JP2005200584A - Fluorescent substance, light emitting system, iluminating system and image-displaying system using the same - Google Patents

Fluorescent substance, light emitting system, iluminating system and image-displaying system using the same Download PDF

Info

Publication number
JP2005200584A
JP2005200584A JP2004009771A JP2004009771A JP2005200584A JP 2005200584 A JP2005200584 A JP 2005200584A JP 2004009771 A JP2004009771 A JP 2004009771A JP 2004009771 A JP2004009771 A JP 2004009771A JP 2005200584 A JP2005200584 A JP 2005200584A
Authority
JP
Japan
Prior art keywords
light
phosphor
mol
light emitting
red
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004009771A
Other languages
Japanese (ja)
Other versions
JP2005200584A5 (en
JP4363194B2 (en
Inventor
Takatoshi Seto
孝俊 瀬戸
Naoto Kijima
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004009771A priority Critical patent/JP4363194B2/en
Publication of JP2005200584A publication Critical patent/JP2005200584A/en
Publication of JP2005200584A5 publication Critical patent/JP2005200584A5/ja
Application granted granted Critical
Publication of JP4363194B2 publication Critical patent/JP4363194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Planar Illumination Modules (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent substance that gives high color rendering properties and develops deep red or white color and provide a light emitting system that is produced by using the fluorescent substance and can strongly emit visible light. <P>SOLUTION: The fluorescent substance includes the crystal phase having the chemical composition represented by formula [1] (wherein M<SP>1</SP>is a monovalent element or a divalent elements except Eu, Mn and Mg wherein the divalent elements occupies ≥80 mol%, the total of Ba, Ca and Sr is ≥40 mol% and the molar ratio of Ca to the total of Ba+Ca is <0.2; M<SP>2</SP>is a tetravalent element group including Si and Ge in an amount of ≥90 mol% in total; Z is a monovalent element, a divalent element, H or N; a, b, c, d, e, and f are each 0.0003≤a≤0.01, 0<b<0.075, 0<c/(c+d)≤0.8, 1.8≤(a+b+c+d)≤2.2, 0≤f/(e+f)≤0.035, 3.6≤(e+f)≤4.4). The light emitting system is prepared by combining the fluorescent substance with a light source for radiating the light of 350 to 430 nm wavelength. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、紫外光又は可視光領域にある光を吸収し長波長の可視光を発する母体化合物が付活元素を含有する蛍光体、及び、それを第2の発光体とし、電力源により紫外光から可視光領域の光を発光する第1の発光体と第2の発光体を組み合わせることにより、使用環境によらず高強度の発光を発生させることのできる発光装置に関する。   The present invention relates to a phosphor in which a host compound that absorbs light in the ultraviolet light or visible light region and emits visible light having a long wavelength contains an activator, and uses the phosphor as a second light emitter, and ultraviolet light is generated by a power source. The present invention relates to a light-emitting device capable of generating high-intensity light emission regardless of the use environment by combining a first light-emitting body that emits light in the visible light region and a second light-emitting body.

従来より、紫外光により赤色に発光する多数の蛍光体が知られており、また、白色に発光する蛍光体も知られている。赤色蛍光体は照明用として他の発光色の蛍光体と混合して白色として使用される。これらの中で、製造が容易であり、かつ、安定な蛍光体は、Sおよびハロゲンがほとんど含有されていない酸化物である。Sおよびハロゲンがほとんど含有されていない酸化物とは、結晶中のSおよびハロゲン元素の含有率が不純物レベル以下、即ち、目安として2mol%以下である酸化物のことである。La22S:Euといった、Sを結晶構成元素として含有している酸化物は、大気や空気中の水の存在下で紫外光照射時安定でないからであり、Ca5(PO43(F,Cl):Sb,Mnといった、C
l等のハロゲンを結晶構成元素として含有している酸化物は、製造時腐食の懸念があり、製造が容易でないからである。Sおよびハロゲンがほとんど含有されていない酸化物の中で、赤色に発光する蛍光体として、Y23:Eu,Y(P,V)O4:Eu、(Sr,M
g)3(PO42:Snが、白色に発光する蛍光体として、YVO4:Dyが挙げられる。(例えば、蛍光体ハンドブック(蛍光体同学会編、オーム社、1987)に記載されている。)上記赤色蛍光体はEu3+のf−f遷移過程で発光し、線スペクトルを与えることから、これに青色と緑色の蛍光体を組み合わせても演色性の低い白色光しか得られない。演色性は、異なる発光色を混合して白色光を発生させる場合に問題とする因子の一つであり、太陽光で照らされた物体の色の見え方に対し、蛍光体が発する光で照らされた物体の色の見え方がどの程度近いかを表す尺度であるが、蛍光体の発光スペクトルの半値幅が広くなるほど、演色性が高くなる傾向にある。赤色、緑色、青色の蛍光体を混合して白色光を発生させる場合、赤色の発光ピーク幅が小さいと、合成したスペクトルにおいて、緑色ピークとの間、即ち、550−590nmの領域に大きな谷間ができてしまい、その領域に谷間のない太陽光スペクトルと一致させることができず、演色性が低くなってしまう。この理由から、半値幅が20nm未満である、線スペクトルを発するY23:Eu、Y(P,V)O4:Euといった赤色蛍光体では演色性の高い白色光を得ることは困難である。
(Sr,Mg)3(PO42:Snといった赤色蛍光体では、従来型の254nmの水銀
輝線励起により発光するものの、近年開発されたGaN系半導体の強力な長波長光源によってはほとんど発光せず、励起源が極めて限定され、満足のいくものでない。上記白色蛍光体に関しては、演色性が低い。これは、補色関係にある480nm付近の青色と570nm付近の黄色により白色発光をするものであり、赤成分、緑成分が足りないため、演色性が低い。このように、Sおよびハロゲンがほとんど含有されていない従来の赤色、白色蛍光体は、赤色発光ピークが細いか、その波長が短すぎるため、良好な演色性や鮮やかさを与えることができないという問題、又は、400nm付近の光源で赤色成分の発光がないという問題があった。
Conventionally, many phosphors that emit red light by ultraviolet light are known, and phosphors that emit white light are also known. The red phosphor is mixed with other phosphors in the emission color and used as white for illumination. Among these, the phosphor that is easy to manufacture and is stable is an oxide containing almost no S and halogen. The oxide containing almost no S and halogen is an oxide in which the content of S and halogen elements in the crystal is below the impurity level, that is, 2 mol% or less as a guide. This is because an oxide containing S as a crystal constituent element, such as La 2 O 2 S: Eu, is not stable when irradiated with ultraviolet light in the presence of water in the air or air, and Ca 5 (PO 4 ) 3 (F, Cl): C, such as Sb, Mn
This is because an oxide containing a halogen such as l as a crystal constituent element is likely to be corroded during production and is not easy to produce. Among oxides containing almost no S and halogen, phosphors that emit red light are Y 2 O 3 : Eu, Y (P, V) O 4 : Eu, (Sr, M
g) As a phosphor in which 3 (PO 4 ) 2 : Sn emits white light, YVO 4 : Dy is exemplified. (For example, it is described in the phosphor handbook (Edited by Phosphor Handbook, Ohm Co., 1987).) The red phosphor emits light in the ff transition process of Eu 3+ and gives a line spectrum. Even if a blue and green phosphor is combined with this, only white light with low color rendering can be obtained. Color rendering is one of the factors that cause problems when white light is generated by mixing different luminescent colors. The color appearance of an object illuminated by sunlight is illuminated by the light emitted by the phosphor. The color rendering property tends to increase as the half-value width of the phosphor emission spectrum increases. When white light is generated by mixing red, green, and blue phosphors, if the red emission peak width is small, there is a large valley between the green peak in the synthesized spectrum, that is, in the region of 550-590 nm. It is not possible to make it coincide with the sunlight spectrum having no valleys in the region, and the color rendering property is lowered. For this reason, it is difficult to obtain white light having a high color rendering property with a red phosphor such as Y 2 O 3 : Eu or Y (P, V) O 4 : Eu that emits a line spectrum having a half width of less than 20 nm. is there.
A red phosphor such as (Sr, Mg) 3 (PO 4 ) 2 : Sn emits light by excitation of a conventional 254 nm mercury emission line, but it can hardly emit light due to a recently developed GaN-based semiconductor with a strong long wavelength light source. However, the excitation source is very limited and is not satisfactory. The white phosphor has a low color rendering property. This emits white light with a blue color near 480 nm and a yellow color near 570 nm, which are in a complementary color relationship. Since the red and green components are insufficient, the color rendering is low. As described above, conventional red and white phosphors containing almost no S and halogen have a problem that they cannot give good color rendering and vividness because the red emission peak is narrow or the wavelength is too short. Alternatively, there is a problem that the red component does not emit light with a light source near 400 nm.

