JP2005205735A - プレス装置用計測装置及び方法並びにプレス装置 - Google Patents

プレス装置用計測装置及び方法並びにプレス装置

Info

Publication number
JP2005205735A
JP2005205735A JP2004014742A JP2004014742A JP2005205735A JP 2005205735 A JP2005205735 A JP 2005205735A JP 2004014742 A JP2004014742 A JP 2004014742A JP 2004014742 A JP2004014742 A JP 2004014742A JP 2005205735 A JP2005205735 A JP 2005205735A
Authority
JP
Japan
Prior art keywords
mold
light receiving
light
upper mold
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004014742A
Other languages
English (en)
Inventor
Naohiro Yoshida
直弘 吉田
Hideki Kuroiwa
秀樹 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2004014742A priority Critical patent/JP2005205735A/ja
Publication of JP2005205735A publication Critical patent/JP2005205735A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

【課題】一対の金型における一方の金型の金型成形面からの反射光と、他方の金型の金型成形面からの反射光とのずれ量を計測することによって、両方の金型の軸心ずれ量を正確に計測することができ、軸心ずれを容易に、正確に、短時間で自動的に修正することができ、金型を駆動する駆動装置にかかる負荷を低減することができ、成形品の質を向上させることができるようにする。
【解決手段】発光装置31から出射された光を一対の金型のそれぞれの金型成形面に入射させる入射光路形成手段と、前記それぞれの金型成形面から反射された光を受光装置32に入射させる反射光路形成手段と、前記それぞれの金型成形面から反射された光の前記受光装置32の受光面上における位置関係に基づいて、前記一対の金型の軸心ずれ量を算出する演算装置とを有する。
【選択図】図1

