JP2005233763A - 飛行体検出装置 - Google Patents

飛行体検出装置 Download PDF

Info

Publication number
JP2005233763A
JP2005233763A JP2004043006A JP2004043006A JP2005233763A JP 2005233763 A JP2005233763 A JP 2005233763A JP 2004043006 A JP2004043006 A JP 2004043006A JP 2004043006 A JP2004043006 A JP 2004043006A JP 2005233763 A JP2005233763 A JP 2005233763A
Authority
JP
Japan
Prior art keywords
flying object
information
small
sensor
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004043006A
Other languages
English (en)
Other versions
JP4479268B2 (ja
Inventor
Ryoichi Shimizu
亮一 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004043006A priority Critical patent/JP4479268B2/ja
Publication of JP2005233763A publication Critical patent/JP2005233763A/ja
Application granted granted Critical
Publication of JP4479268B2 publication Critical patent/JP4479268B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】 気候の影響による検出不良や、鳥の到来に伴なう誤検出なしに、上空を飛行するヘリや飛行機などの小型飛行体の接近を検知することを目的とする。
【解決手段】 センシング方向を上空に向けて、監視領域周辺または内部に配置されたミリ波レーダと、ミリ波レーダで取得された距離情報と受信信号の強度情報に基づいて、目標体がヘリコプタであるか鳥であるかを識別し、ヘリコプタが接近したときに上空に接近中の小型飛行体が存在すると判定する信号処理部を備える。
【選択図】 図1

