JP2005208712A - 流体通路のウォータハンマーレス開放方法及びこれを用いた薬液供給方法並びにウォータハンマーレス開放装置 - Google Patents

流体通路のウォータハンマーレス開放方法及びこれを用いた薬液供給方法並びにウォータハンマーレス開放装置 Download PDF

Info

Publication number
JP2005208712A
JP2005208712A JP2004011497A JP2004011497A JP2005208712A JP 2005208712 A JP2005208712 A JP 2005208712A JP 2004011497 A JP2004011497 A JP 2004011497A JP 2004011497 A JP2004011497 A JP 2004011497A JP 2005208712 A JP2005208712 A JP 2005208712A
Authority
JP
Japan
Prior art keywords
actuator
pressure
operating pressure
valve
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004011497A
Other languages
English (en)
Other versions
JP4406292B2 (ja
Inventor
Tadahiro Omi
忠弘 大見
Koji Nishino
功二 西野
Masaaki Nagase
正明 永瀬
Ryosuke Doi
亮介 土肥
Shinichi Ikeda
信一 池田
Ryutaro Nishimura
龍太郎 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34792336&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2005208712(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to JP2004011497A priority Critical patent/JP4406292B2/ja
Priority to TW93139175A priority patent/TWI270624B/zh
Priority to CNB2005800028631A priority patent/CN100467880C/zh
Priority to EP20050703503 priority patent/EP1707857A1/en
Priority to SG200901823-5A priority patent/SG151279A1/en
Priority to CA 2552782 priority patent/CA2552782A1/en
Priority to CN2008100928005A priority patent/CN101285537B/zh
Priority to PCT/JP2005/000264 priority patent/WO2005068886A1/ja
Priority to US10/597,343 priority patent/US7849869B2/en
Priority to KR1020067009393A priority patent/KR100792220B1/ko
Priority to CA 2648968 priority patent/CA2648968A1/en
Publication of JP2005208712A publication Critical patent/JP2005208712A/ja
Priority to IL176620A priority patent/IL176620A0/en
Priority to US12/422,136 priority patent/US8047225B2/en
Publication of JP4406292B2 publication Critical patent/JP4406292B2/ja
Application granted granted Critical
Priority to US13/239,715 priority patent/US8714188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/04Devices damping pulsations or vibrations in fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7762Fluid pressure type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7838Plural
    • Y10T137/7842Diverse types
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86389Programmer or timer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86389Programmer or timer
    • Y10T137/86397With independent valve controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86389Programmer or timer
    • Y10T137/86445Plural, sequential, valve actuations
    • Y10T137/86461Variable cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Details Of Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Control Of Fluid Pressure (AREA)
  • Pipe Accessories (AREA)
  • Catching Or Destruction (AREA)
  • Pipeline Systems (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

【課題】 極く簡単な装置や操作により、ウォータハンマーを生ずることなしに、しかも短時間内に、流体通路を急開放できるようにする。
【解決手段】 流体通路に介設したアクチエータ作動式バルブとアクチエータ作動式バルブへ二段階状のアクチエータ作動圧Paを供給する電空変換装置と、前記アクチエータ作動式バルブの上流側管路に着脱自在に固着した振動センサと、振動センサにより検出した振動検出信号Prが入力されると共に電空変換装置へ前記二段階状のアクチエータ作動圧Paのステップ作動圧Ps′の大きさを制御する制御信号Scを出力し、当該制御信号Scの調整により電空変換装置から振動検出信号Prがほぼ零となるステップ作動圧Ps′の二段階状のアクチエータ作動圧Paを出力させるチューニングボックスとからウォータハンマーレス開放装置を構成する。
【選択図】 図11