Description

本発明は、プレス装置用計測装置及び方法並びにプレス装置に関するものである。
従来、ガラスや樹脂のような材料から成る成形品は、ガラス素材や樹脂素材をプレス装置の成形用の金型に投入して加熱し、軟化させた後、押圧成形することによって成形されている。この場合、上金型と下金型とから成る金型のキャビティの形状通りの形状を有するガラス成形品や樹脂成形品が成形される。そして、該ガラス成形品や樹脂成形品が成形された後、上金型を上昇させたり下金型を下降させたりすることによって型開を行い、下金型上に残留するガラス成形品や樹脂成形品を吸引手段等を備えた搬送部材によって取り出して、後工程へ搬送するようになっている。
このようなプレス装置においては、上金型と下金型との位置ずれ、すなわち、金型の軸心ずれが生じると、所定の形状の成形品を得ることができなくなってしまう。そこで、上金型及び下金型のそれぞれにおける嵌(かん)合部を高い精度で製作し、上金型と下金型とが互いに嵌合する際に、軸心ずれを修正するようになっている。しかし、この場合、嵌合部を高い精度で製作する必要があるために金型の製作コストが高くなってしまう。また、軸心ずれ量が大きい場合には、上金型と下金型とが嵌合しなくなったり、上金型又は下金型が破損したりしてしまう。そのため、上金型と下金型との位置を計測して、軸心ずれが生じたことを検出した場合に、軸心ずれを修正することが提案されている(例えば、特許文献1及び2参照。)。
これにより、上金型又は下金型の位置を調整して軸心ずれを修正することができるので、所定の形状の成形品を得ることができ、また、高い精度の嵌合部を製作する必要がないので、金型の製作コストを低下させることができ、さらに、金型が破損することも防止することができる。
特開平8−12357号公報 特開平8−91855号公報
しかしながら、前記従来のプレス装置における計測装置は、上金型又は下金型の軸心ずれを検出することができるものの軸心ずれ量を計測することができないので、上金型又は下金型の位置を調整して軸心ずれを修正することが困難である。そのため、軸心ずれの修正は、オペレータの手作業によって行われるようになっていて、自動的に行うことができない。
また、前記従来のプレス装置における計測装置は、上金型又は下金型に取り付けられておらず、上金型又は下金型から離れた位置に配設されている。そのため、上金型又は下金型の軸心ずれを検出するためには、上金型又は下金型に対する計測装置の位置を常に正確に調整する必要がある。したがって、計測装置の保守管理に手間と時間がかかり、また、上金型又は下金型に対する計測装置の位置に狂いが生じると、検出精度が低下してしまう。
本発明は、前記従来の問題点を解決して、一対の金型における一方の金型の金型成形面からの反射光と、他方の金型の金型成形面からの反射光とのずれ量を計測することによって、両方の金型の軸心ずれ量を正確に計測することができ、軸心ずれを容易に、正確に、短時間で自動的に修正することができ、金型を駆動する駆動装置にかかる負荷を低減することができ、成形品の質を向上させることができるプレス装置用計測装置及び方法並びにプレス装置を提供することを目的とする。
そのために、本発明のプレス装置用計測装置においては、発光装置から出射された光を一対の金型のそれぞれの金型成形面に入射させる入射光路形成手段と、前記それぞれの金型成形面から反射された光を受光装置に入射させる反射光路形成手段と、前記それぞれの金型成形面から反射された光の前記受光装置の受光面上における位置関係に基づいて、前記一対の金型の軸心ずれ量を算出する演算装置とを有する。
本発明の他のプレス装置用計測装置においては、さらに、前記入射光路形成手段又は反射光路形成手段は、光学絞り又は拡大若しくは縮小光学系を備える。
本発明のプレス装置においては、一対の金型と、発光装置から出射された光を前記一対の金型のそれぞれの金型成形面に入射させる入射光路形成手段と、前記それぞれの金型成形面から反射された光を受光装置に入射させる反射光路形成手段と、前記それぞれの金型成形面から反射された光の前記受光装置の受光面上における位置関係に基づいて、前記一対の金型の軸心ずれ量を算出する演算装置とを有する。
本発明の他のプレス装置においては、さらに、前記一対の金型のそれぞれの水平方向の位置を調整する金型位置調整手段を有する。
本発明のプレス装置用計測方法においては、発光装置から出射された光を一対の金型のそれぞれの金型成形面に入射させ、該それぞれの金型成形面から反射された光を受光装置に入射させ、前記それぞれの金型成形面から反射された光の前記受光装置の受光面上における位置関係に基づいて、前記一対の金型の軸心ずれ量を算出する。
本発明の他のプレス装置用計測方法においては、さらに、前記発光装置から出射された光を前記金型成形面において走査させて、前記金型の軸心の位置を特定する。
本発明によれば、プレス装置用計測装置においては、発光装置から出射された光を一対の金型のそれぞれの金型成形面に入射させる入射光路形成手段と、前記それぞれの金型成形面から反射された光を受光装置に入射させる反射光路形成手段と、前記それぞれの金型成形面から反射された光の前記受光装置の受光面上における位置関係に基づいて、前記一対の金型の軸心ずれ量を算出する演算装置とを有する。
この場合、金型の軸心ずれ量を正確に計測することができるので、軸心ずれを容易に、正確に、短時間で自動的に修正することができる。これにより、金型が損傷することを防止したり、金型を移動させる部材にかかる負荷を低減することができる。さらに、正確な外形を有する高品質の成形品を高い再現性で成形することができる。
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、本実施の形態におけるプレス装置は、ガラスや樹脂のような材料から成る成形品を成形するのに適したものであり、主として、ガラス素材や樹脂素材を成形用の金型装置に投入して加熱し、軟化させた後、押圧成形するために使用されるものであるが、いかなる材料から成る成形品を成形するために使用されてもよい。すなわち、ガラスや樹脂の他に、例えば、金属、セラミクス、紙、繊維等の各種材料、又は、これらの材料を適宜混合した材料から成る成形品を成形するのに使用することができる。本実施の形態においては、説明の都合上、ガラスから成る成形品を成形する場合について説明する。
図1は本発明の第1の実施の形態におけるプレス装置の構成を示す概略図である。
図において、10はプレス装置、11bは該プレス装置10のフレーム11の一部としてのベースフレーム、11aは前記プレス装置10のフレーム11の一部としてのガイドフレームである。ここで、該ガイドフレーム11aは、全体として立設する筒体の形状を有し、下端部がベースフレーム11bの上面に取り付けられている。なお、前記ベースフレーム11b及びガイドフレーム11aを統合的に説明する場合には、フレーム11として説明する。
そして、前記ガイドフレーム11aの内部において、ベースフレーム11bの上面には支持テーブル取り付け部材12が取り付けられ、該支持テーブル取り付け部材12の取り付け面としての上面には支持テーブル部材13が取り付けられている。該支持テーブル部材13の上面に下金型取り付け部材14が取り付けられ、さらに、該下金型取り付け部材14の上面には、金型装置における一方の金型、すなわち、固定金型としての下金型21が取り付けられている。ここで、該下金型21の上面には、後述される平面状の金型合わせ面21a、及び、成形品のほぼ下半分を形成するような形状の面から成るキャビティ21bが形成されている。
また、前記ガイドフレーム11aの内部における上部には、金型駆動部材としての上金型キャリッジ15が上下方向(ガイドフレーム11aの長軸方向)に移動可能に取り付けられている。ここで、前記上金型キャリッジ15は、循環式のボール等を備えるリニアガイド機構等から成るガイド機構16によってガイドされ、前記ガイドフレーム11aの内面に沿って、移動軌跡が水平方向にぶれることがなく、スムーズに移動することができる。また、前記上金型キャリッジ15の外面とガイドフレーム11aの内面とが常に平行に保たれ、前記上金型キャリッジ15が傾斜することもないようになっている。なお、前記ガイド機構16は、上金型キャリッジ15の外面とガイドフレーム11aの内面との間に圧力流体を注入する静圧軸受装置であってもよい。
そして、前記上金型キャリッジ15の上方には、可動金型駆動源としての駆動装置17が配設されている。なお、該駆動装置17は、図示されない取り付け部材を介して、前記ガイドフレーム11aに固定されている。また、前記駆動装置17のコネクティングロッド17aが下方に突出し、該コネクティングロッド17aの下端部には前記上金型キャリッジ15が取り付けられている。ここで、前記駆動装置17は、例えば、高圧の圧力流体によって駆動されるピストンを備えるシリンダ装置である。この場合、前記ピストンに取り付けられたピストンロッドの下端部が、前記コネクティングロッド17aの上端部に連結される。そして、シリンダ装置に供給される圧力流体の流れを切り替えることによって、前記ピストンが上方向又は下方向に駆動され、これにより、前記コネクティングロッド17a及び上金型キャリッジ15が上方向又は下方向に移動させられる。ここで、前記圧力流体は、例えば、空気であるが、窒素ガス等の他の気体であってもよいし、油等の液体であってもよい。
また、前記駆動装置17は、シリンダ装置でなく、電動モータであってもよく、例えば、リニアモータであってもよい。この場合、ロータとしての往復動部材(スライダ)の下端部が、前記コネクティングロッド17aの上端部に連結される。そして、リニアモータに供給される電流を切り替えることによって、前記スライダがステータとしての固定部材に対して上方向又は下方向に駆動され、これにより、前記コネクティングロッド17a及び上金型キャリッジ15が上方向又は下方向に移動させられる。なお、前記駆動装置17は、サーボモータ等の回転式の電動モータであってもよく、この場合、回転軸の回転は、ボールねじナット等の運動方向変換装置によって、往復動に変換されて、前記コネクティングロッド17aに伝達される。
そして、前記上金型キャリッジ15の下面に上金型取り付け部材18が取り付けられ、該上金型取り付け部材18の下面には、金型装置における他方の金型、すなわち、可動金型としての上金型22が取り付けられている。ここで、該上金型22の下面には、後述される平面状の金型合わせ面22a、及び、成形品のほぼ上半分を形成するような形状の面から成るキャビティ22bが形成されている。
また、図において、26はハンドリング装置であり、搬送アーム27a及び該搬送アーム27aの先端に取り付けられた保持装置としてのハンド装置27bを有する。なお、28は成形用の素材であり、ハンド装置27bに保持されている。前述したように、本実施の形態においては、説明の都合上、ガラスから成る成形品を成形する場合について説明するので、前記素材28はガラス素材としての硝材である。また、成形品は、レンズ、プリズム、フィルタ、ミラー等の光学素子である。