Description

この発明は、上空から特定施設、特定領域または建築物等の監視領域に接近する、ヘリコプタや小型飛行機などの小型飛行体を検出するための飛行体検出装置に関する。
災害対策用として、ビル屋上にヘリポートが設置されているのは周知の通りである。ビル屋上には、衛星放送用アンテナ、無線通信用アンテナや気象観測用レーダ等の、無線装置が設置されていることが多い。ヘリコプタ(以下ヘリ)がビル屋上に接近した場合に、無線装置の運用に影響を与えることがある。例えば、ヘリが無線装置の通信領域内を通過した場合に、無線装置の送信データまたは受信データにおいて、瞬時に電波障害や通信遮断等の障害を発生する。また、無線装置のアンテナが回動する場合には、無線装置に接近したヘリが当該アンテナと接触してしまう等の障害が発生する可能性がある。このため、ヘリの接近を検出した場合に、無線装置の動作を停止する、あるいは無線装置の利用ユーザに対して事前に警報を発する等の対策を行う必要がある。
従来の飛行体検出装置として、音響センサを用いて上空を通過するヘリの垂直方向と水平方向の音波を検知し、検出された音波の方向から飛行体の位置を検出するものが知られている(例えば、特許文献1参照。)。
特開平6−214000号公報(第5頁、第1図)
また、滑走路に直交する方向に、複数の発光素子群と受光素子群から成る光センサを配列して、上空を通過する飛行機の通過位置を検出するものが知られている(例えば、特許文献2参照。)。
特開平9−230026号公報(第8頁、第1図)
従来の飛行体検出装置は、音響センサを用いてヘリを検出する場合は、音響センサが上空を飛しょうする鳥を誤って、ヘリと誤検出するという問題があった。例えば監視領域がビル屋上である場合、絶え間なく上空を鳥が飛しょうしている。このため、飛行体検出装置の誤検出の頻度が高くなり、不用意に無線装置を停止させたり、無用な警報を発生させていた。これによって、飛行体検出装置の信頼度を下げていた。
また、光センサを用いて飛行体を検出する場合には、雨や霧などの気候の影響を受けて、上空を通過する飛行体を検出できないことがあるという問題があった。
この発明は、係る課題を解決するためになされたものであり、気候の影響による検出不良や、鳥の到来に伴なう誤検出なしに、上空を飛行するヘリや小型飛行機などの小型飛行体の接近を検知することを目的とする。
この発明による飛行体検出装置は、センシング方向を上空に向けて監視領域に配置され、目標の距離情報と受信信号強度の情報を検出するミリ波レーダと、ミリ波レーダで取得された距離情報と受信信号強度の情報に基づいて、上空から監視領域に接近する小型飛行体の存在を検出する信号処理部とを備えたものである。
また、信号処理部は、上記ミリ波レーダで取得された目標体の距離情報と受信信号強度の情報に応じて演算される値を所定の閾値と比較し、比較結果によって目標体が小型飛行体であるか鳥であるかを識別して、目標体が小型飛行体であることを特定し、飛行体の存在検出に応じて、外部装置の動作状態を変更する、もしくは外部装置が警告情報を発生するように、外部装置を制御しても良い。
この発明によれば、ミリ波レーダを上空に向けて小型飛行体の接近を検出することによって、気候の影響による検出不良や鳥の到来に伴なう誤検出がなく、監視領域の上空に接近する小型飛行体の存在を正確に検知することができる。
この発明に係る飛行体検出装置は、ミリ波帯で動作するミリ波レーダのセンシング方向を上空に向けて、小型飛行体の接近を検出することを特徴とする。ミリ波レーダは、反射波の受信強度レベルの閾値を適切に設定することによって、鳥のように反射波の受信強度レベルが小さな物体と、ヘリコプタや小型飛行機のような小型飛行体を区別して、誤検出なく、飛行体を検出することができる。勿論、周囲の騒音には影響されることはない。また、ミリ波帯の電波を用いることによって、夜間、霧、煙等に無関係で、耐環境性に優れた検出性能を持っている。なお、小型飛行機とは、全長十数m以下、全高数m以下の大きさの有人飛行機のことを言う。
以下、図を用いて、この発明に係る実施の形態について説明する。
実施の形態1.
図1は、実施の形態1による飛行体検出装置の構成を示す図である。
図において、飛行体検出装置は、センサ装置8、タイミング制御部9、信号処理部10から主に構成される。センサ装置8は、N(4以上の正の整数)個のセンサ部8−1乃至8−Nから構成される。各センサ部(8−1〜N)は、それぞれタイミング制御部9と、信号処理部10に接続されている。各センサ部(8−1〜N)は、監視領域の周囲を囲む上空の所定エリアを監視できるように、上空に向けて複数個配列される。各センサ部の間隔、設置方向や個数Nは、監視領域の外周長さと、監視領域の形状に基いて適切な数に設定される。各センサ部(8−1〜N)はミリ波レーダで構成され、前方のセンシングエリアを通過中の物体(検出目標)の存在を検出して、検出目標までの距離、速度、方向情報および受信強度レベルを含むレーダ情報を取得する。各センサ部の検知距離は数十m乃至百数十mであり、好ましくは監視領域内での検知距離を50m乃至100mの範囲とするのが良い。飛行体検出装置は制御部12を含めてシステムを構成しても良い。
