JP2005232986A - バルブタイミング制御装置及び制御装置 - Google Patents
バルブタイミング制御装置及び制御装置 Download PDFInfo
- Publication number
- JP2005232986A JP2005232986A JP2004039719A JP2004039719A JP2005232986A JP 2005232986 A JP2005232986 A JP 2005232986A JP 2004039719 A JP2004039719 A JP 2004039719A JP 2004039719 A JP2004039719 A JP 2004039719A JP 2005232986 A JP2005232986 A JP 2005232986A
- Authority
- JP
- Japan
- Prior art keywords
- spring
- spring constant
- calculated
- control device
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Landscapes
- Valve Device For Special Equipments (AREA)
Abstract
【課題】バルブタイミング制御装置等のバネ定数を算出しつつ制御系を再設計し、バネ特性のバラツキ,経時変化に対し、高精度な制御性能を維持する。
【解決手段】機関回転速度、油水温、吸・排気弁のバルブ位相が設定範囲内で、バルブ位相が保持制御されているときに、装置を駆動するモータの電流値と検出したバルブ位相とを異なる複数のバルブ位相領域で計測し、これら計測値に基づいてバネ定数を算出して更新し、更新したバネ定数に基づいて制御系を再設計する。
【選択図】 図10
【解決手段】機関回転速度、油水温、吸・排気弁のバルブ位相が設定範囲内で、バルブ位相が保持制御されているときに、装置を駆動するモータの電流値と検出したバルブ位相とを異なる複数のバルブ位相領域で計測し、これら計測値に基づいてバネ定数を算出して更新し、更新したバネ定数に基づいて制御系を再設計する。
【選択図】 図10
Description
本発明は、動弁のバルブタイミングを、バネ力に抗して作動するアクチュエータによって可変制御するバルブタイミング制御装置、その他バネ力に抗して作動するアクチュエータによって制御対象を駆動する制御装置に関する。
従来、バルブタイミング制御装置としてクランクシャフトに対する回転位相を変化させることで、動弁のバルブタイミングを変化させる構成のものが知られている(特許文献1参照)。
特開平7−26917号公報
上記装置ではバルブタイミングを遅角側に制御するときは、可変用ディスクの制動力を解除し、渦巻きバネの付勢力によって移動する構成になっている。このため遅角側に戻すバネの特性が製造時バラツキや経時変化によって設計値に対して変化した場合、フィードバック制御やフィードフォワード制御で設定されるバネ特性に関連する設定値が実際のバネ特性と異なってしまい。制御性能が低下するという問題があった。
本発明は、このような従来の課題に着目してなされたもので、バネ特性の変化に応じたアクチュエータ制御が行われて、高精度な制御性能が得られるようにしたバルブタイミング制御装置を提供することを目的とする。
このため、請求項1に係る発明は、内燃機関の動弁のバルブタイミングを、バネ力に抗して作動するアクチュエータによって可変制御するバルブタイミング制御装置であって、バルブタイミングが定常状態に保持されているときのアクチュエータ作動状態に基づいてアクチュエータのバネ定数を算出し、該算出されたバネ定数を用いてアクチュエータの操作量を算出する構成とした。
このようにすれば、実際のバネ特性に合ったバネ定数でアクチュエータの操作量が算出されるので、バネ特性の製造バラツキや経時変化を補償でき、精度の高いバルブタイミング制御を行うことができる。
また、請求項2に係る発明は、複数回算出したバネ定数の相違度合いに基づいて加重平均割合を設定し、該加重平均割合で前記複数回算出したバネ定数を加重平均処理し、処理したバネ定数に基づいてアクチュエータの操作量を算出する構成とした。
また、請求項2に係る発明は、複数回算出したバネ定数の相違度合いに基づいて加重平均割合を設定し、該加重平均割合で前記複数回算出したバネ定数を加重平均処理し、処理したバネ定数に基づいてアクチュエータの操作量を算出する構成とした。
このようにすれば、複数回のバネ定数算出値の偏差や比などの相違度合いに基づいて加重平均割合を設定するようにしたため、例えば、相違度合いが大きいときは最新の算出値は算出エラーの可能性が高いと判断して最新の算出値の重みを小さくすることにより、算出エラー等の影響を最小限に抑えることができる。
また、請求項3に係る発明は、前記算出したバネ定数に基づいて制御モデルにおけるバネ定数に関連する値を補正または更新する構成とした。
また、請求項3に係る発明は、前記算出したバネ定数に基づいて制御モデルにおけるバネ定数に関連する値を補正または更新する構成とした。
このようにすれば、算出したバネ定数に基づいて制御モデルにおけるバネ定数に関連する値(制御ゲイン、制御定数等)を補正または更新(学習)し、補正・更新した値でアクチュエータの操作量を算出するので、バネ特性の製造バラツキや経時変化を補償でき、精度の高いバルブタイミング制御を行うことができる。
また、請求項4に係る発明は、制御対象を、バネ力に抗して作動するアクチュエータにより駆動して目標位置に制御する制御装置であって、複数の異なる目標位置に保持制御されているときのそれぞれのアクチュエータ作動状態に基づいてアクチュエータのバネ定数を算出し、該算出されたバネ定数を用いてアクチュエータの操作量を算出する構成とした。
また、請求項4に係る発明は、制御対象を、バネ力に抗して作動するアクチュエータにより駆動して目標位置に制御する制御装置であって、複数の異なる目標位置に保持制御されているときのそれぞれのアクチュエータ作動状態に基づいてアクチュエータのバネ定数を算出し、該算出されたバネ定数を用いてアクチュエータの操作量を算出する構成とした。
このようにすれば、上記バルブタイミング制御装置以外の制御装置、例えばリターンスプリングのバネ力に抗してスロットル弁を駆動するスロットル制御装置などにも適用して、高精度な制御を行うことができる。
以下、本発明の実施の形態を図に基づいて説明する。
