WO2020253555A1 - 透镜天线阵列及电子设备 - Google Patents

透镜天线阵列及电子设备 Download PDF

Info

Publication number
WO2020253555A1
WO2020253555A1 PCT/CN2020/094666 CN2020094666W WO2020253555A1 WO 2020253555 A1 WO2020253555 A1 WO 2020253555A1 CN 2020094666 W CN2020094666 W CN 2020094666W WO 2020253555 A1 WO2020253555 A1 WO 2020253555A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
antenna
dielectric
dielectric lens
antenna unit
Prior art date
Application number
PCT/CN2020/094666
Other languages
English (en)
French (fr)
Inventor
杨帆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2020253555A1 publication Critical patent/WO2020253555A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • H01Q21/293Combinations of different interacting antenna units for giving a desired directional characteristic one unit or more being an array of identical aerial elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/247Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching by switching different parts of a primary active element

Definitions

  • This application relates to the field of electronic technology, in particular to a lens antenna array and electronic equipment.
  • This application provides a lens antenna array and electronic equipment that can improve antenna signal transmission quality and data transmission rate.
  • an embodiment of the present application provides a lens antenna array, and the lens antenna array includes:
  • a plurality of antenna lenses arranged in sequence along a first direction comprising a first metal plate, a dielectric lens, and a second metal plate stacked in sequence along a second direction, the second direction being perpendicular to the first direction
  • the dielectric lens includes an arc-shaped surface and a rectangular surface connected between the first metal plate and the second metal plate, the arc-shaped surface and the rectangular surface are arranged opposite to each other in a third direction, so The third direction is perpendicular to the first direction, and the third direction is perpendicular to the second direction;
  • a plurality of antenna units each of the antenna units is arranged on a rectangular surface of the dielectric lens or opposite to a rectangular surface of the dielectric lens, the electromagnetic wave signal radiated by the antenna unit passes through the rectangular surface and the The arc-shaped surface is emitted, and at least one of the antenna elements is offset relative to the focal position of the dielectric lens in the first direction.
  • an embodiment of the present application provides an electronic device including the lens antenna array described in any one of the above.
  • an embodiment of the present application provides an electronic device, including two lens antenna arrays arranged oppositely, and the lens antenna array includes:
  • a plurality of antenna lenses arranged in sequence along a first direction comprising a first metal plate, a dielectric lens, and a second metal plate stacked in sequence along a second direction, the second direction being perpendicular to the first direction
  • the dielectric lens includes an arc-shaped surface and a rectangular surface connected between the first metal plate and the second metal plate, the arc-shaped surface and the rectangular surface are arranged opposite to each other in a third direction, so The third direction is perpendicular to the first direction, and the third direction is perpendicular to the second direction;
  • a plurality of millimeter wave antenna units each of the millimeter wave antenna units is arranged on a rectangular surface of the dielectric lens or opposite to a rectangular surface of the dielectric lens, and the electromagnetic wave signal radiated by the millimeter wave antenna unit passes through the The rectangular surface and the arc-shaped surface are emitted, and the focal position of at least one of the millimeter wave antenna units relative to the dielectric lens is offset in the first direction.
  • the focal position of the antenna element relative to the dielectric lens in the lens antenna array By setting the focal position of the antenna element relative to the dielectric lens in the lens antenna array to shift, the beam direction of the electromagnetic wave signal generated by the antenna element after being conducted by the antenna lens deviates from the central axis of the antenna lens, so the beam direction of the electromagnetic wave signal can be based on the antenna element
  • the offset of the focal position relative to the dielectric lens is adjusted to form a lens antenna array with adjustable beam direction to realize beam scanning, increase the beam angle range of the lens antenna array, and improve the antenna signal transmission quality and data transmission rate.
  • FIG. 1 is a three-dimensional schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a lens antenna array provided by an embodiment of the present application.
  • FIG. 3 is a top view of the lens antenna unit in FIG. 2;
  • Fig. 4 is a side view of the lens antenna unit in Fig. 3;
  • FIG. 5 is a schematic top view of another lens antenna unit provided by an embodiment of the present application.
  • FIG. 6 is a schematic top view of another lens antenna unit provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of the electromagnetic wave signal radiated by the first lens antenna unit in the lens antenna array provided in FIG. 2;
  • FIG. 8 is a schematic structural diagram of a second lens antenna unit radiating electromagnetic wave signals in the lens antenna array provided in FIG. 2;
  • FIG. 9 is a schematic structural diagram of another second lens antenna unit radiating electromagnetic wave signals in the lens antenna array provided in FIG. 2;
  • FIG. 10 is a schematic structural diagram of a third lens antenna unit radiating electromagnetic wave signals in the lens antenna array provided in FIG. 2;
  • FIG. 11 is a schematic diagram of the structure of another third lens antenna unit radiating electromagnetic wave signals in the lens antenna array provided in FIG. 2;
  • Figure 12 is a schematic diagram of the internal structure of the electronic device provided in Figure 1;
  • FIG. 13 is a schematic diagram of the internal structure of another electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the electronic device 100 from a first perspective.
  • the electronic device may be a product with an antenna, such as a telephone, a television, a tablet computer, a mobile phone, a camera, a personal computer, a notebook computer, a vehicle-mounted device, and a wearable device.
  • This application takes the electronic device 100 as a mobile phone as an example.
  • the definition is made with reference to the first viewing angle of the electronic device 100.
  • the width direction of the electronic device 100 is defined as the X-axis direction
  • the length direction of the electronic device 100 is defined as the Y-axis.
  • the direction, the thickness direction of the electronic device 100 is defined as the Z-axis direction.
  • the lens antenna array 10 includes a plurality of antenna lenses 1 sequentially arranged along a first direction and a plurality of antenna elements 2 sequentially arranged along the first direction.
  • the first direction is the Y-axis direction.
  • the antenna lens 1 includes a first metal plate 11, a dielectric lens 12, and a second metal plate 13 that are sequentially stacked in a second direction.
  • the second direction is perpendicular to the first direction.
  • the second direction is the Z-axis direction.
  • the dielectric lens 12 includes an arc surface 121 and a rectangular surface 122 connected between the first metal plate 11 and the second metal plate 13.
  • the arc surface 121 and the rectangular surface 122 are arranged opposite to each other along the third direction.
  • the third direction is perpendicular to the first direction, and the third direction is perpendicular to the second direction.
  • the third direction is the X-axis direction.
  • Each antenna element 2 is disposed on the rectangular surface 122 of a dielectric lens 12 or opposite to the rectangular surface 122 of a dielectric lens 12.
  • the electromagnetic wave signal radiated by the antenna unit 2 is emitted through the rectangular surface 122 and the arc surface 12 in sequence.
  • At least one antenna element 2 is offset relative to the focal position 120 of the dielectric lens 12 in the first direction.
  • the beam direction of the electromagnetic wave signal changes as the focal position 120 of at least one antenna unit 2 relative to the dielectric lens 12 shifts.
  • the focal position 120 of the dielectric lens 12 is the focal point of the semicircular portion 125 of the dielectric lens 12.
  • the beam direction of the electromagnetic wave signal radiated by the antenna unit 2 is taken as the reference direction.
  • the reference direction is parallel to the central axis of the antenna lens 1.
  • the focal position 120 of the antenna unit 2 relative to the dielectric lens 12 shifts, the beam of the electromagnetic wave signal radiated by the antenna unit 2 deviates from the reference direction.
  • the electromagnetic wave signal may be a millimeter wave signal, so that the millimeter wave antenna can be better used in electronic equipment and improve the communication capability of the electronic equipment.
  • the electromagnetic wave signal generated by the antenna unit 2 is guided by the antenna lens 1 and the beam direction deviates from the central axis of the antenna lens 1, so the electromagnetic wave signal
  • the direction of the beam can be adjusted according to the position of the focal point of the antenna unit 2 relative to the dielectric lens 12, thereby forming a lens antenna array 10 with adjustable beam direction to realize beam scanning.
  • the lens antenna array 10 includes a plurality of lens antenna units 14.
  • the multiple lens antenna units 14 are arranged in a linear array, a two-dimensional array, or a three-dimensional array.
  • a description is given by taking a plurality of lens antenna units 14 arranged in a linear array as an example.
  • the lens antenna unit 14 includes an antenna lens 1 and an antenna unit 2.
  • the antenna lens 1 includes a first metal plate 11, a dielectric lens 12, and a second metal plate 13 stacked in sequence.
  • the base material of the dielectric lens 12 is a material that has low loss, appropriate dielectric constant, and does not interfere with the electric field of electromagnetic waves, such as ceramic materials and polymer materials.
  • the polymer materials can be selected from materials with excellent chemical stability, corrosion resistance and long service life, such as polytetrafluoroethylene and epoxy resin.
  • the dielectric lens 12 has a first surface 123 and a second surface 124 disposed opposite to each other.
  • the first metal plate 11 and the second metal plate 13 are respectively fixed to the first surface 123 and the second surface 124 of the dielectric lens 12.
  • the first metal plate 11 and the second metal plate 13 have the same shape as the first surface 123 and the second surface 124, respectively.
  • the first metal plate 11 and the second metal plate 13 form a parallel metal plate waveguide for guiding the electromagnetic wave signal radiated by the antenna unit 2 to propagate in the dielectric lens 12 between the first metal plate 11 and the second metal plate 13.
  • the materials of the first metal plate 11 and the second metal plate 13 are materials with good electrical conductivity, including but not limited to gold, silver, copper and the like.
  • the first metal plate 11 and the second metal plate 13 also function to protect the dielectric lens 12.
  • the first metal plate 11 and the second metal plate 13 may be replaced by metal thin films to reduce the thickness and weight of the lens antenna unit 14.
  • the dielectric lens 12 includes a semicircular portion 125 and a rectangular portion 126 connected to each other.
  • the semicircular portion 125 has a semi-cylindrical shape.
  • the rectangular portion 126 has a square block shape.
  • the lens antenna array 10 is installed in an electronic device in one of the possible ways as an example for description.
  • the axial direction of the semicircular portion 125 (the thickness direction of the semicircular portion 125) is defined as the Z axis direction
  • the direction of the diameter side of the semicircle 125 is defined as the Y axis direction
  • the direction perpendicular to the diameter of the semicircle portion 125 is defined as the X axis direction.
  • the semicircular portion 125 and the rectangular portion 126 are connected in the X-axis direction.
  • the rectangular surface on the semicircular portion 125 is coplanar with one side surface of the rectangular portion 126.
  • the semicircular portion 125 and the rectangular portion 126 are integrally formed.
  • the diameter of the semicircular portion 125 is in contact with one long side of the rectangular portion 126 and has the same size.
  • the thickness (dimension in the Z-axis direction) of the semicircular portion 125 is the same as the thickness of the rectangular portion 126.
  • the antenna lens 1 adopts a semi-cylindrical lens. Compared with a spherical lens, it has a smaller volume and is easy to integrate in electronic equipment 100 such as a mobile phone.
  • the antenna lens 1 is simple to process and has low cost.
  • the rectangular surface 122 of the antenna lens 1 can be combined with The planar circuit is integrated so that the antenna unit 2 is arranged on the antenna lens 1.
  • the arc-shaped surface 121 is an arc-shaped side surface of the semicircular portion 125.
  • the arc surface 121 connects the first surface 123 and the second surface 124.
  • the arc surface 121 is a semi-cylindrical surface.
  • the rectangular surface 122 is provided in the rectangular portion 126.
  • the present application does not limit the size of the semicircular portion 125 and rectangular portion 126 of the antenna lens 1, as long as the antenna unit 2 is set at the focal position 120 of the dielectric lens 12, the electromagnetic wave signal radiated by the antenna unit 2 can efficiently pass through the antenna
  • the lens 1 emits, and the size of the antenna lens 1 is minimized to reduce the space occupied in the electronic device 100, which is beneficial to the miniaturization of the electronic device 100.
  • the lens antenna unit 14 with different gains and sizes can be conveniently designed, so that the size of the lens antenna array 10 can be reduced as much as possible.
  • the space occupied in the electronic device 100 facilitates the miniaturization of the electronic device 100.
  • the length of the rectangular portion 126 in the X-axis direction may be the focal length of the semicircular portion 125.
  • the length of the rectangular portion 126 in the X-axis direction may be smaller than the focal length of the semicircular portion 125.
  • the semicircular part 125 of the antenna lens 1 can be replaced with a semi-elliptic cylinder, and a semi-elliptic cylinder lens antenna can be designed. Adjusting the short axis and long axis of the semi-elliptical cylinder can optimize the gain and focal length of the lens antenna, and the design freedom is more Large, easy to use with different phone models.
  • the electromagnetic wave signal radiated by the antenna unit 2 enters the antenna lens 1 through the rectangular surface 122, and is emitted through the arcuate surface 121 after being transmitted in the antenna lens 1.
  • the electromagnetic wave signal will be refracted on the curved surface 121 to change the propagation direction of the electromagnetic wave signal.
  • the refraction angle of the electromagnetic wave signal is smaller than the incident angle, so the radiation range of the electromagnetic wave signal after being emitted from the curved surface 121 is reduced, resulting in a more directivity. Clear beam.
  • the antenna lens 1 converges the electromagnetic wave signal on the X-Y plane, so the energy of the electromagnetic wave signal is concentrated to form a well-directed beam to increase the gain of the electromagnetic wave signal.
  • the antenna unit 2 when the antenna unit 2 receives the electromagnetic wave signal, the electromagnetic wave signal in space can be converged on the antenna unit 2 through the arc-shaped surface 121. Since the area of the arc-shaped surface 121 is larger than that of the antenna unit 2, Therefore, the antenna lens 1 can receive more electromagnetic wave signals in space and converge these electromagnetic wave signals to the antenna unit 2. This application can increase the electromagnetic wave energy of the antenna unit 2 and improve the communication quality of the electronic device 100.
  • the propagation direction of the electromagnetic wave signal radiated by the antenna unit 2 after being refracted on the curved surface 121 becomes parallel to
  • the plane beam in the X-axis direction is radiated from the arc surface 121 to increase the directivity of the electromagnetic wave signal radiated by the antenna unit 2 and increase the gain of the electromagnetic wave signal radiated by the antenna unit 2.
  • the pattern of the lens antenna unit 14 is a narrow beam on the X-Y plane (see the dotted line of the ellipse in Figure 3), and a wide beam on the X-Z plane (see the dotted line of the ellipse in Figure 4).
  • the narrow beam refers to the narrow coverage of the beam
  • the wide beam refers to the wide coverage of the beam.
  • the electromagnetic wave signal radiated by the antenna unit 2 is refracted on the curved surface 121 to form an angle with the X-axis direction. Beam.
  • the central axis 127 of the dielectric lens 12 is parallel to the X-axis direction, and the dielectric lens 12 is symmetrical about the central axis 127.