そして、前記搬送アーム27a及びハンド装置27bは、図示されない駆動装置によって駆動され、ガイドフレーム11aの側面に形成された開口11cを通って、前記ガイドフレーム11aの内部に進入し、前記素材28を型開された状態における金型装置の下金型21のキャビティ21b上に載置するようになっている。素材28が下金型21のキャビティ21b上に載置されると、前記下金型21の上方に位置している上金型22は、前記上金型キャリッジ15が下方向に移動させられることによって、下方向に移動して下金型21に接近する。続いて、上金型22の金型合わせ面22aが下金型21の金型合わせ面21aに接触して型閉が行われ、さらに、上金型22が下金型21に押圧されて型締が行われるようになっている。この場合、型閉が行われると、前記上金型22及び下金型21は、組み合わせられて一体となり、前記キャビティ22bとキャビティ21bとによって形成されるキャビティ空間内に素材28を挟み込むようになっている。なお、前記素材28は、硝材である場合、一般的に、300〜500〔℃〕程度の高温にまで加熱され、軟化した状態である。
また、前記上金型22及び下金型21の材質は、例えば、タングステン合金、ステンレス合金、超硬合金等であるが、いかなる材質であってもよい。また、前記素材28が硝材である場合、少なくとも前記キャビティ22b及びキャビティ21b上には、硝材の付着を防止するために、一層又は二層以上の薄膜が形成されていることが望ましい。該薄膜の材質は、例えば、水素化アモルファスカーボン、ダイヤモンド、窒化チタン、窒化タンタル、白金イリジウム、白金シリコン等であるが、いかなる材質であってもよい。
続いて、上金型22が下金型21に対して押圧されて型締が行われる。これにより、前記上金型22及び下金型21は、組み合わせられて一体となり、前記上金型22と下金型21との間に形成されるキャビティ空間内に挟み込まれた素材28としての硝材は、上下から押圧され、前記キャビティ空間の形状を有するガラス成形品が成形される。加圧成形終了後、前記硝材の温度がガラス転移点温度以下になるまで冷却する。この間、キャビティ空間内の硝材を上下から成形力より小さな力で押圧し続ける。そして、前記硝材の温度がガラス転移点温度以下になると、駆動装置17が作動を停止するので、前記硝材の押圧が終了する。
そして、成形品が成形されると、駆動装置17が作動し、前記上金型キャリッジ15が上方向に移動させられることによって、上金型22が上方向に移動して下金型21から離れて型開が行われ、成形品が金型装置から取り出される。なお、成形品の取り出しは、前記ハンドリング装置26によって行うこともできるし、他の装置又はオペレータの手作業によって行うこともできる。
ここで、上金型22と下金型21との軸心ずれ量としての位置ずれ量を計測する場合には、図に示されるように、前記上金型22と下金型21との間にビームベンダユニット34が配設され、また、該ビームベンダユニット34の側方にビームスプリッタユニット33が配設される。前記ビームベンダユニット34及びビームスプリッタユニット33は、それぞれ、図示されない支持装置に取り付けられ、上金型22と下金型21との軸心ずれ量としての位置ずれ量を計測する際にのみ、図に示されるような位置に配設され、通常は、プレス装置10の外部に保管される。なお、前記ビームベンダユニット34及びビームスプリッタユニット33は、相互の位置関係が変化しないように、共通する単一の支持装置に取り付けられていてもよい。
また、前記ビームスプリッタユニット33の側方には、計測光としてのレーザ光を発光する発光装置31が図示されない発光装置取り付け装置に取り付けられて配設され、前記ビームスプリッタユニット33の下方には、前記発光装置31からのレーザ光を受光する受光装置32が、受光装置取り付け部材23を介して、支持テーブル部材13に取り付けられている。前記発光装置31及び受光装置32は、上金型22と下金型21との軸心ずれ量としての位置ずれ量を計測する際にのみ、図に示されるような位置に配設され、通常は、プレス装置10の外部に保管されるが、該プレス装置10の成形動作に支障を及ぼさないのであれば、恒常的に図に示されるような位置に配設されてもよい。
そして、上金型22と下金型21との位置にずれがない状態において、前記発光装置31が出射したレーザ光は、一本の水平なレーザビームとしてビームスプリッタユニット33に入射し、該ビームスプリッタユニット33によって二本の水平なレーザビームに分割される。該二本の平行なレーザビームは、ビームベンダユニット34に入射し、該ビームベンダユニット34によって上向き及び下向きの垂直なレーザビームに変換され、上金型22のキャビティ22b及び下金型21のキャビティ21bにそれぞれ入射する。この場合、前記ビームスプリッタユニット33及びビームベンダユニット34は、入射光路形成手段として機能する。そして、上金型22のキャビティ22bの面、すなわち、上金型成形面及び下金型21のキャビティ21bの面、すなわち、下金型成形面によって反射されたレーザビームは、前記ビームベンダユニット34に入射し、該ビームベンダユニット34によって水平なレーザビームに変換され、前記ビームスプリッタユニット33に入射する。該ビームスプリッタユニット33は、ビームベンダユニット34から入射したレーザビームに関してはビームベンダとして機能し、二本の水平なレーザビームをそれぞれ下向きの垂直なレーザビームに変換する。最後に、二本の下向きの垂直なレーザビームは受光装置32に入射して受光される。この場合、前記ビームスプリッタユニット33及びビームベンダユニット34は、反射光路形成手段として機能する。
本実施の形態においては、前記受光装置32の受光面上における二本のレーザビームの位置関係に基づいて、上金型22と下金型21との軸心ずれ量としての位置ずれ量を計測するようになっている。すなわち、前記発光装置31及び受光装置32は、前記位置ずれ量を計測する位置センサ装置の一部として機能する。
さらに、前記プレス装置10は、CPU、MPU等の演算手段、磁気ディスク、半導体メモリ等の記憶手段、キーボード、ジョイスティック、タッチパネル等の入力手段、CRT、液晶ディスプレイ等の表示手段、入出力インターフェイス等を備える図示されないプレス装置用制御装置を有する。該プレス装置用制御装置は、一種のコンピュータであり、支持テーブル部材13、駆動装置17等の動作を含むプレス装置10のすべての動作を制御する。
次に、本実施の形態における軸心ずれ量計測装置30の構成について説明する。
図2は本発明の第1の実施の形態における軸心ずれ量計測装置の構成を示す図である。
図2に示されるように、軸心ずれ量計測装置30は、発光装置31、受光装置32、ビームスプリッタユニット33及びビームベンダユニット34を有し、更に、演算装置25も有する。該演算装置25は、CPU、MPU等の演算手段、磁気ディスク、半導体メモリ等の記憶手段、入出力インターフェイス等を備える一種のコンピュータであり、前記受光装置32の出力を受信し、後述されるような方法によって、位置ずれ量を算出する。なお、前記演算装置25は前記プレス装置用制御装置と一体的に形成されたものであってもよいし、前記プレス装置用制御装置の一部であってもよい。
そして、前記発光装置31は、図示されないレーザ光源及び光学系を有し、出射されたレーザ光としての一本のレーザビームが水平な光路35を形成するようになっている。なお、前記レーザ光源は、He−Neレーザ光源であるが、半導体レーザ光源であってもよいし、いかなる種類のものであってもよい。また、前記受光装置32は、図示されないレンズ等から成る光学系及び受光したレーザ光を検出する受光素子を有する。前記光学系は、例えば、テレセントリック光学系であるが、いかなる種類のものであってもよい。そして、前記受光素子は、例えば、PD(Photo Diode)、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等から成る素子であるが、いかなる種類のものであってもよい。
ここで、前記ビームスプリッタユニット33は、上半部33a及び下半部33bを有し、前記上半部33aは全反射鏡面33cを備え、前記下半部33bは半透鏡面33dを備える。そして、前記全反射鏡面33c及び半透鏡面33dは、互いに平行であり、かつ、水平面に対して45度傾斜している。なお、前記上半部33a及び下半部33bは、例えば、複数のプリズムから成るものであるが、全反射ミラー、ハーフミラー(半透鏡)等の鏡から成るものであってもよく、前記全反射鏡面33c及び半透鏡面33dを備えるものであれば、いかなる部材から成るものであってもよい。
また、前記ビームベンダユニット34は、上半部34a及び下半部34bを有し、前記上半部34aは全反射鏡面34cを備え、前記下半部34bは全反射鏡面34dを備える。そして、前記全反射鏡面34c及び全反射鏡面34dは、互いに直交し、かつ、水平面に対して45度傾斜している。なお、前記上半部34a及び下半部34bは、例えば、複数のプリズムから成るものであるが、全反射ミラー等の鏡から成るものであってもよく、前記全反射鏡面34c及び全反射鏡面34dを備えるものであれば、いかなる部材から成るものであってもよい。なお、前記ビームスプリッタユニット33又はビームベンダユニット34は、光学絞り、又は、レンズ等からなる拡大若しくは縮小光学系を備えていてもよい。
そして、上金型22と下金型21との軸心ずれ量としての位置ずれ量を計測する場合には、図2に示されるように、前記上金型22と下金型21との間にビームベンダユニット34が配設される。なお、図2に示される状態は、上金型22と下金型21との位置にずれがない状態、すなわち、上金型22の軸心を示す上金型軸心線22cと下金型21の軸心を示す下金型軸心線21cとが一致しているものとする。この場合、ビームベンダユニット34は、その縦軸が上金型軸心線22c及び下金型軸心線21cと一致するように配設される。また、ビームスプリッタユニット33は、前記ビームベンダユニット34と同一の高さ位置において、その縦軸がビームベンダユニット34の縦軸と平行となり、かつ、上半部33aの全反射鏡面33cがビームベンダユニット34の上半部34aの全反射鏡面34cと平行になるように配設される。さらに、発光装置31は、前記ビームベンダユニット34の下半部34b及びビームスプリッタユニット33の下半部33bと同一の高さ位置において、出射されたレーザビームの光路35の延長線上に前記ビームベンダユニット34の下半部34b及びビームスプリッタユニット33の下半部33bが位置するように配設される。さらに、受光装置32は、前記ビームスプリッタユニット33の下方(直下)に、該ビームスプリッタユニット33の縦軸が受光素子の受光面を通過するように配設される。