図1は、実施形態における車両用内燃機関の構成図である。この図1において、内燃機関101の吸気管102には、スロットルモータ103aでスロットルバルブ103bを開閉駆動する電子制御スロットル104が介装され、該電子制御スロットル104及び吸気バルブ105を介して、燃焼室106内に空気が吸入される。
図1は、実施形態における車両用内燃機関の構成図である。この図1において、内燃機関101の吸気管102には、スロットルモータ103aでスロットルバルブ103bを開閉駆動する電子制御スロットル104が介装され、該電子制御スロットル104及び吸気バルブ105を介して、燃焼室106内に空気が吸入される。
燃焼排気は燃焼室106から排気バルブ107を介して排出され、フロント触媒108及びリア触媒109で浄化された後、大気中に放出される。
前記吸気バルブ105及び排気バルブ107は、それぞれ吸気側カムシャフト134及び排気側カムシャフト110に設けられたカムによって開閉駆動されるが、吸気側カムシャフト134には、吸気バルブ105のバルブタイミング(弁開閉タイミング)を進遅角する機構で構成される可変バルブタイミング機構(VTC)113及び該吸気側カムシャフト134の回転位置を検出するカム角センサ201が吸気側カムシャフトの端部に設けられる。カム角センサ201は、吸気カムシャフト134の所定の回転位置に同期して信号を出力し、該信号出力時にクランク角センサで検出されるクランク角位置に基づいてクランクシャフトに対するカムシャフトの回転位置を検出する構成のものの他、クランクシャフトに対するカムシャフトの相対回転位置(回転位相)を任意のタイミングで直接検出するセンサであってもよい。
前記吸気バルブ105及び排気バルブ107は、それぞれ吸気側カムシャフト134及び排気側カムシャフト110に設けられたカムによって開閉駆動されるが、吸気側カムシャフト134には、吸気バルブ105のバルブタイミング(弁開閉タイミング)を進遅角する機構で構成される可変バルブタイミング機構(VTC)113及び該吸気側カムシャフト134の回転位置を検出するカム角センサ201が吸気側カムシャフトの端部に設けられる。カム角センサ201は、吸気カムシャフト134の所定の回転位置に同期して信号を出力し、該信号出力時にクランク角センサで検出されるクランク角位置に基づいてクランクシャフトに対するカムシャフトの回転位置を検出する構成のものの他、クランクシャフトに対するカムシャフトの相対回転位置(回転位相)を任意のタイミングで直接検出するセンサであってもよい。
前記VTC113は、クランクシャフト120に対する吸気側カムシャフト134の回転位相を変化させることで、吸気バルブ105のバルブタイミングを変化させる機構であり、本実施形態では、後述するようなスパイラルラジアルリンク式の可変バルブタイミング機構を採用する。
なお、本実施形態では吸気バルブ105側にのみVTC113を備える構成としたが、吸気バルブ105側に代えて、又は、吸気バルブ105側と共に、排気バルブ107側に可変バルブタイミング機構を備える構成であっても良い。
なお、本実施形態では吸気バルブ105側にのみVTC113を備える構成としたが、吸気バルブ105側に代えて、又は、吸気バルブ105側と共に、排気バルブ107側に可変バルブタイミング機構を備える構成であっても良い。
また、各気筒の吸気ポート130には、電磁式の燃料噴射弁131が設けられ、該燃料噴射弁131は、エンジンコントロールユニット(ECU)114からの噴射パルス信号によって開弁駆動されると、所定圧力に調整された燃料を吸気バルブ105に向けて噴射する。
マイクロコンピュータを内蔵する前記ECU114には、各種センサからの検出信号が入力され、該検出信号に基づく演算処理によって、前記電子制御スロットル104,VTC113及び燃料噴射弁131を制御する。
マイクロコンピュータを内蔵する前記ECU114には、各種センサからの検出信号が入力され、該検出信号に基づく演算処理によって、前記電子制御スロットル104,VTC113及び燃料噴射弁131を制御する。
前記各種センサとしては、アクセル開度を検出するアクセル開度センサAPS116、機関101の吸入空気量Qを検出するエアフローメータ115、クランクシャフト120からクランク角180°毎の基準クランク角信号REF(基準回転位置信号)と単位クランク角度毎の単位角度信号POSを取り出すクランク角センサ117、スロットルバルブ103bの開度TVOを検出するスロットルセンサ118、機関101の冷却水温度を検出する水温センサ119が設けられている。
なお、前記基準クランク角信号REFの周期、又は、単位時間当たりの単位角度信号POSの発生数に基づいて、ECU114において機関回転速度Neが算出される。
次に、前記VTC113の構成を、図2〜図9に基づいて説明する。図2に示すように、前記吸気側のカムシャフト134と、このカムシャフト134の前端部に必要に応じて相対回動できるように組み付けられ、チェーン(図示せず)を介してクランクシャフト120に連係されるタイミングスプロケット302を外周に有する駆動リンク303(駆動回転体)と、この駆動リング3とカムシャフト134の前方側(図2中左側)に配置されて、両者303,301の組付角を操作する組付角操作機構304と、この組付角操作機構304のさらに前方側に配置されて、同機構304を駆動する操作力付与手段305と、内燃機関の図外のシリンダヘッドとヘッドカバーの前面に跨って取り付けられて組付角操作機構304と操作力付与手段305の前面と周域を覆う図外のVTCカバーと、を備えている。
次に、前記VTC113の構成を、図2〜図9に基づいて説明する。図2に示すように、前記吸気側のカムシャフト134と、このカムシャフト134の前端部に必要に応じて相対回動できるように組み付けられ、チェーン(図示せず)を介してクランクシャフト120に連係されるタイミングスプロケット302を外周に有する駆動リンク303(駆動回転体)と、この駆動リング3とカムシャフト134の前方側(図2中左側)に配置されて、両者303,301の組付角を操作する組付角操作機構304と、この組付角操作機構304のさらに前方側に配置されて、同機構304を駆動する操作力付与手段305と、内燃機関の図外のシリンダヘッドとヘッドカバーの前面に跨って取り付けられて組付角操作機構304と操作力付与手段305の前面と周域を覆う図外のVTCカバーと、を備えている。