Description

本発明は、流体通路の急開放時に於けるウォータハンマーの発生を完全に防止できるようにウォータハンマー防止システムの改良に関するものであり、流体圧力の大小に拘わらずに流体通路を、その上流側流体通路にウォータハンマーを生ずることなしに迅速且つ確実に開放できるようにした流体通路の開放方法及びこれを用いた薬液供給方法並びにウォータハンマーレス開放装置に関するものである。
水等の液体が流通する通路を急激に閉鎖すると、閉鎖箇所より上流側の通路内圧が振動的に上昇する所謂ウォータハンマーが起生することは、広く知られた事象であり、当該ウォータハンマーが生ずると、上流側通路の内圧が上昇し、これに接続されている機器・装置類が破損する等の様々な不都合が起生する。
そのため、ウォータハンマーの発生を防止する方策については従前から各種の技術が開発されている。
しかし、何れの技術も基本的には(1)流体通路の閉鎖時間を長目に設定するか、或いは(2)通路内に発生した振動圧力をバイパス通路を開放して外部へ逃がしたり、別途に設けたアキュムレータ内へ吸収すると云うものであり、前者の方法では流体通路の閉鎖に時間が掛かって急閉鎖の要請に対応することができず、また後者では、付帯設備費が高騰する問題がある。
また、上記ウォータハンマーに係る問題は、これ迄比較的大流量の流体を取り扱う産業分野で主に問題とされて来たが、近年では、小流量の流体を取り扱う分野、例えば半導体製造に於けるウエーハ洗浄装置の分野や薬品製造の分野等に於いても、設備の保全や製品品質の向上、更にはスループットの向上の点から、供給流体の急閉鎖時に於けるウォータハンマーの発生の防止が強く要請されている。
特開平7−190235号公報 特開2000−10602号公報 特開2002−295705号公報
一方、本願発明者等は先きに、従前のウォータハンマーの発生防止技術に於ける上述の如き問題、即ち(1)流体通路の遮断時間を若干長目に設定することを基本とする方策では、急性の要請に十分に対応することが出来ないこと、及び(2)振動圧力を吸収又は逃がすことを基本とする方策では、附帯設備費が高騰すること等の問題を解決し、安価でしかも迅速且つ確実に流体通路をウォータハンマーレスで急閉鎖できるようにした技術を開発し、これを公開している。
即ち、当該技術は、流体通路に介設した弁の閉鎖を多段階動作で行なうことにより、ウォータハンマーを生ずることなしに、しかも極短時間(例えば1000msec以内)でもって流体通路を急閉鎖するものであり、また、当該技術は、流体通路のウォータハンマーレス閉鎖が可能なバルブの閉鎖条件をバルブの閉鎖テストを現実に行なうことによって予かじめ求めておき、当該閉鎖条件を記憶せしめた電空変換装置によってバルブ本体のアクチエータを作動させることにより、迅速且つ確実に流体通路のウォータハンマーレス閉鎖を可能とするものである。
而して、本願発明者等が先きに開発をした流体通路のウォータハンマーレス閉鎖技術は、流体通路を迅速且つ確実にウォータハンマーレスを生ずることなく急閉鎖することができ、優れた実用的効用を奏するものである。
しかし近年、半導体製造装置や化学・薬品産業の分野に於いては、流体通路の急閉鎖時だけでなしに、流体通路の急開放時にもウォータハンマーの発生を確実に防止することが、強く要請されるようになって来ており、従前の流体通路の急閉鎖時のウォータハンマーレス対応のみでは、十分な対応が出来ないと云う問題がある。何故なら、流体通路の開放時にウォータハンマーが発生すると、流体通路内へパーティクルが移行する等の様々な不都合が生ずるからである。
また、半導体洗浄装置等の枚葉化に伴い、液体供給システムの品質向上のみならず、スループット向上のために各プロセスの時間短縮も課題となっている。枚葉化に伴い開閉頻度が増加するバルブの場合では、安定した開閉つまりはウォーターハンマーを生じないことが要求され、液体供給システムとしては、プロセス時の圧力変動を生じさせないことが強く求められる。
本願発明は、半導体製造装置や洗浄装置等に於ける上述の如き問題の解決をその目的とするものであり、流体供給通路をウォータハンマーレスの状態下で確実に急開放することができるようにした、流体通路のウォータハンマーレス開放方法及びこれを用いた液体供給方法並びにウォータハンマーレス開放装置を提供するものである。
本願発明者等は、通路を閉鎖している弁の弁体を全開位置より手前の所定の位置まで急速移動させ、短時間経過後に弁体を全開位置へ移動させるようにした多段階方式による弁の開放方法を着想すると共に、当該開放方法を用いて数多くのウォータハンマーの発生機構の解析試験を行なった。また、本願発明者等は前記試験の結果から、弁の開放に於いて、開弁時の第1段階の弁体停止位置を特定の範囲内の位置とすることにより、ウォータハンマーの発生を防止できることを知得した。
本願発明は上記知見を基にして創作されたものであり、請求項1の発明は、管路内圧が略一定の流体通路に介設したアクチエータ作動式バルブにより流体通路を開放する方法に於いて、先ず前記アクチエータへの駆動用入力を所定の設定値にまで増加若しくは減少させて弁体を開弁方向へ移動させ、アクチエータへの駆動用入力を前記設定値に短時間保持したあと、当該駆動用入力を更に増加若しくは減少させてバルブを全開状態にすることにより、ウォータハンマーを起生することなしに流体通路を開放することを発明の基本構成とするものである。
請求項2の発明は、請求項1の発明に於いて、バルブを常時閉鎖型空気圧作動式ダイヤフラムバルブ又はバルブの作動時にバルブ内容積が変化しない定容積・常時閉鎖型空気圧作動式ダイヤフラムバルブとしたものである。
請求項3の発明は、請求項1の発明に於いて、設定値に短時間保持する時間を1秒以内とすると共に流体通路の圧力上昇値をバルブ閉鎖前の圧力値の10%以内とするようにしたものである。
請求項4の発明は、バルブ本体と、バルブ本体を駆動するアクチエータと、バルブ上流側配管路に着脱自在に固定した振動センサーと、バルブ開閉指令信号が入力されると共に、そのデータ記憶部に予かじめ記憶された制御信号Scによりアクチエータへ入力するアクチエータ作動圧Paを制御する電空変換制御装置と、前記振動センサーからの振動検出信号Prとアクチエータへ供給するステップ圧力設定信号Psとステップ圧力の保持時間設定信号Tsと許容上限振動圧力設定信号Prmとが入力されると共に前記振動検出信号Prと許容上限振動圧力設定信号Prmとの比較を行ない、前記ステップ圧力設定信号Psを修正する比較演算回路を備え、前記保持時間設定信号Ts及び修正されたステップ圧力設定信号Psから成る制御信号Scを前記電空変換制御装置のデータ記憶部へ出力する演算制御装置とを発明の基本構成とするものである。
請求項5の発明は、請求項4の発明に於いて演算制御装置を、ステップ圧力設定回路と保持時間設定回路と許容上限振動圧力設定回路と振動圧検出回路と比較演算回路とから構成すると共に、アクチエータ作動圧をステップ変化させた直後の振動検出信号Prが許容上限振動圧力設定信号Prmを越えた場合には、ステップ圧力設定信号Psを上昇する方向に、また、アクチエータ作動圧を中間のステップ作動圧から零とした直後の振動検出信号Prが許容上限振動圧力設定信号Prmを越えた場合には、ステップ圧力設定信号Psを下降させる方向に夫々修正する構成としたものである。
請求項6の発明は、請求項4の発明に於いて電空変換制御装置を、演算制御装置からの制御信号Scを記憶するデータ記憶部と信号変換部と電空変換部とから構成すると共に、データ記憶部に予かじめ記憶されたウォータハンマーを生じないときの制御信号Sc′に基づいて信号変換部からアクチエータ作動圧制御信号Seを出力し且つ電空変換部からアクチエータ作動圧Paを出力する構成としたものである。
請求項7の発明は、流体通路に介設したアクチエータ作動式バルブと、アクチエータ作動式バルブへ二段階状のアクチエータ作動圧Paを供給する電空変換装置と、前記アクチエータ作動式バルブの上流側管路に着脱自在に固着した振動センサと、振動センサにより検出した振動検出信号Prが入力されると共に電空変換装置へ前記二段階状のアクチエータ作動圧Paのステップ作動圧Ps′の大きさを制御する制御信号Scを出力し、当該制御信号Scの調整により電空変換装置から振動検出信号Prがほぼ零となるステップ作動圧Ps′の二段階状のアクチエータ作動圧Paを出力させるチューニングボックスとを発明の基本構成とするものである。
請求項8の発明は流体通路に介設したアクチエータ作動式バルブの上流側に振動センサを着脱自在に取り付け、振動センサからの振動検出信号Prをチューニングボックスへ入力すると共に、チューニングボックスからの制御信号Scを電空変換装置へ入力し、前記制御信号Scによって電空変換装置に於いて発生した二段階状のアクチエータ作動圧Paをアクチエータへ供給してアクチエータ作動式バルブを2段階作動により開放するようにした流体通路の開放方法に於いて、前記チューニングボックスに於いてアクチエータへ供給する二段階状のアクチエータ作動圧Paと振動検出信号Prとの相対関係を対比し、1段目のアクチエータ作動圧Paの上昇時に振動発生があるときにはステップ作動圧Ps′を下降させ、また、2段目のアクチエータ作動圧Paの上昇時に振動発生があるときにはステップ作動圧Ps′を上昇させ、前記ステップ作動圧Ps′の上昇又は下降による調整を複数回繰り返すことにより、振動検出信号Prがほぼ零となる2段階状作動圧Paのステップ作動圧Ps′を求め、当該振動発生がほぼ零となるステップ作動圧Ps′の2段階状の作動圧Paを電空変換装置から出力させるときの制御信号Scのデータに基づいて、前記アクチエータ作動式バルブを開放するようにしたことを発明の基本構成とするものである。