前記発光装置31、受光装置32、ビームスプリッタユニット33及びビームベンダユニット34がこのように配設された状態において、前記発光装置31から出射された一本の水平なレーザビームは、ビームスプリッタユニット33の下半部33bに入射し、半透鏡面33dによって一本の水平なレーザビームと一本の垂直なレーザビームとに分割される。そして、前記水平なレーザビームはビームベンダユニット34の下半部34bに入射する。一方、前記垂直なレーザビームは、ビームスプリッタユニット33の上半部33aに入射し、全反射鏡面33cに反射して水平なレーザビームに変換され、前記ビームベンダユニット34の上半部34aに入射する。そして、前記下半部34bに入射したレーザビームは、全反射鏡面34dに反射して下向きの垂直なレーザビームに変換され、下金型21のキャビティ21bに入射する。また、前記上半部34aに入射したレーザビームは、全反射鏡面34cに反射して上向きの垂直なレーザビームに変換され、上金型22のキャビティ22bに入射する。
そして、上金型22のキャビティ22bの面によって反射された下向きの垂直なレーザビームは、前記ビームベンダユニット34の上半部34aに入射し、全反射鏡面34cに反射して水平なレーザビームに変換され、ビームスプリッタユニット33の上半部33aに入射する。また、下金型21のキャビティ21bの面によって反射された上向きの垂直なレーザビームは、前記ビームベンダユニット34の下半部34bに入射し、全反射鏡面34dに反射して水平なレーザビームに変換され、ビームスプリッタユニット33の下半部33bに入射する。そして、前記上半部33aに入射したレーザビームは、全反射鏡面33cに反射して下向きの垂直なレーザビームに変換され、下半部34bを通過して、受光装置32における受光素子の受光面に到達する。また、前記下半部33bに入射したレーザビームは、半透鏡面33dに反射して下向きの垂直なレーザビームに変換され、受光装置32における受光素子の受光面に到達する。
前記受光装置32は、受光素子の受光面で前記レーザビームを受光すると、出力信号を信号線25aを介して演算装置25に送信する。そして、該演算装置25は、受信した受光装置32の出力信号に基づいて、上金型22と下金型21との軸心ずれ量としての位置ずれ量を算出する。
次に、前記構成のプレス装置10において金型の軸心ずれとしての位置ずれを修正するための動作について説明する。まず、動作の概略について説明する。ここでは、プレス装置10が両面対称球面レンズや任意曲面レンズ、凹凸レンズ等を成形するために使用され、上金型22のキャビティ22b及び下金型21のキャビティ21bは球面を有するものとする。また、成形品としては、光ピックアップレンズ、携帯電話カメラ向け小径レンズ、小径ディスクパターン転写成形品等である。
まず、図1及び2に示されるように、型開が行われ、上金型22が十分に上昇した状態、すなわち、上金型22の金型合わせ面22aと下金型21の金型合わせ面21aとの間隔が、その間にビームベンダユニット34を配設するのに十分な距離となった状態で、駆動装置17を停止させ、上金型22の上下方向の位置を固定する。続いて、下金型21を固定して移動しないようにする。
次に、発光装置31、受光装置32、ビームスプリッタユニット33及びビームベンダユニット34を図1及び2に示されるような位置に配設し、ビームベンダユニット34の下半部34bから出射される下向きの垂直なレーザビームが下金型軸心線21cと一致するように、ビームスプリッタユニット33及びビームベンダユニット34の位置を調整する。そして、前記下金型21の水平方向の位置を調整して、下金型21のキャビティ21bの面によって反射されたレーザビームは、ビームベンダユニット34の下半部34b及びビームスプリッタユニット33の下半部33bを通過して、受光装置32における受光素子の受光面の中心で受光されるようにする。さらに、下金型21の金型合わせ面21aとレーザビームの光路35とが平行になるように調整する。
次に、ビームベンダユニット34の上半部34aから出射される上向きの垂直なレーザビームが上金型22のキャビティ22bに入射するように、前記上金型22の水平方向の位置を調整する。これにより、上金型22のキャビティ22bの面によって反射されたレーザビームは、ビームベンダユニット34の上半部34a及びビームスプリッタユニット33の上半部33aを通過して、受光装置32における受光素子の受光面で受光される。したがって、受光装置32には、下金型21のキャビティ21bの面によって反射されたレーザビームと上金型22のキャビティ22bの面によって反射されたレーザビームとが入射することになる。
そして、演算装置25は、受光装置32における受光素子の受光面で受光した二本のレーザビームの受光領域に基づいて、上金型22と下金型21との軸心ずれ量としての位置ずれ量を算出する。この場合、前記演算装置25は、各レーザビームに対応するそれぞれの受光領域の領域重心の位置座標を求め、二つの領域重心の水平方向ずれ量を求める。そして、該水平方向ずれ量、上金型22のキャビティ22bの面、すなわち、上金型成形面の形状、及び、上金型22のキャビティ22bの面によって反射されたレーザビームの受光素子の受光面までの距離に基づいて、上金型22と下金型21との軸心ずれ量としての位置ずれ量を算出する。
続いて、前記演算装置25が算出した位置ずれ量に基づいて、上金型22の水平方向の位置を調整して、前記上金型22の位置ずれ量を0にする、すなわち、位置ずれを解消する。この場合、例えば、上金型取り付け部材18に取り付けられた微動マイクロねじ装置等を備えるマイクロアジャスタのようなX−Y方向微小距離送り手段を操作して、上金型22の水平方向の位置を微細に調整することができる。
次に、前記受光領域の領域重心の水平方向ずれ量を求める方法について説明する。
図3は本発明の第1の実施の形態における受光装置の撮像データの処理方法を示す図、図4は本発明の第1の実施の形態におけるピクセルの面積から領域重心を求める方法を示す図である。
図3は、前記受光装置32における受光素子の受光面で受光したレーザビームの受光領域を模式的に示しており、41が下金型21のキャビティ21bで反射されたレーザビームの受光領域であり、42が上金型22のキャビティ22bで反射されたレーザビームの受光領域である。なお、前記受光領域41及び受光領域42は、前記受光素子の撮像データとして受光装置32から出力されて演算装置25によって受信される。そして、前記受光素子が複数のピクセル(画素)から構成されているので、前記受光領域41及び受光領域42に対応する撮像データは、ピクセルの集合として把握することができる。
まず、前記受光領域41の領域重心41a及び受光領域42の領域重心42aの位置を求める方法について説明する。
この場合、まず、前記受光領域41と受光領域42とを明確に分割するために、あらかじめ輝度値の閾(しきい)値を設定し、各ピクセルの輝度値を前記閾値を境界にして1又は0と決定する。すなわち、各ピクセルの輝度値を二値化する。そして、輝度値が閾値以上であり、1に設定されたピクセルの集合を受光領域41及び受光領域42として定義する。
続いて、受光領域41及び受光領域42を構成するピクセルの面積から、領域重心41a及び領域重心42aの位置を決定する。ここで、任意の領域S(x)が図4に示されるようになっているとすると、前記領域S(x)の領域重心(Gx,Gy)のX座標Gxは、次の式(1)及び式(2)を満たすGxの値を求めることによって、決定することができる。
Figure 2005205735
なお、f(x)は、縦方向のピクセル数を表している。また、同様にして、前記領域重心(Gx,Gy)のY座標Gyを決定することができる。
このようにして、前記受光領域41の領域重心41a及び受光領域42の領域重心42aの位置が求められると、図3に示されるような受光領域41と受光領域42とのX方向ずれ量及びY方向ずれ量を、領域重心41a及び領域重心42aのX座標の差及びY座標の差として求めることができる。そして、X方向ずれ量及びY方向ずれ量に基づいて、受光領域41と受光領域42との水平方向ずれ量を求めることができる。
次に、受光領域41と受光領域42とのずれ量に基づいて、上金型22と下金型21との軸心ずれ量としての位置ずれ量を算出する方法について説明する。
図5は本発明の第1の実施の形態における受光領域のずれ量に基づいて軸心ずれ量を算出する方法を示す図である。
ここでは、軸心ずれ量計測装置30と下金型21との位置関係は、あらかじめ調整されており、ビームベンダユニット34の下半部34bから下金型21のキャビティ21bに入射する下向きの垂直なレーザビームは、前記キャビティ21bの中心で正確に反射され、前記ビームベンダユニット34及びビームスプリッタユニット33を通過して、受光装置32における受光素子の受光面の中心に到達するものとする。すなわち、図3に示されるように、前記下金型21のキャビティ21bで反射されたレーザビームの受光領域41の領域重心41aが、前記受光面の原点に一致するものとする。また、上金型22の軸心は、前記下金型21の軸心からX軸方向(図面の水平方向)に軸心ずれ量Hxだけ離れている、すなわち、ずれているものとする。
なお、前記上金型22のキャビティ22bの面、すなわち、上金型成形面、及び、下金型21のキャビティ21bの面、すなわち、下金型成形面は球面であるとする。また、上金型22の金型合わせ面22aと下金型21の金型合わせ面21aとは互いに平行で、かつ、水平であるとする。さらに、上金型22のキャビティ22bの中心における上金型成形面の接平面と下金型21のキャビティ21bの中心における下金型成形面の接平面とは互いに平行で、かつ、水平であるとする。
図5に示されるように、発光装置31から光路35を通ってビームスプリッタユニット33に入射したレーザビームは、下半部33bから出射され入射光路Aを通るレーザビームと、上半部33aから出射され入射光路Bを通るレーザビームとに分割される。そして、入射光路Aを通るレーザビームは、ビームベンダユニット34の下半部34bによって下向きの垂直なレーザビームに変換された後、前述されたように、キャビティ21bの面における中心で反射される。ここで、キャビティ21bの中心における下金型成形面の接平面は水平である。そのため、前記キャビティ21bの面で反射されたレーザビームは、上向きの正確に垂直なレーザビームとなり、ビームベンダユニット34の下半部34bによって水平なレーザビームに正確に変換された後、前記入射光路Aと一致する反射光路Aを通って、ビームスプリッタユニット33の下半部33bに入射する。そして、該下半部33bで向きに変換されたレーザビームは、下向きの正確に垂直なレーザビームとなって、受光素子の受光面の中心に垂直に入射して受光される。