駆動リング303は、段差状の挿通孔306を備えた短軸円筒状に形成され、この挿通孔306部分が、カムシャフト134の前端部に結合された従動軸部材307(従動回転体)に回転可能に組み付けられている。そして、駆動リング303の前面(カムシャフト134と逆側の面)には、図3に示すように、対面する平行な側壁を有する3個の径方向溝308(径方向ガイド)が駆動リング303のほぼ半径方向に沿うように形成されている。
また、従動軸部材307は、図2に示すように、カムシャフト134の前端部に突き合される基部側外周に拡径部が形成されると共に、その拡径部よりも前方側の外周面に放射状に突出する三つのレバー309が一体に形成され、軸芯部を貫通するボルト310によってカムシャフト134に結合されている。各レバー309には、リンク311の基端がピン312によって軸支連結され、各リンク311の先端には前記各径方向溝308に摺動自由に係合する円柱状の突出部313が一体に形成されている。
各リンク311は、突出部313が対応する径方向溝308に係合した状態において、ピン312を介して従動軸部材307に連結されているため、リンク311の先端側が外力を受けて径方向溝308に沿って変位すると、駆動リング303と従動軸部材307とはリンク311の作用によって突出部313の変位に応じた方向及び角度だけ相対回動する。
また、各リンク311の先端部には、軸方向前方側に開口する収容穴314が形成され、この収容穴314に、後述する渦巻き溝315(渦巻き状ガイド)に係合する球面突起316aを有する係合ピン316(転動部材)と、この係合ピン316を前方側(渦巻き溝315側)に付勢するコイルばね317とが収容されている。なお、この実施形態においては、リンク311の先端の突出部313と係合ピン316、コイルばね317等とによって径方向に変位可能な可動案内部が構成されている。
一方、従動軸部材307のレバー309の突設位置よりも前方側には、円板状のフランジ壁318aを有する中間回転体318が軸受331を介して回転自在に支持されている。この中間回転体318のフランジ壁318aの後面側には断面半円状の前述の渦巻き溝315が形成され、この渦巻き溝315に、前記各リンク311の先端の係合ピン316が転動自在に案内係合されている。渦巻き溝315の渦巻きは、駆動リング303の回転方向に沿って次第に縮径するように形成されている。したがって、各リンク311先端の係合ピン316が渦巻き溝315に係合した状態において、中間回転体318が駆動リング303に対して遅れ方向に相対回転すると、リンク311の先端部は径方向溝308に案内されつつ、渦巻き溝315の渦巻き形状に誘導されて半径方向内側に移動し、逆に、中間回転体318が進み方向に相対変位すると、半径方向外側に移動する。
この実施形態の組付角操作機構304は、以上説明した駆動リング303の径方向溝308、リンク311、突出部313、係合ピン316、レバー309、中間回転体318、渦巻き溝315等によって構成されている。この組付角操作機構304は、操作力付与手段305から中間回転体318にカムシャフト134に対する相対的な回動操作力が入力されると、その操作力が渦巻き溝315と係合ピン316の係合部を通してリンク311の先端を径方向に変位させ、このときリンク311とレバー309の作用によって駆動リンク303と従動軸部材307に相対的な回動力を伝達する。
一方、操作力付与手段305は、中間回転体318を駆動リング303の回転方向に付勢するゼンマイばね319と、中間回転体318を駆動リング303の回転方向と逆方向に付勢すべく制動機構であるヒステリシスブレーキ320と、を備えてなり、内燃機関の運転状態に応じてヒステリシスブレーキ320の制動力を適宜制御することにより、中間回転体318を駆動リング303に対して相対回動させ、或は、この両者の回動位置を維持するようになっている。
ゼンマイばね319は、駆動リング303に一体に取り付けられた円筒部材321にその外周端部が結合される一方で、内周端部が中間回転体318の円筒状の基部に結合され、全体が中間回転体318のフランジ壁318aの前方側スペースに配置されている。
一方、ヒステリシスブレーキ320は、中間回転体318の前端部にリテーナプレート322を介して取り付けられた有底円筒状のヒステリシスリング323と、非回転部材である図外のVTCカバーに回転を規制した状態で取り付けられた磁界制御手段としての電磁コイル324と、電磁コイル324の磁気を誘導する磁気誘導部材であるコイルヨーク325と、を備え、電磁コイル324が機関の運転状態に応じて前記ECU114によって通電制御されるようになっている。
一方、ヒステリシスブレーキ320は、中間回転体318の前端部にリテーナプレート322を介して取り付けられた有底円筒状のヒステリシスリング323と、非回転部材である図外のVTCカバーに回転を規制した状態で取り付けられた磁界制御手段としての電磁コイル324と、電磁コイル324の磁気を誘導する磁気誘導部材であるコイルヨーク325と、を備え、電磁コイル324が機関の運転状態に応じて前記ECU114によって通電制御されるようになっている。
ヒステリシスリング323は、図6に示すように、外部の磁界の変化に対して位相遅れをもって磁束力が変化する特性(磁気的ヒステリシス特性)を持つヒステリシス材(半硬質材)によって形成され、外周側の円筒壁323a部分が前記コイルヨーク325によって制動作用を受けるようになっている。
コイルヨーク325は、電磁コイル324を取り囲むように全体が略円筒形状に形成され、その内周面が軸受328を介して従動軸部材307の先端部に回転可能に支持されている。そして、コイルヨーク325の後部面側(中間回転体318側)には磁気入出部分が円筒状の隙間をもって向かい合うように周面状の一対の対向面326,327が形成されている。
コイルヨーク325は、電磁コイル324を取り囲むように全体が略円筒形状に形成され、その内周面が軸受328を介して従動軸部材307の先端部に回転可能に支持されている。そして、コイルヨーク325の後部面側(中間回転体318側)には磁気入出部分が円筒状の隙間をもって向かい合うように周面状の一対の対向面326,327が形成されている。
また、図4に示すように、コイルヨーク325の両対向面326,327には夫々円周方向に沿って複数の凹凸が連続して形成され、これら凹凸のうちの凸部326a,327aが磁極(磁界発生部)を成すようになっている。