請求項9の発明は、流体通路に介設したアクチエータ作動式バルブの上流側に振動センサを着脱自在に取り付け、振動センサからの振動検出信号Prをチューニングボックスへ入力すると共に、チューニングボックスからの制御信号Scを電空変換装置へ入力し、前記制御信号Scによって電空変換装置に於いて発生した二段階状のアクチエータ作動圧Paをアクチエータへ供給してアクチエータ作動式バルブを2段階作動により開放するようにした流体通路の開放方法に於いて、前記チューニングボックスに於いてアクチエータへ供給する二段階状のアクチエータ作動圧Paと振動検出信号Prとの相対関係を対比し、1段目のアクチエータ作動圧Paの低減時に振動発生があるときにはステップ作動圧Ps′を上昇させ、また、2段目のアクチエータ作動圧Paの低減時に振動発生があるときにはステップ作動圧Ps′を下降させ、前記ステップ作動圧Ps′の下降又は上昇による調整を複数回繰り返すことにより、振動検出信号Prがほぼ零となる2段階状作動圧Paのステップ作動圧Ps′を求め、当該振動発生がほぼ零となるステップ作動圧Ps′の2段階状の作動圧Paを電空変換装置から出力させるときの制御信号Scのデータに基づいて、前記アクチエータ作動式バルブを開放するようにしたことを発明の基本構成とするものである。
請求項10の発明は、請求項8又は請求項9の発明に於いて、振動発生がほぼ零となる2段階状の作動圧Paを出力させるときの制御信号Scのデータを電空変換装置の記憶装置へ入力したあと、振動センサ及びチューニングボックスを取り外しするようにしたものである。
請求項11の発明は、請求項8又は請求項9の発明に於いて、振動センサをアクチエータ作動式バルブの設置位置から1000mm以内の上流側位置に設けるようにしたものである。
請求項12の発明は、請求項8又は請求項9の発明に於いて、2段階状の作動圧Paのステップ作動圧保持時間tを1秒より小さく設定するようにしたものである。
請求項13の発明は、管路内圧が略一定の流体通路に介設したアクチエータ作動式バルブにより流体通路を開放し、流体を下流側の流体通路へ供給する方法に於いて、流体を薬液とし、まず前記アクチエータへの駆動用入力を所定の設定値にまで増加若しくは減少させて弁体を開弁方向へ移動させ、アクチエータへの駆動用入力を前記設定値に短時間保持したあと、当該駆動用入力を更に増加若しくは減少させてバルブを全開状態にすることにより、バルブ開放時にウォーターハンマーを起生しないようにしたものである。
請求項14の発明は、請求項13の発明に於いて、設定値に短時間保持する時間を1秒以内とすると共に流体通路の圧力上昇値をバルブ開放前の圧力値の10%以内とするようにしたものである。
本願方法発明に於いては、流体圧力が一定の場合には、アクチエータへの駆動力を設定値に保持することにより、最初の開弁作動で弁体の移動を所定位置に一旦短時間停止させ、その後弁体を全開位置へ移行させるようにした開放方法により弁を開放するようにしているため、前記駆動力の設定値を適宜の範囲の値とすることにより、極く短時間(例えば300〜1000msec)内に、しかもウォータハンマーを生ずることなしに流体通路を急開放することができる。
また、本願発明のウォータハンマーレス開放装置に於いては、配管路L1 に振動センサ18を着脱自在に取り付け、振動センサ18により検出した振動検出信号Prを演算制御装置16へフィードバックさせ、電空変換制御装置17を介してバルブ本体10のアクチエータ11へ印加するアクチエータ作動圧Paを制御することにより、ウォータハンマーレス弁開放を達成する構成としている。
その結果、バルブ本体10にストローク位置検出装置を設けなくても、或いは、配管路L1 に圧力検出器を介設しなくてもウォータハンマーレス弁開放が達成できると共に、対象とする配管路L1 について最適のウォータハンマーレス弁開放の条件(即ち、アクチエータ作動圧Paの制御条件)が求まれば、振動センサ18や演算制御装置16を取り外して他の配管路へ適用することが可能となり、経済的にも極めて有利となる。
更に、本発明の流体通路のウォータハンマーレス開放装置に於いては、実作動状態下の配管路のバルブ本体10の近傍に振動センサ18を設けると共に、電空変換装置20から所定の2段階状のアクチエータ作動圧Paをバルブ本体10のアクチエータ11へ印加することによりバルブ本体10を現実に開閉作動させ、前記2段階状アクチエータ作動圧Paのステップ作動圧Ps′の最適値をバルブ本体10の実作動によって選定し、且つ選定したアクチエータ作動圧Paを電空変換装置20の記憶装置へ記憶させるようにしている。
その結果、電空変換装置20からのアクチエータ作動圧Paによりバルブ本体10をより確実且つ迅速に、流体通路にウォータハンマーを生ずることなしに急開放することが可能となる。
加えて、前記2段階状のアクチエータ作動圧Paの選定・設定(チューニング)も、5〜6回のバルブ本体10の実作動によって簡単に完了することが出来、しかも、適宜の大きさのステップ作動圧Ps′を有するアクチエータ作動圧Paをアクチエータ11へ加えることにより、第1回目のバルブ本体10の実閉鎖時の圧力振動の振幅値もより低い値に押えることができ、配管路に大きな悪影響を加えることなしに、前記アクチエータ作動圧Paの最適値を予かじめ正確に求めることが出来る。
そのうえ、パソコンを活用することにより、前記2段階状アクチエータ作動圧Paの選定・設定(チューニング)を極く簡単に、しかも迅速に行なうことが出来るだけでなく、ウォータハンマーレス開放装置をより安価に製造することが可能となる。
先ず、本願発明者等は、半導体製造装置の液体供給系に於けるウォータハンマーの発生状況を調査するため、空気圧作動ダイヤフラム弁を用いて流体流通路を全閉から全開に切換えした場合の流路の圧力変動を観察した。
図1は、上記調査に用いた試験装置の回路構成図であり、図1に於いて1は水タンク、2は水タンク加圧源、3は圧力センサ、4は弁、5は電空変換装置、6は弁駆動用ガス源、7は信号発生器、8はストレージオシロスコープである。
前記水タンク1は約30lの容量を有する密閉構造型であり、その内部には約25lの流体(25℃の水)が貯留されている。
また、水タンク1は加圧源2からのN2 により100〜300KPaGの範囲で調整自在に加圧されている。
前記圧力センサ3は、弁4の上流の水圧を高感度で検出可能なセンサーであり、本試験装置に於いては拡散半導体方式の圧力センサーを使用している。
前記弁4としては、ダイヤフラム式空圧弁を使用しており、その仕様は流体入口圧力0.1MPa、流体出口圧力0.3MPa、流体温度10〜100℃、CV値0.27、操作空気圧0.3〜0.6MPa、接液部の材質(バルブボディPTFE、ダイヤフラムPTFE)、通路内径4mmである。
即ち、当該弁4はノーマルクローズ型の合成樹脂ダイヤフラムを弁体とする空気作動式ダイヤフラム弁であり、スプリング(図示省略)の弾性力によりダイヤフラム弁体が常時弁座へ当座し、閉弁状態に保持される。又、作動用空気圧の供給によりアクチェータ4aが作動し、ダイヤフラム弁体が弁座から離座することにより開弁状態に保持される。
従って、当該ノーマルクローズ型の空気作動式ダイヤフラム弁を開弁するには、アクチエータ4aへ開弁のために作動空気圧を供給する。
尚、本願発明に於いては、上記ノーマルクローズ型の空気作動式ダイヤフラム弁に替えてノーマルオープン型の空気作動式ダイヤフラム弁を使用してもよいことは勿論であり、この場合には、アクチエータ4aへ供給する作動空気圧を上昇させることにより、弁が閉鎖状態に保持されることになる。
前記電空変換装置5は、弁開度を指示する入力信号に対応した駆動圧力(空気圧)を弁4のアクチエータ4aへ供給するためのものであり、本試験装置に於いては図2に示す如き構成の電空変換装置5を使用している。
即ち、入力信号Iが制御回路Aへ入力されると、給気用電磁弁Bが開になり、供給圧力Cの一部が給気用電磁弁Bを通して出力圧力Paとなり弁4のアクチエータ4aへ供給される。
この出力圧力Paは圧力センサEを介して制御回路Aへフィードバックされ、入力信号Iに対応する出力圧力Paになるまで、訂正動作が行なわれる。尚、図2に於いて、Fは排気用電磁弁、Gは排気、Hは電源、Jは入力信号Iに対応する出力信号であり、当該出力信号J(即ち、入力信号I)が後述するストレージオシロスコープ8へ入力電圧として入力される。
図3は、前記電空変換装置5の入力信号I値(入力電圧V)と出力圧力Paの関係を示す線図であり、入力電圧5V(作動用空気圧P=約5kgf/cm2 ・G)で弁4は全開状態に保持されることになる。
前記弁作動用空気源6にはコンプレッサーが使用されており、所定圧の空気が供給される。また、前記信号発生器7は電空変換装置5等への入力信号I等を生成するものであり、所望の電圧出力が入力信号Iとして電空変換装置5へ出力される。
更に、前記ストレージオシロスコープ8は、圧力センサー3からの上流側管路L1 内の検出圧力信号P1 (電圧V)や電空変換装置5への入力信号I(入力電圧V)が入力され、管路L1 の圧力P1 の変動や入力信号(入力電圧V)Iの変動等が観測・記録される。 尚、本試験装置に於いては、ストレージオシロスコープ8を利用しており、時間軸の読み取りは500msec/1目盛である。
図1を参照して、先ず、水タンク1内の圧力PT を0.172MPa・Gの一定圧力に保持し、アクチエータ4aへ0.490MPa・Gの空気圧Paを供給して弁4を全閉状態から全開状態にした。尚、この時の弁4と水タンク1間の配管路L1 の内径は4.0mm、長さは約1.0m、水の流量はQ=約3.45l/minであった。図4は、弁4のアクチエータ4aへの供給空気圧Pa及び上流側管路L1 の内圧P1 の変化をストレージオシロスコープ8により観測したものである。
上記図4の(a)からも明らかなように、0(全閉)→0.490MPa・G(全開)の過程を経て弁4を全開にした場合には、図4の(a)のように最大約12Vの振幅の振動出力の変動が表われた。
これに対して、供給圧力Paを0→0.29→0.490(図4−(b))と変化させた場合には管路振動に殆んど変動が生じず、ウォータハンマーの発生が完全に防止されることが判る。
即ち、管路L1 の内圧P1 が一定の場合には、(1)全閉状態からある一定の開弁度まで瞬時に急開し、その後短時間を置いて全開状態にすることにより、約500〜1000msecの間にウォータハンマーを発生することなしに流体通路を開放できること、及び(2)前記最初の弁体の停止位置、即ち弁開度が一定値よりも大きくても、或いは小さくても、ウォータハンマーの発生を防止することができないことが判る。