  • the focal position 120 of the dielectric lens 12 is located on the central axis 127. When the antenna unit 2 is located on one side of the central axis 127, the beam radiated by the antenna unit 2 points to the other side of the central axis 127.
  • the above description illustrates that the direction of the electromagnetic wave beam radiated by the antenna unit 2 will change as the antenna unit 2 deviates from the focal position 120 of the dielectric lens 12.
  • the antenna unit 2 receives electromagnetic wave signals.
  • the beam direction is the same as the beam direction of the electromagnetic wave signal emitted by the antenna unit 2, so the direction in which the antenna unit 2 receives the electromagnetic wave signal will also change as the antenna unit 2 deviates from the focal position 120 of the dielectric lens 12.
  • the rectangular surface 122 is located between the focal point of the dielectric lens 12 and the semicircular portion 125.
  • the rectangular surface 122 of the antenna lens 1 can be located between the focal position 120 of the dielectric lens 12 and the semicircular portion 125, so that the second antenna unit 412 is close to the curved surface 121.
  • the beam offset angle b2 of the antenna unit 2 close to the arc surface 121 is larger than the beam deviation angle b2 of the antenna unit 2 away from the arc surface 121
  • the offset angle b1 is such that the deviation distance of the antenna unit 2 in the Y-axis direction is small, but the direction of the electromagnetic wave beam emitted from the arcuate surface 121 is relatively deflected relative to the X-axis direction, so by adjusting the antenna unit 2
  • the position in the Y-axis direction and the position in the X-axis direction can greatly adjust the beam offset angle.
  • the beam directions radiated by each lens antenna element 14 are different, and the beam directions radiated by each lens antenna element 14 are superimposed to form the radiation of the lens antenna array 10
  • the beam scanning range of the lens antenna array 10 is larger, and the antenna performance of the electronic device 100 is improved.
  • the deviation displacement of the antenna element 2 on each dielectric lens 12 relative to the focal position 120 of the dielectric lens 12 gradually increases, and is located in the lens antenna array
  • the deflection directions of the antenna elements 2 on both sides of the antenna lens 1 at the center of 10 relative to the focal position of the dielectric lens 12 are opposite.
  • the multiple antenna elements 2 deviate from the focal position of the corresponding dielectric lens 12 toward the reverse direction of the first direction, and the multiple antennas
  • the deflection displacement of unit 2 gradually increases.
  • the reverse direction of the first direction for example, the downward direction of the Y axis in FIG. 2
  • the multiple antenna elements 2 deviate from the focal position of the corresponding dielectric lens 12 toward the forward direction of the first direction, and the multiple antenna elements 2 The deflection displacement gradually increases.
  • the offset of the antenna element of the antenna lens 1 at the center of the lens antenna array 10 relative to the focal position of the dielectric lens 12 is zero, and the antenna elements of the antenna lens 1 located on both sides of the lens antenna array 10 are relative to the dielectric lens.
  • the shift amount of the focus position of 12 gradually increases, and the shift direction on both sides is opposite.
  • the beam scanning range of the lens antenna array 10 in the X-Y plane is increased.
  • the plurality of antenna lenses 1 may also be arranged along the axial direction of the semicircular portion 125 (along the Z-axis direction).
  • the lens antenna array 10 further includes a switch 15 and a radio frequency transceiver chip 16.
  • the switch 15 is electrically connected between the radio frequency transceiver chip 16 and the multiple antenna units 2.
  • the radio frequency transceiver chip 16 is used to control the switch 15 to sequentially turn on the multiple antenna units 2 and provide excitation signals for the corresponding antenna units 2 to realize beam scanning.
  • the radio frequency transceiver chip 16 is used to generate an excitation signal.
  • the switch 15 is used to control the on and off of the path between the radio frequency transceiver chip 16 and the multiple antenna units 2, so that the excitation signal generated by the radio frequency transceiver chip 16 is transmitted to the corresponding antenna unit 2 to excite the corresponding antenna unit 2 Radiating electromagnetic waves in space.
  • the number of lens antenna units 14 is 5, and the position of each antenna unit 2 relative to the focal point of the antenna lens 1 is different.
  • the switch 15 is switched to connect the radio frequency transceiver chip 16 and the first antenna unit 2, so that the first lens antenna unit 14 radiates the beam along the first direction; or, connects the radio frequency transceiver chip 16 and the second antenna Unit 2, making the second lens antenna unit 14 radiate the beam along the second direction; or, connect the radio frequency transceiver chip 16 and the third antenna unit 2, so that the third lens antenna unit 14 radiates the beam along the third direction Or, the radio frequency transceiver chip 16 and the fourth antenna unit 2 are turned on, so that the fourth lens antenna unit 14 radiates the beam along the fourth direction; or, the radio frequency transceiver chip 16 and the fifth antenna unit 2 are turned on, so that The fifth lens antenna unit 14 radiates a beam along the fifth direction.
  • the first direction, the second direction, the third direction, the fourth direction and the fifth direction are all different, so that the lens antenna array 10 can realize the beam scanning of these five directions.
  • the number of lens antenna units 14 beam scanning of the lens antenna array 10 can be realized.
  • the direction of the beam radiated by the lens antenna array 10 can be adjusted by switching the switch 15 so that the lens antenna array 10 can radiate electromagnetic wave beams directionally, so that the direction of the beam radiated by the lens antenna array 10 is adjusted with the movement and rotation of the user.
  • the array 10 can realize beam scanning through the switch 15 to maintain good signal transmission between the lens antenna array 10 and the receiving device, improve the communication quality of the electronic device 100, and does not require a shifter and attenuator, which greatly reduces the cost.
  • the plurality of dielectric lenses 12 includes a first dielectric lens 17.
  • the plurality of antenna units 2 includes a first antenna unit 312.
  • the first antenna unit 312 is provided at the focal position 171 of the first dielectric lens 17.
  • the lens antenna array 10 includes a first lens antenna unit 31.
  • the first lens antenna unit 31 includes a first antenna lens 311 and a first antenna unit 312.
  • the first antenna lens 311 includes a first dielectric lens 17.
  • the first antenna unit 312 is fixed at the center position of the rectangular surface 122 of the rectangular portion 126.
  • the center position of the rectangular surface 122 of the rectangular portion 126 is the focal position 171 of the first dielectric lens 17, so that the antenna unit 2 radiates to space.
  • the electromagnetic wave signal is emitted from the curved surface 121 as much as possible to improve the aperture efficiency of the first antenna lens 311.
  • the first lens antenna unit 31 is also called a focus-shaped lens antenna.
  • the electromagnetic wave signal radiated by the first antenna unit 312 is converted by the first antenna lens 311 and then emits an electromagnetic wave beam pointing in the X-axis direction from the arcuate surface 121.
  • the plurality of dielectric lenses 12 include a second dielectric lens 18 disposed adjacent to the first dielectric lens 17.
  • the plurality of antenna units 2 further includes a second antenna unit 412.
  • the second antenna unit 412 is arranged on the rectangular surface of the second dielectric lens 18 and is offset from the focal position 181 of the second dielectric lens 18. The distance from the center of the second antenna unit 412 to the focal point 171 of the first dielectric lens 17 is less than The distance from the focal point of the two-medium lens 412 to the focal point 171 of the first medium lens 17.
  • the lens antenna array 10 includes a second lens antenna unit 41.
  • the second lens antenna unit 41 includes a second antenna lens 411 and a second antenna unit 412.
  • the second antenna lens 411 includes a second dielectric lens 18. It can be understood that the second antenna lens 411 may have the same structure as the first antenna lens 311.
  • the second antenna unit 412 is fixed on the rectangular surface 122 of the second antenna lens 411, and the second antenna unit 412 is located between the center of the rectangular surface 122 of the second antenna lens 411 and the first antenna unit 312.
  • the center position of the rectangular surface 122 of the second antenna lens 411 is the focal position 181 of the second dielectric lens 18.
  • the second antenna unit 412 is separated from the focal position 181 of the second dielectric lens 18 by a first distance L1.
  • the electromagnetic wave signal radiated by the second antenna unit 412 is refracted by the second antenna lens 411 and the beam emitted from the arcuate surface 121 is directed gradually away from the first lens antenna
  • the central axis 127 of the unit 31 and the angle between the direction of the beam radiated by the second antenna unit 412 and the X-axis direction is the first angle a1.
  • the second lens antenna unit 41 is also called a defocus lens antenna.
  • the phase center of the antenna unit 2 of the defocused lens antenna is relatively offset by a first distance L1 from the central axis 127 where the focal point of the lens is located.
  • the angle between the direction of the radiation beam of the defocused lens antenna and the central axis 127 of the defocused lens antenna is the first angle a1.
  • first lens antenna unit 31 and the second lens antenna unit 41 are arranged along the Y-axis direction.
  • the lens antenna array 10 can radiate beams along the X-axis direction
  • the angle between the direction and radiation and the X-axis direction is the electromagnetic wave signal directed by the beam at the first angle a1.
  • the lens antenna array 10 can radiate electromagnetic wave signals of different directions without rotating the lens antenna array 10, so that the lens antenna array 10
  • the direction of the radiated electromagnetic wave signal can be adjusted to achieve beam scanning, so that the electronic device 100 can still have better communication quality when the direction is changed.
  • the number of the second antenna unit 412 is at least two. At least two second antenna units 412 are respectively disposed on opposite sides of the first antenna unit 312.
  • the number of the second lens antenna unit 41 is two.
  • the two second lens antenna units 41 are respectively located on opposite sides of the first lens antenna unit 31 and are distributed symmetrically with respect to the first lens antenna unit 31.
  • the first lens antenna unit 31 and the two second lens antenna units 41 are arranged along the Y-axis direction.
  • the second antenna elements 412 of the two second lens antenna elements 41 are close to the first antenna element 312, so that the beam directions of the two second lens antenna elements 41 are all deflected outward with respect to the X-axis direction.
  • the beam direction of the antenna unit 41 is substantially V-shaped.
  • Two second antenna elements 412 are symmetrically deviated from the focal point of the second antenna lens 411, and the first antenna element 312 is arranged at the focal point of the first antenna lens 311, so that the lens antenna array 10 radiates electromagnetic wave beams.
  • the direction of can be the X-axis direction and the two directions that are offset by the first angle a1 relative to the X-axis direction, which not only increases the electromagnetic wave gain of the lens antenna array 10, but also makes the lens antenna array 10 without rotating the lens antenna array 10 10 can radiate electromagnetic wave signals of different directions, so that the direction of the electromagnetic wave signal radiated by the lens antenna array 10 can be adjusted, and beam scanning can be realized, so that the electronic device 100 can still have better communication quality when the direction is changed.
  • the two antenna units 2 provided on opposite sides of the first antenna unit 312 may not be arranged symmetrically with respect to the first antenna unit 312, that is, the offset distances of the two antenna units 2 relative to the focal point of the dielectric lens 12 may be different. , To adapt to specific design requirements. In addition, the size of the antenna lenses 1 arranged in a row can be different to improve the design freedom of the lens antenna array 10 and adapt to different application scenarios.
  • the plurality of dielectric lenses 12 further includes a third dielectric lens 19.
  • the third dielectric lens 19 is provided on the side of the second dielectric lens 18 away from the first dielectric lens 17.
  • the plurality of antenna units 2 also includes a third antenna unit 512.
  • the third antenna unit 512 is arranged on the rectangular surface of the third dielectric lens 19 and is offset from the focal position 191 of the third dielectric lens 19. The distance from the center of the third antenna unit 512 to the focal point 171 of the first dielectric lens 17 is smaller than that of the third The distance from the focal point of the dielectric lens 19 to the focal point 171 of the first dielectric lens 17.
  • the offset L2 of the third antenna unit 512 relative to the focal position 191 of the third dielectric lens 19 is greater than the offset L1 of the second antenna unit 412 relative to the focal position 191 where the third dielectric lens 19 is provided.
  • the lens antenna array 10 includes a third lens antenna unit 51.
  • the third lens antenna unit 51 includes a third antenna lens 511 and a third antenna unit 512.
  • the third antenna lens 511 includes a third dielectric lens 19. It can be understood that the third antenna lens 511 may have the same structure as the first antenna lens 311.
  • the third antenna unit 512 is fixed on the rectangular surface 122 of the third antenna lens 511, and the third antenna unit 512 is located between the center of the rectangular surface 122 of the third antenna lens 511 and the second antenna unit 412.
  • the center position of the rectangular surface 122 of the third antenna lens 511 is the focal position 191 of the third dielectric lens 19.
  • the third antenna unit 512 is separated from the focal position 191 of the third dielectric lens 19 by a second distance L2.
  • the second distance L2 is greater than the first distance L1.
  • the electromagnetic wave signal radiated by the third antenna unit 512 is refracted by the third antenna lens 511 and the beam emitted from the arcuate surface 121 is directed gradually away from the first lens antenna
  • the angle between the unit 31 and the beam direction radiated by the third antenna unit 512 and the X-axis direction is the second angle.
  • the second angle is greater than the first angle a1.
  • first lens antenna unit 31, the second lens antenna unit 41, and the third lens antenna unit 51 are arranged along the Y-axis direction.
  • the second antenna unit 412 deviates from the focal point of the second antenna lens 411 by a relatively small distance, and the third antenna unit 512 deviates from the third antenna lens 511
  • the focal point of the lens antenna array 10 is relatively large, so that the beam direction of the electromagnetic wave radiated by the lens antenna array 10 can be along the X-axis direction, two directions deviated from the first angle a1 relative to the X-axis direction, and two directions deviated from the second angle relative to the X-axis direction.
  • the third lens antenna unit 51 by providing the third lens antenna unit 51, the directional range of the electromagnetic wave signal radiated by the lens antenna array 10 is increased.
  • the distance between the third antenna unit 512 and the arc-shaped surface 121 can also be shortened, which will not be repeated here.
  • the number of the third antenna unit 512 is at least two. At least two third antenna units 512 are respectively provided on opposite sides of the first antenna unit 312.
  • the number of the third lens antenna unit 51 is two.
  • the two third lens antenna units 51 are respectively located on opposite sides of the two second lens antenna units 41 and are symmetrically distributed with respect to the first lens antenna unit 31.
  • the first lens antenna unit 31, the two second lens antenna units 41, and the two third lens antenna units 51 are arranged along the Y-axis direction.
  • the third antenna unit 512 of the two third lens antenna units 51 are all close to the second antenna unit 412, so that the beam directions of the two third lens antenna units 51 are all deflected outward with respect to the X-axis direction.
  • the beam direction of the antenna unit 51 is substantially V-shaped.
  • the antenna units 2 on opposite sides of the first antenna unit 312 are deviated from the focal point of the dielectric lens 12, and the antenna units 2 are deviated from the dielectric lens 12
  • the distance of the focal point of the lens antenna array 10 is gradually increased, so that the direction of the electromagnetic wave beam radiated by the lens antenna array 10 can be in multiple different directions, which not only increases the electromagnetic wave gain of the lens antenna array 10, but also does not need to rotate the lens antenna array 10.