そして、一方の対向面326の凸部326aと他方の対向面327の凸部327aは円周方向に交互に配置され、対向面326,327相互の近接する凸部326a,327aがすべて円周方向にずれている。したがって、両対向面326,327の近接する凸部326a,327a間には、電磁コイル24の励磁によって図7に示すような円周方向に傾きをもった向きの磁界が発生する。そして、両対向面326,327間の隙間には前記ヒステリシスリング323の円筒壁323aが非接触状態で介装されている。
そして、一方の対向面326の凸部326aと他方の対向面327の凸部327aは円周方向に交互に配置され、対向面326,327相互の近接する凸部326a,327aがすべて円周方向にずれている。したがって、両対向面326,327の近接する凸部326a,327a間には、電磁コイル24の励磁によって図7に示すような円周方向に傾きをもった向きの磁界が発生する。そして、両対向面326,327間の隙間には前記ヒステリシスリング323の円筒壁323aが非接触状態で介装されている。
ここで、このヒステリシスブレーキ320の作動原理を図8によって説明する。なお、図8(a)はヒステリシスリング323(ヒステリシス材)に最初に磁界をかけた状態を示し、図8(b)は上記(a)の状態からヒステリシスリング323を変位(回転)させた状態を示す。
図8(a)の状態においては、コイルヨーク325の対向面326,327間の磁界の向き(対向面27の凸部327aから他方の対向面326の凸部327aに向かう磁界の向き)に沿うようにヒステリシスリング323内に磁束の流れが生じる。
図8(a)の状態においては、コイルヨーク325の対向面326,327間の磁界の向き(対向面27の凸部327aから他方の対向面326の凸部327aに向かう磁界の向き)に沿うようにヒステリシスリング323内に磁束の流れが生じる。
この状態からヒステリシスリング323が図8(b)に示すように外力Fを受けて移動すると、外部磁界内をヒステリシスリング323が変位することとなるため、このときヒステリシスリング323の内部の磁束は位相遅れをもち、ヒステリシスリング323の内部の磁束の向きは対向面326,327間の磁界の向きに対してずれる(傾斜する)こととなる。したがって、対向面327の凸部327aからヒステリシスリング323に入る磁束の流れ(磁力線)と、ヒステリシスリング323から他方の対向面326の凸部326aに向かう磁束の流れ(磁力線)が歪められ、このとき、この磁束の流れの歪みを矯正するような引き合い力が対向面326,327とヒステリシスリング323の間に作用し、その引き合い力がヒステリシスリング323を制動する抗力F’として働く。
このヒステリシスブレーキ320は、以上のようにヒステリシスリング323が対向面326,327間の磁界内を変位するときに、ヒステリシスリング323の内部の磁束の向きと磁界の向きのずれによって制動力を発生するものであるが、その制動力は、ヒステリシスリング323の回転速度(対向面326,327とヒステリシスリング323の相対速度)に関係なく、磁界の強さ、即ち、電磁コイル324の励磁電流の大きさに略比例した一定の値となる。
図9は、夫々この実施形態のヒステリシスブレーキ320における回転速度と制動トルクの関係を、励磁電流をa〜d(a<b<c<d)に変えて調べた試験結果である。この試験結果から明らかなように、ヒステリシスブレーキ320は渦電流を用いたブレーキのように回転速度の影響を何等受けることがなく、常に励磁電流値に応じた制動力を得ることができる。
本実施形態に係るVTC113は以上のような構成となっており、機関の始動時やアイドル運転時には、ヒステリシスブレーキ320の電磁コイル324の励磁をオフにしておくことにより、ゼンマイばね319の力によって中間回転体318を駆動リング303に対して機関回転方向に最大に回転させておく(図3参照)。これにより、クランクシャフトに対するカムシャフト134の回転位相(動弁の開閉タイミング)は最遅角位置に維持され、機関回転の安率化と燃費の向上が図られる。
そして、この状態から機関の運転が通常運転に移行し、前記回転位相を進角側に変更すべき指令が前記ECU114から発されると、ヒステリシスブレーキ320の電磁コイル324の励磁がオンにされて、ゼンマイばね319の力に抗する制動力が中間回転体318に付与される。これにより、中間回転体318が駆動リング303に対して逆方向に回転し、それによってリンク311の先端の係合ピン316が渦巻き溝315に誘導されてリンク311の先端部が径方向溝308に沿って変位し、図5に示すようにリンク11の作用によって駆動リング303と従動軸部材307の組付角が進角側に変更される。この結果、カムシャフト134の回転位相が進角側に変更され、それによって機関の高出力化が図られることとなる。図5は最進角位置の状態を示す。
また、この状態から前記回転位相を遅角側に変更すべく前記ECU114から発されると、ヒステリシスブレーキ320の電磁コイル324の励磁力が減少され、ゼンマイばね319の力によって中間回転体318が正方向に回転させられる。すると、渦巻き溝315による係合ピン316の誘導によってリンク311が上記と逆方向に揺動し、図3に示すようにそのリンク11の作用によって駆動リング303と従動軸部材307の組付角が遅角側に変更される。
このように、このVTC113によって可変される(クランクシャフト120に対するカムシャフト134の)回転位相は、ヒステリシスブレーキ320の制動力の制御によって任意の位相に変更し、ゼンマイばね319の力とヒステリシスブレーキ320の制動力のバランスによってその位相を保持することができる。
かかる構成のVTC113において、本発明では、ゼンマイばね319のバネ特性の製造時バラツキや経時変化を補償する制御を実行する。なお、最終的に制御されるのは吸気バルブ(または排気バルブ)の位相であるので、以下(及び図)では、適宜、回転位相=バルブ位相として記載する。
かかる構成のVTC113において、本発明では、ゼンマイばね319のバネ特性の製造時バラツキや経時変化を補償する制御を実行する。なお、最終的に制御されるのは吸気バルブ(または排気バルブ)の位相であるので、以下(及び図)では、適宜、回転位相=バルブ位相として記載する。
図10は、上記ゼンマイばね319のバネ特性を更新演算するルーチンのメインフローを示す。