また、近年、Sおよびハロゲンがほとんど含有されていない赤色又は白色蛍光体を、低電圧で強度の強い近紫外光を発するGaN系半導体と組み合わせた、白色発光の発光装置が、消費電力が小さく長寿命な画像表示装置や照明装置の発光源として提案されており、組み合わせる蛍光体が赤色蛍光体の場合の例として、Y23:Euが挙げられるが、Y2
3:Euと青色、緑色蛍光体、及び近紫外光発光源とを組み合わせた時に得られる白色
光の演色性は、Y23:Euの発光スペクトルが線スペクトルのため、先述と同様の理由
から低く、発光強度も低い。組み合わせる蛍光体が白色蛍光体の場合の例として、特開2002−359404号公報に、リン酸塩及び/又はホウ酸塩蛍光体を使用する方法が示されている。しかしながら、本方法では、青から赤の領域にさしかかった、幅の十分に広い発光スペクトルが得られず、演色性が低く、鮮やかな発光色が得られない。他の赤色蛍光体として、CaSiO3:Pb,Mn、(Zn,Cd)S:Cu,Alや(Zn,Cd
)S:Ag等があるが、有毒なCdやPb等を使用しているため、生活環境を悪化させる要因となるものであり、このような元素を用いない蛍光体の開発が望まれていた。
In recent years, a light emitting device that emits white light in which a red or white phosphor containing almost no S and halogen is combined with a GaN-based semiconductor that emits strong near-ultraviolet light at a low voltage has a low power consumption and is long. have been proposed as a light emitting source of life image display device or a lighting device, as an example of the case where phosphor combined is red phosphor, Y 2 O 3: While Eu may be mentioned, Y 2
O 3: Eu and the blue, green phosphors, and the color rendering properties of white light obtained when a combination of a near-ultraviolet light emitting source, Y 2 O 3: emission spectrum of Eu is for line spectrum, similar to the previously described Low for reasons and low emission intensity. As an example of the case where the phosphor to be combined is a white phosphor, Japanese Patent Application Laid-Open No. 2002-359404 discloses a method using a phosphate and / or borate phosphor. However, according to this method, a sufficiently wide emission spectrum reaching the blue to red region cannot be obtained, the color rendering property is low, and a bright emission color cannot be obtained. Other red phosphors include CaSiO 3 : Pb, Mn, (Zn, Cd) S: Cu, Al, and (Zn, Cd
) S: Ag, etc., but because toxic Cd and Pb are used, it becomes a factor that deteriorates the living environment, and the development of phosphors that do not use such elements has been desired. .

さらに、GaN系半導体と組み合わせる蛍光体は、使用時、半導体の発熱により蛍光体付近の温度が室温より高くなるので、室温より高い温度での輝度も十分高いことが要求される。
上述の如く、従来の、製造が容易で安定なタイプの赤色、白色蛍光体を組み込んだ照明装置や画像表示装置は、深い赤色成分のピークが不十分なため、鮮やかな高演色性の光が得られず、満足できるものでなかった。
特開2002−359404号公報
Furthermore, when used in a phosphor combined with a GaN-based semiconductor, the temperature in the vicinity of the phosphor becomes higher than room temperature due to heat generation of the semiconductor, so that the luminance at a temperature higher than room temperature is required to be sufficiently high.
As described above, conventional lighting devices and image display devices incorporating red and white phosphors, which are easy to manufacture and stable, have insufficient deep red component peaks, so that bright and highly color-rendering light is emitted. It was not obtained and was not satisfactory.
JP 2002-359404 A

本発明は、前述の従来技術に鑑み、高い演色性と鮮やかさを与える、言い換えれば、615−645nm領域の明るくて、かつ、深みのある赤色成分を含み、かつ、幅の広い発光ピークを与える赤色又は白色蛍光体、特に、近紫外光源と組み合わせて演色性、強度がともに高い赤色又は白色の発光を与える蛍光体であって、かつ、温度特性が良好で、製造が容易で、安定な蛍光体を提供することを目的とする。   The present invention provides high color rendering properties and vividness in view of the above-described prior art, in other words, a bright and deep red component in the 615-645 nm region and a wide emission peak. Red or white phosphors, especially phosphors that emit red or white light with high color rendering properties and intensity in combination with near-ultraviolet light sources, have good temperature characteristics, are easy to manufacture, and are stable. The purpose is to provide a body.

