JP2005217200A - 中継基板付き基板及びその製造方法 - Google Patents
中継基板付き基板及びその製造方法 Download PDFInfo
- Publication number
- JP2005217200A JP2005217200A JP2004022219A JP2004022219A JP2005217200A JP 2005217200 A JP2005217200 A JP 2005217200A JP 2004022219 A JP2004022219 A JP 2004022219A JP 2004022219 A JP2004022219 A JP 2004022219A JP 2005217200 A JP2005217200 A JP 2005217200A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- resin
- relay
- board
- interposer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
Landscapes
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
【課題】比較的低コストであるにもかかわらず、ショート不良の発生率が低くかつ信頼性に優れた中継基板付き基板を提供すること。
【解決手段】本発明の中継基板付き基板61は、樹脂製基板41と中継基板31とを備える。樹脂製基板41の主面42に配置された複数の面接続パッド46上には、複数の基板側はんだバンプ37が設けられる。中継基板31は、中継基板本体38と複数の導体柱35とを有する。中継基板側はんだバンプ36は、複数の導体柱35の第1面側端のみに配置される。樹脂製基板41と中継基板31との間には接着性有機材料シート56が配置される。接着性有機材料シート56を介して、中継基板本体38の第2面33側と樹脂製基板41の主面42側とが接着されている。複数の基板側はんだバンプ37を介して、複数の導体柱35と複数の面接続パッド46とが電気的に接続されている。
【選択図】 図1
【解決手段】本発明の中継基板付き基板61は、樹脂製基板41と中継基板31とを備える。樹脂製基板41の主面42に配置された複数の面接続パッド46上には、複数の基板側はんだバンプ37が設けられる。中継基板31は、中継基板本体38と複数の導体柱35とを有する。中継基板側はんだバンプ36は、複数の導体柱35の第1面側端のみに配置される。樹脂製基板41と中継基板31との間には接着性有機材料シート56が配置される。接着性有機材料シート56を介して、中継基板本体38の第2面33側と樹脂製基板41の主面42側とが接着されている。複数の基板側はんだバンプ37を介して、複数の導体柱35と複数の面接続パッド46とが電気的に接続されている。
【選択図】 図1
Description
本発明は、半導体素子等のような電子部品が搭載可能な中継基板を樹脂製基板の主面上に取り付けた構造の中継基板付き基板及びそれを製造する方法に係り、特には樹脂製基板に対する中継基板の取り付け方に特徴を有するものである。
近年、ICチップが搭載された配線基板(IC搭載基板やICパッケージなど)とマザーボード等のプリント基板とをじかに接続するのではなく、配線基板−マザーボード間にインターポーザと呼ばれる中継基板を介在させることで接続を図ったものが各種知られている(例えば、特許文献1参照)。また、最近では、上記のインターポーザとは異なるレベルでの接続を図るもの、具体的にはICチップ−配線基板間の接続を図るインターポーザも提案されている。本明細書では便宜上前者を「セカンドレベルインターポーザ」と呼び、後者を「ファーストレベルインターポーザ」と呼ぶことにする。ここで、ファーストレベルインターポーザを配線基板に取り付けた構造物を製造する手順の従来例を示す。
まず、図7,図10に示すような構造のインターポーザ101及び配線基板111をそれぞれ作製する。インターポーザ101を構成する板状のインターポーザ本体102には、多数のビア103を貫通形成する。各ビア103内には導体柱104を設ける。各々の導体柱104の上端及び下端には、それぞれ中継基板側はんだバンプ105,106を設ける。一方、インターポーザ101が搭載されるべき配線基板111の上面には、複数の基板側はんだバンプ113を形成する。配線基板111の表層にソルダーレジスト114を設けてもよい。
次に、インターポーザ101の有する各中継基板側はんだバンプ106と、配線基板111の有する各基板側はんだバンプ113とを対応させて配置し、この状態でインターポーザ101を配線基板111上に載置する。そして、所定温度及び所定時間に加熱してはんだをリフローさせ、バンプ106,113同士を接合する(図8,図11参照)。この結果、インターポーザ101側と配線基板111側とが電気的に接続される。
ところで、ICチップは一般に熱膨張係数が2.0ppm/℃〜5.0ppm/℃程度の半導体材料(例えばシリコン等)を用いて形成されている。これに対して、配線基板111は半導体材料よりもかなり熱膨張係数が大きな材料、例えば10.0ppm/℃以上の樹脂材料等を用いて形成されている。よって、ファーストレベルインターポーザ101にICチップを実装した場合には、ICチップ−配線基板間の熱膨張係数差に起因して応力が発生しやすい。この応力は、インターポーザ101と他部品との接合部分やICチップ自身にクラックを発生させ、信頼性を低下させる要因となる。このような事情の下、従来においては、インターポーザ101と配線基板111との隙間115をアンダーフィル材116で埋める工程を実施するのが一般的である。具体的には、隙間115に、熱硬化性樹脂からなる液状のアンダーフィル材116をディスペンサ等により供給する工程を行う。次に、所定温度及び所定時間加熱するキュア工程を行い、アンダーフィル材116を熱硬化させる。その結果、アンダーフィル材116を介してインターポーザ101と配線基板111とが強固に接着され、環境による負荷や応力が軽減されて、信頼性が向上しうるものと考えられている(図9参照)。