ステップ(図ではSと記す。以下同様)101では、機関の状態としてクランク角センサ117によって検出される機関回転速度、水温センサ119によって検出される冷却水温度ないし潤滑油温度(以下油水温という)、カム角センサ201により検出されるバルブ位相などを読み込む。
ステップ(図ではSと記す。以下同様)101では、機関の状態としてクランク角センサ117によって検出される機関回転速度、水温センサ119によって検出される冷却水温度ないし潤滑油温度(以下油水温という)、カム角センサ201により検出されるバルブ位相などを読み込む。
ステップ102では、機関回転速度の変動(所定期間内での変化量)が所定範囲内であるかを判定する。
ステップ103では、油水温が所定範囲内であるかを判定する。
ステップ104では、バルブ位相が所定範囲内(設定された複数の計測領域のいずれかに属するか)であるかを判定する。
ステップ103では、油水温が所定範囲内であるかを判定する。
ステップ104では、バルブ位相が所定範囲内(設定された複数の計測領域のいずれかに属するか)であるかを判定する。
ステップ105では、バルブ位相の保持制御中であるかを判定する。具体的には、実バルブ位相が目標バルブ位相から所定以内の偏差に所定期間留まっている状態または簡易的には実バルブ位相の変動量が所定範囲内である状態などの判定によって判定する。
以上、ステップ102からステップ105までの条件が全て成立(判定結果がイエス)であるときに、ステップ106で、当該計測領域におけるモータ(電磁コイル324)電流値とバルブ位相を計測する。ここで、バルブ位相の計測とは、簡易的には最新の検出値の読込みであってよいが、安定した精度を確保するためには、計測領域内での複数の検出値を平均化処理する。
以上、ステップ102からステップ105までの条件が全て成立(判定結果がイエス)であるときに、ステップ106で、当該計測領域におけるモータ(電磁コイル324)電流値とバルブ位相を計測する。ここで、バルブ位相の計測とは、簡易的には最新の検出値の読込みであってよいが、安定した精度を確保するためには、計測領域内での複数の検出値を平均化処理する。
ステップ107では、エンジンキースイッチON後、異なる複数の計測領域での計測を行ったかを判定する。
そして、複数の計測領域での計測を行ったと判定されたときに、ステップ108で、VTC113のゼンマイばね319のバネ定数を更新演算し、この更新されたバネ定数によって制御系を再設計する。
そして、複数の計測領域での計測を行ったと判定されたときに、ステップ108で、VTC113のゼンマイばね319のバネ定数を更新演算し、この更新されたバネ定数によって制御系を再設計する。
図11は、前記ステップ108でのバネ定数演算の一例のフローを示す。
ステップ201では、計測した複数の領域でのバルブ位相およびモータ電流値により、バネ定数を演算する。
具体的には、以下のように演算する。上記のようにバルブ位相が保持制御されている定常状態では、次式(1)が成立する。
ステップ201では、計測した複数の領域でのバルブ位相およびモータ電流値により、バネ定数を演算する。
具体的には、以下のように演算する。上記のようにバルブ位相が保持制御されている定常状態では、次式(1)が成立する。
T=K・θ+T0・・・(1)
T:VTC113の駆動トルクT
K:ばね定数
θ:バルブ位相(吸気バルブの場合、最遅角位置からの進角量)
T0:ゼンマイばね319のセット荷重による初期トルク
ここで、計測したモータ通電量iと駆動トルクTの特性は既知であるので、該既知の特性により通電量iを変換して駆動トルクTを求められる。また、複数領域での計測間の時間は短時間であるので、この間にバネ定数K及び初期トルクT0は変化しないとすると、図12に示すような領域1,2での計測において、それぞれ次式(2),(3)が成立する。
T:VTC113の駆動トルクT
K:ばね定数
θ:バルブ位相(吸気バルブの場合、最遅角位置からの進角量)
T0:ゼンマイばね319のセット荷重による初期トルク
ここで、計測したモータ通電量iと駆動トルクTの特性は既知であるので、該既知の特性により通電量iを変換して駆動トルクTを求められる。また、複数領域での計測間の時間は短時間であるので、この間にバネ定数K及び初期トルクT0は変化しないとすると、図12に示すような領域1,2での計測において、それぞれ次式(2),(3)が成立する。
T1=K・θ1+T0・・・(2)
T2=K・θ2+T0・・・(3)
T1:領域1での駆動トルク
T2:領域2での駆動トルク
θ1:領域1でのバルブ位相
θ2:領域2でのバルブ位相
したがって、(2),(3)式より、
T2−T1=K・(θ2−θ1)
K=(T2−T1)/(θ2−θ1)
上記のように2点の計測値に基づいてバネ定数Kを算出できる。
T2=K・θ2+T0・・・(3)
T1:領域1での駆動トルク
T2:領域2での駆動トルク
θ1:領域1でのバルブ位相
θ2:領域2でのバルブ位相
したがって、(2),(3)式より、
T2−T1=K・(θ2−θ1)
K=(T2−T1)/(θ2−θ1)
上記のように2点の計測値に基づいてバネ定数Kを算出できる。
さらに計測領域を増やして図13に示すような3つの領域での計測値に基づいてバネ定数をより高精度に算出することもできる。すなわち領域1,2,3で計測を行い、領域1,2の計測値に基づいてバネ定数K1を算出し、領域2,3の計測値に基づいてバネ定数K2を算出し、領域3,1の計測値に基づいてバネ定数K3を算出し、これらバネ定数K1,K2,K3を平均してバネ定数Kを算出する。
ステップ202では、上記のようにして算出された最新のバネ定数により、バネ定数を更新する。
図14は、上記バネ定数更新処理の一例のフローを示し、ステップ301で、次式のように今回算出した最新のバネ定数Knewと前回算出したバネ定数Koldとを加重平均演算処理して更新する。
図14は、上記バネ定数更新処理の一例のフローを示し、ステップ301で、次式のように今回算出した最新のバネ定数Knewと前回算出したバネ定数Koldとを加重平均演算処理して更新する。
K=(1−α)・Kold+α・Knew・・・(4)
α:加重割合(固定値)
図15は、バネ定数更新処理の別の例のフローを示す。
ステップ401では、今回算出した最新のバネ定数Knewと前回算出したバネ定数Koldとの偏差|Δε|=|Knew−Kold|に基づいて、図16に示す特性マップからの検索等により加重割合αを可変に設定する。具体的には、偏差|Δε|が大きくなるほど、今回値の誤差(ノイズ)が大きいと判断して、今回値に対する加重割合αを小さく設定する。