本発明者は、前記課題を解決すべく鋭意検討した結果、半値幅が大きく、ピークトップが615−645nm間にある赤色発光ピークを与え、または、その赤色ピークはもとより、青色の領域にまたがる非常に大きな幅を持つ発光スペクトルを与える蛍光体であって、かつ、350−430nmの光の照射を受けて、赤色又は白色に強く発光する蛍光体を、具体的には、低濃度のEuおよびMnで付活され、Caが無いか又は少量以下で、BaとMgを含有するM2SiO4型の珪酸塩を見い出し、本発明に到達した。特に、本発明の蛍光体は、250nm付近から400nm付近まにまたがる膨大な波長領域にあるどの光源によっても強く発光し、かつ、明るく感じられ、深みのある赤色を基本としており、鮮やかな可視光を発し、温度特性が良好という特徴を持つ。 As a result of intensive studies to solve the above problems, the present inventor has given a red emission peak having a large half-value width and a peak top of 615 to 645 nm, or an emergency that spans the blue region as well as the red peak. A phosphor that gives an emission spectrum having a large width and emits strong red or white light when irradiated with light of 350 to 430 nm, specifically, low concentrations of Eu and Mn The present inventors found an M 2 SiO 4 type silicate containing Ba and Mg with no Ca or less than a small amount of Ca. In particular, the phosphor of the present invention is strongly emitted by any light source in an enormous wavelength region extending from around 250 nm to around 400 nm, is bright, and is based on a deep red color. And has a characteristic of good temperature characteristics.

即ち、本発明は、下記一般式[1]の化学組成を有する結晶相を有する蛍光体をその第一の要旨とし、350−430nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、前記第2の発光体が、下記一般式[1]の化学組成を有する結晶相を有する蛍光体であることを特徴とする発光装置をその第二の要旨とする。   That is, the first aspect of the present invention is a phosphor having a crystal phase having a chemical composition represented by the following general formula [1], the first illuminant that emits light of 350 to 430 nm, and the first In a light emitting device having a second light emitter that generates visible light upon irradiation of light from the light emitter, the second light emitter has a crystal phase having a chemical composition represented by the following general formula [1] A light emitting device characterized in that is a second gist thereof.

Figure 2005200584
Figure 2005200584

(但し、M1は、1価の元素、Eu,Mn,Mgを除く2価の元素、3価の元素、5価の
元素の群から選ばれる少なくとも1種の元素を表し、2価の元素が占める割合が80mol%以上であり、Ba,Ca,Srの合計が占める割合が40mol%以上であり、BaとCaの合計に対するCaの割合(モル比)が0.2未満である。M2は、SiおよびG
eを合計で90mol%以上含む4価の元素群を表し、Zは、−1価、−2価の元素、H、Nからなる群から選ばれる少なくとも1種の元素である。aは0.0003≦a≦0.01、bは0<b<0.075、c,dは0<c/(c+d)≦0.8、a,b,c,dは1.8≦(a+b+c+d)≦2.2、e,fは0≦f/(e+f)≦0.035、および3.6≦(e+f)≦4.4を満足する数である。)
(However, M 1 represents a monovalent element, a divalent element other than Eu, Mn, and Mg, at least one element selected from the group of trivalent elements, and pentavalent elements. is not less proportion of more than 80 mol%, Ba, Ca, the percentage of total occupied Sr not less than 40 mol%, the proportion of Ca to the sum of Ba and Ca (mole ratio) is less than 0.2 .M 2 Si and G
A tetravalent element group containing 90 mol% or more of e in total is represented, and Z is at least one element selected from the group consisting of a −1 valent element, a −2 valent element, H, and N. a is 0.0003 ≦ a ≦ 0.01, b is 0 <b <0.075, c and d are 0 <c / (c + d) ≦ 0.8, and a, b, c and d are 1.8 ≦ (A + b + c + d) ≦ 2.2, e and f are numbers satisfying 0 ≦ f / (e + f) ≦ 0.035 and 3.6 ≦ (e + f) ≦ 4.4. )

本発明によれば、高い演色性を与え、深みのある赤色、又は、演色性が高く、鮮やかな白色の蛍光体、かつ、それらの特徴を持つ、室温を超えても強い可視光を発する発光装置を提供することができる。   According to the present invention, a deep red color or a bright white phosphor having a high color rendering property and a high color rendering property, and a light emission that emits strong visible light even when exceeding room temperature. An apparatus can be provided.

以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本発明は、下記一般式[1]の化学組成を有する結晶相を有する蛍光体であり、そして、下記一般式[1]の化学組成を有する結晶相を有する蛍光体と、それに350−430nmの光を照射させるための発光源とを有する発光装置である。
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
The present invention is a phosphor having a crystal phase having a chemical composition of the following general formula [1], a phosphor having a crystal phase having a chemical composition of the following general formula [1], and a phosphor having a crystal phase of 350 to 430 nm. And a light emitting device for irradiating light.