尚、図5(a)、(b)、(c)は、ステップ圧力SPを0.245MPa・G、0.255MPa・G及び0.274MPa・Gと変化させた場合の弁4の上流側配管L1 内の圧力変動を示すものであり、アクチェータ圧力Paは0→0.245→0.49MPa・Gの状態で変化させ、1000msecで弁4を全開放するようにした場合のものである。
また、図6は、前記図5の(c)の拡大したものであり、アクチェータ圧力Paを0→0.294→0.490MPa・Gの順で、約1000msec間で上昇させて弁4を2段階操作で全開させることにより、上流側配管L1 の振動を略零にすることが可能なことが判る。
図7の(a)、(b)、(c)は、タンク内圧を0.098、0.196、0.294MPa・Gとした場合の、ステップ圧力SPと上流側配管L1 内の振動圧力の関係を調査したものであり、夫々の場合に、振動圧力が最小となるステップ圧力SPが存在することが判る。尚、ステップ圧力SPの保持時間は1000msecとしている。
図8は、前記図7の試験に於けるアクチェータ4aへの供給圧力Paの説明図であり、ステップ圧力SPと一段目(A点)及び二段目(B点)の位置関係を示すものである。
図9及び図10は、本発明に係る流体通路のウォータハンマーレス閉鎖装置の第1実施例の基本構成を示すものであり、既設の上流側配管L1 へ圧力検出器Pcを取り付けたり、或いはバルブ本体10へバルブストローク検出器(位置検出器)を取り付けすることが困難な場合に、主として利用されるものである。
図9及び図10を参照して、当該ウォータハンマーレス閉鎖装置は、バルブ本体10と、アクチエータ11と、電空変換制御装置17と、アクチエータ作動圧Paの段階的切換え及び切換後の圧力保持時間Ts等を制御可能とした演算制御装置16と、上流側配管路L1 に着脱自在に固定した振動センサー18とを組み合せ、弁本体10のアクチエータ11に加えるアクチエータ作動圧Paの段階的切換え(図10(a)の0からPsへの切換(ステップ圧力Ps)やステップ圧力Psの保持時間Tsを適宜に選定して、ウォータハンマーレス閉鎖を可能とする弁本体10の閉鎖条件を予かじめ設定記憶しておくことを可能としたものである。
即ち、図9及び図10に於いて、16は演算制御装置、17は電空変換制御装置、18は振動センサー、6は弁駆動用ガス源、10はバルブ本体、11はアクチエータであり、弁駆動用ガス源6からの駆動圧Pao(本実施例の場合約0.6MPa)が電空変換制御装置17によって図16(a)の如き状態のステップ状の作動圧力Paに変換され、アクチエータ11へ印加されることになる。
尚、アクチエータ11へ加えるアクチエータ作動圧Paやその保持時間Tsは、後述するような方法によって、予かじめバルブ上流側配管路L1 毎に弁本体10の閉鎖作動試験によって求められた演算制御装置16からの制御信号Scによって制御されており、当該振動センサー18及び演算制御装置16は、弁本体10の開放作動試験による前記制御信号Scの選定が完了すれば、上流側配管路L1 から取り外しされることになる。
即ち、前記演算制御装置16にはステップ圧力設定Psの設定回路16a、圧力保持時間設定信号の設定回路16b、許容上限振動圧力設定信号Prmの設定回路16c、管路の振動圧検出回路16d及び比較演算回路16e等が設けられており、振動センサー18により検出した弁本体10の閉鎖時の内圧P1 の変動による振動検出信号Prと、ステップ圧力設定信号Psと、ステップ圧力保持時間設定信号Tsと、許容上限振動圧力設定信号Prmとが夫々入力されている。
そして、前記比較演算回路16eでは振動検出信号Prと許容上限振動圧力設定信号Prmとが比較され、両者の間に差異がある場合には、後述するようにステップ圧力設定信号Psが修正され、当該修正されたステップ圧力設定信号Psと保持時間設定信号Tsとを含む制御信号とそが電空変換制御装置17のデータ記憶部17aへ出力されて行く。
また、前記電空変換制御装置17には、データ記憶部17aと信号変換部17b(信号発生器7)と、電空変換部17c(電空変換装置5)等が設けられており、信号変換部17bからのアクチエータ作動圧制御信号Scが電空変換部17cへ入力されることにより、アクチエータ11へ供給するアクチエータ作動圧Paが、図10の(a)のように段階的に切換え変換される。
尚、当該電空変換制御装置17へは、バルブ開閉指令信号S及びバルブ本体10の作動状況(NO又はNC)に対応するための切換信号Soが入力されている。
図10を参照して、先ず配管路L1 に振動センサー18を固定する。次に、演算制御装置16へ適宜のステップ圧力設定信号Ps、ステップ圧力保持時間設定信号Ts及び許容上限振動圧力設定信号Prmを入力すると共に、電空変換制御装置17のバルブ本体切換信号So及びアクチエータ作動用流体供給圧Paoを適宜に設定する。
その後、バルブ開閉指令信号Sを入力して、弁本体10のアクチエータ11に例えば図10の(a)の如き形態のアクチエータ作動圧Paを供給する。
今、時刻t1 に於いて、アクチエータ作動圧PaをPa0からPsまで上昇させると、弁本体10の流体通路は中間位置まで開放され、更に設定保持時間Tsが経過した時刻t2 に於いて、アクチエータ作動圧PsがPamaxにされることにより、弁本体10は全開状態となる。
この間に、ウォータハンマーの発生により配管路L1 の内圧P1 が変化すると、その変化の状態は振動センサー18により検出され、振動検出信号Prは演算制御装置16へ入力される。
演算制御装置16では、検出信号Prと許容上限振動圧力設定信号Prmとが比較され、もしも、A1 の位置(時刻t1 )に於いては振動を発生しないか又は振動の大きさが許容値内であるが、A2 の位置(時刻t2 )に於いて振動が許容値Prmを越える場合には、アクチエータ作動圧Psを少し上昇させるようにステップ圧力設定信号Psが修正され、この修正されたステップ圧力設定信号Psとその保持時間設定信号Tsが制御信号Scとして演算制御装置16から電空変換制御装置17へ出力され、その後再度同様のバルブ本体10の開放作動試験が行なわれる。
また、逆に、もしも、A1 の位置(時刻t1 )で発生した振動が許容上限振動圧力設定信号Prmを越える場合には、前記ステップ圧力設定信号Psを少し下降させる方向に設定信号Psが修正され、演算制御装置16から電空変換制御装置17へ制御信号Scとして出力され、その後再度同様のバルブ本体10の閉鎖作動試験が行なわれる。
上記0046及び0049に記載の如き作動試験を繰り返すことにより、振動センサー18を設けた配管路L1 のウォータハンマーレス開放に必要なアクチエータ11の中間作動圧力Ps(ステップ圧力設定信号Ps)が所定のステップ圧力保持時間設定信号Ts(バルブ開放時間Ts)について選定されることになり、この選定されたウォータハンマーを起さない最適のステップ圧力設定信号Psとその保持設定時間Tsを与える制御信号Scが、電空変換制御装置17のデータ記憶部17aに記憶され、以後の管路L1 の開放は、この記憶された制御信号Scに基づいてアクチエータ作動圧Paを制御することにより行なわれる。
尚、上記図9及び図10の実施例に於いては、アクチエータ作動圧Paを2段階に切換え制御するようにしているが、必要な場合には3段階や4段階の切換としてもよいことは勿論である。
また、ステップ保持時間設定信号Tsは通常0.5〜1秒の間に設定され、当該時間Tsが短かくなるにつれて、ウォータハンマーレス開放の条件を見出すことが困難になることは勿論である。
図11は、本発明に係る流体通路開放方法とこれに用いるウォータハンマーレス開放装置の第2実施例を示すものである。
図11に於いて、L1 は配管路、10はバルブ本体、11はエアーアクチエータ、18は振動センサ、19はチューニングボックス、20は電空変換装置であり、ウォータハンマーレス開放装置としての基本的な構成は、図9に示した第1実施例の場合とほぼ同じである。
前記チューニングボックス19は、バルブ本体10の上流側に取付けした振動センサ18からの振動検出信号Prがフィードバック信号として入力され、当該フィードバック信号Prからウォータハンマーの発生を検出すると共に、電空変換装置20へアクチエータ作動圧制御信号Scを出力することにより、エアーアクチエータ11へ供給する2段階状のアクチエータ作動圧Paを最適化するものである。具体的には、後述するように図16のアクチエータ作動圧Paのステップ作動圧Ps′の大きさ及びステップ作動圧保持時間tの最適値を演算し、当該アクチエータ作動圧Paを電空変換装置20からアクチエータ11へ出力させるための制御信号Scを電空変換装置20へ出力する。
また、当該チューニングボックス19には、バルブ本体10のエアーアクチエータ11の作動型式(N.O.又はN.C.)に対応して制御信号Scを切換えするための切替えスイッチが設けられている。
図12は、チューニングボックス19の主要部を形成するパソコンの画面表示の一例を示すものであり、バルブ本体10の開閉状態、エアーアクチエータ11へのアクチエータ作動圧Pa、配管路Lの振動状況、ステップ作動圧Ps′及び配管振動値、オートチューニングの条件設定、マニアル開閉の条件設定、バルブ本体10の作動型式等の画面表示が可能な構成になっている。
前記電空変換装置20は、信号変換器と電空変換器とを組み合わせたものであり、図13に示す如く給気用電磁弁B、排気用電磁弁F、圧力センサE、制御回路A等から構成されており、基本的には図2の(a)及び(b)に示したものとほぼ同じ構成を有している。
即ち、給気電磁弁Bへは0.6MPa以上の空気圧が供給されており、0〜0.5MPaの空気圧がアクチエータ作動圧制御圧力Paとしてエアーアクチエータ11へ出力される。
また、当該電空変換装置20の制御回路Aには、基板A1 と外部入出力インターフェイスA0 等が設けられており、また、外部入出力インターフェイスA0 には二つのコネクタAc、Adが設けられている。そして、コネクタAcへは供給電源(DC24又は12V)、開閉信号I(電圧入力又は無電圧入力)、圧力モニタ(0〜5DCV・0〜981KPaG)が接続され、また、コネクターAdへはチューニングボックス19が接続される。