α:加重割合(固定値)
図15は、バネ定数更新処理の別の例のフローを示す。
ステップ401では、今回算出した最新のバネ定数Knewと前回算出したバネ定数Koldとの偏差|Δε|=|Knew−Kold|に基づいて、図16に示す特性マップからの検索等により加重割合αを可変に設定する。具体的には、偏差|Δε|が大きくなるほど、今回値の誤差(ノイズ)が大きいと判断して、今回値に対する加重割合αを小さく設定する。
ステップ402では、上記のように可変に設定された加重割合αを用いて上記(4)により加重平均演算処理して更新する。
すなわち、加重平均演算によって、ノイズの影響を抑制して精度よくバネ定数を算出できるが、加重割合αを偏差に応じて可変に設定することにより、より精度よく算出できる。
すなわち、加重平均演算によって、ノイズの影響を抑制して精度よくバネ定数を算出できるが、加重割合αを偏差に応じて可変に設定することにより、より精度よく算出できる。
図11に戻ってステップ203では、上記のようにして更新されたバネ定数Kにより、制御系を再設計する。
上記制御系の再設計は以下のようにして行う。
VTC113の過渡状態も含めた運動方程式は、次式で示される。
T=J・(d2θ/dt2)+D・(dθ/dt)+K・θ+T0・・・(5)
ラプラス変換すると、
T(s)=(J・s2+D・s+K+T0・s-1)θ(s)
VTC113の伝達関数P(s)は、次式のようになる。
上記制御系の再設計は以下のようにして行う。
VTC113の過渡状態も含めた運動方程式は、次式で示される。
T=J・(d2θ/dt2)+D・(dθ/dt)+K・θ+T0・・・(5)
ラプラス変換すると、
T(s)=(J・s2+D・s+K+T0・s-1)θ(s)
VTC113の伝達関数P(s)は、次式のようになる。
P(s)=θ(s)/T(s)=1/(J・s2+D・s+K+T0・s-1)・・・(6)
図17は、制御対象モデルの制御ブロック図を示す。
目標バルブ位相refθを補償器R(s)/P(s)で変換して駆動トルクのフィードフォワード値TFF(s)を算出する。ただし、R(s)は、理想的なVTC応答として設定した規範モデルである。
図17は、制御対象モデルの制御ブロック図を示す。
目標バルブ位相refθを補償器R(s)/P(s)で変換して駆動トルクのフィードフォワード値TFF(s)を算出する。ただし、R(s)は、理想的なVTC応答として設定した規範モデルである。
前記規範モデルR(s)応答と制御された実バルブ位相θ(s)との偏差Δθ(s)[=R(s)−θ(s)]を補償器C(s)で変換して駆動トルクのフィードバック値TFB(s)を算出する。
前記駆動トルクのフィードフォワード値TFF(s)とフィードバック値TFB(s)を加算して駆動トルクの操作量T(s)を算出し、該操作量T(s)を入力したVTC113[伝達関数P(s)]により制御量θ(s)が得られる。
前記駆動トルクのフィードフォワード値TFF(s)とフィードバック値TFB(s)を加算して駆動トルクの操作量T(s)を算出し、該操作量T(s)を入力したVTC113[伝達関数P(s)]により制御量θ(s)が得られる。
図18は、上記制御系再設計のフローを示す。
ステップ501では、上記伝達関数P(s)のバネ定数Kを更新することにより、制御対象モデルを更新する。
また、前記初期トルクT0もバネ定数Kのバラツキに応じてバラツキを生じる、バネ定数に関連した値であるので、算出したバネ定数Kから(2)式または(3)式によって初期トルクT0も算出してバネ定数Kと同様に加重平均等によって更新し、制御対象モデルの更新に用いるのが好ましい。
ステップ501では、上記伝達関数P(s)のバネ定数Kを更新することにより、制御対象モデルを更新する。
また、前記初期トルクT0もバネ定数Kのバラツキに応じてバラツキを生じる、バネ定数に関連した値であるので、算出したバネ定数Kから(2)式または(3)式によって初期トルクT0も算出してバネ定数Kと同様に加重平均等によって更新し、制御対象モデルの更新に用いるのが好ましい。
ステップ502では、前記更新した制御対象モデルに応じて、制御定数、制御ゲインなどの制御設定値を更新する。例えば、PID制御などでフィードバック値TFB(s)を算出する補償器C(s)において、バネ定数Kの変化に応じて制御ゲインを変更することによって、安定した応答性を維持できる。
例えば、図19に示すようにバネ特性が変化した場合を考える。制御系は、通常のPID制御系とする。
例えば、図19に示すようにバネ特性が変化した場合を考える。制御系は、通常のPID制御系とする。
基本特性の状態から変動特性1に変化した場合、バネ定数がKからK1に低下するので、進角制御する場合、基本特性のバネ定数Kのときより応答が早くなり、オーバーシュートを発生しやすくなる。
よって、比例ゲインを下げるか、若しくは微分ゲインを上げることの少なくとも一方で対処する。また、2つの特性で、同一位相での保持トルクが違うので、積分ゲインが固定だと操作量が過剰に溜りオーバーシュートが発生してしまう。
よって、比例ゲインを下げるか、若しくは微分ゲインを上げることの少なくとも一方で対処する。また、2つの特性で、同一位相での保持トルクが違うので、積分ゲインが固定だと操作量が過剰に溜りオーバーシュートが発生してしまう。
以上のことから、簡易に制御ゲインを変更する式を立てると以下のようになる。
比例ゲイン=基本比例ゲイン×K1/K×比例補正値
積分ゲイン=基本積分ゲイン×K1/K
微分ゲイン=基本微分ゲイン×K/K1×微分補正値
なお、比例ゲイン、微分ゲインは過渡特性を調整する要素が強いので、積分ゲインのように理論的に設定することが難しいので、調整項である補正値を入れている。
比例ゲイン=基本比例ゲイン×K1/K×比例補正値
積分ゲイン=基本積分ゲイン×K1/K
微分ゲイン=基本微分ゲイン×K/K1×微分補正値
なお、比例ゲイン、微分ゲインは過渡特性を調整する要素が強いので、積分ゲインのように理論的に設定することが難しいので、調整項である補正値を入れている。
以上のようにバネ定数K[及びバネ定数Kの関連値(初期トルクT0)]を算出しつつ更新(学習)し、該更新したバネ定数K等によって制御系を再設計することにより、ゼンマイばねの特性の製造バラツキや経時変化を補償でき、高精度なバルブタイミング制御を維持することができる。