Figure 2005200584
Figure 2005200584

式[1]中のM1は、1価の元素、Eu,Mn,Mgを除く2価の元素、3価の元素、
5価の元素の群から選ばれる少なくとも1種の元素を表し、2価の元素が占める割合が80mol%以上であり、Ba,Ca,Srの合計が占める割合が40mol%以上であり、BaとCaの合計に対するCaの割合(モル比)が0.2未満という条件を満たすものである。Ba,Ca,Sr以外の元素を具体的に述べると、1価の元素としては、Li,Na,K,Rb,Cs等が挙げられ、2価の元素としては、V,Cr,Fe,Co,Ni,Cu,Zn,Mo,Ru,Pd,Ag,Cd,Sn,Sm,Tm,Yb,W,Re,Os,Ir,Pt,Hg,Pb等が挙げられ、3価の元素としては、B,Al,Ga,In等や、Y,Sc等の希土類元素が挙げられ、5価の元素としては、P,Sb,Bi等が挙げられるが、これらに限定されるものではない。2価の元素においては、中でもV,Zn,Mo,Sn,Sm,Tm,Yb,W,Pbが挙げられる。
M 1 in the formula [1] is a monovalent element, a divalent element excluding Eu, Mn, and Mg, a trivalent element,
It represents at least one element selected from the group of pentavalent elements, the proportion of divalent elements is 80 mol% or more, the proportion of the total of Ba, Ca, and Sr is 40 mol% or more, and Ba and It satisfies the condition that the ratio (molar ratio) of Ca to the total of Ca is less than 0.2. When elements other than Ba, Ca, and Sr are specifically described, examples of monovalent elements include Li, Na, K, Rb, and Cs. Examples of divalent elements include V, Cr, Fe, and Co. , Ni, Cu, Zn, Mo, Ru, Pd, Ag, Cd, Sn, Sm, Tm, Yb, W, Re, Os, Ir, Pt, Hg, Pb, and the like. B, Al, Ga, In, and the like, and rare earth elements such as Y, Sc, and the like. Examples of the pentavalent element include, but are not limited to, P, Sb, Bi, and the like. Among the divalent elements, V, Zn, Mo, Sn, Sm, Tm, Yb, W, and Pb are among others.

1中2価の元素及び付活元素Eu2+とMn2+の焼成時の固体内拡散による珪酸塩の結
晶化を助ける意味で、1価、3価、5価の元素を合計20mol%以内で導入しても良い。深みのある赤色成分等の面では、BaとCaの合計に対するCaの割合(モル比)が0.1未満が好ましく、0がより好ましい。青ピーク、緑ピーク、赤ピークがともに十分な割合で揃った、演色性の非常に高い可視光スペクトルを得るという面では、BaとCaの合計に対するCaの割合(モル比)が0を超えることが好ましく、0.1以上がより好ましい。
A total of 20 mol% of monovalent, trivalent, and pentavalent elements is used to aid crystallization of silicate by diffusion in the solid during firing of divalent elements and activators Eu 2+ and Mn 2+ in M 1. May be introduced within. In terms of a deep red component or the like, the ratio (molar ratio) of Ca to the total of Ba and Ca is preferably less than 0.1, and more preferably 0. The ratio (molar ratio) of Ca to the total of Ba and Ca must be greater than 0 in terms of obtaining a visible light spectrum with a very high color rendering property in which the blue peak, the green peak, and the red peak are aligned at a sufficient ratio. Is preferable, and 0.1 or more is more preferable.

赤色又は白色の発光強度等の面から、Ba,Ca,Srの合計が占める割合が80mol%以上であることが好ましく、Ba,Caの合計が占める割合が80mol%以上であることがより好ましく、Ba,Ca,Srの合計が占める割合が100mol%であることが更に好ましい。
式[1]中のM2は、SiおよびGeを合計で90mol%以上含む4価の元素群を表
すが、赤色又は白色の発光強度等の面から、M2がSiを80mol%以上含むことが好
ましく、M2がSiからなることがより好ましい。Si,Ge以外の4価の元素としては
、Zn,Ti,Hf等が挙げられ、赤色又は白色の発光強度等の点から、性能を損なわない範囲でこれらを含んでいてもよい。
From the viewpoint of red or white emission intensity, the proportion of the total of Ba, Ca, Sr is preferably 80 mol% or more, more preferably the proportion of the total of Ba, Ca is 80 mol% or more, More preferably, the ratio of the total of Ba, Ca and Sr is 100 mol%.
M 2 in the formula [1] represents a tetravalent element group containing 90 mol% or more of Si and Ge in total, but M 2 contains 80 mol% or more of Si in terms of red or white emission intensity. It is more preferable that M 2 is made of Si. Examples of tetravalent elements other than Si and Ge include Zn, Ti, Hf, and the like, and these may be included within a range that does not impair the performance in terms of red or white emission intensity.

式[1]中のZは、−1価、−2価の元素、H、Nからなる群から選ばれる少なくとも1種の元素であり、例えば、酸素と同じ−2価の元素であるS,Se,Te以外に−1価であるF,Cl,Br,I等であってもよいし、OH基が含有されていてもよいし、酸素基が一部ON基やN基に変わっていてもよい。また、Zは、蛍光性能には影響が少ない程度、即ち、不純物レベルの対全元素比約2mol%以下で含まれていてもよい。これは、(Z+酸素原子)に対するZのモル比としては0.035以下に相当する。よって、(Z+酸素原子)に対するZのモル比であるf/(e+f)の範囲は0≦f/(e+f)≦0.035であり、蛍光体の性能の点から、f/(e+f)≦0.01が好ましく、通常使用においてはf/(e+f)=0が好ましい。   Z in the formula [1] is at least one element selected from the group consisting of a −1 valent element, a −2 valent element, H, and N. For example, S, which is a −2 valent element similar to oxygen, In addition to Se and Te, it may be −1 valent F, Cl, Br, I, etc., OH group may be contained, and oxygen group is partially changed to ON group or N group. Also good. Z may be contained to such an extent that the fluorescent performance is not affected, that is, the impurity level to the total element ratio is about 2 mol% or less. This corresponds to a molar ratio of Z to (Z + oxygen atom) of 0.035 or less. Therefore, the range of f / (e + f), which is the molar ratio of Z to (Z + oxygen atom), is 0 ≦ f / (e + f) ≦ 0.035. From the viewpoint of phosphor performance, f / (e + f) ≦ 0.01 is preferable, and f / (e + f) = 0 is preferable in normal use.