図14は、当該第2実施例に於けるオートチューニングの実施フローを示すものであり、また、図15はエアーアクチエータ11へ加えるアクチエータ作動圧Paと振動の発生との相対関係を示すものである。
尚、アクチエータ作動圧Paとしては、図10の場合と同様に2段階状のアクチエータ作動圧Paが加えられている。
図14を参照して、図11に示す如く振動センサ18を配管路Lの所定位置(バルブ本体10から約1000mm以内の上流側位置、望ましくは100〜1000mm上流側へ離れた位置)に固定すると共に、チューニングボックス19及び電空変換装置20を夫々セッチングする。
次に、オートチューニング開始信号の入力(ステップS1 )により弁全閉状態に約2秒間保持した(ステップS2 )あと、2段階状のアクチエータ作動圧Paを加えることにより、制御が行われる(ステツプS3 )。尚、ステップ作動圧Ps′の保持時間tは、後述するように0.5〜1secに設定されている。
バルブ本体10の開放により配管路Lに発生した振動は、振動センサ18からの振動検出信号Prにより検出並びに確認され(ステップS4 )、振動が図15のA点で発生しているか、又はB点で発生しているかを確認し(ステップS5 6 )、A点で発生している場合には、アクチエータ作動圧Paのステップ作動圧Ps′が減少され(ステップS7 )、また、B点で発生している場合には前記ステップ作動圧Ps′が増加される(ステップS8
上記バルブ本体10の開放制御を繰り返す(通常は数回〜15回)ことにより、振動を全く生じない最適のステップ作動圧Ps′を有するアクチエータ作動圧Pa最終的には得られることになり、このオートチューニングにより得られた振動を完全に防止可能な2段階状のアクチエータ作動圧Paを出力する制御信号Scを電空変換装置20へ入力することにより、バルブ本体10を開放するようにする。
前記オートチューニング時に加える2段階状のアクチエータ作動圧Paのステップ作動圧保持時間tは、短いほど好都合であるが、空気作動式アクチエータ11にあつてはt=1秒以下とするのが望ましい。
尚、前記図14及び図15に於いては、ノーマルクローズ型の空気作動式ダイヤフラム弁を使用し、アクチエータ作動圧Paを供給することによって閉弁中のバルブ本体10を開放する場合について説明しているが、ノーマルオープン型の空気作動式ダイヤフラム弁を使用し、アクチエータ作動圧Paを2段階に分けて低減させることによりウォータハンマーレス開放を行なうことも勿論可能であり、この場合にアクチエータ作動圧Paのステップ作動圧Pa′の調整が前記ノーマルクローズ型の場合とは逆になり、一段目のアクチエータ作動圧Paの低減時に振動が発生したときにはステップ作動圧Pa′を上昇させ、また2段目のアクチエータ作動圧Paの低減時に振動が発生したときには、ステップ作動圧Pa′を下降させることになる。
図16は、バルブ開閉時の内容積無変化型の空気圧作動バルブ(19.05mm)を用い、液体ラインの圧力が0.098MPa、0.198MPa及び0.294MPaの三種の配管路を、アクチエータ作動圧Paが0MPaG−0.294MPaG−0.490MPaGの2段階状の作動圧Paを用いて開放したときの、ステップ作動圧保持時間tと液体ラインの圧力上昇値△P(MPAG)との関係を示すものである。ステップ作動圧保持時間tを1秒以上にすれば、圧力上昇△Pをほぼ零にすることが出来るが、tが0.5秒以下になると、圧力上昇△Pが大きくなることが判っている。
尚、前記オートチューニング操作が完了して、配管路Lのウオータハンマレス開放が可能な制御信号Sc(即ち、ウオータハンマレス開放が可能な2段階状のアクチエータ作動圧Paを出力するための制御信号Sc)が求まれば、前記制御信号Sc(即ち、作動圧Pa)のデータを電空変換装置20へ転送し、別途にこれを記憶しておく。そして、オートチューニング19及び振動センサ18を取り外す。
バルブ本体10の急開放が必要な場合には、予めオートチューニングにより求めた前記制御信号Scのデータを用い、電空変換装置20からウオータハンマーレス開放が可能な2段階状のアクチエータ作動圧Paをバルブ本体10のアクチエータ11へ出力する。
前記図11の実施例に於いては、オートチューニング操作が完了してアクチエータ作動圧Pa(ステップ作動圧力Ps′とその保持時間t)が定まれば、当該作動圧Paに関するデータを電空変換装置20へ転送し、その後、振動センサ18及びチューニングボックス19は完全に取り外すようにしているが、チューニングボックス19を小型化して電空変換装置20と一体化するようにしてもよいことは勿論である。
図17は、半導体製造装置を構成するウエーハの枚葉洗浄機へ本発明の薬液供給方法を適用した状態を示す系統図であり、図17に於いて、A0 は流体供給系、10は流体供給系A0 内に設けたバルブ本体、B0 は枚葉洗浄機、L0 は管路、Wはウエーハ、Aは混合薬液(オゾン添加超純水・オゾン濃度数ppm)、Bはフッ化水素酸と過酸化水素水と超純水の混合薬液(混合比0.03:1:2)、Cは水酸化アンモニウムと過酸化水素水と超純水の混合薬液(混合比0.05:1:5)、Dは超純水である。尚、図17に於ける流体供給系A0 は、例えば前記図1又は図9若しくは図11のような形成に構成されており、バルブ本体10の弁体をアクチエータ(図示省略)を介して先ず開弁方向へ一定量だけ移動させ、短時間その状態に保持したあと、引き続き弁体を全開位置へ移動させることにより、バルブ本体10を全開させる構成となっている。
尚、液体供給系A0 の構成及び作用は前記図1又は図9若しくは図11の場合と全く同様であるため、ここではその説明を省略する。
また、ウエーハWの洗浄プロセスは、先ず混合薬液Aを用いて洗浄したあと、次に混合薬液Bを供給し、引き続き混合薬液C、混合薬液Dの順に各混合薬液A〜Dが、夫々のバルブ本体10をアクチエータを介して切換操作することにより供給されて行く。
尚、混合薬液A、B、C、Dの供給に際して、弁本体10を開放した時に発生する管路L0 内の圧力上昇値はバルブ開放前の圧力値の10%以内に押えるのが望ましい。圧力上昇値を前記10%以内に押えるために、前記アクチエータへの駆動用入力値やその保持時間が調整される。
また、本実施形態に於いては、混合薬液A、B、C、Dの供給開始時(弁開放時)の圧力上昇値の上限についてだけ述べているが、混合薬液A、B、C、Dの供給停止時(弁閉鎖時)に於ける管路L0 等の圧力上昇値にも上限があることは勿論であり、各バルブ本体10は前記圧力上昇値が設定値以内に納まるように閉鎖操作されることになる。
本発明は工業用の配水や蒸気等の供給管路のみならず、一般家庭の給水・給湯用配管路、半導体製造プラントの流体(ガス及び液体)供給管路、化学薬品工業プラントの流体供給管路等へ適用することが出来る。その中でも、特に本願発明は、半導体製造用のチャンバー装置やウエーハ等の洗浄装置、各種のエッチング装置等への適用に適している。
流体通路のウォータハンマーの発生状態の調査に用いた試験装置の回路構成図である。 試験装置に用いた電空変換装置の説明図であり、(a)は基本構成図、(b)はブロック構成図である。 電空変換装置5の入力信号I(入力電圧V)と出力圧力Pa(kgf/cm2 ・G)の関係を示す線図である。 管路内圧P1 を一定とした多段階式開放に於いて、アクチエータへの供給圧Paを変化させた場合の弁上流側管路L1 の振動の変化状態を示す線図であり、(a)はPaを0kgf/cm2 ・Gから直接5kgf/cm2 ・Gにして開放したとき、(b)はPaを0kgf/cm2 ・Gから3.1kgf/cm2 ・Gに落したあと0とした場合を示すものである。 タンク圧(管路内圧P1 )を変化させた場合の多段階式開放(Pa=0−2.5−5kgf/cm2 ・G)に於ける管路内圧P1 の変化状況を示す線図であり、(a)はタンク内圧P1 =0.245MPa・Gのとき、(b)はP1 =0.255、(c)はP1 =0.274の場合を夫々示すものである。 図5の(c)の拡大図である。 弁の多段階式閉鎖に於けるタンク内圧PT と、ウォータハンマーを防止できるアクチエータ作動圧力Paの関係を示す線図であり、(a)はタンク内圧を0.098MPaG、(b)は0.196MPaG、(c)は0.294MPaGとした場合を示すものである。 図7に於けるアクチェータ作動圧Paと振動検出時点の関係を示す説明図である。 本発明に係る流体通路のウォータハンマーレス開放装置の第1実施例の全体構成図である。 図9のウォータハンマーレス開放装置に於けるアクチエータ作動圧Paの制御(図10のa)と振動発生の一例(図10のb)を示す説明図である。 本発明の第2実施例に係るウォータハンマーレス開放装置の全体システム構成図である。 チューニングボックスのPC画面表示の概要図である。 電空変換装置の構成概要図である。 オートチューニング操作のフロー図である。 オートチューニング操作に於ける駆動圧力Paと発生する振動との関係の説明図である。 ステップ状の駆動圧力Paのステップ圧力保持時間tと圧力上昇値ΔPとの関係を示す線図である。 本発明に係る薬液供給方法を半導体製造装置用のウエーハ枚葉洗浄機へ適用した場合を示す系統図である。
符号の説明
PT は水タンク内圧、L1 はバルブ上流側管路、P1 は管路内圧、Paはアクチエータ作動圧、Paoは空気供給圧力、ΔGはバルブストローク、Sはバルブ開閉指令信号、1は水タンク、2は水タンク加圧源、3は圧力センサ、4は弁、4aはアクチエータ、5は電空変換装置、6は弁駆動用ガス源、7は信号発生器、8はストレージオシロスコープ、10はバルブ本体、11はアクチエータ、16は演算制御装置、17は電空変換制御装置、18は振動センサ、19はチューニングボックス、20は電空変換装置、Tは開放時間検出信号、P1 は圧力検出信号、PM は許容圧力上昇値設定信号、Prは振動検出信号、Prmは許容上限振動圧力設定信号、Psはステップ圧力設定信号、Tsはステップ圧力保持時間設定信号(開放時間設定信号)、Scは制御信号、Seはアクチエータ作動圧制御信号、SoはバルブのNO・NC切換信号、tはステップ圧力保持時間、Ps′はステップ作動圧、A0 は流体供給系、B0 はウエーハの枚葉洗浄機、Wはウエーハ、A・B・C・Dは混合薬液である。