  • the lens antenna array 10 can radiate electromagnetic wave signals of different directions, so that the direction of the electromagnetic wave signals radiated by the lens antenna array 10 can be adjusted, and beam scanning is realized, so that the electronic device 100 can still have better communication quality when the direction is changed.
  • the multiple antenna units 2 provided on opposite sides of the first antenna unit 312 may not be arranged symmetrically with respect to the first antenna unit 312, that is, the offset distances of the antenna units 2 relative to the focal point of the dielectric lens 12 may be different. , To adapt to specific design requirements.
  • the lens antenna array 10 is applied to the electronic device 100.
  • the switch 15 controls the radio frequency transceiver chip 16 and the first antenna unit 312
  • the first lens antenna unit 31 radiates electromagnetic wave signals toward the receiving device.
  • the electromagnetic wave signal radiated by the first lens antenna unit 31 has a strong gain and strong radiation directivity.
  • the energy of the electromagnetic wave signal is concentrated to make the electrons
  • the communication quality between the device 100 and the receiving device is good; when the user carrying the electronic device 100 is turned to the second lens antenna unit 41 (any one of the two second lens antenna units 41), the beam is directed to the receiving device.
  • the switch 15 controls the conduction between the radio frequency transceiver chip 16 and the second antenna unit 412 (corresponding to the second lens antenna unit 41 facing the receiving device), so that the second lens antenna unit 41 radiates electromagnetic wave signals toward the receiving device.
  • the electromagnetic wave signal radiated by the second lens antenna unit 41 has a strong gain and strong radiation directivity, and the energy of the electromagnetic wave signal is concentrated, so that the communication quality between the electronic device 100 and the receiving device is better.
  • the switch 15 controls the radio frequency transceiver chip 16 and the third lens antenna unit 51
  • the antenna units 512 are conductive.
  • the waveband of the electromagnetic wave signal includes, but is not limited to, the millimeter wave band, the submillimeter wave band, or the terahertz wave band.
  • the present application does not limit the number of lens antenna units 14. Multiple lens antenna units 14 are provided, and the beam pointing range of each lens antenna unit 14 is different. The beam pointing ranges of different lens antenna units 14 may overlap. By reasonably designing the number of lens antenna units 14 so that the beam pointing ranges of different lens antenna units 14 are superimposed, the transmission and reception of electromagnetic wave signals on the side where the curved surface 121 of the lens antenna array 10 is located can be covered, for example, a lens antenna array The coverage angle of the electromagnetic wave signal 10 on the first surface 123 reaches 180 degrees, and the size of the lens antenna array 10 can also be minimized.
  • the present application does not limit the size of the multiple lens antennas 1.
  • the size of the lens antenna 1 may gradually change from the middle of the lens antenna array 10 to both sides, including but not limited to gradually increasing or gradually decreasing.
  • the multiple antenna elements 2 in the lens antenna array 10 may not be on the same plane, so as to change the uniformity of the beams to meet the requirements of different application scenarios.
  • the electronic device 100 when the lens antenna array 10 is applied to the electronic device 100, the electronic device 100 is a mobile phone.
  • the two sides of the electronic device 100 may be provided with a lens antenna array 10, and the two lens antenna arrays 10 are arranged opposite to each other, so that the two The coverage angle of the two lens antenna arrays 10 on the first surface 123 is superimposed to reach 360 degrees.
  • all four sides of the electronic device 100 can be lens antenna arrays 10 so that the coverage angles of the four lens antenna arrays 10 on the first surface 123 can be superimposed to 360 degrees.
  • the present application does not specifically limit the antenna unit 2 of the lens antenna array 10.
  • the antenna unit 2 includes, but is not limited to, a planar antenna, such as a microstrip antenna, a slot antenna, and the like.
  • the antenna unit 2 can also select antennas with different polarization directions, which can conveniently realize the horizontal polarization, vertical polarization, and dual polarization lens antenna unit 14.
  • a one-dimensional lens antenna array 10 By arranging a plurality of lens antenna units 14 in a linear shape, a one-dimensional lens antenna array 10 can be formed.
  • the array can be composed of several focusing and defocusing lens antennas.
  • the amount of shift can make the beam of the lens antenna array 10 point to different directions, and by switching and exciting different lens antenna units 14, the beam scanning of the lens antenna array 10 can be realized.
  • the present application also provides an electronic device 100, including any one of the above-mentioned lens antenna arrays 10.
  • the electronic device 100 includes a housing 20 and a circuit board 30 provided in the housing 20.
  • the antenna lens 1 of the lens antenna array 10 is provided on the housing 20.
  • the switch 15 of the lens antenna array 10 and the radio frequency transceiver chip 16 are arranged on the circuit board 30.
  • the part of the housing 20 facing the lens antenna array 10 is made of non-shielded material.
  • the base material of the housing 20 is plastic, glass, ceramic, etc.
  • the electronic device 100 is described by taking a mobile phone as an example, and the housing 20 includes a middle frame 201 and a battery cover 202.
  • the middle frame 201 surrounds the four sides of the mobile phone.
  • the circuit board 30 is fixed between the housing 20 and the display screen.
  • the number of the lens antenna array 10 may be two, and the two lens antenna arrays 10 are arranged oppositely.
  • the antenna lens 1 of the lens antenna array 10 is fixed between the side frame of the middle frame 201 and the circuit board 30, and the arc surface 121 of the lens antenna array 10 faces the side frame of the middle frame 201.
  • the rectangular surface 122 of the lens antenna array 10 faces the circuit board 30.
  • the lens antenna array 10 extends along the length direction of the electronic device 100.
  • the switch 15 is electrically connected to the plurality of antenna units 2 of the lens antenna array 10 through a coaxial line or a microstrip line.
  • the switch 15 of the lens antenna array 10 and the radio frequency transceiver chip 16 are arranged on the circuit board 30 near the lens antenna array 10 to reduce the length of the coaxial line or microstrip line, reduce the transmission path of the excitation signal, and reduce the interference of external signals. Interference of excitation signal.
  • the electronic device 100 further includes a detection chip 40.
  • the detection chip 40 is used to detect the position information of the receiving device communicating with the electronic device 100 and send the position information to the radio frequency transceiver chip 16, so that the radio frequency transceiver chip 16 controls the switch 15 to turn on according to the position information.
  • the antenna unit 2 provides an excitation signal for the corresponding antenna unit 2.
  • the detection chip 40 can track the position information of the receiving device (for example, a base station) and transmit the position information to the radio frequency transceiver chip 16.
  • the radio frequency transceiver chip 16 selects the antenna unit 2 corresponding to the position information, and the antenna
  • the electromagnetic wave signal radiated by the unit 2 is directed to the receiving device after being refracted by the antenna lens 1, the radio frequency transceiver chip 16 controls the switch 15 to turn on the antenna unit 2 corresponding to the position information, and provides an excitation signal for the corresponding antenna unit 2 . So that the beam radiated by the lens antenna array 10 is always maintained at the best transmission position.
  • a one-dimensional lens antenna array 10 is formed by arranging a plurality of focusing lens antennas and defocusing lens antennas with different beam directions in a linear shape, and beam scanning is realized by switching and exciting different lens antenna units 14.
  • the lens antenna array 10 is integrated on the side or back of the mobile phone to realize the high efficiency, high gain and low cost beam scanning of the mobile phone antenna signal.
  • the present application also provides an electronic device 600 including two lens antenna arrays 61 arranged oppositely.
  • the lens antenna array 61 includes a plurality of antenna lenses 62 sequentially arranged along the first direction and a plurality of millimeter wave antenna units 63 sequentially arranged along the first direction.
  • the structure of the antenna lens 62 is the same as the structure of the antenna lens 1 of the electronic device 100.
  • the antenna lens 62 includes a first metal plate 11, a dielectric lens 12, and a second metal plate 13 that are sequentially stacked in the second direction.
  • the second direction is perpendicular to the first direction.
  • the dielectric lens 12 includes an arc surface 121 and a rectangular surface 122 connected between the first metal plate 11 and the second metal plate 13.
  • the arc surface 121 and the rectangular surface 122 are arranged opposite to each other along a third direction, the third direction is perpendicular to the first direction, and the third direction is perpendicular to the second direction.
  • Each millimeter wave antenna unit 63 is disposed on a rectangular surface 122 of a dielectric lens 12 or opposite to a rectangular surface 122 of a dielectric lens 12, and the electromagnetic wave signal radiated by the millimeter wave antenna unit 63 is emitted through the rectangular surface 122 and the arc surface 121 in sequence. At least one millimeter wave antenna unit 63 is offset from the focal position 120 of the dielectric lens 12.
  • the beam direction of the millimeter wave signal follows the deviation of the at least one millimeter wave antenna unit 63 relative to the focal position 120 of the dielectric lens 12. Move and change.
  • the beam direction of the millimeter wave signal generated by the millimeter wave antenna unit 63 after being conducted by the antenna lens 1 deviates from the center of the antenna lens 62 Axis 127, therefore, the beam direction of the millimeter wave signal can be adjusted according to the position of the millimeter wave antenna unit 63 relative to the focal point of the antenna lens 62, thereby forming a lens antenna array 61 with adjustable beam direction to achieve beam scanning.
  • each millimeter wave antenna unit 63 has a different displacement relative to the focal position of the dielectric lens 12, so that the multiple The electromagnetic wave signals radiated by the millimeter wave antenna unit 63 are transmitted through the antenna lens 62 and the beams emitted are different in direction.
  • the deviation displacement of the millimeter wave antenna unit 63 on each dielectric lens 12 relative to the focal position of the dielectric lens 12 gradually increases, and is located in the lens antenna
  • the millimeter wave antenna elements 63 on both sides of the antenna lens 62 at the center of the array 61 deviate from the focal position of the dielectric lens 12 in opposite directions.
  • the multiple millimeter wave antenna units 63 deviate from the focal position of the corresponding dielectric lens 12 toward the reverse direction of the first direction, and more The deflection displacement of the millimeter wave antenna unit 63 gradually increases.
  • the reverse direction of the first direction for example, the Y-axis downward direction in FIG. 13
  • the multiple millimeter wave antenna units 63 deviate from the focal position of the corresponding dielectric lens 12 toward the forward direction of the first direction, and multiple millimeters
  • the deflection displacement of the wave antenna unit 63 gradually increases.
  • the offset of the millimeter wave antenna unit 63 of the antenna lens 62 at the center of the lens antenna array 61 relative to the focal position of the dielectric lens 12 is zero, and the millimeter wave antenna of the antenna lens 62 located on both sides of the lens antenna array 61
  • the offset amount of the unit 63 relative to the focal position of the dielectric lens 12 gradually increases, and the offset directions on both sides are opposite.
  • the dielectric lens 12 includes a semicircular portion 125 and a rectangular portion 126 connected along a third direction.
  • the arc surface 121 is the surface of the semicircular portion 125 away from the rectangular portion 126
  • the rectangular surface 122 is the surface of the rectangular portion 126 away from the semicircular portion 125.
  • the plurality of antenna lenses 62 are arranged along the direction of the diameter of the semicircular portion 125.
  • the plurality of dielectric lenses 12 includes a first dielectric lens 17.
  • the plurality of millimeter wave antenna units 63 include a first millimeter wave antenna unit 631.
  • the first millimeter wave antenna unit 631 is provided at the focal position 171 of the first dielectric lens 17.
  • the first millimeter wave antenna unit 631 and one antenna lens 62 form a focused millimeter wave lens antenna.
  • the plurality of dielectric lenses 12 further include a second dielectric lens 18.
  • the plurality of millimeter wave antenna units 63 also include two second millimeter wave antenna units 632.
  • the two second millimeter wave antenna units 632 are respectively disposed on opposite sides of the first millimeter wave antenna unit 631.
  • Each second millimeter wave antenna unit 632 is located between the focal position 181 of the second dielectric lens 18 and the first millimeter wave antenna unit 631.
  • the second millimeter wave antenna unit 632 and the other antenna lens 62 form a defocus type millimeter wave lens antenna.
  • the plurality of dielectric lenses 12 further includes a third dielectric lens 19.
  • the plurality of millimeter wave antenna units 63 also include two third millimeter wave antenna units 633.
  • the two third millimeter wave antenna units 633 are respectively disposed on opposite sides of the two second millimeter wave antenna units 632.
  • the third millimeter wave antenna unit 633 is offset from the focal position 191 of the third dielectric lens 19 and is close to the second millimeter wave antenna unit 632.
  • the shift amount of the third millimeter wave antenna unit 633 relative to the focal position 191 of the third dielectric lens 19 is greater than the shift amount of the second millimeter wave antenna unit 632 relative to the focal position 181 of the second dielectric lens 18.
  • the third millimeter wave antenna unit 633 and another antenna lens 62 form a defocus type millimeter wave lens antenna.
  • the electronic device 600 further includes a circuit board 30, a detection chip 40 provided on the circuit board 30, a switch 15 and a millimeter wave chip 64.
  • the detection chip 40 is used to detect the position information of the receiving device and send the position information to the millimeter wave chip 64.
  • the switch 15 is electrically connected between the millimeter wave chip 64 and the multiple millimeter wave antenna units 63.
  • the millimeter wave chip 64 is used to control the switch 15 to turn on the millimeter wave antenna unit 63 corresponding to the position information according to the position information, and provide an excitation signal for the corresponding millimeter wave antenna unit 63.
  • the electromagnetic wave beam radiated by the lens antenna array 61 can be directed in multiple different directions, and not only the lens antenna array 61 is added.
  • the gain of the radiated electromagnetic wave can enable the lens antenna array 61 to radiate electromagnetic wave signals of different directions without rotating the lens antenna array 61, so that the direction of the electromagnetic wave signal radiated by the lens antenna array 61 can be adjusted, and the beam scanning is realized to make the electronic equipment
  • the direction change of 600 can still have better communication quality.
  • the lens antenna array 61 in this embodiment is substantially the same as the lens antenna array 10 of any of the above embodiments, except that the antenna unit 2 of the lens antenna array 61 in this embodiment radiates millimeter wave signals.
  • the radio frequency transceiver chip 16 in this embodiment is an excitation signal that excites a millimeter wave signal.
  • the structure of the lens antenna array 61 in this embodiment can refer to the aforementioned lens antenna array 10, which will not be repeated here.
  • the electronic device 600 further includes a middle frame 201.
  • Two lens antenna arrays 61 are respectively fixed to two opposite long side frames of the middle frame 201, and the arc surfaces 121 of the two lens antenna arrays 61 face two opposite inner surfaces of the middle frame 201.
  • the space between the middle frame 201 and the circuit board 30 in the electronic device 600 can be effectively used, and the two lens antenna arrays 61 can be The omni-directional high-gain beam scanning improves the communication performance of the electronic device 600.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供的一种透镜天线阵列及电子设备,透镜天线阵列包括:沿第一方向依次排列的多个天线透镜,天线透镜包括沿第二方向依次层叠设置的第一金属板、介质透镜及第二金属板,第二方向垂直于第一方向,介质透镜包括连接于第一金属板与第二金属板之间的弧形面和矩形面,弧形面与矩形面沿第三方向相背设置,第三方向垂直于第一方向,第三方向垂直于第二方向;及多个天线单元,每个天线单元设于一个介质透镜的矩形面或与一个介质透镜的矩形面相对,天线单元辐射的电磁波信号依次经矩形面和弧形面射出,至少一个天线单元在第一方向上相对介质透镜的焦点位置偏移。本申请可提高透镜天线阵列的波束角度范围,提高电子设备的通讯能力。