式[1]中のEuモル比aについては、aは、0.0003≦a≦0.01を満足する数である。第1の発光源としてGaN系半導体を用いる場合、本半導体チップの表面温度が、作動時100℃を超えるが、効率良く蛍光体を発光させるために、このチップ表面近傍に蛍光体を設置すると、蛍光体の作動時の温度が100℃近くとなってしまう。従って、実際の蛍光体の使用温度は100℃近くであるため、100℃に温度上昇しても輝度があまり低下しない蛍光体が望ましく、発光中心イオンEu2+のモル比aが大きいと、室温以上の温度で輝度が低下するため、モル比aを0.01以下にすることにより、100℃付近に昇温しても輝度が低下せず、温度特性の低下を防ぐことが可能となる。発光中心イオンEu2+のモル比aが小さすぎると、発光強度が小さくなる傾向があり、下限としては、a≧0.001がより好ましく、a≧0.002が更に好ましい。 Regarding the Eu molar ratio a in the formula [1], a is a number satisfying 0.0003 ≦ a ≦ 0.01. When a GaN-based semiconductor is used as the first light emitting source, the surface temperature of the semiconductor chip exceeds 100 ° C. during operation, but in order to efficiently emit the phosphor, when the phosphor is installed near the chip surface, The temperature at the time of operation of the phosphor becomes close to 100 ° C. Therefore, since the actual use temperature of the phosphor is close to 100 ° C., it is desirable to use a phosphor whose luminance does not decrease much even when the temperature rises to 100 ° C. When the molar ratio a of the luminescent center ion Eu 2+ is large, Since the luminance is reduced at the above temperature, by setting the molar ratio a to 0.01 or less, the luminance does not decrease even when the temperature is raised to around 100 ° C., and it is possible to prevent the temperature characteristics from being deteriorated. If the molar ratio “a” of the luminescent center ion Eu 2+ is too small, the emission intensity tends to decrease, and the lower limit is more preferably a ≧ 0.001, and more preferably a ≧ 0.002.

式[1]中のMnモル比bは、赤色発光とするか白色発光とするかを左右する因子であり、bが0の場合、赤色ピークが得られず、青もしくは青緑ピークのみであるが、bが小さな正の値をとると、青、緑ピークに赤色ピークが現れ、全体として白色発光となり、bがより大きな正の値をとると、青、緑ピークが非常に小さくなり、赤色ピークが主となる。bの範囲は、赤色蛍光体又は白色蛍光体として、0<b<0.075である。蛍光体が励起光源の照射を受けて励起したEu2+のエネルギーがMn2+に移動し、Mn2+が赤色発光しているものと考えられ、主にM1とM2の組成によってエネルギー移動の程度が多少異なるので、M1とM2の組成によって赤色蛍光体から白色光蛍光体に切り替わるbの境界値が多少異なる。それゆえ、赤色発光と白色発光のbの良好な範囲を厳密に区別できないが、赤色、白色を含めた発光色の強度等の面から、0.002≦b<0.075がより好ましく、0.005≦b<0.075が更に好ましい。なお、本発明において「白色」とは、広義に解釈されるものとし、発光スペクトルにおいて、2つ以上の極大値が存在し、それぞれが広帯域発光ピークであることを意味する。 The Mn molar ratio b in the formula [1] is a factor that determines whether to emit red light or white light. When b is 0, a red peak is not obtained and only a blue or blue-green peak is obtained. However, when b takes a small positive value, a red peak appears in the blue and green peaks, and the whole emits white light, and when b takes a larger positive value, the blue and green peaks become very small and red. The peak is the main. The range of b is 0 <b <0.075 as a red phosphor or a white phosphor. Energy Eu 2+ phosphor has excited by the irradiation of the excitation light source is moved to Mn 2+, it believed that Mn 2+ is red-emitting, energy mainly by the composition of M 1 and M 2 Since the degree of movement is slightly different, the boundary value of b for switching from the red phosphor to the white light phosphor is slightly different depending on the composition of M 1 and M 2 . Therefore, the good range of b of red light emission and white light emission cannot be strictly distinguished, but 0.002 ≦ b <0.075 is more preferable from the viewpoint of the intensity of light emission colors including red and white, and 0 0.005 ≦ b <0.075 is more preferable. In the present invention, “white” is to be interpreted in a broad sense, and means that there are two or more maximum values in the emission spectrum, each of which is a broadband emission peak.

式[1]中のMgは、2価元素が主であるM1に置換され、MgとM1の合計モル数に対するMgのモル数の割合であるc/(c+d)が、0<c/(c+d)≦0.8であるが、赤色又は白色の発光強度等の面から、0<c/(c+d)≦0.7が好ましい。
前記一般式[1]の結晶相EuaMnbMgc1 d2efにおいては、Eu2+、Mn2+、Mg2+は主に2価元素からなるM1に置換され、M2は主にSiとGeで占められ、アニオンは主に酸素であり、その基本組成は、M1、M2、酸素原子の総モル比がそれぞれ2,1,4のものであるが、カチオン欠損やアニオン欠損が多少生じていても本目的の蛍光性能に大きな影響がないので、SiとGeが主に占めるM2の全モル比を化学式上で1と固
定したときに、(M1+Eu+Mn+Mg)のモル比(a+b+c+d)は、1.8≦(
a+b+c+d)≦2.2の範囲であり、中でも(a+b+c+d)=2であることが好ましい。又、アニオン側のサイトの全モル比である(e+f)は、通常、3.6≦(e+f)≦4.4の範囲であり、中でも、e=4、かつf=0であることが好ましい。
Mg in the formula [1] is substituted with M 1 which is mainly a divalent element, and c / (c + d) which is a ratio of the number of moles of Mg to the total number of moles of Mg and M 1 is 0 <c / Although (c + d) ≦ 0.8, 0 <c / (c + d) ≦ 0.7 is preferable from the viewpoint of red or white emission intensity.
In the crystal phase Eu a Mn b Mg c M 1 d M 2 O e Z f of the general formula [1], Eu 2+ , Mn 2+ , and Mg 2+ are replaced with M 1 mainly composed of a divalent element. M 2 is mainly occupied by Si and Ge, the anion is mainly oxygen, and the basic composition is that of M 1 , M 2 , and the total molar ratio of oxygen atoms of 2 , 1 , 4 respectively. However, even if some cation deficiency or anion deficiency occurs, the fluorescence performance for this purpose is not greatly affected. Therefore, when the total molar ratio of M 2 mainly occupied by Si and Ge is fixed to 1 in the chemical formula, The molar ratio (a + b + c + d) of M 1 + Eu + Mn + Mg is 1.8 ≦ (
a + b + c + d) ≦ 2.2, and (a + b + c + d) = 2 is particularly preferable. Further, the total molar ratio of the sites on the anion side (e + f) is usually in the range of 3.6 ≦ (e + f) ≦ 4.4, and among them, it is preferable that e = 4 and f = 0. .