一方、入射光路Bを通るレーザビームは、ビームベンダユニット34の上半部34aによって上向きの垂直なレーザビームに変換された後、上金型22のキャビティ22bの面で反射される。ここで、上金型22の軸心が軸心ずれ量Hxだけずれているので、レーザビームが反射する位置における上金型成形面の接平面は、水平でなく、傾斜している。そのため、前記キャビティ22bの面で反射されたレーザビームは、下向きではあるが、垂直にならず、光軸ずれ角θだけ傾斜する。そして、ビームベンダユニット34の上半部34aによって向きを変換されたレーザビームは、水平でなく光軸ずれ角θだけ傾斜した反射光路Bを通って、ビームスプリッタユニット33の上半部33aに入射する。すなわち、入射光路Bと反射光路Bとが一致しない。そして、前記ビームスプリッタユニット33の上半部33aで向きを変換されたレーザビームは、下向きではあるが、垂直にならず、光軸ずれ角θだけ傾斜する。そして、光軸ずれ角θだけ傾斜したレーザビームは、受光素子の受光面の中心からX軸方向に撮像データずれ量Mxだけずれた位置に入射して受光される。
ところで、上金型22の軸心がずれていない場合、すなわち、上金型22の軸心が下金型21の軸心と一致している場合には、入射光路Bを通るレーザビームは、入射光路Aを通るレーザビームと同様に、上金型成形面で反射されても、傾斜することなく、正確に垂直なレーザビームとなって、受光素子の受光面の中心に垂直に入射して受光される。この場合、上金型成形面で反射されてから受光素子の受光面までの全光路長Lは、図5に示されるように、上金型成形面からビームベンダユニット34の上半部34aの全反射鏡面34cまでの光路長L1、前記全反射鏡面34cからビームスプリッタユニット33の上半部33aの全反射鏡面33cまでの光路長L2、及び、前記全反射鏡面33cから受光素子の受光面の中心までの光路長L3を合計したものである。すなわち、上金型22の軸心が下金型21の軸心と一致している場合における上金型成形面で反射されてから受光素子の受光面までの全光路長Lは、次の式(3)で表される。
L=L1+L2+L3 ・・・式(3)
そして、前記全光路長Lは、軸心ずれ量計測装置30と上金型22との位置関係が変化しない限り不変である。また、撮像データずれ量Mxは、前述されたような受光領域41と受光領域42とのX方向ずれ量として求めることができる。したがって、光軸ずれ角θは、次の式(4)によって求めることができる。
Figure 2005205735
また、前記光軸ずれ角θは、レーザビームが反射する位置における上金型成形面の接平面の水平面に対する傾斜角の二倍であるから、上金型成形面の形状が既知であれば、軸心ずれ量Hxの関数として算出することができる。すなわち、軸心ずれ量Hxは、光軸ずれ角θに基づいて算出することができる。例えば、前記上金型成形面が半径Rの球面である場合、前記光軸ずれ角θは、軸心ずれ量Hxの関数θ(Hx)として、次の式(5)で表される。
Figure 2005205735
なお、前記半径Rは、下金型21の軸心からY軸方向(図面の紙面に対して垂直方向)への軸心ずれ量Hyの関数でもある。しかし、該軸心ずれ量Hyの変動量ΔHyが前記半径Rに対して十分に微小であれば、前記変動量ΔHyに対する半径Rの変化量を無視することができるので、前記半径Rを一定とすることができる。また、前記軸心ずれ量Hyも、軸心ずれ量Hxと同様にして、光軸ずれ角θに基づいて算出することができる。
ところで、上金型22の軸心のずれの方向は、図3に示される受光領域42の受光領域41に対する方向、すなわち、座標原点に対する方向で判別することができる。例えば、図5に示される例のように、上金型22の軸心が下金型21の軸心からX軸方向にずれている場合には、前記受光領域42は第一象限又は第四象限に表れる。
なお、図3に示されるようにして受光装置32の撮像データを処理する場合、受光領域42が受光領域41に重なると処理ができなくなってしまう。すなわち、上金型22の軸心ずれ量Hx又はHyを算出することができなくなってしまう。しかし、前記全光路長Lが軸心ずれ量Hx又はHyに対して十分に大きい場合には、受光領域42が受光領域41に重なると処理ができなくなった時点において軸心ずれ量Hx又はHyの調整を終了しても、軸心ずれ量Hx又はHyを極めて微小にすることができ、実際上、上金型22の位置ずれは解消される。
ところで、本実施の形態においては、上金型22の金型合わせ面22a及び下金型21の金型合わせ面21aが水平であることを前提として、軸心ずれ量Hx又はHyを算出するようになっている。しかし、上金型22の金型合わせ面22a又は下金型21の金型合わせ面21aが水平でないと、キャビティ22b又はキャビティ21bの中心における上金型成形面又は下金型成形面の接平面が水平でないので、キャビティ22b又はキャビティ21bの中心で反射されたレーザビームは、垂直にならずに傾斜してしまうので、上金型22又は下金型21の軸心の位置を検出することができなくなってしまう。
そこで、上金型22の金型合わせ面22a又は下金型21の金型合わせ面21aが水平でない場合には、ビームベンダユニット34の上半部34aから出射される上向きの垂直なレーザビーム、又は、ビームベンダユニット34の下半部34bから出射される下向きの垂直なレーザビームをX軸方向及びY軸方向に関して、それぞれ、正及び負の方向にスキャンさせながら位置ずれ量の変化を検出することによって、キャビティ22b又はキャビティ21bの中心の位置を検出し、上金型22又は下金型21の軸心の位置を検出することができる。なお、この場合、上金型成形面及び下金型成形面の形状が、キャビティ22b及びキャビティ21bの中心に関して点対称であるものとする。
このように、本実施の形態においては、上金型22のキャビティ22bの面によって反射されたレーザビーム、及び、下金型21のキャビティ21bの面によって反射されたレーザビームの受光装置32における受光素子の受光面での受光領域に基づいて、上金型22と下金型21との軸心ずれ量としての位置ずれ量を算出するようになっている。そのため、上金型22と下金型21との位置ずれ量を正確に計測することができるので、軸心ずれとしての位置ずれを容易に、正確に、短時間で修正することができる。これにより、上金型22又は下金型21が損傷することを防止したり、上金型22を上下方向に移動させる上金型キャリッジ15、駆動装置17等にかかる負荷を低減することができる。さらに、下金型21のキャビティ21bと上金型22のキャビティ22bとによって形成されるキャビティ空間の形状を正確に再現することができるので、正確な外形を有する高品質の成形品を高い再現性で成形することができる。
本実施の形態においては、例えば、位置ずれ量の誤差を±1.0〔μm〕以下にすることができる。そのため、上金型22と下金型21との位置ずれ量を1.0〔μm〕以下にすることができ、上金型22又は下金型21が損傷することを防止したり、上金型22を上下方向に移動させる上金型キャリッジ15、駆動装置17等にかかる負荷を低減することができる。さらに、正確な外形を有する高品質の成形品を、誤差±1.0〔μm〕以下の高い再現性で成形することができる。
また、上金型22が下金型21に対して、どちらのずれ方向にどの程度の位置ずれ量だけずれているかを算出することができるので、前記位置ずれ量及びずれ方向に基づいて、上金型22をずれ方向と反対の方向に位置ずれ量だけ移動させることによって、位置ずれを確実に修正することができる。
次に、本発明の第2の実施の形態について説明する。なお、第1の実施の形態と同じ構成を有するものについては、同じ符号を付与することにより、その説明を省略する。また、前記第1の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図6は本発明の第2の実施の形態における軸心ずれ量計測装置の構成を示す図である。
本実施の形態において、発光装置31、受光装置32、ビームスプリッタユニット33及びビームベンダユニット34は、図6に示されるように、例えば、中空の筐(きょう)体から成る第1の計測装置フレーム46a、第2の計測装置フレーム46b及び第3の計測装置フレーム46cによって相互に連結されている。なお、該第1の計測装置フレーム46a、第2の計測装置フレーム46b及び第3の計測装置フレーム46cを統合的に説明する場合には、計測装置フレーム46として説明する。そして、前記受光装置32が支持部材45を介して、下金型取り付け部材14に取り付けられている。
また、前記計測装置フレーム46には、下金型21の下金型軸心線21cと平行に使途方向に延在する複数の下金型位置調整用フレーム47が取り付けられ、該下金型位置調整用フレーム47のそれぞれの先端部には、金型位置調整手段としての調整ボルト47aが螺(ら)入されている。さらに、前記計測装置フレーム46には、上金型22の上金型軸心線22cと平行に使途方向に延在する複数の上金型位置調整用フレーム48が取り付けられ、該上金型位置調整用フレーム48のそれぞれの先端部には、金型位置調整手段としての調整ボルト48aが螺入されている。前記調整ボルト47a及び調整ボルト48aは、それぞれ、前記下金型軸心線21c及び上金型軸心線22cを中心とする半径方向に沿って延在し、先端が前記下金型軸心線21c及び上金型軸心線22cの方向を向き、下金型21及び上金型22の周壁面に当接するようになっている。前記下金型位置調整用フレーム47及び調整ボルト47a、並びに、上金型位置調整用フレーム48及び調整ボルト48aは、前記第1の実施の形態において説明したマイクロアジャスタのようなX−Y方向微小距離送り手段と同様の機能を有する。そして、オペレータが手動によって、前記調整ボルト47a及び調整ボルト48aを回転させて移動させることにより、前記計測装置フレーム46と下金型21及び上金型22との水平方向の位置を微細に調整することができる。なお、その他の点の構成については、前記第1の実施の形態と同様であるので説明を省略する。
そして、プレス装置10において位置ずれを修正するために軸心ずれ量計測装置30をセットする際には、前記受光装置32を、支持部材45を介して、下金型取り付け部材14に取り付ける。続いて、前記発光装置31、受光装置32、ビームスプリッタユニット33及びビームベンダユニット34の相互の位置関係を調整し、ビームベンダユニット34の上半部34aから出射される上向きの垂直なレーザビームと、ビームベンダユニット34の下半部34bから出射される下向きの垂直なレーザビームとが、同一直線上を互いに反対方向に進むようにする。このようにして、前記発光装置31、受光装置32、ビームスプリッタユニット33及びビームベンダユニット34の相互の位置関係が調整された後、前記調整ボルト47aを操作して、前記下金型21の水平方向の位置を調整し、下金型21のキャビティ21bの面によって反射されたレーザビームが、ビームベンダユニット34の下半部34b及びビームスプリッタユニット33の下半部33bを通過して、受光装置32における受光素子の受光面の中心で受光されるようにする。なお、その他の点の構成については、前記第1の実施の形態と同様であるので説明を省略する。