Claims (14)

  1. 管路内圧が略一定の流体通路に介設したアクチエータ作動式バルブにより流体通路を開放し、流体を下流側の流体通路へ供給する方法に於いて、先ず前記アクチエータへの駆動用入力を所定の設定値にまで増加若しくは減少させて弁体を開弁方向へ移動させ、アクチエータへの駆動用入力を前記設定値に短時間保持したあと、当該駆動用入力を更に増加若しくは減少させてバルブを全開状態にすることにより、ウォータハンマーを起生することなしに流体通路を開放することを特徴とする流体通路のウォータハンマーレス開放方法。
  2. バルブを常時閉鎖型空気圧作動式ダイヤフラムバルブ又はバルブの作動時にバルブ内容積が変化しない定容積・常時閉鎖型空気圧作動式ダイヤフラムバルブとした請求項1に記載の流体通路のウォータハンマーレス開放方法。
  3. 設定値に短時間保持する時間を1秒以内とすると共に流体通路の圧力上昇値をバルブ開放前の圧力値の10%以内とするようにした請求項1に記載のウォータハンマーレス開放方法。
  4. バルブ本体と、バルブ本体を駆動するアクチエータと、バルブ上流側配管路に着脱自在に固定した振動センサーと、バルブ開閉指令信号が入力されると共に、そのデータ記憶部に予かじめ記憶された制御信号Scによりアクチエータへ入力するアクチエータ作動圧Paを制御する電空変換制御装置と、前記振動センサーからの振動検出信号Prとアクチエータへ供給するステップ圧力設定信号Psとステップ圧力の保持時間設定信号Tsと許容上限振動圧力設定信号Prmとが入力されると共に前記振動検出信号Prと許容上限振動圧力設定信号Prmとの比較を行ない、前記ステップ圧力設定信号Psを修正する比較演算回路を備え、前記保持時間設定信号Ts及び修正されたステップ圧力設定信号Psから成る制御信号Scを前記電空変換制御装置のデータ記憶部へ出力する演算制御装置とから構成したことを特徴とする流体通路のウォータハンマーレス開放装置。
  5. 演算制御装置を、ステップ圧力設定回路と保持時間設定回路と許容上限振動圧力設定回路と振動圧検出回路と比較演算回路とから構成すると共に、アクチエータ作動圧をステップ変化させた直後の振動検出信号Prが許容上限振動圧力設定信号Prmを越えた場合には、ステップ圧力設定信号Psをより閉弁方向となるように、また、アクチエータ作動圧を中間のステップ作動圧から最大とした直後の振動検出信号Prが許容上限振動圧力設定信号Prmを越えた場合には、ステップ圧力設定信号Psをより開弁方向となるように夫々修正する構成とした請求項4に記載の流体通路のウォータハンマーレス開放装置。
  6. 電空変換制御装置を、演算制御装置からの制御信号Scを記憶するデータ記憶部と信号変換部と電空変換部とから構成すると共に、データ記憶部に予かじめ記憶されたウォータハンマーを生じないときの制御信号Sc′に基づいて信号変換部からアクチエータ作動圧制御信号Seを出力し且つ電空変換部からアクチエータ作動圧Paを出力する構成とした請求項4に記載の流体通路のウォータハンマーレス開放装置。
  7. 流体通路に介設したアクチエータ作動式バルブと、アクチエータ作動式バルブへ二段階状のアクチエータ作動圧Paを供給する電空変換装置と、前記アクチエータ作動式バルブの上流側管路に着脱自在に固着した振動センサと、振動センサにより検出した振動検出信号Prが入力されると共に電空変換装置へ前記二段階状のアクチエータ作動圧Paのステップ作動圧Ps′の大きさを制御する制御信号Scを出力し、当該制御信号Scの調整により電空変換装置から振動検出信号Prがほぼ零となるステップ作動圧Ps′の二段階状のアクチエータ作動圧Paを出力させるチューニングボックスとから構成した流体通路のウォータハンマーレス開放装置。
  8. 流体通路に介設したアクチエータ作動式バルブの上流側に振動センサを着脱自在に取り付け、振動センサからの振動検出信号Prをチューニングボックスへ入力すると共に、チューニングボックスからの制御信号Scを電空変換装置へ入力し、前記制御信号Scによって電空変換装置に於いて発生した二段階状のアクチエータ作動圧Paをアクチエータへ供給してアクチエータ作動式バルブを2段階作動により開放するようにした流体通路の開放方法に於いて、前記チューニングボックスに於いてアクチエータへ供給する二段階状のアクチエータ作動圧Paと振動検出信号Prとの相対関係を対比し、1段目のアクチエータ作動圧Paの上昇時に振動発生があるときにはステップ作動圧Ps′を下降させ、また、2段目のアクチエータ作動圧Paの上昇時に振動発生があるときにはステップ作動圧Ps′を上昇させ、前記ステップ作動圧Ps′の上昇又は下降による調整を複数回繰り返すことにより、振動検出信号Prがほぼ零となる2段階状作動圧Paのステップ作動圧Ps′を求め、当該振動発生がほぼ零となるステップ作動圧Ps′の2段階状の作動圧Paを電空変換装置から出力させるときの制御信号Scのデータに基づいて、前記アクチエータ作動式バルブを開放するようにしたことを特徴とする流体通路のウォータハンマーレス開放方法。
  9. 流体通路に介設したアクチエータ作動式バルブの上流側に振動センサを着脱自在に取り付け、振動センサからの振動検出信号Prをチューニングボックスへ入力すると共に、チューニングボックスからの制御信号Scを電空変換装置へ入力し、前記制御信号Scによって電空変換装置に於いて発生した二段階状のアクチエータ作動圧Paをアクチエータへ供給してアクチエータ作動式バルブを2段階作動により開放するようにした流体通路の開放方法に於いて、前記チューニングボックスに於いてアクチエータへ供給する二段階状のアクチエータ作動圧Paと振動検出信号Prとの相対関係を対比し、1段目のアクチエータ作動圧Paの低減時に振動発生があるときにはステップ作動圧Ps′を上昇させ、また、2段目のアクチエータ作動圧Paの低減時に振動発生があるときにはステップ作動圧Ps′を下降させ、前記ステップ作動圧Ps′の下降又は上昇による調整を複数回繰り返すことにより、振動検出信号Prがほぼ零となる2段階状作動圧Paのステップ作動圧Ps′を求め、当該振動発生がほぼ零となるステップ作動圧Ps′の2段階状の作動圧Paを電空変換装置から出力させるときの制御信号Scのデータに基づいて、前記アクチエータ作動式バルブを開放するようにしたことを特徴とする流体通路のウォータハンマーレス開放方法。
  10. 振動発生がほぼ零となる2段階状の作動圧Paを出力させるときの制御信号Scのデータを電空変換装置の記憶装置へ入力したあと、振動センサ及びチューニングボックスを取り外しするようにした請求項8又は請求項9に記載の流体通路のウォータハンマーレス開放方法。
  11. 振動センサをアクチエータ作動式バルブの設置位置から1000mm以内の上流側位置に設けるようにした請求項8又は請求項9に記載の流体通路のウォータハンマーレス開放方法。
  12. 2段階状の作動圧Paのステップ作動圧保持時間tを1秒より小さく設定するようにした請求項8又は請求項9に記載の流体通路のウォータハンマーレス開放方法。
  13. 管路内圧が略一定の流体通路に介設したアクチエータ作動式バルブにより流体通路を開放し、流体を下流側の流体通路へ供給する方法に於いて、流体を薬液とし、まず前記アクチエータへの駆動用入力を所定の設定値にまで増加若しくは減少させて弁体を開弁方向へ移動させ、アクチエータへの駆動用入力を前記設定値に短時間保持したあと、当該駆動用入力を更に増加若しくは減少させてバルブを全開状態にすることにより、バルブ開放時にウォーターハンマーを起生しないようにした薬液供給方法。
  14. 設定値に短時間保持する時間を1秒以内とすると共に流体通路の圧力上昇値をバルブ開放前の圧力値の10%以内とするようにした請求項13に記載の薬液供給方法。
JP2004011497A 2004-01-20 2004-01-20 流体通路のウォータハンマーレス開放方法及びこれを用いたウォータハンマーレス開放装置 Expired - Fee Related JP4406292B2 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2004011497A JP4406292B2 (ja) 2004-01-20 2004-01-20 流体通路のウォータハンマーレス開放方法及びこれを用いたウォータハンマーレス開放装置
TW93139175A TWI270624B (en) 2004-01-20 2004-12-16 Method for water hammer-less opening of fluid passage, chemical supply method using the same, and water hammer-less opening device
PCT/JP2005/000264 WO2005068886A1 (ja) 2004-01-20 2005-01-13 流体通路のウォータハンマーレス開放方法及びこれを用いた薬液供給方法並びにウォータハンマーレス開放装置
CA 2648968 CA2648968A1 (en) 2004-01-20 2005-01-13 Method for water hammerless opening of fluid passage, and method for supplying chemical solutions and device for water hammerless opening for which the method is used
EP20050703503 EP1707857A1 (en) 2004-01-20 2005-01-13 Method for water hammer-less opening of fluid passage, chemical supply method using the same, and water hammer-less opening device
SG200901823-5A SG151279A1 (en) 2004-01-20 2005-01-13 Method for water hammerless opening of fluid passage, and method for supplying chemical solutions and device for water hammerless opening for which the method is used
CA 2552782 CA2552782A1 (en) 2004-01-20 2005-01-13 Method for water hammerless opening of fluid passage, and method for supplying chemical solutions and device for water hammerless opening for which the method is used
CN2008100928005A CN101285537B (zh) 2004-01-20 2005-01-13 流体通路的无水击打开方法以及药液供给方法
CNB2005800028631A CN100467880C (zh) 2004-01-20 2005-01-13 流体通路的无水击打开装置以及无水击打开方法
US10/597,343 US7849869B2 (en) 2004-01-20 2005-01-13 Method for water hammerless opening of fluid passage, and method for supplying chemical solutions and device for water hammerless opening for which the method is used
KR1020067009393A KR100792220B1 (ko) 2004-01-20 2005-01-13 유체 통로의 워터 해머레스 개방방법 및 이것을 이용한약액 공급 방법 및 워터 해머레스 개방장치
IL176620A IL176620A0 (en) 2004-01-20 2006-06-29 Method for water hammer-less opening of fluid passages, chemical supply method using the same, and water hammer-less opening device
US12/422,136 US8047225B2 (en) 2004-01-20 2009-04-10 Method for water hammerless opening of fluid passage, and method for supplying chemical solutions and device for water hammerless opening for which the method is used
US13/239,715 US8714188B2 (en) 2004-01-20 2011-09-22 Method for water hammerless opening of fluid passage, and method for supplying chemical solutions and device for water hammerless opening for which the method is used