本発明で使用する蛍光体は、前記一般式[1]に示されるようなM1源、M2源、Mg源、及び、付活元素であるEuとMnの元素源化合物を下記の(A)又は(B)の混合法により調製した混合物を加熱処理して焼成することにより製造することができる。
(A)ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機、又は、乳鉢と乳棒等を用いる粉砕と、リボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機、又は、乳鉢と乳棒を用いる混合とを合わせた乾式混合法。
(B)粉砕機、又は、乳鉢と乳棒等を用いて、水等を加えてスラリー状態又は溶液状態で、粉砕機、乳鉢と乳棒、又は蒸発皿と撹拌棒等により混合し、噴霧乾燥、加熱乾燥、又は自然乾燥等により乾燥させる湿式混合法。
The phosphor used in the present invention includes an M 1 source, an M 2 source, an Mg source, and Eu and Mn element source compounds as shown in the general formula [1] described below (A ) Or (B) can be produced by heat-treating the mixture prepared by the mixing method.
(A) Dry pulverizer such as hammer mill, roll mill, ball mill, jet mill, etc., pulverization using mortar and pestle, etc., mixer such as ribbon blender, V-type blender and Henschel mixer, or mortar and pestle Dry mixing method combined with mixing.
(B) Using a pulverizer or a mortar and pestle, etc., add water etc. and mix in a slurry or solution state with a pulverizer, mortar and pestle, or evaporating dish and stirrer, spray drying, heating Wet mixing method that is dried by drying or natural drying.

これらの混合法の中で、特に、付活元素の元素源化合物においては、少量の化合物を全体に均一に混合、分散させる必要があることから液体媒体を用いるのが好ましく、又、他の元素源化合物において全体に均一な混合が得られる面からも、後者湿式法が好ましく、又、加熱処理法としては、アルミナや石英製の坩堝やトレイ等の耐熱容器中で、通常750〜1500℃、好ましくは900〜1400℃の温度で、大気、酸素、一酸化炭素、二酸化炭素、窒素、水素、アルゴン等の気体の単独或いは混合雰囲気下、10分〜24時間、加熱することによりなされる。尚、加熱処理後、必要に応じて、洗浄、乾燥、分級処理等がなされる。   Among these mixing methods, in particular, in the element source compound of the activator element, it is preferable to use a liquid medium because it is necessary to uniformly mix and disperse a small amount of the compound, and other elements The latter wet method is preferable from the viewpoint of obtaining uniform mixing throughout the source compound, and the heat treatment method is usually 750 to 1500 ° C. in a heat-resistant container such as a crucible or tray made of alumina or quartz. The heating is preferably performed at a temperature of 900 to 1400 ° C. for 10 minutes to 24 hours in a single or mixed atmosphere of a gas such as air, oxygen, carbon monoxide, carbon dioxide, nitrogen, hydrogen, and argon. In addition, after heat processing, washing | cleaning, drying, a classification process, etc. are made | formed as needed.

尚、前記加熱雰囲気としては、付活元素が発光に寄与するイオン状態(価数)を得るために必要な雰囲気が選択される。本発明における2価のEuとMn等の場合には、一酸化炭素、窒素、水素、アルゴン等の中性若しくは還元雰囲気下が好ましいが、大気、酸素等の酸化雰囲気下も条件さえ選べば可能である。
又、ここで、M1源、M2源、Mg源、及び、付活元素の元素源化合物としては、M1
2、Mg、及び、付活元素の各酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、
カルボン酸塩、ハロゲン化物等が挙げられ、これらの中から、複合酸化物への反応性、及び、焼成時におけるNOx、SOx等の非発生性等を考慮して選択される。
As the heating atmosphere, an atmosphere necessary for obtaining an ion state (valence) in which the activating element contributes to light emission is selected. In the case of divalent Eu and Mn in the present invention, a neutral or reducing atmosphere such as carbon monoxide, nitrogen, hydrogen, and argon is preferable, but it can be selected even under an oxidizing atmosphere such as air and oxygen. It is.
Here, as the element source compounds of the M 1 source, M 2 source, Mg source, and activator element, M 1 ,
M 2 , Mg, and each of the oxides, hydroxides, carbonates, nitrates, sulfates, oxalates of the activating elements,
Carboxylic acid salts, halides and the like can be mentioned, and these are selected in consideration of reactivity to the composite oxide and non-generation of NOx, SOx, etc. during firing.

1として挙げられている前記Ba、Ca、Srについて、それらのM1源化合物を具体的に例示すれば、Ba源化合物としては、BaO、Ba(OH)2・8H2O、BaCO3
、Ba(NO32、BaSO4、Ba(OCO)2・2H2O、Ba(OCOCH32、B
aCl2等が、又、Ca源化合物としては、CaO、Ca(OH)2、CaCO3、Ca(
NO32・4H2O、CaSO4・2H2O、Ca(OCO)2・H2O、Ca(OCOCH32・H2O、CaCl2等が、又、Sr源化合物としては、SrO、Sr(OH)2・8H2O、SrCO3、Sr(NO32、SrSO4、Sr(OCO)2・H2O、Sr(OCO
CH32・0.5H2O、SrCl2等がそれぞれ挙げられる。
The Ba listed as M 1, Ca, the Sr, if specific examples thereof M 1 source compound, as a Ba source compound, BaO, Ba (OH) 2 · 8H 2 O, BaCO 3
, Ba (NO 3 ) 2 , BaSO 4 , Ba (OCO) 2 .2H 2 O, Ba (OCOCH 3 ) 2 , B
aCl 2 and the like, and Ca source compounds include CaO, Ca (OH) 2 , CaCO 3 , Ca (
NO 3 ) 2 · 4H 2 O, CaSO 4 · 2H 2 O, Ca (OCO) 2 · H 2 O, Ca (OCOCH 3 ) 2 · H 2 O, CaCl 2, etc. SrO, Sr (OH) 2 .8H 2 O, SrCO 3 , Sr (NO 3 ) 2 , SrSO 4 , Sr (OCO) 2 .H 2 O, Sr (OCO
CH 3 ) 2 · 0.5H 2 O, SrCl 2 and the like.