信号処理部10は無線装置30を制御する制御部12に接続される。無線装置30はアンテナ部とアンテナ制御部を備えて、衛星放送用アンテナ、無線通信用アンテナや気象観測用レーダ等を構成する(図示せず)。無線装置30は、レーダ観測データや通信情報などの情報を出力する。アンテナ制御部はアンテナ部の位相制御を行って、アンテナビームの指向方向を所望の方向に変化させる。または、アンテナ制御部はアンテナ部の電波軸を回動させて、アンテナビームの指向方向を所望の方向に変化させるものもある。無線装置30と制御部12は、それぞれ管理装置40に接続される。管理装置40は公衆回線(図示せず)に接続されている。管理装置40は公衆回線を通じて、無線装置30を利用するユーザの利用端末に、無線装置30の出力情報を伝送する。
タイミング制御部9は、各センサ部(8−1〜N)の動作タイミングを制御する。信号処理部10は、各センサ部(8−1〜N)から送られてくるレーダ情報を統合的に処理して、所定エリア内に存在する検出目標が小型飛行体であるか否かを判定し、検出目標の位置と速度を出力する。このとき、センサ装置8は音波を検出しないので周囲の騒音には検知性能は影響されない。また、レーダにミリ波帯の電波を用いているので、夜間、霧、煙等に無関係な耐環境性に優れた、小型飛行体の検出を行うことができる。
信号処理部10は、検出目標を小型飛行体であると判定した場合に、無線装置30に対して障害を与えるものが接近している判断して、制御部12に対してトリガ信号11を与える。制御部12はトリガ信号11を受信すると、無線装置30に対して動作停止信号を供給するか、または管理装置40に対して警告信号を発する。管理装置40は警告信号を受信すると、公衆回線を通じて、ユーザの利用端末にサービス障害が発生する旨の連絡を発信する。例えば、無線装置30が気象観測用レーダ装置である場合、無線機30の送信信号がヘリと干渉すると無線障害が発生する。したがって、センサ装置8がヘリを検出した場合、管理装置40は即座に気象観測用レーダを操作する運用者に対して、無線装置30の送信停止や、アンテナの回転動作の停止を促すための注意勧告を行う。例えば、運用者の利用端末の画面上に、“ヘリ接近注意“などの警告表示を行う。これによって、運用者は、遠隔操作(図示せず)によって無線装置30の送信停止やアンテナ動作停止などの処置を行う。
図2は、各センサ部の構成を示す図である。センサ部(8−1〜N)は、アンテナ3と送受信機20と制御部6と検出部7とで構成される。アンテナ3は送信アンテナ1と受信アンテナ2で構成される。センサ部(8−1〜N)は、例えばFM−CW方式のミリ波レーダを構成している。送信アンテナ1および受信アンテナ2は、それぞれ複数のアンテナ素子(放射導体)を配列したアンテナアレー基板と、アンテナ素子への給電部で構成されており、所定の利得特性を有している。なお、センシング方向のアンテナ3のアンテナ面に垂直な電波軸を、センサ軸と称する。図3に、送信アンテナ3のアンテナ特性パターンの一例を示す。アンテナの垂直及び水平ビーム幅は27°(−3dB値)となっている。
送受信機20は送信信号出力端子を介して送信アンテナ1に送信用のRF信号を給電し、各アンテナ素子を励振して送信電波4を出力する。アンテナ3は、例えばメインローブのビーム幅が27°の1つの送信ビームを出力する。出力された送信電波4は検出目標となる小型飛行体300で反射され、この反射波5はアンテナ3の受信アンテナ2で受信される。受信アンテナ2は複数の受信ビームを形成する。各受信ビームは所定のビーム幅を有しており、所定の角度範囲内にヌルが発生しないように複数のビームが包含される。例えば、受信チャネルのチャネル数を3つとした場合、各ビームのメインローブのビーム幅を十数度として、27°の角度範囲内に3つのビームを形成する。送受信機20は受信アンテナ2のビーム数と同数の受信チャネルを有している。受信アンテナ2は受信した反射波をRF信号に変換して、各ビーム毎に、送受信機20の各受信チャネルに入力する。
送受信機20は電圧制御型発振器が内蔵されており、制御部6から周波数制御信号が入力される。この電圧制御型発振器は周波数制御信号に基いてFM−CW方式で周波数変調信号(FM信号)を発振する。送受信機20はこのFM信号を逓倍するとともに信号増幅し、送信信号出力端子を介してアンテナ3に送信信号として出力する。また、送受信機20は受信したRF信号を低雑音増幅し、この増幅信号とFM信号をミクサで周波数混合する。送受信機20のミクサは、ビート周波数成分を含む周波数和の信号と周波数差の信号から成るビデオ信号を出力する。送受信機20は各受信チャネル毎に、ビート周波数成分を含むビデオ信号を出力する。送受信機20の各受信チャネルから出力されたビデオ信号は制御部6に入力される。制御部6は、送受信機20によって入力された各ビデオ信号を、A/D変換した後、ディジタル化された各ディジタルビデオ信号を検出部7に出力する。制御部6は送受信機20内の能動デバイスのバイアス電圧を制御する。
なお、アンテナ3、送受信機20、制御部6の各詳細構成については図示を省略している。
