的多个射频透镜,多个射频透镜的总长度大于或等于辐射元件阵列13的长度。
可以理解,在本申请实施例中,并不限定所述射频透镜15到相应的辐射元件阵列13的距离,其可以根据具体需要来设计。例如,在一些实施例中,可以将所述射频透镜15定位为非常靠近辐射元件阵列13。例如,使得所述辐射元件阵列13中的辐射元件131的最前部接触(或几乎接触)所述射频透镜15的内表面。又例如,在另外一些实施例中,可以将所述射频透镜15定位为与所述辐射元件阵列13保持一预设距离。
请一并参阅图3,图3所示为图2所示基站天线中射频透镜的具体结构示意图。在本申请实施例中,所述射频透镜15为整体呈矩形条状的薄片。所述射频透镜15包括中心部151及多个透镜部153。所述中心部151设置于所述射频透镜15的中间位置,且沿第一方向(例如y轴方向)延伸。多个所述透镜部153沿第二方向(例如x轴方向)设置于所述中心部151的两侧,且关于所述中心部153对称。每一所述透镜部153亦沿所述第一方向(例如y 轴方向)延伸。可以理解,可通过对一介质板体进行表面加工或处理,进而于其一表面形成一组齿状的凹槽,进而分别形成所述中心部151及所述多个透镜部153。在本申请实施例中,所述第一方向与所述第二方向垂直。所述第一方向为所述辐射元件阵列13中辐射元件131的布设方向。即所述中心部151及多个所述透镜部153均沿所述辐射元件阵列13中辐射元件131的布设方向延伸。
请一并参阅图4,图4为图3所示射频透镜的截面示意图。其中,从截面图来看,所述中心部151的截面大致呈等腰三角形状。每一所述透镜部153的截面均呈直角三角形状。所述中心部151的一条边,例如底边与所述透镜部153的一条边,例如底边,位于同一直线上。多个所述中心部151分别设置于所述中心部151的两侧,且关于所述中心部151轴对称。如此,可以理解为,设置于所述射频透镜15的中间位置的两个对称设置的所述透镜部153共同构成所述大致呈等腰三角形状的中心部151。即,所述中心部151可以为两个对称设置的透镜部153组成。如此,所述射频透镜15构成所述中心部151设置于所述射频透镜15的中部,其两侧设置所述透镜部153,且朝向所述中心部151的齿形结构。
可以理解,由于所述中心部151及所述透镜部153均呈齿状,因此,所述中心部151及所述透镜部153的宽度沿第三方向(例如z轴方向),例如朝向或远离所述辐射元件阵列13的方向逐渐减小,且所述透镜部153的端部逐渐靠近所述中心部151。所述第三方向与所述第一方向及所述第二方向均垂直。例如,如图4所示,将所述中心部151的中心线(第三方向)定义为法线z,再以垂直所述法线z的方向做两条参考线。其中,于所述透镜部153远离所述辐射元件阵列13的第一位置形成第一参考线x1,于所述透镜部153靠近所述辐射元件阵列13的第二位置形成第二参考线x2。所述第一参考线x1与所述第二参考线x2相互平行,两者均垂直所述法线z,且所述第二参考线x2相比所述第一参考线x1更靠近所述辐射元件阵列13。
显然,每一透镜部153均会与所述第一参考线x1及第二参考线x2形成两个交点。分别以两个所述交点的中心为参考点,进而分别于每一透镜部153上形成两个参考点,例如第一参考点a1及第二参考点a2。其中,第一参考点a1为所述透镜部153与所述第一参考线x1的两个交点的中心。所述第二参考点a2为所述透镜部153与所述第二参考线x2的两个交点的中心。显然,每一透镜部153中的第二参考点a2均比所述第一参考点a1更靠近所述法线z。
可以理解,如图2至图4所示,在上述实施例中,每一透镜部153及所述中心部151的截面均呈直角三角形状,即其每条边均呈直线。当然,在本申请实施例中,并不对所述透镜部153及所述中心部151的具体形状进行限制。例如,请一并参阅图5A和图5B,在另外的实施例中,所述透镜部153及所述中心部151的边(例如侧边)及侧边形成的顶点还可以根据具体情况,例如根据制造工艺的要求形成一定的弧度及/或进行变形设计。
可以理解,如图2至图5A所示,在上述实施例中,每一透镜部153及中心部151的其中一条边(例如底边)位于同一直线上,例如均位于一水平面上。当然,在本申请实施例中,并不对所述透镜部153及所述中心部151的具体形状进行限制。例如,请一并参阅图5B及图5C,每一所述透镜部153及所述中心部151远离所述辐射元件阵列13的部分(例如底边),可设置为,但不局限于,弧面(参图5B),折面(参图5C),曲面,或其他面等。
可以理解,请再次参阅图2,图2为所述射频透镜15应用于单个辐射元件阵列13的场景。当然,在本申请实施例中,所述射频透镜15还可应用至多个辐射元件阵列13。例如,请一并参阅图6,为所述射频透镜15应用至两个辐射元件阵列13的场景。其中,每一射频透镜15分别对应一个辐射元件阵列13,且多个所述射频透镜15可集成于一体,即通过对一介质板体进行加工处理,以于其上形成多个射频透镜15,并使得每一射频透镜15分别对应一个辐射元件阵列13。所述射频透镜15的长度、宽度等参数可根据具体的辐射元件阵列13的结构进行设计和/或调整。