このように、本実施の形態においては、発光装置31、受光装置32、ビームスプリッタユニット33及びビームベンダユニット34が共通する単一の支持装置としての計測装置フレーム46に取り付けられている。そのため、位置ずれを修正するために軸心ずれ量計測装置30をセットする際に、前記発光装置31、受光装置32、ビームスプリッタユニット33及びビームベンダユニット34を容易に配設することができ、相互の位置関係及び下金型21との位置関係を容易に調整することができる。
また、調整ボルト47a及び調整ボルト48aを操作することによって、下金型21及び上金型22の水平方向の位置を容易に、かつ、正確に調整することができる。
次に、本発明の第3の実施の形態について説明する。なお、第1及び第2の実施の形態と同じ構成を有するものについては、同じ符号を付与することにより、その説明を省略する。また、前記第1及び第2の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図7は本発明の第3の実施の形態における軸心ずれ量計測装置の構成を示す図である。
本実施の形態において、下金型21は、図7に示されるように、金型位置調整手段としての下金型用テーブル装置51を介して、下金型取り付け部材14に取り付けられている。また、上金型22は、金型位置調整手段としての上金型用テーブル装置52を介して、上金型取り付け部材18に取り付けられている。なお、前記下金型用テーブル装置51及び上金型用テーブル装置52は、それぞれ、下金型取り付け部材14及び上金型取り付け部材18に代えて使用されていてもよいし、下金型取り付け部材14及び上金型取り付け部材18の一部として構成されていてもよい。
前記下金型用テーブル装置51は、通常のX−Yテーブル装置と同様の構成を有し、固定テーブル51bに対して水平方向、すなわち、X−Y方向に移動可能に取り付けられた移動テーブル51aを有する。そして、該移動テーブル51aの上面に下金型21が取り付けられている。また、前記移動テーブル51aを移動させるための図示されない駆動源を有する。そして、該駆動源は、例えば、電動モータ、リニアモータ、油圧シリンダ装置、空圧シリンダ装置等を備え、演算装置25から、信号線25bを介して受信した移動量指令に従った距離だけ、X−Y方向に前記移動テーブル51aを移動させる。
また、前記上金型用テーブル装置52は、前記下金型用テーブル装置51と同様の構成を有し、固定テーブル52bに対して水平方向、すなわち、X−Y方向に移動可能に取り付けられた移動テーブル52aを有する。そして、該移動テーブル52aの下面に上金型22が取り付けられている。また、前記移動テーブル52aを移動させるための図示されない駆動源は、例えば、電動モータ、リニアモータ、油圧シリンダ装置、空圧シリンダ装置等を備え、演算装置25から、信号線25bを介して受信した移動量指令に従った距離だけ、X−Y方向に前記移動テーブル52aを移動させる。
この場合、前記演算装置25は、フィードバック制御を行って、位置ずれを修正する。すなわち、前記演算装置25は、受光装置32から出力を受信して、上金型22と下金型21との軸心ずれ量としての位置ずれ量を算出し、該位置ずれ量が0となるように、下金型用テーブル装置51の移動テーブル51a又は上金型用テーブル装置52の移動テーブル52aを移動させる。これにより、位置ずれを容易に、正確に、短時間で自動的に修正することができる。
次に、本発明の第4の実施の形態について説明する。なお、第1〜第3の実施の形態と同じ構成を有するものについては、同じ符号を付与することにより、その説明を省略する。また、前記第1〜第3の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図8は本発明の第4の実施の形態における軸心ずれ量計測装置の構成を示す図である。
本実施の形態においては、上金型22の金型合わせ面22aと下金型21の金型合わせ面21aとが互いに平行になるように調整することができるようになっている。そのため、図8に示されるように、発光装置31、受光装置32、ビームスプリッタユニット33及びビームベンダユニット34が第1の計測装置フレーム46a、第2の計測装置フレーム46b及び第3の計測装置フレーム46cによって相互に連結されて一体化、すなわち、ユニット化されているとともに、前記ビームベンダユニット34がビームベンダユニット保持部材36に保持されている。また、ユニット化された軸心ずれ量計測装置は、受光装置32を介して支持部材45に位置調整可能に取り付けることができる。
そして、該ビームベンダユニット保持部材36は、計測装置端面としての下側端面36a及び上側端面36bを備える。ここで、前記下側端面36a及び上側端面36bは高精度に仕上げられているとともに、互いに平行になるように形成され、かつ、光路35とも平行になるように形成されている。そのため、前記ビームベンダユニット保持部材36は、上金型22の金型合わせ面22aと下金型21の金型合わせ面21aとが互いに平行になるように調整するための冶具として機能することができる。また、前記ビームベンダユニット保持部材36の下側端面36aの近傍においては、ビームベンダユニット34の光路上に基準点ミラー38が、ビームベンダユニット保持部材36に着脱可能に取り付けられている。なお、前記基準点ミラー38は、前記下側端面36a及び上側端面36bと平行になるように取り付けられている。そのため、上金型22の金型合わせ面22aと下金型21の金型合わせ面21aとが平行でない場合にも、上金型22と下金型21との軸心ずれ量としての位置ずれ量を計測することができる。
この場合、まず、上金型22及び下金型21を上金型用テーブル装置52及び下金型用テーブル装置51に対して姿勢を調整することができる程度に緩く固定した状態とする。続いて、前記上金型22の金型合わせ面22aと下金型21の金型合わせ面21aとによって、上下からビームベンダユニット保持部材36を挟み込む。そして、前記上金型22の金型合わせ面22a及び下金型21の金型合わせ面21aが前記ビームベンダユニット保持部材36の下側端面36a及び上側端面36bにそれぞれ密着するように、前記上金型22及び下金型21の姿勢を調整する。続いて、前記上金型22の金型合わせ面22a及び下金型21の金型合わせ面21aが前記ビームベンダユニット保持部材36の下側端面36a及び上側端面36bにそれぞれ密着した状態で、支持部材45に受光装置32を取り付けるとともに、上金型22及び下金型21を上金型用テーブル装置52及び下金型用テーブル装置51に強固に固定する。これにより、前記上金型22及び下金型21は、金型合わせ面22aと金型合わせ面21aとが互いに平行で、かつ、光路35にも平行な状態で上金型用テーブル装置52及び下金型用テーブル装置51に取り付けられる。
続いて、演算装置25は、発光装置31からレーザビームを出射させ、前記基準点ミラー38に反射されたレーザビームを受光装置32に入射させて、レーザビームの受光面上の位置を記録して基準点とする。続いて、前記基準点ミラー38をビームベンダユニット保持部材36から取り外し、前記演算装置25によって、上金型22のキャビティ22bの面によって反射されたレーザビーム及び下金型21のキャビティ21bの面によって反射されたレーザビームの位置をモニタリングしながら、前記レーザビームの位置が前記基準点に合致するように、上金型用テーブル装置52の移動テーブル52a及び下金型用テーブル装置51の移動テーブル51aを移動させる。この場合の動作は、前記第3の実施の形態と同様であるので、説明を省略する。
このように、本実施の形態においては、上金型22の金型合わせ面22aと下金型21の金型合わせ面21aとが互いに平行になるように調整して、上金型22と下金型21との位置ずれを修正することができる。
ところで、前記第1〜第4の実施の形態においては、下金型21の位置を基準にして位置ずれ量を算出し、上金型22の水平方向の位置を調整する場合について説明したが、上金型22の位置を基準にして位置ずれ量を算出し、下金型21の水平方向の位置を調整することもできる。なお、位置ずれ量の計測及び位置ずれの修正は、例えば、千ショット毎のように、所定数の成形工程毎に行ってもよいし、所定期間又は所定時間経過毎に行ってもよい。
また、前記第1〜第4の実施の形態においては、上金型22が上下方向(垂直方向)に移動する縦置型のプレス装置について説明したが、上金型22又は下金型21が横方向(水平方向)に移動する横置型のプレス装置にも適用することができる。さらに、上金型22又は下金型21の片方のみが移動するプレス装置だけでなく、上金型22及び下金型21の両方が移動するプレス装置にも適用することができる。
さらに、前記第1〜第4の実施の形態においては、ガラスから成る成形品を成形する場合について説明したが、ガラスや樹脂のような材料から成る成形品の成形においては、成形直前に素材28を加熱したり、所定の雰囲気、例えば、不活性ガス雰囲気内においたり、また、成形直後に成形品を冷却したりする場合がある。このような場合、前記プレス装置10の周辺に加熱装置、冷却装置、不活性ガス供給装置等を配設することができる。これにより、前記素材28や成形品を不活性ガス雰囲気内で直接加熱したり冷却したり、また、下金型21上に載置されたり、上金型22と下金型21との間に形成されるキャビティ空間内に挟み込まれた素材28や成形品を加熱したり冷却したりすることが可能となる。
なお、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。
本発明の第1の実施の形態におけるプレス装置の構成を示す概略図である。 本発明の第1の実施の形態における軸心ずれ量計測装置の構成を示す図である。 本発明の第1の実施の形態における受光装置の撮像データの処理方法を示す図である。 本発明の第1の実施の形態におけるピクセルの面積から領域重心を求める方法を示す図である。 本発明の第1の実施の形態における受光領域のずれ量に基づいて軸心ずれ量を算出する方法を示す図である。 本発明の第2の実施の形態における軸心ずれ量計測装置の構成を示す図である。 本発明の第3の実施の形態における軸心ずれ量計測装置の構成を示す図である。 本発明の第4の実施の形態における軸心ずれ量計測装置の構成を示す図である。
符号の説明
10 プレス装置
21 下金型
22 上金型
25 演算装置
31 発光装置
32 受光装置
33 ビームスプリッタユニット
34 ビームベンダユニット
47a、48a 調整ボルト
51 下金型用テーブル装置
52 上金型用テーブル装置