検出部7は、制御部6の出力した各受信チャネル毎のディジタルビデオ信号を、高速フーリエ変換処理によってそれぞれ周波数分析する。検出部7は周波数分析結果に基いて、検出目標の距離情報、速度情報を取得する。次に、検出部7は、ビート信号における信号強度レベルがピークとなる周波数の信号を、各受信チャネル毎の目標信号として抽出する。また、検出部7は、抽出された各受信チャネル毎のディジタルビデオ信号に対し、ビーム方向の重み付け関数を乗算して、マルチビームを形成する。検出部7は、形成されたマルチビームからビート信号の受信レベルのピーク検出を行う。ピーク検出された受信信号について最尤推定法やMUSICなどの演算処理によって、検出目標の存在する方向を測角する。例えば、特開2003−139849号公報には、マルチビームを形成した後、角度検出誤差を少なくかつ効率的に目標方向の角度を得るように、最尤推定法を用いて測角演算を行う方法が提案されている。検出部7は、センサ軸基準で測角した方向を、センサ装置8に固定した基準座標系に座標変換し、方向情報として出力する。また、検出部7は、ビート信号における信号強度レベルを受信された信号の強度情報として出力する。検出部7は、検出目標の距離情報、速度情報、方向情報、および信号強度情報を、レーダ情報として出力する。
なお、測角演算には必ずしもマルチビームを用いなくても良い。例えば、アンテナ部3にジンバル機構と回転アクチュエータと角度検出器を設けて、アンテナ部3の電波軸を所望の方向に回動させて、送受信ビームの方向を所望の方向に指向させるように制御しても良い。この場合は、モノパルスアンテナを用いて送受信機20の受信チャネルを1つで構成すれば良く、モノパルス測角によって正確に測角演算を行うことができる。
次に、飛行体検出装置の小型飛行体の検出動作について説明する。
センサ装置8は、各センサ部の送信アンテナ1から放射された電波が、検出目標となるヘリ3で反射して、反射波が受信アンテナ2で受信される。各センサ部の検出部7は、受信したディジタルビデオ信号を信号処理することにより、検出目標のヘリ3までの距離、速度、方向情報および信号強度情報などのレーダ情報を計測し、信号処理部10に出力する。
信号処理部10は、センサ装置8の検出部7から出力されるレーダ情報を利用して、鳥などの反射波の小さい物体と、ヘリのような小型飛行体とを区別し、小型飛行体が存在することを判定する。センサ装置8は、検出目標までの距離と、検出目標の受信強度レベルを同時に求めることが出来る。このため、鳥からの反射信号の受信レベルと、ヘリからの反射信号の受信レベルとが同レベルの場合であっても、検出目標までの距離を求めて判定に利用することによって、両者を区別することができる。この鳥と小型飛行体との判定処理は、次式(1)のレーダ方程式の原理を利用する。
Figure 2005233763
ここで、Prは受信電力、Ptは送信電力、Gはアンテナ利得、λは波長、σはレーダ散乱断面積、Rは検出目標までの距離である。
レーダ散乱断面積σは、検出目標固有の値であり、ヘリは鳥等と比べて大きい値を持つ。また、Pt、G、λは同一装置では一定の値である。一方、Rは検出目標までの距離により変動する。上式から明らかなように、受信電力Prは、レーダ散乱断面積σに比例し、検出目標までの距離Rの4乗に反比例する。これより、近い距離の鳥と遠い距離のヘリの受信強度レベルが、同程度となることがある。
このため、信号処理部10は、各センサ部(8−1〜N)から出力されるレーダ情報の距離Rと信号強度情報Pbを用いて、各センサ部(8−1〜N)毎に、レーダ散乱断面積σに概略比例した判定パラメータS=k×Pb×Rを算出する。信号処理部10は、この判定パラメータSが所定の閾値よりも大きいときにヘリが存在し、接近中の小型飛行体が存在すると判定する。また、判定パラメータSが所定の閾値よりも小さいときには、鳥(小型飛行体以外の小物体)を検出したと判定し、接近中の小型飛行体が存在しないと判定する。ここで、kは信号処理部10の構成回路によって適宜設定される係数である。閾値は、予めセンサ装置8を用いてヘリと鳥のレーダ情報を計測し、レーダ情報からヘリの判定パラメータSと、鳥の判定パラメータSを適宜算出することによって、ヘリと鳥の両者を分別できる適切な値を設定すれば良い。鳥の断面積は1m以下であり、ヘリの断面積は10〜30m程度であるので、10倍以上の差がある。このため、閾値の設定はそれほど難しくはない。なお、閾値を適切に設定すれば、同様の原理によって、ハンググライダと鳥の識別を行うことも可能である。信号処理部10は、接近中の小型飛行体が存在すると判定したセンサ部(8−1〜Nのいずれか)を特定する識別情報(センサID)を出力する。
図4は、判定パラメータSをレーダ断面積αとしたときの、鳥とヘリのレーダ断面積を違いを比較した図である。図に示すように、鳥とヘリとでは、レーダ断面積が20dB程度異なるので、信号処理部10は、充分に鳥とヘリを識別することが可能である。
なお、鳥とヘリの識別処理は、判定パラメータS以外の、他の判定式を用いても良い。例えば、センサ装置8の検知距離内における各距離毎の受信レベルに、一定の閾値を設定することによって、鳥とヘリを区別する方法を用いても良い。