2として挙げられている前記Si、Geについて、それらのM2源化合物を具体的に例示すれば、Si源化合物としは、SiO2、H4SiO4、Si(OCOCH34等が、又
、Ge源化合物としは、GeO2、Ge(OH)4、Ge(OCOCH34、GeCl4
がそれぞれ挙げられる。
Mgについて、Mg源化合物を具体的に例示すれば、MgO、Mg(OH)2、MgC
3、Mg(OH)2・3MgCO3・3H2O、Mg(NO32・6H2O、MgSO4、Mg(OCO)2・2H2O、Mg(OCOCH32・4H2O、MgCl2等がそれぞれ挙げられる。
Specific examples of the M 2 source compounds for the Si and Ge mentioned as M 2 include SiO 2 , H 4 SiO 4 , Si (OCOCH 3 ) 4, etc. Examples of the Ge source compound include GeO 2 , Ge (OH) 4 , Ge (OCOCH 3 ) 4 , and GeCl 4 .
For Mg, specific examples of Mg source compounds include MgO, Mg (OH) 2 , MgC
O 3 , Mg (OH) 2 .3MgCO 3 .3H 2 O, Mg (NO 3 ) 2 .6H 2 O, MgSO 4 , Mg (OCO) 2 .2H 2 O, Mg (OCOCH 3 ) 2 .4H 2 O , MgCl 2 and the like.

更に、付活元素として挙げられる前記EuとMnについて、その元素源化合物を具体的に例示すれば、Eu23、Eu2(SO43、Eu2(OCO)6、EuCl2、EuCl3
、Eu(NO33・6H2O、Mn(NO32・6H2O、MnO2、Mn23、Mn34
、MnO、Mn(OH)2、MnCO3、Mn(OCOCH32・2H2O、Mn(OCO
CH33・nH2O、MnCl2・4H2O等が挙げられる。
Further, with respect to Eu and Mn mentioned as the activation elements, specific examples of the element source compounds include Eu 2 O 3 , Eu 2 (SO 4 ) 3 , Eu 2 (OCO) 6 , EuCl 2 and EuCl. Three
Eu (NO 3 ) 3 .6H 2 O, Mn (NO 3 ) 2 .6H 2 O, MnO 2 , Mn 2 O 3 , Mn 3 O 4
, MnO, Mn (OH) 2 , MnCO 3 , Mn (OCOCH 3 ) 2 .2H 2 O, Mn (OCO
CH 3 ) 3 · nH 2 O, MnCl 2 · 4H 2 O and the like.

本発明において、前記蛍光体に光を照射する第1の発光体は、波長350−430nmの光を発生する。好ましくは波長350−430nmの範囲にピーク波長を有する光を発生する発光体を使用する。第1の発光体の具体例としては、発光ダイオード(LED)またはレーザーダイオード(LD)等を挙げることができる。消費電力が良く少ない点でより好ましくはレーザーダイオードである。その中で、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系はSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlXGaYN発光層、GaN発光層、またはInXGaYN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInXGaYN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InXGaYN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlXGaYN層、GaN層、またはInXGaYN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。 In the present invention, the first light emitter that irradiates the phosphor with light generates light having a wavelength of 350 to 430 nm. Preferably, a light emitter that generates light having a peak wavelength in the wavelength range of 350 to 430 nm is used. Specific examples of the first light emitter include a light emitting diode (LED) or a laser diode (LD). A laser diode is more preferable because it consumes less power. Of these, GaN LEDs and LDs using GaN compound semiconductors are preferred. This is because GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for a current load of 20 mA, the GaN system usually has a light emission intensity 100 times or more that of the SiC system. GaN-based LEDs and LDs preferably have an Al x Ga Y N light emitting layer, a GaN light emitting layer, or an In x Ga Y N light emitting layer. Among the GaN-based LEDs, those having an InXGaYN light-emitting layer are particularly preferred because the emission intensity is very strong, and GaN-based LDs have a multiple quantum well structure of In x Ga y N layer and GaN layer. Is particularly preferable because of its very high emission intensity. In the above, the value of X + Y is usually a value in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics. A GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic constituent elements. The light-emitting layer is made of n-type and p-type Al x Ga y N layers, GaN layers, or In x. Those having a heterostructure sandwiched between Ga Y N layers and the like have high luminous efficiency, and those having a heterostructure having a quantum well structure have higher luminous efficiency and are more preferable.

本発明においては、面発光型の発光体、特に面発光型GaN系レーザーダイオードを第1の発光体として使用することは、発光装置全体の発光効率を高めることになるので、特に好ましい。面発光型の発光体とは、膜の面方向に強い発光を有する発光体であり、面発光型GaN系レーザーダイオードにおいては、発光層等の結晶成長を制御し、かつ、反射層等をうまく工夫することにより、発光層の縁方向よりも面方向の発光を強くすることができる。面発光型のものを使用することによって、発光層の縁から発光するタイプに比べ、単位発光量あたりの発光断面積が大きくとれる結果、第2の発光体の蛍光体にその光を照射する場合、同じ光量で照射面積を非常に大きくすることができ、照射効率を良くすることができるので、第2の発光体である蛍光体からより強い発光を得ることができる。   In the present invention, it is particularly preferable to use a surface-emitting type illuminant, particularly a surface-emitting GaN-based laser diode, as the first illuminant because the luminous efficiency of the entire light-emitting device is increased. A surface-emitting type illuminant is an illuminant that emits strong light in the surface direction of a film. In a surface-emitting GaN-based laser diode, the crystal growth of a light-emitting layer or the like is controlled, and a reflective layer or the like is successfully performed. By devising, the light emission in the surface direction can be made stronger than the edge direction of the light emitting layer. When the surface emitting type is used, the light emission cross-sectional area per unit light emission amount can be increased compared to the type that emits light from the edge of the light emitting layer. As a result, the phosphor of the second light emitter is irradiated with the light. Since the irradiation area can be made very large with the same amount of light and the irradiation efficiency can be improved, stronger light emission can be obtained from the phosphor that is the second light emitter.

第1の発光体として面発光型のものを使用する場合、第2の発光体を膜状とするのが好ましい。その結果、面発光型の発光体からの光は断面積が十分大きいので、第2の発光体をその断面の方向に膜状とすると、第1の発光体からの蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。
また、第1の発光体として面発光型のものを使用し、第2の発光体として膜状のものを用いる場合、第1の発光体の発光面に、直接膜状の第2の発光体を接触させた形状とするのが好ましい。ここでいう接触とは、第1の発光体と第2の発光体とが空気や気体を介さないでぴたりと接している状態をつくることを言う。その結果、第1の発光体からの光が第2の発光体の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。
When a surface-emitting type is used as the first light emitter, the second light emitter is preferably a film. As a result, the cross-sectional area of the light from the surface-emitting type light emitter is sufficiently large. Therefore, when the second light emitter is formed into a film in the direction of the cross section, the irradiation cross-section area of the phosphor from the first light emitter is irradiated. Becomes larger per unit amount of phosphor, so that the intensity of light emitted from the phosphor can be further increased.
Further, when a surface-emitting type is used as the first light emitter and a film-like one is used as the second light emitter, the second light emitter directly in the form of a film on the light-emitting surface of the first light emitter. It is preferable to have a shape in which is contacted. Contact here refers to creating a state in which the first light emitter and the second light emitter are in perfect contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the first light emitter is reflected by the film surface of the second light emitter and oozes out, so that the light emission efficiency of the entire apparatus can be improved.