なお、上記実施形態ではバネ定数Kの算出に、複数領域(基本的に2領域)の計測値を用いたが、製造バラツキや経時変化を生じるバネ特性が、バネ定数Kのみとした場合には、1つの領域で算出することができる。すなわち、VTCの初期トルク(バネのセット荷重)T0は、T0=K・θ0(θ0:セット荷重のバネ圧縮分相当のクランク角)となるので、保持制御されている状態では次式で表される。
なお、上記実施形態ではバネ定数Kの算出に、複数領域(基本的に2領域)の計測値を用いたが、製造バラツキや経時変化を生じるバネ特性が、バネ定数Kのみとした場合には、1つの領域で算出することができる。すなわち、VTCの初期トルク(バネのセット荷重)T0は、T0=K・θ0(θ0:セット荷重のバネ圧縮分相当のクランク角)となるので、保持制御されている状態では次式で表される。
T=K(θ+θ0)
→K=T/(θ+θ0)
ここで、θ0は、最も簡易的にはθ0固定値でもよいが、VTCの非作動である初期位置(吸気バルブ用VTCでは最遅角位置、排気バルブ用VTCでは最進角位置)に初期バラツキや経時変化があっても、通常行われる初期位置の学習によって正確に把握できる。
→K=T/(θ+θ0)
ここで、θ0は、最も簡易的にはθ0固定値でもよいが、VTCの非作動である初期位置(吸気バルブ用VTCでは最遅角位置、排気バルブ用VTCでは最進角位置)に初期バラツキや経時変化があっても、通常行われる初期位置の学習によって正確に把握できる。
したがって、バネ定数Kのみが特性変化すると考えれば、上記初期位置学習により1つの領域でもバネ定数Kを正しく算出できるので、簡易的にはこのようにしてもよい。
しかし、実際には、バネ特性のバラツキ,経時変化はバネ定数K以外に、バネの自然長やバネ両端取付位置間の長さなどのバラツキ,経時変化があり、これらに起因する初期トルクT0乃至θ0のバラツキ,経時変化は、初期位置(バネ一端の取付位置)の学習を行っても1つの領域の計測データからでは把握できない。
しかし、実際には、バネ特性のバラツキ,経時変化はバネ定数K以外に、バネの自然長やバネ両端取付位置間の長さなどのバラツキ,経時変化があり、これらに起因する初期トルクT0乃至θ0のバラツキ,経時変化は、初期位置(バネ一端の取付位置)の学習を行っても1つの領域の計測データからでは把握できない。
上記のような1つの領域の計測データからでは把握できない初期トルクT0の変化に対しても、上記実施形態のように2つの領域の計測を行えば初期トルクT0を消去できるので、バネ定数K(及び初期トルクT0)を正確に算出でき、ひいては、制御系の再設計を高精度に行うことができる。
また、上記実施形態では、アクチュエータであるVTC113の作動状態としてモータ(電磁コイル324)の電流値を用いたが、トルクセンサ等を設けて直接駆動トルクTを検出し検出値を用いてもよい。
また、上記実施形態では、アクチュエータであるVTC113の作動状態としてモータ(電磁コイル324)の電流値を用いたが、トルクセンサ等を設けて直接駆動トルクTを検出し検出値を用いてもよい。
また、本発明は、上記実施形態に示したバルブタイミング制御装置の他、例えば電制スロットル装置など、バネ力に抗して作動するアクチュエータにより駆動して目標位置に制御する制御装置に適用できる。
更に、上記実施形態から把握し得る請求項以外の技術思想について、以下にその効果と共に記載する。
(イ)請求項1〜請求項4のいずれか1つに記載のバルブタイミング制御装置または制御装置において、
バルブタイミング乃至制御量が複数の位置にそれぞれ保持制御されているときの、それぞれの位置のアクチュエータ作動状態の計測値に基づいてアクチュエータのバネ定数を算出し、該算出されたバネ定数を用いてアクチュエータの操作量を算出することを特徴とする。
更に、上記実施形態から把握し得る請求項以外の技術思想について、以下にその効果と共に記載する。
(イ)請求項1〜請求項4のいずれか1つに記載のバルブタイミング制御装置または制御装置において、
バルブタイミング乃至制御量が複数の位置にそれぞれ保持制御されているときの、それぞれの位置のアクチュエータ作動状態の計測値に基づいてアクチュエータのバネ定数を算出し、該算出されたバネ定数を用いてアクチュエータの操作量を算出することを特徴とする。
このようにすれば、バネ定数以外のバネ特性のバラツキ,経時変化にも対応してバネ定数を高精度に算出できる。
(ロ)上記(イ)に記載のバルブタイミング制御装置または制御装置において、上記計測を行う複数の位置が2乃至3以上で、3以上の場合は異なる組み合わせの2つの位置の計測値に基づいてそれぞれ算出されるバネ定数の平均値を算出することを特徴とする。
(ロ)上記(イ)に記載のバルブタイミング制御装置または制御装置において、上記計測を行う複数の位置が2乃至3以上で、3以上の場合は異なる組み合わせの2つの位置の計測値に基づいてそれぞれ算出されるバネ定数の平均値を算出することを特徴とする。
このようにすれば、2つの位置の計測値を基本としてバネ定数を算出でき、3以上の計測値に基づいて平均化すればより正確にバネ定数を算出できる。
(ハ)請求項1〜請求項4又は上記(イ),(ロ)のいずれか1つに記載のバルブタイミング制御装置または制御装置において、前記アクチュエータの作動状態が、実制御量の他、アクチュエータの駆動源であるモータの電流値乃至駆動力(駆動トルク含む)であることを特徴とする。
(ハ)請求項1〜請求項4又は上記(イ),(ロ)のいずれか1つに記載のバルブタイミング制御装置または制御装置において、前記アクチュエータの作動状態が、実制御量の他、アクチュエータの駆動源であるモータの電流値乃至駆動力(駆動トルク含む)であることを特徴とする。
このようにすれば、実制御量と操作量である電流値乃至駆動力とに基づいてバネ定数を算出できる。
101…内燃機関、105…吸気バルブ、112…可変バルブリフト機構、113…可変バルブタイミング機構、114…エンジンコントロールユニット、117…クランク角センサ、120…クランクシャフト、134…カムシャフト、201…カム角センサ、319…ゼンマイばね、324…電磁コイル
Claims (4)
- 内燃機関の動弁のバルブタイミングを、バネ力に抗して作動するアクチュエータによって可変制御するバルブタイミング制御装置であって、バルブタイミングが保持制御されているときのアクチュエータ作動状態に基づいてアクチュエータのバネ定数を算出し、該算出されたバネ定数を用いてアクチュエータの操作量を算出することを特徴とするバルブタイミング制御装置。