信号処理部10は、各センサ部(8−1〜N)からのレーダ情報に基づいて、小型飛行体を検出したセンサ部8の方向情報から検出された小型飛行体の存在する方向を特定する。信号処理部10は、小型飛行体を検出したセンサ部8からの距離情報および方向情報と、事前測定された当該センサ部8の位置情報とに基づいて、検出された小型飛行体が存在する位置を算出する。また、信号処理部10は、小型飛行体を検出したセンサ部8からの速度情報に基づいて、検出された小型飛行体の速度を特定する。信号処理部10は、検出された小型飛行体までの距離が100m以下であって、距離が徐々に短くなる方向に変化している場合に、小型飛行体が接近していると判定する。信号処理部10は、小型飛行体の存在を検出し、かつ小型飛行体が接近していると判定したとき、算出した小型飛行体の存在方向、小型飛行体の速度、および小型飛行体の位置情報を、制御部12に出力する。
なお、信号処理部10は、小型飛行体の速度情報と、小型飛行体の位置情報に基づいて、小型飛行体の種別を識別しても良い。例えば、小型飛行体の速度変化が小さい、あるいは位置変化が前後や上下に揺動していると判断される場合は、小型飛行体はホバリング中のヘリであると識別することができる。また、小型飛行体が鉛直方向にほぼ一定の速度で落下してくる場合は、小型飛行体はパラシュートであると判断される。さらに、小型飛行体が直線的に移動している場合は、小型飛行体はハンググライダであると判断される。このとき、レーダ散乱断面積を推定すれば、より正確な識別が可能となることは言うまでもない。
タイミング制御部9は、各センサ部(8−1〜N)を時分割で順次切替えて動作させるように、各センサ部(8−1〜N)の動作タイミングを制御する。これによって、各センサ部(8−1〜N)が互いに電波干渉を生じて、目標を誤検出したり、検出精度が劣化することを防止する。特に、隣接するセンサ部からは漏れ電波やサイドローブが混入してくるので、各センサ部(8−1〜N)を時分割で動作させることは有効である。
図5は、各センサ部(8−1〜N)が互いに干渉しないように、タイミング制御部9が各センサ部(8−1〜N)の動作タイミングを制御するときの、タイミングチャートである。図に示すように、時間的に各センサを動作させるタイミングを変えて、順次オンオフ動作させることで、互いの干渉を防ぐことが出来る。このとき、各センサ部(8−1〜N)の動作オンの時間は、互いに重ならないようにしておく。
なお、信号処理部10が小型飛行体を検出すると、検出した小型飛行体の存在方向に基づいて、その存在方向の近くに配置された一部のセンサ部のみを、時分割で選択的に動作させても良い。また、接近中の小型飛行体が存在すると判定した特定の1つのセンサ部のみを、所定の時間の間、動作オン状態としても良い。これによって、存在を検出した小型飛行体を見失うことなく、追尾し続けることが可能となる。
次に、この実施の形態によるセンサ装置8の設置例について説明する。
図6は高層ビル屋上のヘリポート周囲に、センサ装置8を設置する場合の配置例を示す図である。センサ装置8は、図6(a)に示すような高さ200mのビル屋上14に設けられる。ビル屋上は長方形状を成しており、縦15m、横50mの長さを有している。図6(b)はビル屋上の上面図、図6(c)はビル屋上のセンサ装置8の設置エリアを側面から見た図である。
図において、センサ装置8は18個のセンサ部(8−1乃至18)で構成される。各センサ部はビル屋上の4隅に、図の左上から左回りの順に、センサ部15c、15b、15aと、センサ部15q、15p、15oと、センサ部15l、15k、15jと、センサ部15h、15g、15fがそれぞれ配置される。また、4隅に配置された各センサ間で、センサ部15aとセンサ部15qの間にセンサ部15rが配置され、センサ部15oとセンサ部15lの間にセンサ部15m、15部nが配置され、センサ部15jとセンサ部15hの間にセンサ部15iが配置され、センサ部15fとセンサ部15cの間にセンサ部15d、15eが配置される。ヘリポート16はセンサ部15iに隣接して配置される。無線装置30は、ヘリポート16とセンサ部15rの間でヘリポート16から離れて配置され、図6(b)に示す屋上14の左半分側の領域に設置される。センサ部15b、センサ部15p、センサ部15n、センサ部15k、センサ部15g、センサ部15dは、センサ軸が鉛直上方を向いて真上方向をセンシングしている。他のセンサ部は、センサ軸が水平方向から15°斜め上向きに側面方向を向いて、斜め上方をセンシングしている。各センサ部の垂直及び水平ビーム幅は、図3で説明したように27°である。
なお、説明の都合上、センサ部の符号を15a、15b、・・・のように示したが、それぞれ図1で説明したセンサ部8−1、8−2、・・・に対応する。
図7(a)は各センサ部の検知範囲を示す上面図、図7(b)は各センサ部の検知範囲
を示す側面図である。各センサ部の検知距離を50mとすると、図に示すように、検知範囲100はビル屋上の周囲と、ビル上空の全域をほぼカバーしていることが分かる。図において、各センサ部の検知範囲100の間に、5m乃至10m程度のセンシングエリアの隙間が生じているが、ヘリの大きさが、全長15m、全高4m程度であることを考えると、充分にヘリの接近を検知できる。したがって、センサ数をそれ程設置しなくても、充分に監視領域内を監視することができる。なお、センサ部から離れるにしたがって、隣接するセンサ部のビームとの距離がより近接し、100m程度離れたところでは、センシングエリアの隙間はほとんど小さくなる。