特開2000−208661号公報(図2(d)等)
しかしながら、上記従来技術の場合、インターポーザ101と配線基板111との接合界面においては、はんだブリッジが起こりやすい。よって、これが原因となりショート不良の発生率が高くなるという問題がある(図11参照)。
また、インターポーザ101と配線基板111との隙間115は狭く、しかもバンプ106,113は密集しているため、液状のアンダーフィル材116を当該隙間115全体に行き渡らせることは非常に難しい。ゆえに、アンダーフィル材116を用いたとしても、インターポーザ101と配線基板111との間に十分な接着強度が確保できず、環境による負荷や応力の軽減が十分に図れない。よって、ICチップ121等におけるクラック発生を十分に防止できず、インターポーザ付き配線基板に高い信頼性を付与できなくなるという問題がある。
さらに、従来では、液状アンダーフィル材供給工程及びキュア工程を実施する必要があり、これがインターポーザ付き配線基板のコストアップを引き起こす1つの要因となっている。
本発明は上記の課題に鑑みてなされたものであり、その目的は、比較的低コストであるにもかかわらず、ショート不良の発生率が低くかつ信頼性に優れた中継基板付き基板及びその製造方法を提供することにある。
そして上記課題を解決するための手段としては、主面と、前記主面上に配置された複数の面接続パッドと、前記複数の面接続パッドの表面上に配置された複数の基板側はんだバンプとを有する樹脂製基板を備え、面接続端子を有する半導体素子が実装されるべき第1面及び前記樹脂製基板上に実装される第2面を持つ中継基板本体と、前記第1面及び前記第2面間を貫通する複数の導体柱とを有し、前記複数の導体柱の第1面側端に中継基板側はんだバンプが配置される一方、前記複数の導体柱の第2面側端に中継基板側はんだバンプが配置されていない中継基板を備え、かつ、前記樹脂製基板と前記中継基板との間に配置された接着性有機材料シートを備え、前記接着性有機材料シートを介して前記中継基板本体の第2面側と前記樹脂製基板の主面側とが接着され、前記複数の基板側はんだバンプを介して前記複数の導体柱と前記複数の面接続パッドとが電気的に接続されていることを特徴とする中継基板付き基板をその要旨とする。
従って、この中継基板付き基板では、接着性有機材料シートによって中継基板と樹脂製基板とを接着しているため、液状のアンダーフィル材の供給工程及びそのキュア工程が不要になり、工数を低減することが可能となる。また、第1面側端の中継基板側はんだバンプを配置する一方で第2面側端の中継基板側はんだバンプを省略したことにより、その分だけ工数等の低減が可能となる。これらのことにより、中継基板付き基板の低コスト化を達成することができる。
また、第2面側端の中継基板側はんだバンプを省略したことにより、中継基板と樹脂製基板との接合界面にて使用されるはんだの体積が従来に比較して少なくなる。よって、隣接するバンプ間ではんだブリッジが起こりにくくなり、ショート不良の発生率を低減することができる。さらに、ソルダーレジストを介して中継基板と樹脂製基板とが接合される結果、半導体素子等に作用する応力の影響が低減され、クラックの発生が防止される。よって、中継基板付き基板に高い信頼性を付与することができる。
中継基板付き基板を構成する樹脂製基板とは、樹脂材料を主体として構成された基板のことを意味する。かかる樹脂製基板の具体例としては、EP樹脂(エポキシ樹脂)基板、PI樹脂(ポリイミド樹脂)基板、BT樹脂(ビスマレイミド−トリアジン樹脂)基板、PPE樹脂(ポリフェニレンエーテル樹脂)基板などがある。そのほか、これらの樹脂とガラス繊維(ガラス織布やガラス不織布)やポリアミド繊維等の有機繊維との複合材料からなる基板を使用してもよい。あるいは、連続多孔質PTFE等の三次元網目状フッ素系樹脂基材にエポキシ樹脂などの熱硬化性樹脂を含浸させた樹脂−樹脂複合材料からなる基板等を使用してもよい。なお、本発明において樹脂製基板を用いる理由は、基板材料を樹脂とすることで全体の低コスト化を図るためである。また、樹脂製基板は導体回路を備える配線基板であることが好ましく、このような配線基板上には半導体素子やその他の電子部品などが実装可能である。
樹脂製基板の熱膨張係数は、10.0ppm/℃以上30.0ppm/℃以下であることがよい。熱膨張係数が10.0ppm/℃未満になると、樹脂製基板が高コスト化しやすくなるからである。また、熱膨張係数が30.0ppm/℃を超える樹脂製基板を使用した場合には、半導体素子等との熱膨張係数差が非常に大きくなる。よって、たとえ中継基板を付けたとしても応力の影響を十分に低減できない可能性があるからである。
ここで「熱膨張係数」とは、厚み方向(Z方向)に対して垂直な方向(XY方向)の熱膨張係数のことを意味し、0℃〜100℃の間のTMA(熱機械分析装置)にて測定した値のことをいう(以下、同じ)。「TMA」とは、熱機械的分析をいい、例えばJPCA−BU01に規定されるものをいう。
また、樹脂製基板は、主面上に配置され複数の開口部から露出する複数の面接続パッドを備えている。前記面接続パッドとは、電気的接続のための端子用パッドであって、面接続によって接続を行うものを指す。このような面接続パッドは例えば線状や格子状(千鳥状も含む)に形成される。
樹脂製基板は複数の基板側はんだバンプを有している。これらの基板側はんだバンプは、複数の面接続パッドの表面上にそれぞれ配置されている。隣接する基板側はんだバンプ間の中心間距離(即ちバンプピッチ)は、基本的には実装されるべき半導体素子側の面接続端子のピッチに依存し、例えば250μm以下(ただし、0μmは除く。)、好ましくは130μm以上200μm以下に設定される。基板側はんだバンプの最大径は、前記バンプピッチの半分以下に設定されることがよく、具体的には150μm以下(ただし、0μmは除く。)、好ましくは60μm以上100μm以下である。基板側はんだバンプの最大径がバンプピッチの半分を超えるようになると、基板側はんだバンプの体積増及び過度の近接によって、はんだブリッジが発生しやすくなるおそれがあるからである。逆に、基板側はんだバンプの最大径がバンプピッチに比べてかなり小さい(例えば1/4未満である)と、基板側はんだバンプの体積不足によって、導体柱と面接続パッドとの接続状態が低下するおそれがあるからである。