Description

透镜天线阵列及电子设备 技术领域
本申请涉及电子技术领域,具体涉及一种透镜天线阵列及电子设备。
背景技术
随着移动通信技术的发展,人们对于数据传输速率、天线信号频宽的要求越来越高,如何将提高电子设备的天线信号传输质量和数据传输速率,成为需要解决的问题。
发明内容
本申请提供了一种提高天线信号传输质量和数据传输速率的透镜天线阵列及电子设备。
一方面,本申请实施例提供了一种透镜天线阵列,所述透镜天线阵列包括:
沿第一方向依次排列的多个天线透镜,所述天线透镜包括沿第二方向依次层叠设置的第一金属板、介质透镜及第二金属板,所述第二方向垂直于所述第一方向,所述介质透镜包括连接于所述第一金属板与所述第二金属板之间的弧形面和矩形面,所述弧形面与所述矩形面沿第三方向相背设置,所述第三方向垂直于所述第一方向,所述第三方向垂直于所述第二方向;及
多个天线单元,每个所述天线单元设于一个所述介质透镜的矩形面或与一个所述介质透镜的矩形面相对,所述天线单元辐射的电磁波信号依次经所述矩形面和所述弧形面射出,至少一个所述天线单元在所述第一方向上相对所述介质透镜的焦点位置偏移。
另一方面,本申请实施例提供了一种电子设备,包括上述的任意一项所述的透镜天线阵列。
再一方面,本申请实施例提供了一种电子设备,包括相对设置的两个透镜天线阵列,所述透镜天线阵列包括:
沿第一方向依次排列的多个天线透镜,所述天线透镜包括沿第二方向依次层叠设置的第一金属板、介质透镜及第二金属板,所述第二方向垂直于所述第一方向,所述介质透镜包括连接于所述第一金属板与所述第二金属板之间的弧形面和矩形面,所述弧形面与所述矩形面沿第三方向相背设置,所述第三方向垂直于所述第一方向,所述第三方向垂直于所述第二方向;及
多个毫米波天线单元,每个所述毫米波天线单元设于一个所述介质透镜的矩形面或与一个所述介质透镜的矩形面相对,所述毫米波天线单元辐射的电磁波信号依次经所述矩形面和所述弧形面射出,至少一个所述毫米波天线单元所述第一方向上相对所述介质透镜的焦点位置偏移。
通过设置透镜天线阵列中天线单元相对介质透镜的焦点位置偏移,以使天线单元产生的电磁波信号经天线透镜传导后的波束指向偏离天线透镜的中轴线,故而电磁波信号的波束指向可以根据天线单元相对介质透镜的焦点位置的偏移量来调节,进而形成波束指向可调节的透镜天线阵列,以实现波束扫描,提高透镜天线阵列的波束角度范围,提高天线信号传输质量和数据传输速率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的立体示意图;
图2是本申请实施例提供的一种透镜天线阵列的结构示意图;
图3是图2中的透镜天线单元的俯视图;
图4是图3中的透镜天线单元的侧视图;
图5是本申请实施例提供的另一种透镜天线单元的俯视结构示意图;
图6是本申请实施例提供的再一种透镜天线单元的俯视结构示意图;
图7是图2提供的透镜天线阵列中第一透镜天线单元辐射电磁波信号的结构示意图;
图8是图2提供的透镜天线阵列中一第二透镜天线单元辐射电磁波信号的结构示意图;
图9是图2提供的透镜天线阵列中另一第二透镜天线单元辐射电磁波信号的结构示意图;
图10是图2提供的透镜天线阵列中一第三透镜天线单元辐射电磁波信号的结构示意图;
图11是图2提供的透镜天线阵列中另一第三透镜天线单元辐射电磁波信号的结构示意图;
图12是图1提供的电子设备的内部结构示意图;
图13是本申请实施例提供的另一种电子设备的内部结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请所列举的实施例之间可以适当的相互结合。
请参照图1,图1为电子设备100的第一视角示意图。电子设备可以为电话、电视、平板电脑、手机、照相机、个人计算机、笔记本电脑、车载设备、可穿戴设备等具有天线的产品。本申请以电子设备100为手机为例,为了便于描述,以电子设备100处于第一视角为参照进行定义,电子设备100的宽度方向定义为X轴方向,电子设备100的长度方向定义为Y轴方向,电子设备100的厚度方向定义为Z轴方向。
请参照图2,本申请提供了一种透镜天线阵列10。透镜天线阵列10包括沿第一方向依次排列的多个天线透镜1及沿第一方向依次排列的多个天线单元2。本实施例中,第一方向为Y轴方向。
请参照图3及图4,天线透镜1包括沿第二方向依次层叠设置的第一金属板11、介质透镜12及第二金属板13。第二方向垂直于第一方向。本实施例中,第二方向为Z轴方向。
介质透镜12包括连接于第一金属板11与第二金属板13之间的弧形面121和矩形面122。弧形面121与矩形面122沿第三方向相背设置。,第三方向垂直于第一方向,第三方向垂直于第二方向。本实施例中,第三方向为X轴方向。
每个天线单元2设于一个介质透镜12的矩形面122或与一个介质透镜12的矩形面122相对。天线单元2辐射的电磁波信号依次经矩形面122和弧形面12射出。至少一个天线单元2在第一方向上相对介质透镜12的焦点位置120偏移。
当天线单元2辐射的电磁波信号经天线透镜1传导后从弧形面121射出时,电磁波信 号的波束指向随着至少一个天线单元2相对介质透镜12的焦点位置120偏移而改变。
请参照图3,具体的,介质透镜12的焦点位置120为介质透镜12的半圆部125的焦点。换而言之,以天线单元2位于介质透镜12的焦点位置120时,天线单元2辐射的电磁波信号的波束指向为基准方向。基准方向平行于天线透镜1的中轴线。当天线单元2相对介质透镜12的焦点位置120偏移,天线单元2辐射的电磁波信号的波束指向偏离基准方向。天线单元2相对介质透镜12的焦点位置120偏移的距离越大,电磁波信号的波束指向偏离于基准方向的幅度越大。可以理解的,电磁波信号可以为毫米波信号,以使毫米波天线在电子设备中得到较好的应用,提高电子设备的通讯能力。
通过设置透镜天线阵列10中天线单元2相对介质透镜12的焦点位置120偏移,以使天线单元2产生的电磁波信号经天线透镜1传导后的波束指向偏离天线透镜1的中轴线,故而电磁波信号的波束指向可以根据天线单元2相对介质透镜12的焦点的位置调节,进而形成波束指向可调节的透镜天线阵列10,以实现波束扫描。
具体的,请参照图2,透镜天线阵列10包括多个透镜天线单元14。多个透镜天线单元14呈直线阵列或二维阵列或三维阵列排布。本实施例中,以多个透镜天线单元14呈直线阵列排布为例进行说明。透镜天线单元14包括一个天线透镜1及一个天线单元2。天线透镜1包括依次层叠设置的第一金属板11、介质透镜12及第二金属板13。其中,介质透镜12的基材为损耗小,介电常数适当,且不会对电磁波的电场产生干扰的材质,例如陶瓷材料、高分子材料等。高分子材料可选用具有优良的化学稳定性、耐腐蚀性,使用寿命长的材料,例如,聚四氟乙烯、环氧树脂等。
请参阅图4,介质透镜12具有相背设置的第一表面123和第二表面124。第一金属板11和第二金属板13分别固定于介质透镜12的第一表面123和第二表面124。第一金属板11和第二金属板13分别与第一表面123和第二表面124的形状相同。第一金属板11和第二金属板13形成平行金属板波导,用于引导天线单元2辐射的电磁波信号在第一金属板11与第二金属板13之间的介质透镜12中传播。第一金属板11和第二金属板13的材质为导电率较好的材质,包括但不限于,金、银、铜等。第一金属板11和第二金属板13还起到保护介质透镜12的作用。在其他实施方式中,第一金属板11和第二金属板13可以由金属薄膜替代,以减小透镜天线单元14的厚度和重量。
请参阅图3,介质透镜12包括相连接的半圆部125及矩形部126。半圆部125呈半圆柱形。矩形部126呈方形块状。为了便于描述,以透镜天线阵列10以其中一种可能的方式安装于电子设备中为例进行说明。定义半圆部125的轴向(半圆部125的厚度方向)为Z轴方向,定义半圆部125的直径边所在方向为Y轴方向,定义垂直于半圆部125的直径边所在方向为X轴方向。半圆部125和矩形部126沿X轴方向连接。半圆部125上为矩形的面与矩形部126的一个侧面共面。举例而言,半圆部125与矩形部126一体成型。从俯视方向上看,半圆部125的直径与矩形部126的一个长边相接且尺寸相同。半圆部125的厚度(Z轴方向上的尺寸)与矩形部126的厚度相同。
天线透镜1采用半圆柱透镜,相较于球形透镜而言,体积更小,易于集成于手机等电子设备100中,且天线透镜1加工简单,成本低,天线透镜1的矩形面122可以于与平面电路集成,以便于将天线单元2设于天线透镜1上。
举例而言,弧形面121为半圆部125的弧形侧面。该弧形面121连接第一表面123与第二表面124。弧形面121为半圆柱面。矩形面122设于矩形部126。
本申请对于天线透镜1的半圆部125和矩形部126的尺寸不做限定,只需满足当天线 单元2设于介质透镜12的焦点位置120时,天线单元2辐射的电磁波信号能够高效地经天线透镜1射出,且尽量减小天线透镜1的尺寸,以减少在电子设备100中占据的空间,利于电子设备100的小型化。此外,通过调整天线透镜1的半圆部125的直径和天线透镜1的焦距,可以方便地设计不同增益和尺寸的透镜天线单元14,从而可以尽可能的减小透镜天线阵列10的尺寸,减小在电子设备100内占据的空间,利于电子设备100的小型化。
举例而言,矩形部126沿X轴方向的长度可以为半圆部125的焦距。再举例而言,矩形部126沿X轴方向的长度可以小于半圆部125的焦距。
可以理解的,天线透镜1的半圆部125可以替换为半椭圆柱,可设计出半椭圆柱透镜天线,调整半椭圆柱的短轴和长轴可优化透镜天线的增益和焦距,设计自由度更大,便于应用与不同手机型号。
当天线单元2位于矩形面122时,天线单元2辐射的电磁波信号经矩形面122进入天线透镜1内,在天线透镜1中传导之后再经弧形面121射出。在电磁波信号射出的过程中,电磁波信号会在弧形面121上发生折射,以改变电磁波信号传播方向。根据折射定律,由于天线透镜1的折射率大于空气的折射率不同,所以电磁波信号的折射角小于入射角,从而电磁波信号在从弧形面121射出之后的辐射范围减小,形成指向性更为明确的波束。换而言之,天线透镜1在X-Y面上对电磁波信号起到汇聚作用,故而将电磁波信号的能量集中形成指向明确的波束,以提高电磁波信号的增益。
需要说明的是,在天线单元2接受电磁波信号的过程中,空间中的电磁波信号可以通过弧形面121汇聚到天线单元2上,由于弧形面121的面积相对天线单元2的面积较大,所以天线透镜1能够在空间中接受更多的电磁波信号,并将这些电磁波信号汇聚到天线单元2,本申请可以增加天线单元2接受电磁波的能量,提高电子设备100的通讯质量。
举例而言,请参阅图3及图4,当天线单元2位于介质透镜12的焦点位置120时,天线单元2所辐射的电磁波信号在弧形面121上发生折射后的传播方向变成平行于X轴方向的平面波束并从弧形面121辐射出去,以增加天线单元2所辐射的电磁波信号的指向性,及提高天线单元2所辐射的电磁波信号的增益。这种透镜天线单元14的方向图在X-Y面上为窄波束(见图3中椭圆形的虚线部分),在X-Z面上为宽波束(见图4中椭圆形的虚线部分)。窄波束是指波束的覆盖范围较窄,宽波束是指波束的覆盖范围较宽。