なお、パラシュートやハンググライダのような小型の小型飛行体を検出する場合には、センサ数を増やして、センサ部の検知範囲に途切れがないように配置すれば良いことは、言うまでもない。
また、図7では監視領域の周囲にセンサ装置8を配置した例について説明したが、監視領域の大きさによっては、監視領域の内側にセンサ装置8を適宜配置して、上空を切れ間無く監視できるようにしても良いことは言うまでもない。
また、制御部12は、信号処理部10から出力された、小型飛行体の存在方向、小型飛行体の速度、小型飛行体の位置情報に基づいて、無線装置30に対して異なる制御指令を与えても良い。
例えば、図6に示す例では、ヘリ310がセンサ部15f、15g、15h、15m、15j、15k、15lのセンシング方向から接近した場合には、ヘリ310がヘリポートに着陸するまでの間に、無線装置30の設置された屋上14の左側の領域に接近することはない。したがって、屋上14の右側の領域にヘリが存在する場合は、無線装置30への動作停止信号の出力や、管理装置40への警告信号の出力を行わない。
一方で、ヘリ311がセンサ部15r、15c、15o、15b、15p、15a、15qのセンシング方向から接近した場合には、ヘリ311が無線装置30に障害を与える可能性があると判断して、無線装置30へ動作停止信号を出力して、無線装置30の送信電波の出力を停止させる、あるいは動作を停止させる。同時に、管理装置40へ警告信号を出力する。また、信号処理部10から出力された小型飛行体の位置情報と速度情報に基づいて、ヘリ311が急速に屋上14の近くまで接近していることが判明した場合には、無線装置30の動作を急停止させるような処置を行っても良い。
以上説明した通り、この実施の形態によれば、気候の影響による検出不良や、鳥の到来に伴なう誤検出がなく、監視領域の上空に接近する小型飛行体の存在を正確に検知することができる。
また、これによって、鳥との誤検出や天候に左右される誤検出が抑圧されるので、飛行体検出装置のシステムの信頼性が向上する。
なお、上述した飛行体検出装置は、無線装置30を含めてシステムを構成しても良いことは言うまでもない。また、無線装置30の動作制御を行う以外の他の用途に利用して良いことは言うまでもない。
実施の形態2.
図8はこの実施の形態2による飛行体検出装置の構成を示す図である。図中の図1と同一符号は、実施の形態1と同一相当のものであり、同様の動作を行う。この実施の形態では、無線装置30の代わりに、制御部12に威嚇装置50を接続する。ここでの威嚇装置50とは、監視領域内に上空から侵入する不審な小型飛行体に対して、直接的に威嚇したり警告を与える機能を備えたものであり、例えばサーチライトやレーザ発光装置、大音量スピーカ等がある。
この実施の形態は、次のように動作する。
ヘリコプタやパラシュート等の不審な小型飛行体300が、監視対象施設の監視領域の上空に接近した場合に、センサ装置8が上空から接近する不審な小型飛行体をセンシングして、信号処理部10にレーダ情報を送る。信号処理部10はこのレーダ情報に基づいて、小型飛行体300の存在を検出するとともに、小型飛行体300の存在方向、小型飛行体300の速度を出力する。信号処理部10は小型飛行体300の存在を検出すると同時に、制御部12にトリガ信号11を送る。制御部12はトリガ信号11を受けると威嚇装置50の動作を制御する。例えば、威嚇装置50を構成するサーチライトを上空に向けて点灯する。あるいは、信号処理部10から威嚇装置50にレーダ情報を送り、レーダ情報で特定された小型飛行体300の存在方向に向けて、レーザ光を発光する。あるいは、スピーカや警告灯を動作させてサイレンを鳴らしたり、点滅光を発光する。
この実施の形態は、特に、過疎地に設置された水道施設(ダム)や電力施設(発電所)等の公共施設の周辺や内部にセンサ装置8を設置して、施設上空のセキュリティ監視に用いると好適である。これによって、上空からの侵入に備えて、セキュリティをより強化することが出来る。また、施設上空のセキュリティ監視を自動化することが可能なので、監視塔に作業員を配置して上空監視する作業を、軽減したり無人化することもできることは言うもでもない。
この発明に係る実施の形態1による飛行体検出装置の構成を示す図である。 実施の形態1によるセンサ部の構成を示す図である。 送信アンテナのアンテナ特性パターンの一例を示す図である。 鳥とヘリコプタのレーダ断面積を違いを比較した図である。 センサ部の動作タイミングを示すタイミングチャートである。 実施の形態1による高層ビル屋上のヘリポートにセンサ装置を設置する場合の配置例を示す図である。 実施の形態1によるセンサ部の検知範囲を示す図である。 この発明に係る実施の形態2による飛行体検出装置の構成を示す図である。
符号の説明
8 センサ装置、9 タイミング制御部、10 信号処理部、12 制御部、30 無線装置、50 威嚇装置、300 小型飛行体。