- 複数回算出したバネ定数の相違度合いに基づいて加重平均割合を設定し、該加重平均割合で前記複数回算出したバネ定数を加重平均処理し、処理したバネ定数に基づいてアクチュエータの操作量を算出することを特徴とする請求項1に記載のバルブタイミング制御装置。
- 前記算出したバネ定数に基づいて制御モデルにおけるバネ定数に関連する値を補正または更新することを特徴とする請求項1または請求項2に記載のバルブタイミング制御装置。
- 制御対象を、バネ力に抗して作動するアクチュエータにより駆動して目標位置に制御する制御装置であって、制御量が保持制御されているときのアクチュエータ作動状態に基づいてアクチュエータのバネ定数を算出し、該算出されたバネ定数を用いてアクチュエータの操作量を算出することを特徴とする制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004039719A JP2005232986A (ja) | 2004-02-17 | 2004-02-17 | バルブタイミング制御装置及び制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004039719A JP2005232986A (ja) | 2004-02-17 | 2004-02-17 | バルブタイミング制御装置及び制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005232986A true JP2005232986A (ja) | 2005-09-02 |
Family
ID=35016215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004039719A Abandoned JP2005232986A (ja) | 2004-02-17 | 2004-02-17 | バルブタイミング制御装置及び制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005232986A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1798402B1 (en) * | 2005-12-19 | 2022-05-11 | Hitachi, Ltd. | Apparatus and method for controlling ignition timing of internal combustion engine |
-
2004
- 2004-02-17 JP JP2004039719A patent/JP2005232986A/ja not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1798402B1 (en) * | 2005-12-19 | 2022-05-11 | Hitachi, Ltd. | Apparatus and method for controlling ignition timing of internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7246582B2 (en) | Variable valve control apparatus and variable valve controlling method for internal combustion engine | |
US20070295295A1 (en) | Phase angle detection apparatus and variable valve timing control apparatus using the phase angle detection apparatus for internal combustion engine | |
JP3776463B2 (ja) | 内燃機関における弁動作タイミング制御装置 | |
JP4708453B2 (ja) | 可変バルブタイミング機構の制御装置 | |
JP4680127B2 (ja) | 内燃機関の減速時制御装置 | |
JP4072346B2 (ja) | 可変バルブタイミング機構の制御装置 | |
JP2007113440A (ja) | 内燃機関の制御装置 | |
US8452519B2 (en) | Valve timing control apparatus for internal combustion engine | |
JP4159854B2 (ja) | 可変バルブタイミング機構の制御装置 | |
JP4125999B2 (ja) | 可変バルブタイミング機構の制御装置 | |
JP2005232986A (ja) | バルブタイミング制御装置及び制御装置 | |
JP4956454B2 (ja) | 可変バルブタイミング機構の制御装置 | |
JP2009174473A (ja) | 可変バルブタイミング機構の制御装置 | |
JP4313626B2 (ja) | 可変バルブタイミング機構の制御装置 | |
JP4299164B2 (ja) | 可変バルブタイミング機構の制御装置 | |
JP4581984B2 (ja) | 内燃機関のバルブ特性制御装置 | |
JP2005264864A (ja) | 内燃機関の制御装置 | |
JP2005233153A (ja) | 可変バルブタイミング機構の制御装置 | |
JP5720855B2 (ja) | 内燃機関の制御装置 | |
JP2005220760A (ja) | 可変動弁制御装置及び制御装置 | |
JP2005248845A (ja) | 可変バルブタイミング機構の制御装置及び制御装置 | |
JP3994949B2 (ja) | 内燃機関における弁動作タイミング制御装置 | |
JP2005226534A (ja) | 動弁制御装置 | |
JP2005315155A (ja) | 可変バルブタイミング機構の制御装置 | |
JP2010053711A (ja) | 内燃機関の減速時制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20060914 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20080421 |