举例而言,请参阅图5,当天线单元2偏离于介质透镜12的焦点位置120时,天线单元2所辐射的电磁波信号在弧形面121上发生折射后形成与X轴方向具有夹角的波束。天线单元2偏离介质透镜12的焦点位置120的距离越大,天线单元2所辐射的波束指向与X轴方向形成的夹角越大。定义介质透镜12的中轴线127平行于X轴方向,且介质透镜12关于中轴线127对称。介质透镜12的焦点位置120位于中轴线127上,当天线单元2位于中轴线127的一侧时,天线单元2所辐射的波束指向中轴线127的另一侧。
需要说明的是,上述说明了天线单元2辐射电磁波波束的指向会随着天线单元2偏离于介质透镜12的焦点位置120的变化而变化,本领域技术人员可以知道,天线单元2接受电磁波信号的波束指向与天线单元2发射电磁波信号的波束指向相同,所以天线单元2接受电磁波信号的方向也会随着天线单元2偏离于介质透镜12的焦点位置120的变化而变化。
进一步地,请参阅图6,当天线单元2相对介质透镜12的焦点位置120偏移时,矩形面122位于介质透镜12的焦点与半圆部125之间。
具体的,请参阅图5及图6,当对于偏焦形透镜天线而言,天线透镜1的矩形面122 可以位于介质透镜12的焦点位置120与半圆部125之间,以使第二天线单元412靠近于弧形面121。当天线单元2与介质透镜12的焦点位置120在Y方向上的偏移距离相等时,天线单元2靠近于弧形面121的波束偏移角b2大于天线单元2远离于弧形面121的波束偏移角b1,以使天线单元2在Y轴方向上的偏离的距离较小,但从弧形面121射出的电磁波波束的指向相对于X轴方向偏转的较大,所以通过调节天线单元2在Y轴方向上的位置和X轴方向上的位置即可能够较大幅度地调节波束的偏移角度。
请参阅图7至图11,当多个天线单元2皆相对于所对应的介质透镜12的焦点位置偏移时,每个天线单元2相对于介质透镜12的焦点位置120的偏离位移不同,以使多个天线单元2辐射的电磁波信号经天线透镜1传导后射出的波束指向不同。
通过控制多个天线透镜1的天线单元2的位置不同,以使每个透镜天线单元14所辐射的波束指向不同,每个透镜天线单元14所辐射的波束指向相叠加形成透镜天线阵列10所辐射的波束扫描范围,进而使得透镜天线阵列10所辐射的波束扫描范围较大,提高电子设备100的天线性能。
具体的,从透镜天线阵列10的中心至透镜天线阵列10的两端,每一个介质透镜12上的天线单元2相对于介质透镜12的焦点位置120的偏离位移逐渐增大,且位于透镜天线阵列10中心的天线透镜1两侧的天线单元2相对于介质透镜12的焦点位置的偏离方向相反。
换言之,沿第一方向的正向方向(例如图2中Y轴向上方向)上,多个天线单元2朝向第一方向的反向方向偏离对应的介质透镜12的焦点位置,且多个天线单元2的偏离位移逐渐增大。沿第一方向的反向方向(例如图2中Y轴向下方向)上,多个天线单元2朝向第一方向的正向方向偏离对应的介质透镜12的焦点位置,且多个天线单元2的偏离位移逐渐增大。
举例而言,位于透镜天线阵列10中心的天线透镜1的天线单元相对于介质透镜12的焦点位置的偏移量为零,位于透镜天线阵列10两侧的天线透镜1的天线单元相对于介质透镜12的焦点位置的偏移量逐渐增加,且两侧偏移方向相反。
以多个天线透镜1沿半圆部125的直径所在方向(Y轴方向)排列为例进行说明。透镜天线阵列10在X-Y面内的波束扫描范围增加。可以理解的,多个天线透镜1还可以沿半圆部125的轴向(沿Z轴方向)排列。
请参阅图7,透镜天线阵列10还包括切换开关15及射频收发芯片16。切换开关15电连接于射频收发芯片16与多个天线单元2之间。射频收发芯片16用于控制切换开关15依次导通多个天线单元2,并为对应的天线单元2提供激励信号,以实现波束扫描。
具体的,射频收发芯片16用于产生激励信号。切换开关15用于控制射频收发芯片16与多个天线单元2之间的路径的通断,以使射频收发芯片16产生的激励信号传输至对应的天线单元2,以激励对应的天线单元2向空间中辐射电磁波。举例而言,透镜天线单元14的数量为5个,每个天线单元2相对于天线透镜1的焦点的位置不同。通过切换切换开关15,以导通射频收发芯片16与第一个天线单元2,使得第一个透镜天线单元14沿第一指向辐射的波束;或者,导通射频收发芯片16与第二个天线单元2,使得第二个透镜天线单元14沿第二指向辐射的波束;或者,导通射频收发芯片16与第三个天线单元2,使得第三个透镜天线单元14沿第三指向辐射的波束;或者,导通射频收发芯片16与第四个天线单元2,使得第四个透镜天线单元14沿第四指向辐射的波束;或者,导通射频收发芯片16与第五个天线单元2,使得第五个透镜天线单元14沿第五指向辐射的波束。其中,第一指 向、第二指向、第三指向、第四指向及第五指向皆不相同,以使透镜天线阵列10能够实现这五个指向的波束扫描。通过合理的设计透镜天线单元14的数量,以实现透镜天线阵列10波束扫描。
通过切换切换开关15可以调节透镜天线阵列10所辐射波束的指向,以使透镜天线阵列10能够定向辐射电磁波波束,使得透镜天线阵列10所辐射波束的指向随着用户运动、转动而调节,透镜天线阵列10可以通过切换开关15实现波束扫描,使透镜天线阵列10与接收装置之间保持良好的信号传输,提高电子设备100的通讯质量,不需要移向器和衰减器,大大降低了成本。
请参阅图7,多个介质透镜12包括第一介质透镜17。多个天线单元2包括第一天线单元312。第一天线单元312设于第一介质透镜17的焦点位置171。
具体的,透镜天线阵列10包括第一透镜天线单元31。第一透镜天线单元31包括第一天线透镜311和第一天线单元312。第一天线透镜311包括第一介质透镜17。第一天线单元312固定于矩形部126的矩形面122的中心位置处,该矩形部126的矩形面122的中心位置为第一介质透镜17的焦点位置171,以使天线单元2向空间辐射的电磁波信号尽可能多的从弧形面121射出,以提高第一天线透镜311的口径效率。第一透镜天线单元31也称为聚焦形透镜天线。
当切换开关15导通射频收发芯片16与第一天线单元312时,第一天线单元312辐射的电磁波信号经第一天线透镜311转换之后从弧形面121射出指向为X轴方向的电磁波波束。
请参阅图8,多个介质透镜12包括与第一介质透镜17相邻设置的第二介质透镜18。多个天线单元2还包括第二天线单元412。第二天线单元412设于第二介质透镜18的矩形面且相对于第二介质透镜18的焦点位置181偏移,第二天线单元412的中心到第一介质透镜17的焦点171的距离小于第二介质透镜412的焦点到第一介质透镜17焦点171的距离。
具体的,透镜天线阵列10包括第二透镜天线单元41。第二透镜天线单元41包括第二天线透镜411和第二天线单元412。第二天线透镜411包括第二介质透镜18。可以理解的,第二天线透镜411可以与第一天线透镜311的结构相同。第二天线单元412固定于第二天线透镜411的矩形面122上,且第二天线单元412位于第二天线透镜411的矩形面122的中心位置与第一天线单元312之间。第二天线透镜411的矩形面122的中心位置为第二介质透镜18的焦点位置181。第二天线单元412与第二介质透镜18的焦点位置181间隔第一距离L1。
当切换开关15导通射频收发芯片16与第二天线单元412时,第二天线单元412辐射的电磁波信号经第二天线透镜411折射之后从弧形面121射出的波束指向逐渐远离第一透镜天线单元31的中轴线127,且第二天线单元412辐射的波束指向与X轴方向之间的夹角为第一角度a1。
第二透镜天线单元41也称为偏焦形透镜天线。偏焦形透镜天线的天线单元2的相位中心与透镜焦点所在中轴线127有相对偏移第一距离L1。通过调整第一距离L1的大小,可以改变偏焦形透镜天线辐射波束的指向,偏焦形透镜天线的辐射波束指向与偏焦形透镜天线的中轴线127的夹角为第一角度a1,第一距离L1越大,第一角度a1越大。
可以理解的,第一透镜天线单元31及第二透镜天线单元41沿Y轴方向排列。
通过设置第二天线单元412偏离于第二天线透镜411的焦点处,及第一天线单元312设于第一天线透镜311的焦点处,以使该透镜天线阵列10能够辐射沿X轴方向的波束指向 及辐射与X轴方向之间的夹角为第一角度a1的波束指向的电磁波信号,无需转动透镜天线阵列10即可使透镜天线阵列10能够辐射不同指向的电磁波信号,使得透镜天线阵列10所辐射的电磁波信号的指向可调,实现波束扫描,以使电子设备100的方向改变仍能够具有较好的通讯质量。
请参阅图8及图9,第二天线单元412的数量为至少两个。至少两个第二天线单元412分别设于第一天线单元312的相对两侧。
具体的,第二透镜天线单元41的数量为两个。两个第二透镜天线单元41分别位于第一透镜天线单元31的相对两侧且关于第一透镜天线单元31对称分布。第一透镜天线单元31及两个第二透镜天线单元41沿Y轴方向排列。两个第二透镜天线单元41的第二天线单元412皆靠近于第一天线单元312,以使两个第二透镜天线单元41的波束指向皆相对X轴方向向外偏转,两个第二透镜天线单元41的波束指向大致呈V形。
通过设置两个第二天线单元412相对称地偏离于第二天线透镜411的焦点处,及第一天线单元312设于第一天线透镜311的焦点处,以使该透镜天线阵列10辐射电磁波波束的指向可以为X轴方向、相对于X轴方向偏移第一角度a1的两个方向,不仅仅增加了透镜天线阵列10辐射电磁波的增益,还无需转动透镜天线阵列10即可使透镜天线阵列10能够辐射不同指向的电磁波信号,使得透镜天线阵列10所辐射的电磁波信号的指向可调,实现波束扫描,以使电子设备100的方向改变仍能够具有较好的通讯质量。
可以理解,设于第一天线单元312相对两侧的两个天线单元2可以不关于第一天线单元312对称设置,即这两个天线单元2相对于介质透镜12的焦点的偏移距离可以不同,以适应特定的设计需求。此外,相排列设置的天线透镜1的尺寸可以不同,以提高透镜天线阵列10的设计自由度,适应不同的应用场景。
请参阅图10,多个介质透镜12还包括第三介质透镜19。第三介质透镜19设于第二介质透镜18远离第一介质透镜17的一侧。多个天线单元2还包括第三天线单元512。第三天线单元512设于第三介质透镜19的矩形面且相对第三介质透镜19的焦点位置191偏移,第三天线单元512的中心到第一介质透镜17的焦点171的距离小于第三介质透镜19的焦点到第一介质透镜17的焦点171的距离。第三天线单元512相对第三介质透镜19的焦点位置191的偏移量L2大于第二天线单元412相对于设有第三介质透镜19的焦点位置191的偏移量L1。