Claims (3)

  1. センシング方向を上空に向けて監視領域の周囲に複数配置され、目標の距離情報と受信信号強度の情報を検出するミリ波レーダと、
    上記ミリ波レーダで取得された距離情報と受信信号強度の情報に基づいて、上空から監視領域に接近する小型飛行体の存在を検出する信号処理部と
    を備えた飛行体検出装置。
  2. 信号処理部は、上記ミリ波レーダで取得された目標体の距離情報と受信信号強度の情報に応じて演算される値を所定の閾値と比較し、比較結果によって目標体が小型飛行体であるか鳥であるかを識別して、目標体が小型飛行体であることを特定することを特徴とする請求項1記載の飛行体検出装置。
  3. 上記信号処理部は、小型飛行体の存在検出に応じて、外部装置の動作状態を変更する、もしくは外部装置が警告情報を発生するように、外部装置を制御することを特徴とする請求項1記載の飛行体検出装置。
JP2004043006A 2004-02-19 2004-02-19 飛行体検出装置 Expired - Lifetime JP4479268B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043006A JP4479268B2 (ja) 2004-02-19 2004-02-19 飛行体検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043006A JP4479268B2 (ja) 2004-02-19 2004-02-19 飛行体検出装置

Publications (2)

Publication Number Publication Date
JP2005233763A true JP2005233763A (ja) 2005-09-02
JP4479268B2 JP4479268B2 (ja) 2010-06-09

Family

ID=35016885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043006A Expired - Lifetime JP4479268B2 (ja) 2004-02-19 2004-02-19 飛行体検出装置

Country Status (1)