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011497A JP4406292B2 (ja) 2004-01-20 2004-01-20 流体通路のウォータハンマーレス開放方法及びこれを用いたウォータハンマーレス開放装置

Publications (2)

Publication Number Publication Date
JP2005208712A true JP2005208712A (ja) 2005-08-04
JP4406292B2 JP4406292B2 (ja) 2010-01-27

Family

ID=34792336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011497A Expired - Fee Related JP4406292B2 (ja) 2004-01-20 2004-01-20 流体通路のウォータハンマーレス開放方法及びこれを用いたウォータハンマーレス開放装置

Country Status (10)

Country Link
US (3) US7849869B2 (ja)
EP (1) EP1707857A1 (ja)
JP (1) JP4406292B2 (ja)
KR (1) KR100792220B1 (ja)
CN (2) CN100467880C (ja)
CA (2) CA2552782A1 (ja)
IL (1) IL176620A0 (ja)
SG (1) SG151279A1 (ja)
TW (1) TWI270624B (ja)
WO (1) WO2005068886A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781716B1 (ko) 2006-02-17 2007-12-03 양철수 저장부가 구비된 수충격 방지장치
KR100781711B1 (ko) 2006-02-17 2007-12-03 양철수 검출회로부를 구비한 수충격 방지장치
JP2016192439A (ja) * 2015-03-30 2016-11-10 株式会社フジキン 流体供給装置、ライン保持具及び流体供給装置の製造方法
US10252300B2 (en) 2014-07-18 2019-04-09 Mitsubishi Heavy Industries, Ltd. Cleaning device and cleaning method for hydraulic oil tube in aircraft

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2508700A1 (en) * 2002-12-19 2004-07-08 Fujikin Incorporated Method for closing fluid passage, water hammerless valve and water hammerless closing device
JP4406292B2 (ja) * 2004-01-20 2010-01-27 株式会社フジキン 流体通路のウォータハンマーレス開放方法及びこれを用いたウォータハンマーレス開放装置
DE102005048726B4 (de) 2005-10-12 2010-09-16 Airbus Deutschland Gmbh Lecksucher
WO2008103176A1 (en) * 2007-02-22 2008-08-28 Micro Motion, Inc. Vibratory pipeline diagnostic system and method
SG183800A1 (en) * 2010-03-18 2012-10-30 Cameron Int Corp Control and supply unit
WO2012070458A1 (ja) * 2010-11-25 2012-05-31 株式会社フジキン 自動弁用開度検知装置
US8973595B2 (en) 2011-08-01 2015-03-10 Control Microsystems, Inc. Battery-powered control valve and operation thereof
US8924028B2 (en) 2011-08-01 2014-12-30 Control Microsystems, Inc. Battery-powered control valve and operation thereof
EP2739888A4 (en) * 2011-08-01 2015-07-15 Control Microsystems Inc BATTERY-OPERATED CONTROL VALVE AND ITS OPERATION
CN103148245B (zh) * 2013-03-12 2015-05-20 四川广汉阀门厂 多功能电控泄压装置及其电控系统和电控方法
US9454158B2 (en) 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
DE102014108848A1 (de) * 2014-06-25 2015-12-31 Construction Tools Gmbh Vorrichtung zur Drucküberwachung
KR101630395B1 (ko) * 2015-06-19 2016-06-14 (주)에스엠테크 운전상태 분석알고리즘에 의한 수충격 방지시스템
US10983538B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
JP6486986B2 (ja) 2017-04-03 2019-03-20 株式会社荏原製作所 液体供給装置及び液体供給方法
JP6405067B1 (ja) * 2018-04-13 2018-10-17 株式会社ブイテックス ゲートバルブの制御方法
CN113049243B (zh) * 2019-12-27 2022-07-26 核动力运行研究所 测试阀门响应时间的方法及装置
CN112007897A (zh) * 2020-07-30 2020-12-01 云南电网有限责任公司曲靖供电局 带电水冲洗装置控制系统和冲洗车