また、中継基板を樹脂製基板に接着する前の状態において、基板側はんだバンプの高さは、10μm以上100μm以下に設定されることが好ましい。基板側はんだバンプの高さが10μm未満になると、基板側はんだバンプの体積が不足して、導体柱と面接続パッドとの接続状態が悪化するおそれがあるからである。一方、基板側はんだバンプの高さが100μmを超えると、基板側はんだバンプの体積が増えてしまい、隣接するバンプ間でのはんだブリッジの発生率を十分に低減できなくなるおそれがあるからである。
基板側はんだバンプに使用されるはんだの種類は、用途に応じて任意に選択可能である。好適なはんだの具体例を挙げると、錫鉛共晶はんだ(63Sn/37Pb:融点183℃)などがある。勿論、錫鉛共晶はんだ以外のSn/Pb系はんだ、例えば62Sn/36Pb/2Agという組成のはんだ(融点190℃)、90Sn/10Pbという組成のはんだ、95Sn/5Pbという組成のはんだなどを使用してもよい。さらには、上記のような鉛入りはんだ以外にも、鉛フリーはんだを選択することが可能である。鉛フリーはんだとは、鉛を全くまたは殆ど含まないはんだのことを意味し、例えば、Sn−Ag系はんだ、Sn−Ag−Cu系はんだ、Sn−Ag−Bi系はんだ、Sn−Ag−Bi−Cu系はんだ、Sn−Zn系はんだ、Sn−Zn−Bi系はんだ等を挙げることができる。なお、上記各系のはんだには微量元素(例えばAu,Ni,Ge等)が含まれていてもよい。
中継基板付き基板を構成する接着性有機材料シートは、中継基板と樹脂製基板との間に配置されることで、中継基板本体の第2面側と樹脂製基板の主面側とを互いに接着させている。接着性有機材料シートとは、接着性及び絶縁性を有する有機材料を主成分とするシート材であって、いわば圧着型アンダーフィル材と呼ばれるべきものである。このような接着性有機材料シートの好適例としては、熱硬化性エポキシ系樹脂、熱硬化性ポリイミド系樹脂または熱硬化性シアネート系樹脂などを主成分とするシート材を挙げることができる。上記の熱硬化性樹脂中には、シリコーンやウレタン等のようなゴム系成分が含まれていてもよく、この場合には低弾性率となるため応力の緩和に好適な性質をシートに付与することが可能となる。また、上記の熱硬化性樹脂中には、例えば硬化剤としてフッ素成分が含まれていてもよく、この場合にはシートにリペア性(リワーク性)を付与することが可能となる。
接着性有機材料シートの厚さは特に限定されるべきではないが、例えば10μm以上40μm以下に設定されることが好ましい。この範囲内であれば、導体柱と基板側はんだバンプとの間に良好な接続状態を確保しつつ、接着性有機材料シートにより中継基板と樹脂製基板との隙間を十分に埋めることができる。シートの厚さが10μm未満であると、中継基板と樹脂製基板との隙間が十分に埋まらず、十分な接着強度及び十分な封止性が確保できなくなるおそれがある。また、シートがあまりに薄すぎると、ハンドリング性が損なわれ、接着工程の生産性が低下するおそれがある。一方、シートの厚さが40μmを超えると、中継基板と樹脂製基板との隙間が十分に埋まる反面、導体柱と基板側はんだバンプとの接続状態が悪化するおそれがある。
中継基板を構成する中継基板本体は、第1面及び第2面を有する略板形状の部材である。中継基板本体の第1面は、面接続端子を有する半導体素子が実装されるべき面、換言すると、面接続端子を有する半導体素子が実装される予定の面である。前記半導体素子としては、例えば、XY方向の熱膨張係数が2.0ppm/℃以上5.0ppm/℃未満のものが使用される。このような半導体素子の例としては、熱膨張係数が2.6ppm/℃程度のシリコンからなる半導体集積回路チップ(ICチップ)などを挙げることができる。なお、中継基板本体の第1面上に実装されるべき半導体素子の数は、1つであってもよく2つ以上であってもよい。また、中継基板本体の第1面上に実装されるべき半導体素子は、面接続端子上に必ずしもバンプを有していなくてもよい。つまり、中継基板本体の第1面には、バンプ付きの半導体素子、バンプレスの半導体素子のいずれも実装可能である。
前記面接続端子とは、電気的接続のための端子であって、面接続によって接続を行うものを指す。なお、面接続とは、被接続物の平面上に線状や格子状(千鳥状も含む)にパッドあるいは端子を形成し、それら同士を接続する場合を指す。なお、前記半導体素子の大きさ及び形状は特に限定されないが、少なくとも一辺が10.0mm以上であることがよい。このような大型の半導体素子になると、発熱量も増大しやすく応力の影響も次第に大きくなるため、クラックの発生といった本願特有の課題が生じやすくなるからである。また、半導体素子の厚さも特に限定されないが、1.0mm以下(ただし0mmは含まず。)であることがよい。半導体素子が1.0mm以下になると、半導体素子の強度が弱くなるため、クラックの発生といった本願特有の課題が生じやすくなるからである。
一方、中継基板本体の第2面は、面接続パッドを有する樹脂製基板の表面上に実装されている面である。前記面接続パッドとは、電気的接続のための端子用パッドであって、面接続によって接続を行うものを指す。このような面接続パッドは例えば線状や格子状(千鳥状も含む)に形成される。
中継基板本体を形成する材料としては、セラミック、金属、半導体、樹脂などを挙げることができ、用途に応じてそれらの中から適宜選択することができる。セラミック材料の好適例としては、例えばアルミナ、窒化アルミニウム、窒化ほう素、炭化珪素、窒化珪素などがある。金属材料の好適例としては、銅、銅合金、鉄ニッケル合金などがある。半導体材料の好適例としては、例えばシリコンなどがある。そして、樹脂材料の好適例としては、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド−トリアジン樹脂、ゴム系樹脂などがある。低コスト化の観点からすれば、樹脂材料を選択することが好ましい。