Country Link
JP (1) JP4479268B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101304A (ja) * 2005-10-03 2007-04-19 Sri Sports Ltd ボール計測装置
JP2007101294A (ja) * 2005-10-03 2007-04-19 Sri Sports Ltd ボール計測装置
CN102627149A (zh) * 2011-02-04 2012-08-08 霍尼韦尔国际公司 无源的鸟撞避免系统和方法
JP2016081326A (ja) * 2014-10-17 2016-05-16 中国電力株式会社 無人飛行機の接近検出装置及び接近警報システム
JP2017096745A (ja) * 2015-11-24 2017-06-01 横河電子機器株式会社 無人航空機検知装置
JP2018132335A (ja) * 2017-02-13 2018-08-23 日本無線株式会社 レーダ目標探知装置及びレーダ目標探知方法
CN111670418A (zh) * 2018-03-27 2020-09-15 株式会社尼罗沃克 无人机及其控制方法以及程序

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022076562A (ja) 2020-11-10 2022-05-20 株式会社デンソー 空域障害物検知システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101304A (ja) * 2005-10-03 2007-04-19 Sri Sports Ltd ボール計測装置
JP2007101294A (ja) * 2005-10-03 2007-04-19 Sri Sports Ltd ボール計測装置
JP4545672B2 (ja) * 2005-10-03 2010-09-15 Sriスポーツ株式会社 ボール計測装置
CN102627149A (zh) * 2011-02-04 2012-08-08 霍尼韦尔国际公司 无源的鸟撞避免系统和方法
EP2485063A1 (en) * 2011-02-04 2012-08-08 Honeywell International, Inc. Passive bird-strike avoidance systems and methods
US8704700B2 (en) 2011-02-04 2014-04-22 Honeywell International Inc. Passive bird-strike avoidance systems and methods
JP2016081326A (ja) * 2014-10-17 2016-05-16 中国電力株式会社 無人飛行機の接近検出装置及び接近警報システム
JP2017096745A (ja) * 2015-11-24 2017-06-01 横河電子機器株式会社 無人航空機検知装置
JP2018132335A (ja) * 2017-02-13 2018-08-23 日本無線株式会社 レーダ目標探知装置及びレーダ目標探知方法
CN111670418A (zh) * 2018-03-27 2020-09-15 株式会社尼罗沃克 无人机及其控制方法以及程序
CN111670418B (zh) * 2018-03-27 2024-03-26 株式会社尼罗沃克 无人机及其控制方法以及计算机可读取记录介质

Also Published As

Publication number Publication date
JP4479268B2 (ja) 2010-06-09

Similar Documents

Publication Publication Date Title
US7463182B1 (en) Radar apparatus
US20060267764A1 (en) Object detection sensor
US6859164B2 (en) Detecting system
US8279109B1 (en) Aircraft bird strike avoidance method and apparatus using transponder
US20100284249A1 (en) Alerting system for a facility
CN101676963B (zh) 入侵体探测报警器和入侵体探测报警方法
JP7292099B2 (ja) 二次レーダーを用いて航空機搭載トランスポンダの特定の特徴をライン動作時に測定する方法
US20130265185A1 (en) Proximity warning system for helicopters
JP2009505037A (ja) 航空機用レーダ・システム
JP2007071605A (ja) 防犯センサ
JP4479268B2 (ja) 飛行体検出装置
KR20180061477A (ko) 울타리 경계용 레이더의 침입자 타겟 검출 방법 및 장치
US20230131377A1 (en) Uav and uav operator detector
US5093662A (en) Low altitude wind shear detection with airport surveillance radars
JP4551827B2 (ja) 二次監視レーダ制御装置及び二次監視レーダ制御方法
CN112105951B (zh) 雷达系统、可移动平台及雷达系统的控制方法
CA3208706A1 (en) Aircraft acoustic position and orientation detection method and apparatus
JP3446669B2 (ja) 探知方法及び探知装置
KR102318826B1 (ko) 석탄취급계통 산업재해 예방을 위한 레이더 안전펜스 시스템 및 그 방법
JP6672038B2 (ja) 対象物体検知装置
JP2015059748A (ja) 障害物検知装置
US20040189510A1 (en) Intrusion identification system using microwave barrier
JP2001289948A (ja) 空港面監視装置
KR101919059B1 (ko) 반사판 기반 침입 탐지 레이더에서 침입자 위치 측정 방법 및 이를 위한 노이즈 정의 방법
CN111693986A (zh) 一种目标对象入侵检测系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4479268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term