Claims (6)

  1. (a)発光装置から出射された光を一対の金型のそれぞれの金型成形面に入射させる入射光路形成手段と、
    (b)前記それぞれの金型成形面から反射された光を受光装置に入射させる反射光路形成手段と、
    (c)前記それぞれの金型成形面から反射された光の前記受光装置の受光面上における位置関係に基づいて、前記一対の金型の軸心ずれ量を算出する演算装置とを有することを特徴とするプレス装置用計測装置。
  2. 前記入射光路形成手段又は反射光路形成手段は、光学絞り又は拡大若しくは縮小光学系を備える請求項1に記載のプレス装置用計測装置。
  3. (a)一対の金型と、
    (b)発光装置から出射された光を前記一対の金型のそれぞれの金型成形面に入射させる入射光路形成手段と、
    (c)前記それぞれの金型成形面から反射された光を受光装置に入射させる反射光路形成手段と、
    (d)前記それぞれの金型成形面から反射された光の前記受光装置の受光面上における位置関係に基づいて、前記一対の金型の軸心ずれ量を算出する演算装置とを有することを特徴とするプレス装置。
  4. 前記一対の金型のそれぞれの水平方向の位置を調整する金型位置調整手段を有する請求項3に記載のプレス装置。
  5. (a)発光装置から出射された光を一対の金型のそれぞれの金型成形面に入射させ、
    (b)該それぞれの金型成形面から反射された光を受光装置に入射させ、
    (c)前記それぞれの金型成形面から反射された光の前記受光装置の受光面上における位置関係に基づいて、前記一対の金型の軸心ずれ量を算出することを特徴とするプレス装置用計測方法。
  6. 前記発光装置から出射された光を前記金型成形面において走査させて、前記金型の軸心の位置を特定する請求項5に記載のプレス装置用計測方法。
JP2004014742A 2004-01-22 2004-01-22 プレス装置用計測装置及び方法並びにプレス装置 Pending JP2005205735A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014742A JP2005205735A (ja) 2004-01-22 2004-01-22 プレス装置用計測装置及び方法並びにプレス装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014742A JP2005205735A (ja) 2004-01-22 2004-01-22 プレス装置用計測装置及び方法並びにプレス装置