中継基板本体の厚さは特に限定されないが、強いて言えば0.1mm以上0.7mm以下であることが好ましく、特には0.2mm以上0.5mm以下であることがより好ましい。このような厚さ範囲内であると、半導体素子を搭載したときに素子接合部分に加わる熱応力が比較的小さくなり、中継基板本体自身の反りや、半導体素子の接合部分におけるクラック防止に有利となる。
中継基板本体は、第1面及び第2面間を貫通する複数の貫通孔を有している。また、各々の貫通孔内には、第1面及び第2面間を貫通する導体柱がそれぞれ配置されている。前記複数の貫通孔は中継基板本体の厚さ方向(Z方向)に平行に形成されていることがよい。
貫通孔の直径(即ち導体柱の直径)は特に限定されないが、例えば125μm以下(ただし、0μmは含まず。)であることがよく、50μm以上100μm以下であることがよりよい。隣接する貫通孔間の中心間距離(即ち隣接する導体柱間の中心間距離)は、例えば250μm以下(ただし、0μmは含まず。)であることがよく、特には130μm以上200μm以下であることがよりよい。かかる直径や中心間距離があまりに大きすぎると、今後予想される半導体素子のファイン化に十分に対応できない可能性があるからである。換言すると、かかる直径や中心間距離をあまりに大きく設定すると、限られた面積内に多数の導体柱を形成できないからである。
前記導体柱は、例えば、複数の貫通孔内に導電性金属を充填することにより形成される。前記導電性金属としては特に限定されないが、例えば銅、金、銀、白金、パラジウム、ニッケル、錫、鉛、チタン、タングステン、モリブデン、タンタル、ニオブなどから選択される1種または2種以上の金属を挙げることができる。また、はんだ等の合金を導電性金属として用いることも可能である。導体柱に使用されるはんだの好適例としては、錫鉛共晶はんだに代表されるSn/Pb系はんだがあるほか、Sn−Ag系はんだ、Sn−Ag−Cu系はんだ、Sn−Ag−Bi系はんだ、Sn−Ag−Bi−Cu系はんだ、Sn−Zn系はんだ、Sn−Zn−Bi系はんだ等の鉛フリーはんだがある。
複数の導体柱は、中継基板本体の第1面にて露出する第1面側端と、中継基板本体の第2面にて露出する第2面側端とをそれぞれ有している。そして、導体柱の第1面側端には中継基板側はんだバンプが配置される一方、導体柱の第2面側端には中継基板側はんだバンプが配置されていない。中継基板本体の第1面側端に中継基板側はんだバンプがあると、バンプレスの半導体素子の実装が可能となって好都合だからである。なお、はんだを用いて導体柱を形成した場合、その導体柱の一部を第1面から突出させて中継基板側はんだバンプとしてもよい。
また、上記課題を解決するための別の手段としては、請求項1に記載の中継基板付き基板を製造する方法であって、前記接着性有機材料シートにおいて前記複数の基板側はんだバンプに対応した位置に、前記複数のバンプ挿通孔を形成するシート穴あけ工程と、穴あけされた前記接着性有機材料シートを前記樹脂製基板と前記中継基板との間に介在させるとともに、その際に前記複数の基板側はんだバンプと、前記複数の導体柱と、前記複数のバンプ挿通孔とを対応させて配置する位置決め工程と、前記位置決め工程後、加熱を行いながら前記中継基板を前記樹脂製基板側に押圧することにより、前記接着性有機材料シートを介して前記中継基板本体の第2面側と前記樹脂製基板の主面側とを接着する接着工程とを含むことを特徴とする中継基板付き基板の製造方法がある。
以下、本発明の製造方法について説明する。
まず、接着性有機材料シート、中継基板及び配線基板をそれぞれ用意しておく。接着性有機材料シートに関しては、シート穴あけ工程を行い、複数の基板側はんだバンプに対応した位置に複数のバンプ挿通孔を形成しておいてもよい。シート穴あけ工程を実施するメリットは、導体柱と基板側はんだバンプとの間に有機材料が介在しない状態で両者を互いに接続できるので、導体柱と基板側はんだバンプとの接続信頼性の向上が期待できることである。ただし、このようなシート穴あけ工程は必須ではないので、省略することも勿論可能である。シート穴あけ工程を省略するメリットは、工数の増加を回避できるため、よりいっそうの低コスト化を期待できることである。
中継基板の作製は例えば下記のように行う。例えば、複数の貫通孔を有する中継基板本体を用意し、前記複数の貫通孔内に導電性金属を充填して導体柱を形成し、さらに導体柱の一方側端に中継基板側バンプを形成する。中継基板側バンプの形成は導体柱の形成と同時に行われてもよい。
複数の貫通孔内に導電性金属を充填して導体柱を形成する具体的な手法としては、例えば、導電性金属を含む非固形材料(例えば導電性金属ペースト)を作製しそれを印刷充填した後にそれを固化する手法があるほか、導電性金属めっきを施す手法などがある。導電性金属を含む非固形材料を固化する手法としては、例えば、材料中の有機成分を蒸発させること、さらには材料中の導電性金属を焼結させることが好適である。導電性金属ペーストの好適例としては、銅ペースト、銀ペースト、はんだペーストなどがある。また、金属塊や金属柱などの固形材料を貫通孔内に埋め込むという手法を採用してもよい。なお、導電性金属の充填によって導体柱を形成する場合、内部に空洞が生じないように貫通孔をほぼ完全に埋めることが好ましい。その理由は、導体柱の低抵抗化を図るとともに、導体柱自体の強度を高めるためである。
次に、位置決め工程を実施し、中継基板の有する複数の導体柱と、複数の基板側はんだバンプとを対応させて配置する。このとき、中継基板と樹脂製基板との間に未硬化状態の接着性有機材料シートを介在させておく。なお、シート穴あけ工程を実施した場合には、複数の基板側はんだバンプと、複数の導体柱と、複数のバンプ挿通孔とを対応させて配置するようにする。
接着工程では、加熱を行いながら中継基板を樹脂製基板側に押圧する。その結果、熱によって接着性有機材料シートを完全硬化するとともに、この完全硬化した接着性有機材料シートを介して、中継基板本体の第2面側と樹脂製基板の主面側とを接着する。また、このときの加熱温度は、使用する接着性有機材料シートの樹脂の種類や、硬化剤の種類や、硬化度などに応じて適宜設定される。