具体的,透镜天线阵列10包括第三透镜天线单元51。第三透镜天线单元51包括第三天线透镜511和第三天线单元512。第三天线透镜511包括第三介质透镜19。可以理解的,第三天线透镜511可以与第一天线透镜311的结构相同。第三天线单元512固定于第三天线透镜511的矩形面122上,且第三天线单元512位于第三天线透镜511的矩形面122的中心位置与第二天线单元412之间。第三天线透镜511的矩形面122的中心位置为第三介质透镜19的焦点位置191。第三天线单元512与第三介质透镜19的焦点位置191间隔第二距离L2。第二距离L2大于第一距离L1。
当切换开关15导通射频收发芯片16与第三天线单元512时,第三天线单元512辐射的电磁波信号经第三天线透镜511折射之后从弧形面121射出的波束指向逐渐远离第一透镜天线单元31,且第三天线单元512辐射的波束指向与X轴方向之间的夹角为第二角度。第二角度大于第一角度a1。
可以理解的,第一透镜天线单元31、第二透镜天线单元41及第三透镜天线单元51沿Y轴方向排列。
通过设置第一天线单元312设于第一天线透镜311的焦点处、第二天线单元412偏离于第二天线透镜411的焦点相对较小的距离及第三天线单元512偏离于第三天线透镜511的焦点相对较大的距离,以使该透镜天线阵列10辐射电磁波的波束指向可以沿X轴方向、相对X轴方向偏离第一角度a1的两个方向、相对X轴方向偏离第二角度的两个方向,不仅仅增加了透镜天线阵列10辐射电磁波的增益,还无需转动透镜天线阵列10即可使透镜天线阵列10能够辐射不同指向的电磁波信号,使得透镜天线阵列10所辐射的电磁波信号的指向可调,实现波束扫描,以使电子设备100的方向改变仍能够具有较好的通讯质量。
此外,通过设置第三透镜天线单元51,使得透镜天线阵列10辐射电磁波信号的指向范围增加。
可以理解的,第三天线单元512与弧形面121之间的间距也可以缩短,在此不再赘述。
请参阅图10及图11,第三天线单元512的数量为至少两个。至少两个第三天线单元512分别设于第一天线单元312的相对两侧。
具体的,第三透镜天线单元51的数量为两个。两个第三透镜天线单元51分别位于两个第二透镜天线单元41的相对两侧且关于第一透镜天线单元31对称分布。第一透镜天线单元31、两个第二透镜天线单元41及两个第三透镜天线单元51沿Y轴方向排列。两个第三透镜天线单元51的第三天线单元512皆靠近于第二天线单元412,以使两个第三透镜天线单元51的波束指向皆相对X轴方向向外偏转,两个第三透镜天线单元51的波束指向大致呈V形。
通过设置第一天线单元312设于第一天线透镜311的焦点处、第一天线单元312相对两侧的天线单元2皆偏离于介质透镜12的焦点处,且天线单元2皆偏离于介质透镜12的焦点的距离逐渐增加,以使该透镜天线阵列10辐射电磁波波束的指向可以为多个不同的方向,不仅仅增加了透镜天线阵列10辐射电磁波的增益,还无需转动透镜天线阵列10即可使透镜天线阵列10能够辐射不同指向的电磁波信号,使得透镜天线阵列10所辐射的电磁波信号的指向可调,实现波束扫描,以使电子设备100的方向改变仍能够具有较好的通讯质量。
可以理解,设于第一天线单元312相对两侧的多个天线单元2可以不关于第一天线单元312对称设置,即这些天线单元2相对于介质透镜12的焦点的偏移距离可以各不相同,以适应特定的设计需求。
举例而言,透镜天线阵列10应用于电子设备100,当透镜天线阵列10中的第一透镜天线单元31的波束指向正对接收装置时,切换开关15控制射频收发芯片16与第一天线单元312之间导通,以使第一透镜天线单元31朝向接收装置辐射电磁波信号,此时第一透镜天线单元31辐射的电磁波信号增益强,且辐射指向性强,电磁波信号的能量集中,以使电子设备100与接收装置之间的通讯质量较好;当用户携带电子设备100转向至第二透镜天线单元41(两个第二透镜天线单元41的任意一个)的波束指向正对接收装置时,切换开关15控制射频收发芯片16与第二天线单元412(对应于波束指向正对接收装置的第二透镜天线单元41)之间导通,以使第二透镜天线单元41朝向接收装置辐射电磁波信号,此时第二透镜天线单元41辐射的电磁波信号增益强,且辐射指向性强,电磁波信号的能量集中,以使电子设备100与接收装置之间的通讯质量较好。相应地,当用户携带电子设备100转向至第三透镜天线单元51(两个第三透镜天线单元51的任意一个)的波束指向正对接收装置时,切换开关15控制射频收发芯片16与第三天线单元512(对应于波束指向正对接收装置的第三透镜天线单元51)之间导通。通过以上的方式可以在用户携带电子设备100 任意转向都可以使得电子设备100能够发射或接收到最高效率的电磁波信号,以使电子设备100的通讯质量保持良好。
可以理解的,电磁波信号的波段包括但不限于毫米波波段、亚毫米波段或太赫兹波段。
可以理解的,本申请对于透镜天线单元14的数量不做限定,通过设置多个透镜天线单元14,且每个透镜天线单元14的波束指向范围不同。不同的透镜天线单元14的波束指向范围可以有重叠。通过合理设计透镜天线单元14的数量,以使不同的透镜天线单元14的波束指向范围相叠加可以覆盖透镜天线阵列10的弧形面121所在的一侧的电磁波信号的收发,例如,透镜天线阵列10的电磁波信号在第一表面123的覆盖角度达到180度,还可以尽量减小透镜天线阵列10的尺寸。
可以理解的,本申请对于多个透镜天线1的尺寸不做限定,具体的,透镜天线1的尺寸可以由透镜天线阵列10的中间向两边渐变,包括但不限于逐渐增大或逐渐减小。此外,透镜天线阵列10中的多个天线单元2可以不在同一平面,以改波束的一致性,以适应不同应用场景的需求。
进一步地,当透镜天线阵列10应用于电子设备100时,电子设备100为手机,电子设备100的两个侧面可以分别设有透镜天线阵列10,两个透镜天线阵列10相背设置,以使两个透镜天线阵列10在第一表面123的覆盖角度相叠加达到360度。
可以理解的,电子设备100为手机时,电子设备100的四个侧面都可以透镜天线阵列10,以使四个透镜天线阵列10在第一表面123的覆盖角度相叠加达到360度。
可以理解的,本申请对透镜天线阵列10的天线单元2不做具体的限定,举例而言,天线单元2包括但不限于平面天线,如微带天线、缝隙天线等。此外,天线单元2还可以选取不同的极化方向的天线,可以方便的实现水平极化、垂直极化以及双极化透镜天线单元14。
通过将多个透镜天线单元14呈线形排列,可组成一维透镜天线阵列10,该阵列可由若干聚焦型和偏焦型透镜天线组成,通过设计每个偏焦型透镜天线的天线单元2的偏移量,可以让透镜天线阵列10的波束指向不同方向,通过切换激励不同的透镜天线单元14,可以实现透镜天线阵列10的波束扫描。
请参阅图12,本申请还提供了一种电子设备100,包括上述任意一项的透镜天线阵列10。
请参阅图12,电子设备100包括壳体20及设于壳体20内的电路板30。透镜天线阵列10的天线透镜1设于壳体20上。透镜天线阵列10的切换开关15及射频收发芯片16设于电路板30上。可以理解的,壳体20正对透镜天线阵列10的部分为非屏蔽材质。举例而言,壳体20的基材为塑料、玻璃、陶瓷材质等。
具体的,请参阅图12,电子设备100以手机为例进行说明,壳体20包括中框201和电池盖202。中框201包围于手机的四个侧面。电路板30固定于壳体20与显示屏之间。透镜天线阵列10的数量可以为两个,两个透镜天线阵列10相对设置。透镜天线阵列10的天线透镜1固定于中框201的侧边框与电路板30之间,透镜天线阵列10的弧形面121朝向中框201的侧边框。透镜天线阵列10的矩形面122朝向电路板30。且透镜天线阵列10沿电子设备100的长度方向延伸。
切换开关15与透镜天线阵列10的多个天线单元2之间通过同轴线或微带线电连接。透镜天线阵列10的切换开关15及射频收发芯片16设于电路板30上靠近透镜天线阵列10位置,以减少同轴线或微带线的长度,减少激励信号的传输路径,进而外界信号减少对激 励信号的干扰。
请参阅图12,电子设备100还包括检测芯片40。检测芯片40用于检测与电子设备100通信的接收装置的方位信息,并将方位信息发送至射频收发芯片16,以使射频收发芯片16根据方位信息控制切换开关15导通与方位信息相对应的天线单元2,并为对应的天线单元2提供激励信号。
换而言之,检测芯片40能够追踪接收装置(例如,基站)的方位信息,并将该方位信息传送至射频收发芯片16,射频收发芯片16选取与方位信息相对应的天线单元2,该天线单元2辐射的电磁波信号经天线透镜1折射后的波束指向正对接收装置,射频收发芯片16控制切换开关15导通与方位信息相对应的天线单元2,并为对应的天线单元2提供激励信号。以使透镜天线阵列10所辐射的波束始终保持在最佳的传输位置上。
通过将多个不同波束指向的聚焦型透镜天线和偏焦型透镜天线呈线形排列,组成一维透镜天线阵列10,通过切换激励不同透镜天线单元14,实现波束扫描。将该透镜天线阵列10集成于手机侧面或背面,以实现手机天线信号高效率、高增益、低成本波束扫描。
请参阅图13,本申请还提供了一种电子设备600,包括相对设置的两个透镜天线阵列61。透镜天线阵列61包括沿第一方向依次排列的多个天线透镜62及沿第一方向依次排列的多个毫米波天线单元63。天线透镜62的结构与电子设备100的天线透镜1的结构相同。天线透镜62包括沿第二方向依次层叠设置的第一金属板11、介质透镜12及第二金属板13。第二方向垂直于第一方向。介质透镜12包括连接于第一金属板11与第二金属板13之间的弧形面121和矩形面122。弧形面121与矩形面122沿第三方向相背设置,第三方向垂直于第一方向,第三方向垂直于第二方向。每个毫米波天线单元63设于一个介质透镜12的矩形面122或与一个介质透镜12的矩形面122相对,毫米波天线单元63辐射的电磁波信号依次经矩形面122和弧形面121射出。至少一个毫米波天线单元63相对介质透镜12的焦点位置120偏移。当毫米波天线单元63发射的毫米波信号经天线透镜62传导后从弧形面121射出时,毫米波信号的波束指向随着至少一个毫米波天线单元63相对介质透镜12的焦点位置120的偏移而改变。
通过设置透镜天线阵列61中毫米波天线单元63相对天线透镜62的焦点位置120偏移,以使毫米波天线单元63产生的毫米波信号经天线透镜1传导后的波束指向偏离天线透镜62的中轴线127,故而毫米波信号的波束指向可以根据毫米波天线单元63相对天线透镜62的焦点的位置调节,进而形成波束指向可调节的透镜天线阵列61,以实现波束扫描。
具体的,当多个毫米波天线单元63皆相对于所对应的介质透镜12的焦点位置偏移时,每个毫米波天线单元63相对于介质透镜12的焦点位置的偏离位移不同,以使多个毫米波天线单元63辐射的电磁波信号经天线透镜62传导后射出的波束指向不同。
具体的,从透镜天线阵列61的中心至透镜天线阵列61的两端,每一个介质透镜12上的毫米波天线单元63相对于介质透镜12的焦点位置的偏离位移逐渐增大,且位于透镜天线阵列61中心的天线透镜62两侧的毫米波天线单元63相对于介质透镜12的焦点位置的偏离方向相反。