可以理解,在其他实施例中,所述基站天线100不局限于包括上述实施例所述的反射板11,辐射单元阵列13及射频透镜15,其还可包括其他元件。例如,请一并参阅图7A及图7B,在本申请实施例中,所述基站天线100还可包括天线罩16。
在其中一个实施例中,所述天线罩16用以收容所述反射板11,辐射单元阵列13及射频透镜15,以保护所述基站天线100免受外部环境影响。可以理解,所述天线罩16在电气性能上具有良好的电磁波穿透特性,机械性能上能经受外部恶劣环境的作用。
可以理解,请再次参阅图2,图6,图7A及图7B,当将所述射频透镜15设置于所述辐射元件阵列13上方时,可使得所述射频透镜15形成的中心部151及所述透镜部153所在表面朝向所述辐射元件阵列13,所述射频透镜15的对称轴(例如法线z)与所述辐射元件阵列13的中心位于同一直线上,且使得所述中心部151及所述透镜部153的延伸方向与所述辐射元件阵列13中的辐射元件131的布设方向一致,进而使得所述射频透镜15起到收敛波束宽度并提升增益的作用。
当然,请一并参阅图8A及图8B,在其他实施例中,也可将所述射频透镜15形成的中心部151及所述透镜部153所在表面背向所述辐射元件阵列13设置,所述射频透镜15的对称轴(例如法线z)与所述辐射元件阵列13的中心位于同一直线上,且使得所述中心部151及所述透镜部153的延伸方向与所述辐射元件阵列13中的辐射元件131的布设方向一致,进而使得所述射频透镜15起到收敛波宽并提升增益的作用。
可以理解,请一并参阅图9A和图9B,在其他实施例中,所述射频透镜15还可集成至所述天线罩16上,即所述射频透镜15与所述天线罩16一体成型。在该种情况下,所述射频透镜15与所述辐射元件阵列13的其他关系,例如位置关系等与上述实施例所述的一致,在此不再赘述。如此,通过将所 述射频透镜15集成至所述天线罩16,无需增加额外的工艺和成本。
可以理解,在其他实施例中,所述基站天线100不局限于包括上述实施例所述的反射板11,辐射单元阵列13,射频透镜15及天线罩16,其还可包括其他元件,例如安装在其内的多个电路元件。所述电路元件可以包括,例如移相器、用于机械调节移相器的远程电子倾斜(RET)致动器、一个或多个控制器、电缆连接、RF传输线等。具体地,请一并参阅图10,为所述基站天线100的其中一个实施例的功能框图。所述基站天线100除包括上述所述的反射板(图未示),辐射单元阵列13,射频透镜(图未示)和天线罩16外,还包括馈电网络17和/或扩展模块18。
其中,所述馈电网络17为把信号按照一定的幅度、相位馈送到所述辐射单元阵列13或者将接收到的无线信号按照一定的幅度、相位发送到基站的信号处理单元。即所述辐射单元阵列13可通过相应的馈电网络17接收或发射射频信号。所述馈电网络17通常由受控的阻抗传输线构成。所述馈电网络17可包括,但不局限于,移相器171,合路器和滤波器等用以扩展性能的扩展单元173。在此,并不对所述馈电网络17的具体类型和结构进行限定。
所述扩展模块18可包括,但不局限于,传动部件和/或校准网络。所述扩展模块18与所述馈电网络17电连接。所述馈电网络17可以通过所述传动部件实现不同辐射波束指向,或者与所述校准网络连接以获取系统所需的校准信号。
可以理解,请一并参阅图11,在本申请实施例中,还提供一种基站天馈系统200,所述基站天馈系统200至少包括上述实施例所述的基站天线100、抱杆201及调整支架202。其中,所述基站天线100安装于所述抱杆201上,且可通过所述调整支架202调整所述基站天线100的位置。当然,在其他实施例中,所述基站天馈系统200还可包括元件,例如天线接头203,接头密封件204和/或接地装置205等。
显然,从上述实施例可看出,所述基站天线100至少具有以下有益效果:
(1)所述射频透镜15具有特定结构。具体地,所述基站天线100根据菲涅尔透镜原理设置轴对称的“齿”状结构,并利用所述“齿”状结构来折射天线(即辐射元件阵列13)发射的电磁波,以起到收窄波束宽度的作用。另外,相比于具有球状透镜、半球状透镜、具有球形截面或半球形截面的柱状透镜的基站天线,本申请实施例的基站天线100能够允许射频透镜15的厚度的减小,甚至做成薄片状。如此,有利于减小基站天线100的尺寸以及改善散热。
(2)所述射频透镜15可集成在天线罩16上,如此不需要增加额外的部件便可有效收敛所述基站天线100的波束宽度。
(3)所述射频透镜15可利用“齿”状结构来替代常规的介质透镜,其整体具有剖面低、重量轻、成本低等优势。再者,所述射频透镜15具有一致的横截面形状,可利用现有天线罩的型材工艺一体成型,而无需增加额外的工艺和成本。
以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较 佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。本领域技术人员还可在本申请精神内做其它变化等用在本申请的设计,只要其不偏离本申请的技术效果均可。这些依据本申请精神所做的变化,都应包含在本申请所要求保护的范围之内。

Claims (17)

  1. 一种基站天线,其特征在于,包括:
    辐射元件阵列,包括多个辐射元件,所述多个辐射元件沿第一方向设置;及
    射频透镜,设置于所述辐射元件阵列上方,用以接收所述辐射元件阵列发射的电磁辐射,所述射频透镜呈条状,所述射频透镜的一表面形成有若干凹槽,进而于所述射频透镜上形成一中心部及多个透镜部,所述中心部与所述多个透镜部均沿所述第一方向延伸,所述中心部设置于所述射频透镜的中间位置,所述多个透镜部沿第二方向设置于所述中心部的两侧,且关于所述中心部对称,所述第二方向与所述第一方向垂直。
  2. 根据权利要求1所述的基站天线,其特征在于,所述中心部及所述透镜部均呈齿状,所述中心部及所述透镜部的宽度沿第三方向逐渐减小,且所述透镜部的端部逐渐靠近所述中心部,所述第三方向与所述第一方向及所述第二方向均垂直。
  3. 根据权利要求1或2所述的基站天线,其特征在于,每一透镜部的底边及所述中心部的底边位于同一直线上,或者共同构成弧面,曲面或折面。
  4. 根据权利要求3所述的基站天线,其特征在于,每一透镜部的两条侧边及所述中心部的两条侧边均呈直线或具有一定的弧度。
  5. 根据权利要求1至4中任意一项所述的基站天线,其特征在于,所述中心部与所述多个透镜部朝向所述辐射元件阵列设置。
  6. 根据权利要求1至4中任意一项所述的基站天线,其特征在于,所述中心部与所述多个透镜部背向所述辐射元件阵列设置。
  7. 如权利要求1至6中任意一项所述的基站天线,其特征在于,所述射频透镜的长度大于或等于所述辐射元件阵列的长度。
  8. 根据权利要求1至6中任意一项所述的基站天线,其特征在于,所述基站天线包括沿预设方向布置的多个所述射频透镜,多个所述射频透镜的总长度大于或等于所述辐射元件阵列的长度。
  9. 根据权利要求1至8中任意一项所述的基站天线,其特征在于,所述射频透镜的宽度大于或等于所述辐射元件阵列的宽度。
  10. 根据权利要求1至9中任意一项所述的基站天线,其特征在于,所述射频透镜采用介电常数大于1的介质材料制成。
  11. 根据权利要求1至10中任意一项所述的基站天线,其特征在于,所述基站天线包括多个所述射频透镜及多个所述辐射元件阵列,多个所述射频透镜一体成型,且每一所述射频透镜对应一个辐射元件阵列。
  12. 根据权利要求1至11中任意一项所述的基站天线,其特征在于,所述基站天线还包括天线罩,所述辐射元件阵列及所述射频透镜收容于所述天线罩内。
  13. 根据权利要求1至11中任意一项所述的基站天线,其特征在于,所 述基站天线还包括天线罩,所述射频透镜集成于所述天线罩上。
  14. 根据权利要求1至13中任意一项所述的基站天线,其特征在于,所述基站天线还包括反射板,所述辐射元件阵列设置于所述反射板上。
  15. 根据权利要求1至14中任意一项所述的基站天线,其特征在于,所述基站天线还包括馈电网络,所述馈电网络与所述辐射元件阵列电连接,所述馈电网络包括移相器,合路器和滤波器。
  16. 根据权利要求15所述的基站天线,其特征在于,所述基站天线还包括扩展模块,所述扩展模块包括传动部件和校准网络,所述馈电网络通过所述传动部件实现不同辐射波束指向,或者所述馈电网络与所述校准网络连接以获取校准信号。
  17. 一种基站天馈系统,包括抱杆和调整支架,其特征在于,包括:所述基站天馈系统还包括如权利要求1至16中任意一项所述的基站天线,所述基站天线安装于所述抱杆上,且通过所述调整支架调整所述基站天线的位置。
PCT/CN2020/124041 2020-10-27 2020-10-27 基站天线及基站天馈系统 WO2022087832A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080106283.1A CN116325361A (zh) 2020-10-27 2020-10-27 基站天线及基站天馈系统
PCT/CN2020/124041 WO2022087832A1 (zh) 2020-10-27 2020-10-27 基站天线及基站天馈系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/124041 WO2022087832A1 (zh) 2020-10-27 2020-10-27 基站天线及基站天馈系统

Publications (1)

Publication Number Publication Date
WO2022087832A1 true WO2022087832A1 (zh) 2022-05-05

Family

ID=81383409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124041 WO2022087832A1 (zh) 2020-10-27 2020-10-27 基站天线及基站天馈系统

Country Status (2)

Country Link
CN (1) CN116325361A (zh)
WO (1) WO2022087832A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW583787B (en) * 2002-03-07 2004-04-11 Huan-Cheng Lien The design method of the microwave concave lens antenna for converting omnidirectional radiation pattern into multi-beam with different beamwidth
CN108550980A (zh) * 2018-05-31 2018-09-18 北京邮电大学 加载菲涅尔透镜的双频基站天线及其辐射模式控制方法
CN110011075A (zh) * 2019-05-17 2019-07-12 江苏集萃移动通信技术研究所有限公司 一种高性能波束赋形天线及波束赋形方法
US20190319363A1 (en) * 2018-04-11 2019-10-17 Samsung Electronics Co., Ltd. Device and method for adjusting beam by using lens in wireless communication system
CN210111046U (zh) * 2019-07-03 2020-02-21 康普技术有限责任公司 基站天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW583787B (en) * 2002-03-07 2004-04-11 Huan-Cheng Lien The design method of the microwave concave lens antenna for converting omnidirectional radiation pattern into multi-beam with different beamwidth
US20190319363A1 (en) * 2018-04-11 2019-10-17 Samsung Electronics Co., Ltd. Device and method for adjusting beam by using lens in wireless communication system
CN108550980A (zh) * 2018-05-31 2018-09-18 北京邮电大学 加载菲涅尔透镜的双频基站天线及其辐射模式控制方法
CN110011075A (zh) * 2019-05-17 2019-07-12 江苏集萃移动通信技术研究所有限公司 一种高性能波束赋形天线及波束赋形方法
CN210111046U (zh) * 2019-07-03 2020-02-21 康普技术有限责任公司 基站天线

Also Published As

Publication number Publication date
CN116325361A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
EP3471211B1 (en) Base station antennas with lenses for reducing upwardly-directed radiation
US9590300B2 (en) Electronically beam-steerable antenna device
US7205950B2 (en) Radio wave lens antenna
WO2020253554A1 (zh) 透镜天线模组及电子设备
US6947003B2 (en) Slot array antenna
US20150116154A1 (en) Lens antenna with electronic beam steering capabilities
KR20070020272A (ko) 지향성 다이폴 안테나
KR20160023302A (ko) 이동통신 서비스용 옴니 안테나
WO2020253555A1 (zh) 透镜天线阵列及电子设备
WO2020000364A1 (zh) 一种天线及无线设备
US20220247067A1 (en) Base station antenna
CN111684653B (zh) 产生具有全向方位角图案的天线波束的带透镜的基站天线
US11374331B1 (en) Base station antenna including Fabrey-Perot cavities
CN210111046U (zh) 基站天线
WO2022087832A1 (zh) 基站天线及基站天馈系统
CN110959226B (zh) 一种馈源装置、双频微波天线及双频天线设备
CN110739547A (zh) 一种卡塞格伦天线
CN112768946B (zh) 一种超宽带高增益偶极子天线
US11646502B2 (en) Multi-band base station antenna
US20220077589A1 (en) Leaky Wave Antenna
WO2024061009A1 (zh) 天线装置及通信设备
US20090109107A1 (en) Apparatus and Method for Providing Single Plane Beam Shaping
CN220553598U (zh) 一种天线单元、天线及基站
CN116914443B (zh) 一种双频波束扫描透射阵天线
CN216850341U (zh) 龙伯透镜组件、龙伯透镜天线及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958996

Country of ref document: EP

Kind code of ref document: A1