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502075B1 (ja) 1970-05-09 1975-01-23
JPS608388B2 (ja) 1975-09-22 1985-03-02 日本碍子株式会社 ノズル部における水撃圧防止方法
JPS55119923A (en) 1979-03-08 1980-09-16 Komatsu Ltd Electric regulator of injection amount for diesel engine
JPS5945378A (ja) 1982-09-09 1984-03-14 Toyobo Co Ltd 粘着材料
JPS60208677A (ja) 1984-03-30 1985-10-21 Nec Corp 電動開閉弁調節装置
JPS62113976A (ja) 1985-11-12 1987-05-25 Hitachi Metals Ltd デジタル流量制御バルブを用いた圧力制御方法
JPH083757B2 (ja) 1986-11-04 1996-01-17 株式会社東芝 蒸気加減弁の開度制御装置
US5253676A (en) * 1992-08-13 1993-10-19 Moog Controls, Inc. Low Bernoulli force control orifice
JP2547366Y2 (ja) * 1992-11-05 1997-09-10 エスエムシー株式会社 流体操作式開閉弁
US5549137A (en) 1993-08-25 1996-08-27 Rosemount Inc. Valve positioner with pressure feedback, dynamic correction and diagnostics
JPH07190235A (ja) 1993-12-27 1995-07-28 Mitsubishi Materials Corp 弁制御装置
AUPM601694A0 (en) 1994-05-31 1994-06-23 Technical Components Pty. Ltd. Low water hammer solenoid operated water valve
US5409037A (en) * 1994-06-06 1995-04-25 Wheeler; Jaye F. Automatic device for the detection and shutoff of excess water flow in pipes
AU7590196A (en) 1996-04-09 1997-10-29 Kabushiki Kaisha Yokota Seisakusho Variable by-pass slow-closing check valve device
US5970430A (en) * 1996-10-04 1999-10-19 Fisher Controls International, Inc. Local device and process diagnostics in a process control network having distributed control functions
US6019120A (en) * 1996-12-19 2000-02-01 Saturn Electronics & Engineering, Inc. Single stage variable force solenoid pressure regulating valve
US6374856B1 (en) * 1997-04-02 2002-04-23 Voith Turbo Gmbh & Co., Kg Valve device, especially a combined proportional-distributing valve device
US5921261A (en) 1997-05-08 1999-07-13 Eaton Corporation Dampening resonance in a flow regulator
JP3859221B2 (ja) 1997-09-05 2006-12-20 シーケーディ株式会社 空気圧駆動用の開閉制御弁
US6056008A (en) 1997-09-22 2000-05-02 Fisher Controls International, Inc. Intelligent pressure regulator
US6035878A (en) * 1997-09-22 2000-03-14 Fisher Controls International, Inc. Diagnostic device and method for pressure regulator
US6192321B1 (en) * 1997-09-29 2001-02-20 Fisher Controls International, Inc. Method of and apparatus for deterministically obtaining measurements
JP4146535B2 (ja) 1997-10-20 2008-09-10 忠弘 大見 定容積型流体制御器
US6216728B1 (en) * 1998-03-13 2001-04-17 Ce Nuclear Power Llc Tunable anticipatory output response valve control
US5941500A (en) 1998-03-24 1999-08-24 Sparco Inc. Valve actuating device having a reduced impact operating mechanism
JP2000010602A (ja) 1998-06-24 2000-01-14 Kubota Corp Pid制御方法及びその制御用コントローラ
JP2000074254A (ja) 1998-08-28 2000-03-14 Benkan Corp 純水・薬液供給用空気圧シリンダ操作弁の制御装置及び制御方法
DE59912263D1 (de) * 1998-09-28 2005-08-18 Tiefenbach Bergbautechnik Gmbh Hydraulisches wegeventil
DE19903555C2 (de) 1999-01-29 2001-05-31 Daimler Chrysler Ag Vorrichtung zur Steuerung eines Piezoelement-Einspritzventils
DE10031586A1 (de) * 2000-06-29 2002-01-10 Basell Polyolefine Gmbh Hydraulisch gesteuertes Druckentlastungsventil für Hochdruckreaktoren
JP2002295705A (ja) 2001-03-30 2002-10-09 Nohmi Bosai Ltd ウオータハンマ防止電動弁及びその制御方法
DE10124847A1 (de) 2001-05-22 2002-11-28 Abb Patent Gmbh Verfahren zum Betrieb eines Stellantriebs
EP1315060B1 (de) * 2001-11-23 2006-01-25 Siemens Aktiengesellschaft Verfahren zur kontinuierlichen Regelung einer Stellung eines Stellventils
TW571182B (en) 2001-12-04 2004-01-11 Smc Kk Flow rate control apparatus
JP4102564B2 (ja) 2001-12-28 2008-06-18 忠弘 大見 改良型圧力式流量制御装置
CN2570551Y (zh) * 2002-09-10 2003-09-03 王成元 两通气动柱塞阀及其控制装置
CA2508700A1 (en) * 2002-12-19 2004-07-08 Fujikin Incorporated Method for closing fluid passage, water hammerless valve and water hammerless closing device
JP4464120B2 (ja) 2002-12-19 2010-05-19 株式会社フジキン 流体通路の閉鎖方法及びウォータハンマーレスバルブ装置及びウォータハンマーレス閉鎖装置
JP2004316679A (ja) 2003-04-11 2004-11-11 Ckd Corp 流量制御弁
JP4331539B2 (ja) 2003-07-31 2009-09-16 株式会社フジキン チャンバへのガス供給装置及びこれを用いたチャンバの内圧制御方法
JP4406292B2 (ja) 2004-01-20 2010-01-27 株式会社フジキン 流体通路のウォータハンマーレス開放方法及びこれを用いたウォータハンマーレス開放装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781716B1 (ko) 2006-02-17 2007-12-03 양철수 저장부가 구비된 수충격 방지장치
KR100781711B1 (ko) 2006-02-17 2007-12-03 양철수 검출회로부를 구비한 수충격 방지장치
US10252300B2 (en) 2014-07-18 2019-04-09 Mitsubishi Heavy Industries, Ltd. Cleaning device and cleaning method for hydraulic oil tube in aircraft
JP2016192439A (ja) * 2015-03-30 2016-11-10 株式会社フジキン 流体供給装置、ライン保持具及び流体供給装置の製造方法

Also Published As

Publication number Publication date
EP1707857A1 (en) 2006-10-04
US7849869B2 (en) 2010-12-14
CN101285537B (zh) 2010-12-22
TW200533857A (en) 2005-10-16
US8714188B2 (en) 2014-05-06
KR20060088561A (ko) 2006-08-04
CA2648968A1 (en) 2005-07-28
WO2005068886A1 (ja) 2005-07-28
US8047225B2 (en) 2011-11-01
CN101285537A (zh) 2008-10-15
IL176620A0 (en) 2006-10-31
TWI270624B (en) 2007-01-11
JP4406292B2 (ja) 2010-01-27
US20130000737A1 (en) 2013-01-03
CA2552782A1 (en) 2005-07-28
US20090255587A1 (en) 2009-10-15
KR100792220B1 (ko) 2008-01-08
CN100467880C (zh) 2009-03-11
US20080257415A1 (en) 2008-10-23
CN1910392A (zh) 2007-02-07
SG151279A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
KR100792220B1 (ko) 유체 통로의 워터 해머레스 개방방법 및 이것을 이용한약액 공급 방법 및 워터 해머레스 개방장치
KR100686595B1 (ko) 유체통로의 폐쇄방법과 이것에 이용하는 워터 해머리스밸브장치
JP6216389B2 (ja) 圧力式流量制御装置
US20070204914A1 (en) Fluid mixing system
KR102223354B1 (ko) 유량 제어 밸브 및 이것을 사용한 유량 제어 장치
JP4464120B2 (ja) 流体通路の閉鎖方法及びウォータハンマーレスバルブ装置及びウォータハンマーレス閉鎖装置
JP6276620B2 (ja) 流量制御弁及びこれを用いた流量制御装置
CN111656503A (zh) 维持恒压的液体供给装置
JP2000276238A (ja) 流体の減圧システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4406292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees