JP2005201539A - 熱サイフォン型熱移動体 - Google Patents

熱サイフォン型熱移動体 Download PDF

Info

Publication number
JP2005201539A
JP2005201539A JP2004007870A JP2004007870A JP2005201539A JP 2005201539 A JP2005201539 A JP 2005201539A JP 2004007870 A JP2004007870 A JP 2004007870A JP 2004007870 A JP2004007870 A JP 2004007870A JP 2005201539 A JP2005201539 A JP 2005201539A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
pipe
transfer body
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004007870A
Other languages
English (en)
Inventor
Masamichi Suzuki
正道 鈴木
Yutaka Haniyu
豊 羽二生
Hitoshi Sato
仁仔 佐藤
Yuzuru Mitsumaru
譲 満丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujine Sangyo Kk
Original Assignee
Fujine Sangyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujine Sangyo Kk filed Critical Fujine Sangyo Kk
Priority to JP2004007870A priority Critical patent/JP2005201539A/ja
Publication of JP2005201539A publication Critical patent/JP2005201539A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】 放熱部内を流動する冷媒の循環効率をより高めて冷媒の沸騰気化・凝集液化の作用による冷却効率の大幅な向上が図られる熱サイフォン型熱移動体を提供する。
【解決手段】 鉛直方向に延び、平行に並列する複数の冷媒管10の上端および下端に、冷媒管10内の冷媒通路Zに連通する冷媒通路X,Yを有するヘッダーブロック20を接合して放熱部1を構成する。上側のヘッダーブロック20の開口(冷媒流入口)25から下側のヘッダーブロック20の開口(冷媒流出口)25にわたってループ管40を接続し、ループ管40、放熱部1を経て再びループ管40に至る冷媒の一方向の循環経路を形成する。
【選択図】 図1

Description

本発明は、例えば半導体素子、あるいは各種産業機器の操作盤等の筐体内を冷却させる冷却デバイスとして好適な熱サイフォン型熱移動体に関する。
半導体素子の冷却デバイスとして、冷媒管に封入した冷媒の動きに伴う潜熱を利用する熱サイフォン型が知られている。熱サイフォン型の冷却装置は、一般に、冷媒管の一端側に設定される受熱側に発熱体を接触させると、冷媒が加熱されて沸騰気化し、冷媒蒸気が他端側の放熱側に移動しつつ冷媒管の内壁で凝集液化し、その凝縮潜熱が低温流体に伝達して放熱し、発熱体の熱が放熱されて冷却される構成である。この場合、放熱部で凝縮液化した冷媒は自重により冷媒管の内壁面を伝って受熱部に移動し、再び発熱体で加熱されて沸騰気化するといった循環作用を示す。
このような冷却装置では、冷媒管が鉛直方向に沿っており、下端側が受熱側、上端側が放熱側に設定されたいわゆるボトムヒート型の場合、冷媒管が鉛直方向に沿っていることから、冷媒の沸騰気化・凝縮液化の循環がきわめてダイナミックに進行するため、優れた冷却効率を発揮するものである。ところが、設置する機器によっては、受熱側と放熱側の設置箇所に制約があって冷媒管を水平な状態としなければならない場合がある。そこで、本出願人は、複数の扁平な冷媒管の両端に熱伝導体を接合し、熱伝導体のX方向冷媒通路およびY方向冷媒通路と、冷媒管のZ方向冷媒通路とを連通させることで、冷媒が三次元方向に循環可能とし、設置スタイル(縦置き、横置き等)の自由度を向上させた熱サイフォン型熱移動体を提案した(特許文献1)。
特開2003−166793号公報
上記文献に記載の熱移動体では、放熱部(コア部)内のX,Y,Z方向にそれぞれ延びる冷媒通路を、設置状態に応じて流動・循環することで、冷媒の沸騰気化・凝縮液化が活発に進行し、冷却効率の向上は図れるものである。しかしながら、冷媒通路が放熱部の内部に存在するため、設置状態等によっては冷媒の流動が円滑に進まず、したがって、冷媒の循環効率がより高く、高温の発熱体にも対応可能な熱移動体の開発が要請されることになった。
よって本発明は、放熱部内を流動する冷媒の循環効率をより高めて冷媒の沸騰気化・凝集液化の作用による冷却効率の大幅な向上を図ることができる熱サイフォン型熱移動体を提供することを目的としている。
本発明は、冷媒を流動させる複数の冷媒通路が設けられた冷媒管、およびこの冷媒管の一端および他端に接合され、冷媒通路を互いに連通させる連通路がそれぞれ設けられた熱伝導体を備え、さらに、冷媒通路に対する冷媒流入口および冷媒流出口が設けられた放熱部と、この放熱部の外部において冷媒流入口から冷媒流出口にわたって接続され、受熱部を構成するループ管とを備えることを特徴としている。
本発明では、発熱体の熱をループ管で受けるようにして用いられる。発熱体の熱によりループ管は加熱されると、ループ管内に流動する冷媒が加熱され、その冷媒が沸騰気化する。沸騰気化した冷媒蒸気は、ループ管から冷媒流入口を経て放熱部の冷媒管の冷媒通路に流入し、冷媒通路内を冷媒流出口方向に移動しつつ、冷媒管の内壁で凝集液化し、その凝縮潜熱が低温流体に伝達して放熱する。これによって、発熱体は冷却される。冷媒管内で凝縮液化した冷媒は、冷媒通路から冷媒流出口を経てループ管に戻り、再び発熱体で加熱されて沸騰気化する。このようにして、冷媒は、ループ管、放熱部、ループ管といった経路で循環する。
本発明によれば、受熱部を放熱部の外部に設定し、冷媒をループ管と放熱部との間で循環させるので、冷媒の循環経路を一定方向に導くことが可能となり、冷媒の循環がより一層円滑なものとなる。その結果、冷媒の循環効率が向上するとともに、冷媒の沸騰気化・凝集液化の作用による冷却効率の大幅な向上が図られる。
本発明の上記冷媒流入口および冷媒流出口は、冷媒管の両端に接合された各熱伝導体にそれぞれ設けられるか、あるいは双方が一方の熱伝導体に設けられる形態のいずれかを採用することができる。このような場合、冷媒流入口および冷媒流出口は、熱伝導体に設けられた連通路を介して冷媒通路に連通している。また、冷媒管に放熱用のフィンを接合すれば、さらなる冷却効率の向上を図ることができるので好ましい。
本発明によれば、受熱部を放熱部の外部に設定し、冷媒をループ管と放熱部との間で循環させ、かつ、その循環経路を一定方向に導くことが可能となることから、冷媒の循環効率が向上して冷却効率の大幅な向上が図られるといった効果を奏する。
以下、図面を参照して本発明の実施形態を説明する。
(1)第1実施形態
図1は、本発明の第1実施形態に係る熱サイフォン型熱移動体(以下、熱移動体と略称する)P1の(a)側面図、(b)正面図、図2は背面図である。この熱移動体P1は、放熱部1と受熱部2とを有しており、以下、これらを説明する。
A.放熱部
図3、図4、図5は、それぞれ放熱部1の斜視図、一部断面側面図、一部断面正面図である。この放熱部1は、等間隔をおいて互いに平行に配された複数の冷媒管10と、これら冷媒管10の一端および他端に接合されて互いに平行をなす一対のヘッダーブロック(熱伝導体)20と、隣り合う冷媒管10に接合されたコルゲートフィン30とから構成されている。冷媒管10、ヘッダーブロック20およびコルゲートフィン30は、いずれもアルミニウム製である。
熱移動体P1は、図3〜図5に示すように、放熱部1の一対のヘッダーブロック20を上下に配し、冷媒管10を鉛直に立てた縦置きを基本姿勢として使用されるが、使用姿勢はこれに限定されるものではない。図1、図3、図5の各図では冷媒管10の数が異なるが、これは冷媒管10が仕様に応じて任意の数で良いことを示しているからであり、放熱部1に構造的な相違はない。各ヘッダーブロック20に対する各冷媒管10の接合、および各冷媒管10に対する各コルゲートフィン30の接合は、ろう付けによりなされている。
冷媒管10は、図6に示すように、断面が扁平楕円状で、内部には、長手方向に延びる複数(この場合6つ)の冷媒通路(Z方向冷媒通路)Zが、隔壁11によって幅方向に一列の状態で形成されている。冷媒管10は中実なアルミニウムの押し出し加工によって成形された素材を所定長さに切断したものである。冷媒通路Zは押し出し加工時に形成され、その寸法は、冷媒管10の厚さや幅等の寸法、押し出し成形性、冷媒通路Zを流れる冷媒の流動性等の諸条件を勘案して適宜に設定される。
ヘッダーブロック20は、図7に示すように、断面が長方形状で、一定厚さの長尺なバー状を呈しており、内部には、長手方向に延び、両端面に開口する複数(この場合3つ)の断面円形状の冷媒通路(X方向冷媒通路)Xが等間隔をおいて形成されている。ヘッダーブロック20は、中実なアルミニウムの押し出し加工によって成形された素材を所定長さに切断したもので、冷媒通路Xは押し出し加工時に形成される。また、ヘッダーブロック20の片面には、幅方向(冷媒通路Xに直交する方向)に延びる複数の凹所21が等間隔をおいて形成されている。これら凹所21の数は冷媒管10の数に対応している。図8に示すように、凹所21は各冷媒通路Xを横断しており、その深さはヘッダーブロック20の厚さの半分よりやや浅い。これら凹所21に冷媒管10の端部が嵌合され、冷媒管10はヘッダーブロック20にろう付けによって気密的に接合されている。冷媒管10はヘッダーブロック20に直交して接合され、その状態で、図8に示すように、ヘッダーブロック20の1つの冷媒通路Xに対して2つの冷媒通路Zが連通している。
また、図7に示すように、ヘッダーブロック20には、長手方向に間隔をおいて複数(この場合3つ)の冷媒通路(Y方向冷媒通路)Yが形成されている。これら冷媒通路Yは、ヘッダーブロック20の一方の側面からの孔空け加工によって形成されており、3つの冷媒通路Xを貫通することによってこれら冷媒通路Xに連通している。各冷媒通路Yは、近隣する凹所21と連通せぬよう凹所21の間に配されており、その開口は、ろう付けされたプラグ22で気密的に閉塞されている。図7(b)に示すように、ヘッダーブロック20の一方の側面には、冷媒通路Xに連通する開口25が形成されている。この開口25には、後述するループ管40が嵌合される。各冷媒通路Xの両端面の開口のうち、中央の冷媒通路Xの一方の開口が冷媒充填口23とされる。この冷媒充填口23は、冷媒充填後に、最終的にろう付けされるネジ式キャップ24で封止され、他の開口は、冷媒通路Yと同様にろう付けされたプラグ22で気密的に閉塞されている。冷媒はフロン等であって、冷媒充填口23から適量が充填され、その後、冷媒充填口23はキャップ24で封止される。
なお、ヘッダーブロック20の厚さ、幅、長さ、冷媒通路X,Yの径や数、凹所21の寸法等は、所要冷却能力、当該熱移動体P1の設置スペース、冷媒管10の寸法および冷媒の種類等を勘案して適宜に設定される。
各ヘッダーブロック20の冷媒通路X,Yは互いに連通し、さらに、各冷媒管10の冷媒通路Zはヘッダーブロック20の冷媒通路Xに連通している。すなわち、冷媒通路X,Y,Zは互いに連通している。これら冷媒通路X,Y,Zは互いに直交する方向に延びており、図1に示す熱移動体P1の使用姿勢で、冷媒通路Xは三次元方向におけるX方向、冷媒通路YはY方向、冷媒通路ZはZ方向に延びることになる。
B.受熱部
図1および図2に示すように、受熱部2は、上記放熱部1の各ヘッダーブロック20の一方の側面間にわたって並列して接合された複数(この場合2つ)のループ管40と、このループ管40の外面側に接合された矩形状の受熱板41とから構成される。ループ管40は、内部に冷媒通路(図示略)を有する扁平管で、主たる部分が冷媒管10と平行に配され、湾曲形成された両端部がヘッダーブロック20の側面に形成された開口25に嵌合され、かつ、ろう付けされて気密的に接合されている。ループ管40および受熱板41は、熱伝導性に優れたアルミニウム等により成形される。特にループ管40は、上記放熱部1を構成する冷媒管10と同じ材料を適宜に加工して流用することができる。ループ管40内の冷媒通路は、開口25を介してヘッダーブロック20の冷媒通路Xに、さらには冷媒通路Y,Zに連通しており、したがって、放熱部1内に充填された冷媒は、放熱部1からループ管40の間を循環できるようになっている。
次に、上記熱移動体P1の使用方法ならびに作用を説明する。
本実施形態の熱移動体P1は、図1および図2に示すように、一対のヘッダーブロック20を上下に配し、冷媒管10を鉛直に立てた縦置きを基本姿勢として用いられ、受熱部2の受熱板41の表面に、半導体素子等の発熱体50を接触させて、その発熱体50の冷却を行う。
発熱体50で発生する熱は、受熱板41からループ管40に伝わり、さらに、上下のヘッダーブロック20に伝わる。ここで、放熱部1内およびループ管40内に充填された冷媒(冷媒液)は下方に滞留しており、その冷媒は、ループ管40の下部や下側のヘッダーブロック20で加熱されて沸騰気化し、例えば、主にループ管40を上昇して上側のヘッダーブロック20内に開口(冷媒流入口)25から流入する。そして、上側のヘッダーブロック20内を流動する間や、さらに冷媒管10を下降する間に、冷媒蒸気は凝縮液化して冷媒液に変わり、その凝縮潜熱が外気に放熱される。
冷媒液は冷媒管10の内壁を伝って滴下し、下側のヘッダーブロック20内に流入して開口(冷媒流出口)25から再びループ管40内に入り、この間に発熱体50に加熱されて沸騰気化し、ループ管40を上昇して再び上側のヘッダーブロック20内に流入する。このように冷媒はループ管40、放熱部1、ループ管40という経路(図1(a)の二点鎖線矢印で示す)で循環し、その間に沸騰気化・凝縮液化の作用が繰り返しがなされ、これによって発熱体50は継続して冷却される。
上記実施形態の熱移動体P1によれば、冷媒が、ループ管40、放熱部1、ループ管40といった経路で循環するように、冷媒の循環経路を一定方向に導くことが可能となり、これによって冷媒は円滑に循環する。その結果、冷媒の循環効率が向上するとともに、冷媒の沸騰気化・凝集液化の作用による冷却効率の大幅な向上が図られる。
また、ヘッダーブロック20の冷媒通路X,Yと、冷媒管10の冷媒通路Zとが連通しているので、冷媒は三次元方向に循環可能である。このため、冷媒が局所的に停滞するといったことが起こりにくく、流速あるいは流量等を要素とする冷媒の流動性の均一化が図られ、さらに、冷媒温度の均一化が図られる。
(2)第2実施形態
次に、本発明の第2実施形態を説明する。
図9は、第2実施形態に係る熱移動体P2の(a)側面図、(b)正面図である。この熱移動体P2は、上記第1実施形態の熱移動体P1と同様の放熱部1を有しており、この放熱部1の下側のヘッダーブロック20の下面中央に、受熱部2が接合されている。この受熱部2は、扁平で側面視U字状をなし、両端が下側のヘッダーブロック20の下面中央に接合されたループ管40と、このループ管40の途中に設けられた受熱板41とから構成されている。
この場合、下側のヘッダーブロック20の下面中央には、両側の上記冷媒通路Xに連通する2つの開口(図示略)が形成され、これら開口に、ループ管40の端部がそれぞれ嵌合され、ろう付けにより気密的に接合されている。これにより、ループ管40内の冷媒通路は、それら開口を介して下側のヘッダーブロック20の冷媒通路X、さらには冷媒通路Y,Zに連通しており、したがって、放熱部1内に充填された冷媒は、放熱部1とループ管40との間を循環できるようになっている。ループ管40は、途中に配された受熱板41を貫通しており、受熱板41は、ループ管40の下端部である折り返し部の片側(図9(a)の左側部分)を覆うように配置され、ループ管40にろう付けで接合されている。
第2実施形態の熱移動体P2では、受熱板41の表面に発熱体50を接触させて用いられる。発熱体50で発生する熱は、受熱板41からループ管40に伝わり、ループ管40内に滞留している冷媒(冷媒液)が加熱されて沸騰気化し、冷媒蒸気は、受熱板41が配された側のループ管40の上記片側を上昇し、下側のヘッダーブロック20内に開口(冷媒流入口)から流入し、冷媒管10を上昇して上側ヘッダーブロック20に上昇する間に、凝集液化する。そして、その冷媒液は、冷媒管10を下降して下側のヘッダーブロック内に流入し、さらに、別の開口(冷媒流出口)を経てループ管40内に戻り、再び加熱されて沸騰気化する。図9(a)の二点鎖線矢印は、冷媒の経路を示している。
上記第2実施形態の熱移動体P2でも、ループ管40から放熱部1を経て再びループ管40に戻るように冷媒の循環経路が一方向に定まるので、冷媒は円滑に循環し、その結果、冷媒の循環効率が向上するとともに、冷媒の沸騰気化・凝集液化の作用による冷却効率の大幅な向上が図られる。
なお、上記実施形態の各熱移動体P1,P2では、放熱部の冷媒管10および各ヘッダーブロック20を水平に配し、受熱板41を上下いずれかに向ける横置き姿勢や、その水平姿勢から冷媒管10がある程度傾斜する姿勢など、様々な姿勢で使用することができる。
本発明の第1実施形態の熱移動体の(a)側面図、(b)正面図である。 第1実施形態の熱移動体の背面図である。 第1実施形態の熱移動体の放熱部の斜視図である。 放熱部の一部断面側面図である。 放熱部の一部断面平面図である。 放熱部の冷媒管の一部斜視図である。 放熱部のヘッダーブロックの(a)一部断面側面図、(b)平面図、(c)端面図である。 放熱部のヘッダーブロックへの冷媒管の接合構造を示す縦断面図である。 本発明の第2実施形態の熱移動体の(a)側面図、(b)正面図である。
符号の説明
1…放熱部
2…受熱部
10…冷媒管
20…ヘッダーブロック(熱伝導体)
25…開口(冷媒流入口、冷媒流出口)
30…コルゲートフィン
40…ループ管
41…受熱板
P1,P2…熱サイフォン型熱移動体
X,Y…ヘッダーブロックの冷媒通路(連通路)
Z…冷媒管の冷媒通路

Claims (5)

  1. 冷媒を流動させる複数の冷媒通路が設けられた冷媒管、およびこの冷媒管の一端および他端に接合され、前記冷媒通路を互いに連通させる連通路がそれぞれ設けられた熱伝導体を備え、さらに、前記冷媒通路に対する冷媒流入口および冷媒流出口が設けられた放熱部と、
    この放熱部の外部において前記冷媒流入口から前記冷媒流出口にわたって接続され、受熱部を構成するループ管とを備えることを特徴とする熱サイフォン型熱移動体。
  2. 一方の前記熱伝導体に前記冷媒流入口が設けられ、他方の前記熱伝導体に前記冷媒流出口が設けられ、これら冷媒流入口および冷媒流出口が、前記連通路を介して前記冷媒通路に連通していることを特徴とする請求項1に記載の熱サイフォン型熱移動体。
  3. 一方の前記熱伝導体に、前記冷媒流入口および前記冷媒流出口の双方が設けられ、これら冷媒流入口および冷媒流出口が、前記連通路を介して前記冷媒通路に連通していることを特徴とする請求項1に記載の熱サイフォン型熱移動体。
  4. 前記ループ管に受熱板が接合されていることを特徴とする請求項1〜3のいずれかに記載の熱サイフォン型熱移動体。
  5. 前記冷媒管に放熱用のフィンが接合されていることを特徴とする請求項1〜4のいずれかに記載の熱サイフォン型熱移動体。
JP2004007870A 2004-01-15 2004-01-15 熱サイフォン型熱移動体 Pending JP2005201539A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004007870A JP2005201539A (ja) 2004-01-15 2004-01-15 熱サイフォン型熱移動体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004007870A JP2005201539A (ja) 2004-01-15 2004-01-15 熱サイフォン型熱移動体

Publications (1)

Publication Number Publication Date
JP2005201539A true JP2005201539A (ja) 2005-07-28

Family

ID=34821396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004007870A Pending JP2005201539A (ja) 2004-01-15 2004-01-15 熱サイフォン型熱移動体

Country Status (1)

Country Link
JP (1) JP2005201539A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249314A (ja) * 2007-03-30 2008-10-16 Nec Corp サーマルサイフォン式沸騰冷却器
US8792240B2 (en) 2009-06-17 2014-07-29 Huawei Technologies Co., Ltd. Heat dissipation device and radio frequency module with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249314A (ja) * 2007-03-30 2008-10-16 Nec Corp サーマルサイフォン式沸騰冷却器
US8792240B2 (en) 2009-06-17 2014-07-29 Huawei Technologies Co., Ltd. Heat dissipation device and radio frequency module with the same

Similar Documents

Publication Publication Date Title
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
WO2013018667A1 (ja) 冷却装置及びそれを用いた電子機器
US20020029873A1 (en) Cooling device boiling and condensing refrigerant
JPH05264182A (ja) 一体化されたヒートパイプ・熱交換器・締め付け組立体およびそれを得る方法
US20050274496A1 (en) Boiling cooler
JPH10154781A (ja) 沸騰冷却装置
WO2019142310A1 (ja) 沸騰式冷却器
JP2008311399A (ja) ヒートシンク
JP2005229102A (ja) ヒートシンク
JP2003247790A (ja) 沸騰冷却装置
JP3511604B2 (ja) 熱サイフォン型熱移動体
JP2005201539A (ja) 熱サイフォン型熱移動体
JP2006234267A (ja) 沸騰冷却装置
JP6197651B2 (ja) 冷却装置
JP4026038B2 (ja) 沸騰冷却装置
JP2004020093A (ja) 熱サイフォン型熱移動体
JP7299441B1 (ja) 沸騰式冷却器
JP2017112189A (ja) サーモサイフォン冷却装置
JPS6111591A (ja) ヒ−トパイプ熱交換器
WO2013073696A1 (ja) 冷却装置およびそれを用いた電子機器
JP6767837B2 (ja) 冷却装置
JP3810119B2 (ja) 沸騰冷却装置
JPH08186208A (ja) 沸騰冷却装置
JP7439559B2 (ja) 沸騰冷却器
JP2000156445A (ja) 沸騰冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061120

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090415

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090420

A521 Written amendment

Effective date: 20090609

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090706

Free format text: JAPANESE INTERMEDIATE CODE: A02