换言之,沿第一方向的正向方向上(例如图13中Y轴向上方向),多个毫米波天线单元63朝向第一方向的反向方向偏离对应的介质透镜12的焦点位置,且多个毫米波天线单元63的偏离位移逐渐增大。沿第一方向的反向方向上(例如图13中Y轴向下方向),多个毫米波天线单元63朝向第一方向的正向方向偏离对应的介质透镜12的焦点位置,且多个毫米波天线单元63的偏离位移逐渐增大。
举例而言,位于透镜天线阵列61中心的天线透镜62的毫米波天线单元63相对于介质透镜12的焦点位置的偏移量为零,位于透镜天线阵列61两侧的天线透镜62的毫米波天线单元63相对于介质透镜12的焦点位置的偏移量逐渐增加,且两侧偏移方向相反。
请一并参阅图3、图4及图13,介质透镜12包括沿第三方向相连接的半圆部125及矩形部126。弧形面121为半圆部125远离矩形部126的面,矩形面122为矩形部126远离半圆部125的面。多个天线透镜62沿半圆部125的直径所在方向排列。
请一并参阅图7及图13,多个介质透镜12包括第一介质透镜17。多个毫米波天线单元63包括第一毫米波天线单元631。第一毫米波天线单元631设于第一介质透镜17的焦点位置171。第一毫米波天线单元631和一个天线透镜62形成聚焦型毫米波透镜天线。
请一并参阅图8、图9及图13,多个介质透镜12还包括第二介质透镜18。多个毫米波天线单元63还包括两个第二毫米波天线单元632。两个第二毫米波天线单元632分别设于第一毫米波天线单元631的相对两侧。每个第二毫米波天线单元632位于第二介质透镜18的焦点位置181与第一毫米波天线单元631之间。第二毫米波天线单元632和另一个天线透镜62形成偏焦型毫米波透镜天线。
请一并参阅图10、图11及图13,多个介质透镜12还包括第三介质透镜19。多个毫米波天线单元63还包括两个第三毫米波天线单元633。两个第三毫米波天线单元633分别设于两个第二毫米波天线单元632的相对两侧。第三毫米波天线单元633相对第三介质透镜19的焦点位置191偏移,且靠近第二毫米波天线单元632之间。第三毫米波天线单元633相对于第三介质透镜19的焦点位置191的偏移量大于第二毫米波天线单元632相对于第二介质透镜18的焦点位置181的偏移量。第三毫米波天线单元633和再一个天线透镜62形成偏焦型毫米波透镜天线。
请参阅图13,电子设备600还包括电路板30、设于电路板30上的检测芯片40、切换开关15及毫米波芯片64。检测芯片40用于检测接收装置的方位信息,并将方位信息发送至毫米波芯片64。切换开关15电连接于毫米波芯片64与多个毫米波天线单元63之间。毫米波芯片64用于根据方位信息,控制切换开关15导通与方位信息相对应的毫米波天线单元63,并为对应的毫米波天线单元63提供激励信号。
通过在聚焦型毫米波透镜天线的相对设置镜像对称的偏焦型毫米波透镜天线,以使该透镜天线阵列61辐射电磁波波束的指向可以为多个不同的方向,不仅仅增加了透镜天线阵列61辐射电磁波的增益,还无需转动透镜天线阵列61即可使透镜天线阵列61能够辐射不同指向的电磁波信号,使得透镜天线阵列61所辐射的电磁波信号的指向可调,实现波束扫描,以使电子设备600的方向改变仍能够具有较好的通讯质量。
可以理解的,本实施例中的透镜天线阵列61与上述任意一种实施方式的透镜天线阵列10大致相同,不同的是,本实施例中的透镜天线阵列61的天线单元2辐射毫米波信号。本实施例中的射频收发芯片16为激发毫米波信号的激励信号。本实施例中透镜天线阵列61的结构可以参考上述的透镜天线阵列10,在此不再赘述。
请参阅图13,电子设备600还包括中框201。两个透镜天线阵列61分别固定于中框201的两个相对的长侧框,且两个透镜天线阵列61的弧形面121朝向中框201上两个相对的内表面。
通过将两个透镜天线阵列61对称设置于电子设备600的相对两侧,可以有效地利用电子设备600内中框201与电路板30之间的空间,还可以使得两个透镜天线阵列61能够进行全方位的高增益的波束扫描,提高电子设备600的通讯性能。
以上是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种透镜天线阵列,其特征在于,包括:
    沿第一方向依次排列的多个天线透镜,所述天线透镜包括沿第二方向依次层叠设置的第一金属板、介质透镜及第二金属板,所述第二方向垂直于所述第一方向,所述介质透镜包括连接于所述第一金属板与所述第二金属板之间的弧形面和矩形面,所述弧形面与所述矩形面沿第三方向相背设置,所述第三方向垂直于所述第一方向,所述第三方向垂直于所述第二方向;及
    多个天线单元,每个所述天线单元设于一个所述介质透镜的矩形面或与一个所述介质透镜的矩形面相对,所述天线单元辐射的电磁波信号依次经所述矩形面和所述弧形面射出,至少一个所述天线单元在所述第一方向上相对所述介质透镜的焦点位置偏移。
  2. 如权利要求1所述的透镜天线阵列,其特征在于,当多个所述天线单元皆相对于所对应的所述介质透镜的焦点位置偏移时,每个所述天线单元的偏离位移不同。
  3. 如权利要求2所述的透镜天线阵列,其特征在于,沿所述第一方向的正向方向上,多个所述天线单元朝向所述第一方向的反向方向偏离对应的所述介质透镜的焦点位置,且多个所述天线单元的偏离位移逐渐增大;沿所述第一方向的反向方向上,多个所述天线单元朝向所述第一方向的正向方向偏离对应的所述介质透镜的焦点位置,且多个所述天线单元的偏离位移逐渐增大。
  4. 如权利要求2所述的透镜天线阵列,其特征在于,所述透镜天线阵列还包括切换开关及射频收发芯片,所述切换开关电连接于所述射频收发芯片与多个所述天线单元之间;所述射频收发芯片用于控制所述切换开关依次导通所述多个天线单元,并为对应的天线单元提供激励信号,以实现波束扫描。
  5. 如权利要求1~3任意一项所述的透镜天线阵列,其特征在于,多个所述介质透镜包括第一介质透镜,多个所述天线单元包括第一天线单元,所述第一天线单元设于所述第一介质透镜的焦点位置。
  6. 如权利要求5所述的透镜天线阵列,其特征在于,多个所述介质透镜还包括与所述第一介质透镜相邻设置的第二介质透镜,多个所述天线单元还包括第二天线单元,所述第二天线单元设于所述第二介质透镜的矩形面且相对所述第二介质透镜的焦点位置偏移,所述第二天线单元的中心到所述第一介质透镜的焦点的距离小于所述第二介质透镜的焦点到所述第一介质透镜的焦点的距离。
  7. 如权利要求6所述的透镜天线阵列,其特征在于,所述第二天线单元的数量为至少两个,至少两个所述第二天线单元对称设于所述第一天线单元的相对两侧。
  8. 如权利要求7所述的透镜天线阵列,其特征在于,多个所述介质透镜还包括第三介质透镜,所述第三介质透镜设于所述第二介质透镜远离所述第一介质透镜的一侧,多个所述天线单元还包括第三天线单元,所述第三天线单元设于所述第三介质透镜的矩形面且相对所述第三介质透镜的焦点位置偏移,所述第三天线单元的中心到所述第一介质透镜的焦点的距离小于所述第三介质透镜的焦点到所述第一介质透镜的焦点的距离,所述第三天线单元的偏移量大于所述第二天线单元的偏移量。
  9. 如权利要求8所述的透镜天线阵列,其特征在于,所述第三天线单元的数量为至少两个,所述至少两个第三天线单元对称设于所述第一天线单元的相对两侧。
  10. 如权利要求1所述的透镜天线阵列,其特征在于,所述介质透镜包括沿所述第三方 向相连接的半圆部及矩形部,所述弧形面为所述半圆部远离所述矩形部的面,所述矩形面为所述矩形部远离所述半圆部的面,所述多个天线透镜沿所述半圆部的直径所在方向排列。
  11. 如权利要求10所述的透镜天线阵列,其特征在于,所述矩形面位于所述介质透镜的焦点与所述半圆部之间。
  12. 如权利要求1所述的透镜天线阵列,其特征在于,所述电磁波信号的波段包括毫米波波段、亚毫米波段或太赫兹波段。
  13. 一种电子设备,其特征在于,包括如权利要求1~12任意一项所述的透镜天线阵列。
  14. 如权利要求13所述的电子设备,其特征在于,所述电子设备包括壳体及设于所述壳体内的电路板,所述透镜天线阵列的天线透镜设于所述壳体上,所述透镜天线阵列的切换开关及射频收发芯片设于所述电路板上。
  15. 如权利要求14所述的电子设备,其特征在于,所述电子设备还包括检测芯片,所述检测芯片用于检测与所述电子设备通信的接收装置的方位信息,并将所述方位信息发送至所述射频收发芯片,以使所述射频收发芯片根据所述方位信息控制所述切换开关导通与所述方位信息相对应的天线单元,并为所述对应的天线单元提供激励信号。
  16. 一种电子设备,其特征在于,包括相对设置的两个透镜天线阵列,所述透镜天线阵列包括:
    沿第一方向依次排列的多个天线透镜,所述天线透镜包括沿第二方向依次层叠设置的第一金属板、介质透镜及第二金属板,所述第二方向垂直于所述第一方向,所述介质透镜包括连接于所述第一金属板与所述第二金属板之间的弧形面和矩形面,所述弧形面与所述矩形面沿第三方向相背设置,所述第三方向垂直于所述第一方向,所述第三方向垂直于所述第二方向;及
    多个毫米波天线单元,每个所述毫米波天线单元设于一个所述介质透镜的矩形面或与一个所述介质透镜的矩形面相对,所述毫米波天线单元辐射的电磁波信号依次经所述矩形面和所述弧形面射出,至少一个所述毫米波天线单元所述第一方向上相对所述介质透镜的焦点位置偏移。
  17. 如权利要求16所述的电子设备,其特征在于,当多个所述毫米波天线单元皆相对于所对应的所述介质透镜的焦点位置偏移时,每个所述毫米波天线单元的偏离位移不同。
  18. 如权利要求17所述的电子设备,其特征在于,沿所述第一方向的正向方向上,多个所述毫米波天线单元朝向所述第一方向的反向方向偏离对应的所述介质透镜的焦点位置,且多个所述毫米波天线单元的偏离位移逐渐增大;沿所述第一方向的反向方向上,多个所述毫米波天线单元朝向所述第一方向的正向方向偏离对应的所述介质透镜的焦点位置,且多个所述毫米波天线单元的偏离位移逐渐增大。
  19. 如权利要求18所述的电子设备,其特征在于,所述电子设备还包括电路板、设于所述电路板上的检测芯片、切换开关及毫米波芯片,所述检测芯片用于检测接收装置的方位信息,并将所述方位信息发送至所述毫米波芯片;所述切换开关电连接于所述毫米波芯片与多个所述毫米波天线单元之间;所述毫米波芯片用于根据所述方位信息,控制所述切换开关导通与所述方位信息相对应的毫米波天线单元,并为对应的毫米波天线单元提供激励信号。
  20. 如权利要求16所述的电子设备,其特征在于,所述电子设备还包括中框,两个所述透镜天线阵列分别固定于所述中框的相对两侧,且两个所述透镜天线阵列的弧形面分别朝向所述中框上两个相对的内表面。
PCT/CN2020/094666 2019-06-17 2020-06-05 透镜天线阵列及电子设备 WO2020253555A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910529132.6 2019-06-17
CN201910529132.6A CN112103669A (zh) 2019-06-17 2019-06-17 透镜天线阵列及电子设备