Publications (1)

Publication Number Publication Date
JP2005205735A true JP2005205735A (ja) 2005-08-04

Family

ID=34900441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014742A Pending JP2005205735A (ja) 2004-01-22 2004-01-22 プレス装置用計測装置及び方法並びにプレス装置

Country Status (1)

Country Link
JP (1) JP2005205735A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114825817A (zh) * 2022-04-20 2022-07-29 安徽皖新电机有限公司 一种单双层模具可替换式电机定子自动嵌线设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114825817A (zh) * 2022-04-20 2022-07-29 安徽皖新电机有限公司 一种单双层模具可替换式电机定子自动嵌线设备
CN114825817B (zh) * 2022-04-20 2022-11-22 安徽皖新电机有限公司 一种单双层模具可替换式电机定子自动嵌线设备

Similar Documents

Publication Publication Date Title
US6701633B2 (en) Apparatus and method for measuring a shape using multiple probes
TWI433256B (zh) 定位工具之x-y定位的校準方法及具有這種定位工具的裝置
US20210351057A1 (en) Mounting device and mounting method
JP2002210835A (ja) 光ビームの偏向制御方法及び光造形装置
JP2009216504A (ja) 寸法計測システム
JP2011133509A (ja) カメラモジュールの組立方法
JP2000079545A (ja) カップ取付装置
TW202128001A (zh) 感應器裝置
US11823938B2 (en) Mounting device and mounting method
KR20080111653A (ko) 카메라를 이용하여 측정 프로브의 원점을 보정하는 3차원측정장치
JP2001332611A (ja) キャリア形状測定機
JP2007085914A (ja) 非球面レンズの測定方法、非球面レンズの測定装置、非球面レンズの測定プログラム、非球面レンズの製造方法及び非球面レンズ
JP4294451B2 (ja) 半導体接合装置
JP2005205735A (ja) プレス装置用計測装置及び方法並びにプレス装置
CN111288933A (zh) 一种球面或旋转对称非球面光学元件自动定心方法
JPH11125520A (ja) 半導体ウエハ支持用部材及び半導体ウエハの平面度測定装置
JP2005154201A (ja) 金型装置、プレス装置、ハンドリング装置及び方法、並びに、位置決め方法
JP2007127473A (ja) 非球面レンズの測定方法、非球面レンズの測定装置、非球面レンズの測定プログラム、非球面レンズの製造方法及び非球面レンズ
CN117169118A (zh) 一种非接触式孔内表面外观检测装置及方法
JP2004128384A (ja) 部品実装装置および部品実装方法
CN100440466C (zh) 具有校准设备的引线接合器及方法
CN220698542U (zh) 一种飞行视觉定位激光打码装置
US20050072944A1 (en) Device and method for plane-parallel orientation of a the surface of an object to be examined in relation to a focus plane of a lens
CN220170189U (zh) 检测承载装置及台阶仪
JPH07229812A (ja) 非球面レンズの偏心測定装置および心取り装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A131 Notification of reasons for refusal

Effective date: 20090908

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112