さらに、接着工程に先立ってリフロー工程を実施し、複数の基板側はんだバンプを加熱して複数の導体柱と複数の面接続パッドとを接合してもよい。あるいは、接着工程の際にリフロー工程を併せて実施し、複数の基板側はんだバンプを加熱して複数の導体柱と複数の面接続パッドとを接合してもよい。特に後者の方法によれば、より工数が少なくなるため低コスト化を達成するうえで有利になる。このようなリフロー工程の温度条件等は特に限定されないが、少なくともはんだが溶融しうる温度、例えば220℃以上280℃以下に設定されることがよい。220℃未満の温度であると、適用できるはんだの種類が限定されてしまい、低コスト化を達成しにくくなるおそれがあるからである。逆に、280℃を越える温度であると、配線基板や中継基板を構成する樹脂材料に熱的なダメージを与えるおそれがあり、好ましくないからである。
そして、このような製造方法によれば、液状アンダーフィル材供給工程及びキュア工程が不要になるため、その分だけ工数を少なくすることができる。よって、上記の優れた中継基板付き基板を、低コスト化でしかも効率よく製造することが可能となる。
以下、本発明を具体化した実施形態を図1〜図6に基づき詳細に説明する。図1は、ICチップ(半導体素子)21をインターポーザ付き配線基板61(中継基板付き基板)に実装した本実施形態の半導体パッケージ11を示す概略断面図である。図2は、半導体パッケージ11の製造過程において、インターポーザ31(中継基板)と配線基板41(樹脂製基板)とエポキシ樹脂シート56(接着性有機材料シート)とを位置決めした状態を示す部分概略断面図である。図3は、図2の要部拡大断面図である。図4は、インターポーザ31及び配線基板41を接着する工程を示す部分概略断面図である。図5は、接着工程後の様子を示す要部拡大断面図である。図6は、インターポーザ付き配線基板61上にICチップ21を実装するときの様子を示す概略断面図である。
図1に示されるように、本実施形態の半導体パッケージ11は、上記のように、ICチップ21をインターポーザ付き配線基板61上に実装した構造のLGA(ランドグリッドアレイ)である。なお、半導体パッケージ11の形態は、LGAのみに限定されず、例えばBGA(ボールグリッドアレイ)やPGA(ピングリッドアレイ)等であってもよい。このインターポーザ付き配線基板61は、インターポーザ31と配線基板41とをエポキシ樹脂シート56で接着した構成を有している。MPUとしての機能を有するICチップ21は、縦12.0mm×横10.0mm×厚さ0.7mmの矩形平板状であって、熱膨張係数が2.6ppm/℃程度のシリコンからなる。ICチップ21の下面側表層には、図示しない回路素子が形成されている。また、ICチップ21の下面側には、複数の面接続端子22が約150μmピッチで格子状に設けられている。これらの面接続端子22の表面上に特にバンプは設けられていない。即ち、このICチップ21はバンプレスである。
前記配線基板41は、上面42及び下面43を有する矩形平板状(45mm角)の樹脂製多層配線基板である。この多層配線基板は、スルーホール導体51を有する樹脂製のコア基板52と、その両面に形成されたビルドアップ層とによって構成されている。かかるビルドアップ層は、複数層の樹脂絶縁層44と複数層の導体回路45とを交互に積層した構造を有している。本実施形態の場合、具体的にはエポキシ樹脂をガラスクロスに含浸させてなる絶縁基材により樹脂絶縁層44が形成され、銅箔または銅めっき層により導体回路45が形成されている。かかる配線基板41の熱膨張係数は、13.0ppm/℃以上16.0ppm/℃未満となっている。配線基板41の上面42には、インターポーザ31側との電気的な接続を図るための複数の面接続パッド46が、約150μmピッチで格子状に形成されている。配線基板41の下面43には、図示しないマザーボード側との電気的な接続を図るための複数の面接続パッド47が格子状に形成されている。なお、マザーボード接続用の面接続パッド47は、インターポーザ接続用の面接続パッド46よりも広い面積で広いピッチとなっている。樹脂絶縁層44にはビアホール導体48が設けられていて、これらのビアホール導体48を介して、スルーホール導体51、異なる層の導体回路45、面接続パッド46、面接続パッド47が相互に電気的に接続されている。また、配線基板41の上面42には、図1のインターポーザ31以外にも、チップキャパシタ、半導体素子、その他の電子部品(いずれも図示略)が実装されている。
配線基板の41の上面42に形成された複数の面接続パッド46の表面上には、90Sn/10Pbという組成の錫鉛はんだからなる基板側はんだバンプ37が設けられている。本実施形態では、導体保護層であるソルダーレジストを省略した構成となっているが、配線基板41の上面42や下面43にソルダーレジストを備えた構成としても勿論構わない。
本実施形態のインターポーザ31は、いわゆるファーストレベルインターポーザと呼ばれるべきものであって、上面32(第1面)及び下面33(第2面)を有する矩形平板形状のインターポーザ本体38(中継基板本体)を有している。そして、このインターポーザ本体38は、厚さ0.3mm程度のBT樹脂により形成された板材からなる。かかる板材の熱膨張係数は約10ppm/℃、ヤング率は1〜5GPa程度である。勿論、BT樹脂以外の樹脂材料、例えばエポキシ系樹脂やポリイミド系樹脂を、インターポーザ本体38用の材料として採用することもできる。
インターポーザ31を構成するインターポーザ本体38には、上面32及び下面33間を貫通する複数のビア34(貫通孔)が格子状に形成されている。本実施形態では、ビア34の直径が約50μmに設定され、隣接するビア34,34間の中心間距離(ビアピッチ)が約150μmに設定されている。これらのビア34は、配線基板41が有する各面接続パッド46の位置に対応している。そして、かかるビア34内には、63Sn/37Pbという組成の共晶錫鉛はんだからなる導体柱35が設けられている。即ち本実施形態では、導体柱35の形成用のはんだ材料のほうが、基板側はんだバンプ37の形成用のはんだ材料よりも融点が低くなっている。各導体柱35の上端は、上面32から100μmほど突出し、インターポーザ側はんだバンプ36となっている。インターポーザ側はんだバンプ36は、ICチップ21側の各面接続端子22に電気的に接続されている。各導体柱35の下端はインターポーザ本体38の下面33から殆ど突出しておらず、何らはんだバンプを有していない。
そして、本実施形態においては、インターポーザ本体38の下面33側と配線基板41の上面42側との間に、厚さ約35μm、約15mm角のエポキシ樹脂シート56が配置されている。そして、このエポキシ樹脂シート56の完全硬化体を介して、インターポーザ本体38の下面33側と配線基板41の上面42側とが接着されている。また、各導体柱35の下端面は、基板側はんだバンプ37を介して各面接続パッド46に電気的に接続されている。このような接続関係により、インターポーザ31の導体柱35を介して、配線基板41側とICチップ21側とが導通されている。ゆえに、インターポーザ31を経由して配線基板41−ICチップ21間で信号の入出力が行われるとともに、ICチップ21をMPUとして動作させるための電源が供給されるようになっている。
ここで、上記構造の半導体パッケージ11を製造する手順について説明する。
まず、下記の要領で配線基板41を作製する(配線基板作製工程)。即ち、スルーホール導体51を有するコア基板52を用意し、従来公知のビルドアッププロセスによってその両面に、樹脂絶縁層44、導体回路45、面接続パッド46,47をあらかじめ形成する。次に、配線基板41の上面42に対するはんだペースト印刷を行い、面接続パッド46上に後に基板側はんだバンプ37となるはんだ印刷層を形成する。ここで使用するはんだペーストは、90Sn/10Pbという組成の錫鉛はんだを含んでいる。本実施形態では、このときのはんだ印刷厚さを35μm〜40μm程度に設定している。これは、導体柱35と面接続パッド46との間に良好な接続状態を維持しつつ、はんだブリッジの発生を確実に抑えるためである。そして、これをリフロー炉にセットし、所定温度及び所定時間加熱することにより、はんだ印刷層を基板側はんだバンプ37とする(図2,図3参照)。
次に、下記の要領でインターポーザ31を作製する(中継基板作製工程)。
まず、BT樹脂板を出発材料として使用する。そして、このBT樹脂板に対してレーザー加工等を行って多数のビア34を形成することにより、インターポーザ本体38を形成する。次に、所定のはんだレジストを設け、この状態ではんだペーストを印刷することにより、はんだペーストを各ビア34内に充填する。ここで使用するはんだペーストは、63Sn/37Pbという組成の共晶錫鉛はんだを含んでいる。次に、はんだレジストを除去し、さらにリフローを行って上端側にインターポーザ側はんだバンプ36を有する導体柱35を形成すれば、図2,図3に示す構造のインターポーザ31が完成する。
ここで、エポキシ樹脂シート56を用意するとともに、ドリル加工によるシート穴あけ工程を行って、複数の基板側はんだバンプ37に対応した位置に複数のバンプ挿通孔57を形成しておく。本実施形態の場合、バンプ挿通孔57の内径が70μm〜80μmに設定され、隣接するバンプ挿通孔57,57の中心間距離(バンプ挿通孔ピッチ)が約150μmに設定されている。なお、ドリル加工以外の手法、例えばレーザー加工等によりシート穴あけ工程を行っても勿論よい。
次に、配線基板41、エポキシ樹脂シート56及びインターポーザ31の順に積層するとともに位置決め工程を実施し、インターポーザ31の有する複数の導体柱35と、複数の基板側はんだバンプ37と、複数のバンプ挿通孔57とを対応させるようにして配置する(図2,図3参照)。
次に、下記の要領で接着及びリフロー工程を実施する。まず、配線基板41上に載置されたインターポーザ31の上に、平板状の押圧治具71をさらに載置する(図4参照)。このとき、重力の作用によって押圧治具71の荷重が加わることにより、インターポーザ本体38が所定の押圧力で配線基板41側に押圧される。この押圧により、インターポーザ本体38の下面33がエポキシ樹脂シート56の上面に圧接され、配線基板41の上面42がエポキシ樹脂シート56の下面に圧接される。上記の押圧治具71は、金属製の治具本体72の下面側に、耐熱性ゴムシート73を貼り付けた構造となっている。従って、インターポーザ本体38の上面33に突出する複数のインターポーザ側はんだバンプ36は、弾性体である耐熱性ゴムシート73に接触するようになっている。このとき、耐熱性ゴムシート73は弾性変形してインターポーザ本体38側の凹凸形状に追従する。これにより、インターポーザ31に対して均等に押圧力を付加することができ、しかもインターポーザ側はんだバンプ36の潰れ等を防止することができる。
そして次に、この状態のものをリフロー炉にセットし、所定温度及び所定時間加熱を行う。本実施形態では、このときの温度を260℃〜270℃に設定して加熱を行うようにしている。その結果、溶融した基板側はんだバンプ37を介して、導体柱35と面接続パッド46とを接合する。また、これと同時に、半硬化状態のエポキシ樹脂シート56を完全に熱硬化させ、その完全硬化したエポキシ樹脂シート56を介して、インターポーザ本体38の下面33側と配線基板41の上面42側とを互いに接着する。以上のようなプロセスを経ると、図5,図6に示すインターポーザ付き配線基板61が完成する。
次に、インターポーザ付き配線基板61を構成するインターポーザ31の上面32に、バンプレスのICチップ21を載置する。このとき、ICチップ21側の面接続端子22と、インターポーザ側はんだバンプ36とを位置合わせするようにする(図6参照)。そして、220℃〜230℃程度の温度に加熱してインターポーザ側はんだバンプ36をリフローすることにより、インターポーザ側はんだバンプ36と面接続端子22とをフリップチップ接続する。その結果、図1に示す所望構造の半導体パッケージ11が完成する。
従って、本実施形態によれば以下の効果を得ることができる。
(1)本実施形態では、従来よく用いられている液状のアンダーフィル材を用いる代わりに、エポキシ樹脂シート57をインターポーザ31−配線基板41間の接合(即ちファーストレベルでの接合)のための手段として使用している。換言すると、不定形のアンダーフィル材ではなく定形のアンダーフィル材を使用している。よって、液状のアンダーフィル材の供給工程及びそのキュア工程が不要になり、工数を低減することが可能となる。また、導体柱35については、上端側に中継基板側はんだバンプ36を配置する一方で、下端側の中継基板側はんだバンプを省略しているため、その分だけ工数を少なくすることができる。
以上のことにより、インターポーザ付き配線基板61の低コスト化、ひいては半導体パッケージ11の低コスト化を達成することができる。また、インターポーザ付き配線基板61や半導体パッケージ11を効率よく製造することが可能となる。
(2)本実施形態では、下端側の中継基板側はんだバンプを省略したことにより、インターポーザ31と配線基板41との接合界面にて使用されるはんだの体積が従来に比較して少なくなる。よって、隣接するバンプ間ではんだブリッジが起こりにくくなり、ショート不良の発生率を低減することができる。これは歩留まりの向上にもつながる。さらに、エポキシ樹脂シート56を介してインターポーザ31と配線基板41とが接合される結果、ICチップ21等に作用する応力の影響が低減され、クラックの発生が防止される。よって、インターポーザ付き配線基板41、ひいては半導体パッケージ11に高い信頼性を付与することができる。勿論、エポキシ樹脂シート56によってインターポーザ31と配線基板41との隙間も埋められるため、耐湿性などが向上し、信頼性の向上を図ることができる。
(3)本実施形態の製造方法によれば、接着工程の際にリフロー工程を併せて実施しているため、工数が少なくなり、確実に低コスト化を達成することができる。また、インターポーザ31の上面32にICチップ21を実装する前の時点で接続及びリフロー工程を実施しているため、押圧治具71の荷重がICチップ21に加わることがない。ゆえに、ICチップ21のクラックの発生を確実に防止することができる。
なお、本発明の実施形態は以下のように変更してもよい。
・上記実施形態では、先にインターポーザ付き配線基板61を作製しておき、それにICチップ21を実装するという手順で半導体パッケージ11を製造していた。これに対し、例えば、先にICチップ21をインターポーザ31に実装してICチップ付きインターポーザを作製し、さらにこのICチップ付きインターポーザを配線基板41上に実装するという手順で半導体パッケージ11を製造してもよい。
・上記実施形態では、載置された押圧治具71の自重がかかることによりインターポーザ31に押圧力を付与するという、いわば消極的な方法を採用していたが、インターポーザ31をアクチュエータ等によって積極的に押圧する手段を用いてもよい。
・上記実施形態では、エポキシ樹脂シート56に対するシート穴あけ工程を実施したが、この工程を省略してもよい。
次に、前述した実施形態によって把握される技術的思想を以下に列挙する。
(1)主面と、前記主面上に配置された複数の面接続パッドと、前記複数の面接続パッドの表面上に配置された複数の基板側はんだバンプとを有する樹脂製基板を備え、面接続端子を有する半導体素子が実装されるべき第1面及び前記樹脂製基板上に実装される第2面を持つ中継基板本体と、前記第1面及び前記第2面間を貫通する複数の導体柱とを有し、前記複数の導体柱の第1面側端に中継基板側はんだバンプが配置される一方、前記複数の導体柱の第2面側端に中継基板側はんだバンプが配置されていない中継基板を備え、かつ、前記樹脂製基板と前記中継基板との間に配置され、前記複数の基板側はんだバンプに対応した位置に複数のバンプ挿通孔を有する接着性有機材料シートを備え、前記接着性有機材料シートを介して前記中継基板本体の第2面側と前記樹脂製基板の主面側とが接着され、前記複数の基板側はんだバンプを介して前記複数の導体柱と前記複数の面接続パッドとが電気的に接続されていることを特徴とする中継基板付き基板。
(2)技術的思想(1)に記載の中継基板付き基板を製造する方法であって、前記接着性有機材料シートにおいて前記複数の基板側はんだバンプに対応した位置に、前記複数のバンプ挿通孔を形成するシート穴あけ工程と、穴あけされた前記接着性有機材料シートを前記樹脂製基板と前記中継基板との間に介在させるとともに、その際に前記複数の基板側はんだバンプと、前記複数の導体柱と、前記複数のバンプ挿通孔とを対応させて配置する位置決め工程と、前記位置決め工程後、加熱を行いながら前記中継基板を前記樹脂製基板側に押圧することにより、前記接着性有機材料シートを介して前記中継基板本体の第2面側と前記樹脂製基板の主面側とを接着する接着工程とを含むことを特徴とする中継基板付き基板の製造方法。
21…半導体素子としてのICチップ
22…面接続端子
31…中継基板としてのインターポーザ
32…第1面としての上面
33…第2面としての下面
35…導体柱
36…中継基板側はんだバンプ
37…基板側はんだバンプ
38…中継基板本体としてのインターポーザ本体
41…樹脂製基板としての配線基板
42…主面としての上面
46…面接続パッド
56…接着性有機材料シートとしてのエポキシ樹脂シート
61…中継基板付き基板としてのインターポーザ付き配線基板
22…面接続端子
31…中継基板としてのインターポーザ
32…第1面としての上面
33…第2面としての下面
35…導体柱
36…中継基板側はんだバンプ
37…基板側はんだバンプ
38…中継基板本体としてのインターポーザ本体
41…樹脂製基板としての配線基板
42…主面としての上面
46…面接続パッド
56…接着性有機材料シートとしてのエポキシ樹脂シート
61…中継基板付き基板としてのインターポーザ付き配線基板
Claims (2)
- 主面と、前記主面上に配置された複数の面接続パッドと、前記複数の面接続パッドの表面上に配置された複数の基板側はんだバンプとを有する樹脂製基板を備え、
面接続端子を有する半導体素子が実装されるべき第1面及び前記樹脂製基板上に実装される第2面を持つ中継基板本体と、前記第1面及び前記第2面間を貫通する複数の導体柱とを有し、前記複数の導体柱の第1面側端に中継基板側はんだバンプが配置される一方、前記複数の導体柱の第2面側端に中継基板側はんだバンプが配置されていない中継基板を備え、かつ、
前記樹脂製基板と前記中継基板との間に配置された接着性有機材料シートを備え、
前記接着性有機材料シートを介して前記中継基板本体の第2面側と前記樹脂製基板の主面側とが接着され、前記複数の基板側はんだバンプを介して前記複数の導体柱と前記複数の面接続パッドとが電気的に接続されていることを特徴とする中継基板付き基板。 - 請求項1に記載の中継基板付き基板を製造する方法であって、
前記接着性有機材料シートを前記樹脂製基板と前記中継基板との間に介在させるとともに、その際に前記複数の基板側はんだバンプと、前記複数の導体柱とを対応させて配置する位置決め工程と、
前記位置決め工程後、加熱を行いながら前記中継基板を前記樹脂製基板側に押圧することにより、前記接着性有機材料シートを介して前記中継基板本体の第2面側と前記樹脂製基板の主面側とを接着する接着工程と
を含むことを特徴とする中継基板付き基板の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004022219A JP2005217200A (ja) | 2004-01-29 | 2004-01-29 | 中継基板付き基板及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004022219A JP2005217200A (ja) | 2004-01-29 | 2004-01-29 | 中継基板付き基板及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005217200A true JP2005217200A (ja) | 2005-08-11 |
Family
ID=34905624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004022219A Withdrawn JP2005217200A (ja) | 2004-01-29 | 2004-01-29 | 中継基板付き基板及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005217200A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016208003A (ja) * | 2015-04-20 | 2016-12-08 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | キャパシタ部品 |
-
2004
- 2004-01-29 JP JP2004022219A patent/JP2005217200A/ja not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016208003A (ja) * | 2015-04-20 | 2016-12-08 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | キャパシタ部品 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6458623B1 (en) | Conductive adhesive interconnection with insulating polymer carrier | |
TWI545998B (zh) | Built-in parts wiring board | |
US6600224B1 (en) | Thin film attachment to laminate using a dendritic interconnection | |
JP4105409B2 (ja) | マルチチップモジュールの製造方法 | |
EP2633551B1 (en) | Lead-free structures in a semiconductor device | |
JP2001237512A (ja) | 両面回路基板およびこれを用いた多層配線基板ならびに両面回路基板の製造方法 | |
JP6064705B2 (ja) | 半導体装置の製造方法および半導体実装基板 | |
TWI461118B (zh) | 具有電子零件之配線基板及其製造方法 | |
US6657313B1 (en) | Dielectric interposer for chip to substrate soldering | |
JP2005216696A (ja) | 中継基板、中継基板付き基板 | |
JP4051570B2 (ja) | 半導体装置の製造方法 | |
JP5061668B2 (ja) | 2種類の配線板を有するハイブリッド基板、それを有する電子装置、及び、ハイブリッド基板の製造方法 | |
JP4065264B2 (ja) | 中継基板付き基板及びその製造方法 | |
JP2005243761A (ja) | 中継基板、中継基板付き樹脂製基板 | |
JP2012074505A (ja) | 半導体搭載装置用基板、半導体搭載装置 | |
JP2008244191A (ja) | 部品内蔵基板の製造方法 | |
JP2005039241A (ja) | 半導体素子付き中継基板、中継基板付き基板、半導体素子と中継基板と基板とからなる構造体 | |
JP2005244163A (ja) | 中継基板付き基板及びその製造方法 | |
JP2005217200A (ja) | 中継基板付き基板及びその製造方法 | |
JP2005217201A (ja) | 中継基板、中継基板付き基板 | |
JP2007027337A (ja) | 中継基板付き基板及びその製造方法 | |
KR100746365B1 (ko) | 플립칩 실장용 기판의 제조방법 | |
JP3742732B2 (ja) | 実装基板及び実装構造体 | |
JP2005039240A (ja) | 中継基板、半導体素子付き中継基板、中継基板付き基板、半導体素子と中継基板と基板とからなる構造体 | |
JP3768870B2 (ja) | 半導体素子の実装方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070122 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090402 |