Publications (1)

Publication Number Publication Date
WO2020253555A1 true WO2020253555A1 (zh) 2020-12-24

Family

ID=73748523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094666 WO2020253555A1 (zh) 2019-06-17 2020-06-05 透镜天线阵列及电子设备

Country Status (2)

Country Link
CN (1) CN112103669A (zh)
WO (1) WO2020253555A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024064566A1 (en) * 2022-09-23 2024-03-28 Qualcomm Incorporated Passive mimo device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114639969B (zh) * 2022-05-19 2022-08-26 西安海天天线科技股份有限公司 5G massive MIMO人工介质透镜天线及其人工介质透镜
CN115036678B (zh) * 2022-06-30 2023-12-26 Oppo广东移动通信有限公司 电子设备及天线设置方法
CN117691329B (zh) * 2024-02-02 2024-05-03 广州司南技术有限公司 一种圆柱形单波束透镜天线系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328779A1 (en) * 2009-06-30 2010-12-30 California Institute Of Technolology Dielectric covered planar antennas
CN102176538A (zh) * 2011-01-26 2011-09-07 浙江大学 多波束介质柱透镜天线
CN107275788A (zh) * 2017-07-03 2017-10-20 电子科技大学 一种基于金属微扰结构的毫米波扇形波束柱面龙伯透镜天线
EP3490060A1 (en) * 2017-11-27 2019-05-29 Panasonic Intellectual Property Management Co., Ltd. Radar device
CN209843935U (zh) * 2019-06-17 2019-12-24 Oppo广东移动通信有限公司 电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662076B (zh) * 2008-08-28 2012-11-28 阮树成 毫米波准光集成介质透镜天线及其阵列
CN104617383A (zh) * 2015-01-23 2015-05-13 西北工业大学 多波束扫描透镜天线
CN105742824A (zh) * 2016-04-13 2016-07-06 中国电子科技集团公司第五十四研究所 一种可宽角扫描的低剖面透镜天线
CN107369916B (zh) * 2017-07-03 2019-08-30 杭州麦宇电子科技有限公司 半球透镜馈源收发集成新月透镜天线
US10587034B2 (en) * 2017-09-29 2020-03-10 Commscope Technologies Llc Base station antennas with lenses for reducing upwardly-directed radiation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328779A1 (en) * 2009-06-30 2010-12-30 California Institute Of Technolology Dielectric covered planar antennas
CN102176538A (zh) * 2011-01-26 2011-09-07 浙江大学 多波束介质柱透镜天线
CN107275788A (zh) * 2017-07-03 2017-10-20 电子科技大学 一种基于金属微扰结构的毫米波扇形波束柱面龙伯透镜天线
EP3490060A1 (en) * 2017-11-27 2019-05-29 Panasonic Intellectual Property Management Co., Ltd. Radar device
CN209843935U (zh) * 2019-06-17 2019-12-24 Oppo广东移动通信有限公司 电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024064566A1 (en) * 2022-09-23 2024-03-28 Qualcomm Incorporated Passive mimo device

Also Published As

Publication number Publication date
CN112103669A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2020253555A1 (zh) 透镜天线阵列及电子设备
WO2020253554A1 (zh) 透镜天线模组及电子设备
US11355831B2 (en) Antenna system and mobile terminal
EP3242358B1 (en) High gain, multi-beam antenna for 5g wireless communications
US6947003B2 (en) Slot array antenna
US20150116154A1 (en) Lens antenna with electronic beam steering capabilities
CN209843935U (zh) 电子设备
US9590315B2 (en) Planar linear phase array antenna with enhanced beam scanning
JP4976477B2 (ja) 平面再構成可能アンテナ
JP2019208241A (ja) 電子回路を有する反射器および反射器を有するアンテナデバイス
Bi et al. 3-D printed wideband Cassegrain antenna with a concave subreflector for 5G millimeter-wave 2-D multibeam applications
JP2004015408A (ja) スロットアレーアンテナ
US7683841B2 (en) Antenna device
CN111052507B (zh) 一种天线及无线设备
JP2012010400A (ja) アンテナアレイ
WO2018216010A1 (en) Ultra-wideband antenna
CN112018497A (zh) 天线模组及电子设备
CN216251089U (zh) 一种毫米波射频模组加载超材料结构的组合天线及终端
CN109193154B (zh) 一种毫米波圆极化多波束平板圆柱介质透镜天线
CN110854541B (zh) 介质透镜、透镜天线和电子设备
JP4027775B2 (ja) スロットアレーアンテナ
US20220077589A1 (en) Leaky Wave Antenna
KR20180089270A (ko) 고주파 신호 송/수신 장치
WO2022087832A1 (zh) 基站天线及基站天馈系统
WO2024037129A1 (zh) 天线模组、天线阵列及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827518

Country of ref document: EP

Kind code of ref document: A1