本発明の発光装置の一例における第1の発光体と第2の発光体との位置関係を示す模式的斜視図を図1に示す。図1中の1は、前記蛍光体を有する膜状の第2の発光体、2は第1の発光体としての面発光型GaN系LD、3は基板を表す。相互に接触した状態をつくるために、LD2と第2の発光体1とそれぞれ別個にをつくっておいてそれらの面同士を接着剤やその他の手段によって接触させても良いし、LD2の発光面上に第2の発光体を
を製膜(成型)させても良い。これらの結果、LD2と第2の発光体1とを接触した状態とすることができる。
FIG. 1 is a schematic perspective view showing the positional relationship between the first light emitter and the second light emitter in an example of the light emitting device of the present invention. In FIG. 1, 1 is a film-like second light emitter having the phosphor, 2 is a surface-emitting GaN-based LD as the first light emitter, and 3 is a substrate. In order to create a state in which they are in contact with each other, the LD 2 and the second light emitter 1 may be formed separately and the surfaces may be brought into contact with each other by an adhesive or other means, or the light emitting surface of the LD 2 A second light-emitting body may be formed (molded) on the top. As a result, the LD 2 and the second light emitter 1 can be brought into contact with each other.

第1の発光体からの光や第2の発光体からの光は通常四方八方に向いているが、第2の発光体の蛍光体の粉を樹脂中に分散させると、光が樹脂の外に出る時にその一部が反射されるので、ある程度光の向きを揃えられる。従って、効率の良い向きに光をある程度誘導できるので、第2の発光体として、前記蛍光体の粉を樹脂中へ分散したものを使用するのが好ましい。また、蛍光体を樹脂中に分散させると、第1の発光体からの光の第2の発光体への全照射面積が大きくなるので、第2の発光体からの発光強度を大きくすることができるという利点も有する。この場合に使用できる樹脂としては、シリコン樹脂、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等各種のものが挙げられるが、蛍光体粉の分散性が良い点で好ましくはシリコン樹脂、もしくはエポキシ樹脂である。第2の発光体の粉を樹脂中に分散させる場合、当該第2の発光体の粉と樹脂の全体に対するその粉の重量比は、通常10〜95%、好ましくは20〜90%、さらに好ましくは30〜80%である。蛍光体が多すぎると粉の凝集により発光効率が低下することがあり、少なすぎると今度は樹脂による光の吸収や散乱のため発光効率が低下することがある。   The light from the first illuminant and the light from the second illuminant are usually directed in all directions. However, when the phosphor powder of the second illuminant is dispersed in the resin, the light is out of the resin. A part of the light is reflected when exiting, so the direction of the light can be adjusted to some extent. Accordingly, since light can be guided to a certain degree in an efficient direction, it is preferable to use a phosphor in which the phosphor powder is dispersed in a resin as the second luminous body. Further, when the phosphor is dispersed in the resin, the total irradiation area of the light from the first light emitter to the second light emitter is increased, so that the light emission intensity from the second light emitter can be increased. It also has the advantage of being able to. Examples of the resin that can be used in this case include various resins such as silicon resin, epoxy resin, polyvinyl resin, polyethylene resin, polypropylene resin, and polyester resin, which are preferable in terms of good dispersibility of the phosphor powder. Is a silicon resin or an epoxy resin. When the powder of the second luminous body is dispersed in the resin, the weight ratio of the powder of the second luminous body to the whole of the resin is usually 10 to 95%, preferably 20 to 90%, more preferably. Is 30-80%. If the phosphor is too much, the luminous efficiency may be reduced due to aggregation of the powder, and if it is too little, the luminous efficiency may be lowered due to light absorption or scattering by the resin.

本発明の発光装置は、波長変換材料としての前記蛍光体と、350−430nmの光を発生する発光素子とから構成されてなり、前記蛍光体が発光素子の発する350−430nmの光を吸収して、使用環境によらず演色性が良く、かつ、高強度の可視光を発生させることのできる発光装置であり、発光装置を構成する、本発明の結晶相を有する蛍光体は、350−430nmの光を発生する第1の発光体からの光の照射により、赤色又は白色を表す波長領域に発光している。そして、本発明の発光装置は、バックライト光源、信号機などの発光源、又、カラー液晶ディスプレイ等の画像表示装置や面発光等の照明装置等の光源に適している。   The light-emitting device of the present invention includes the phosphor as a wavelength conversion material and a light-emitting element that generates 350-430 nm light, and the phosphor absorbs 350-430 nm light emitted from the light-emitting element. In addition, the phosphor having a good color rendering property and capable of generating high-intensity visible light regardless of the use environment, and the phosphor having the crystal phase of the present invention constituting the light-emitting device has a wavelength of 350 to 430 nm. By emitting light from the first light-emitting body that generates the light, light is emitted in a wavelength region representing red or white. The light-emitting device of the present invention is suitable for a light source such as a backlight source, a light source such as a traffic light, an image display device such as a color liquid crystal display, and a lighting device such as a surface light source.

本発明の発光装置を図面に基づいて説明すると、図2は、第1の発光体(350−430nm発光体)と第2の発光体とを有する発光装置の一実施例を示す模式的断面図であり、4は発光装置、5はマウントリード、6はインナーリード、7は第1の発光体(350−430nmの発光体)、8は第2の発光体としての蛍光体含有樹脂部、9は導電性ワイヤー、10はモールド部材である。   The light emitting device of the present invention will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view showing an embodiment of a light emitting device having a first light emitter (350-430 nm light emitter) and a second light emitter. 4 is a light emitting device, 5 is a mount lead, 6 is an inner lead, 7 is a first light emitter (350-430 nm light emitter), 8 is a phosphor-containing resin portion as a second light emitter, 9 Is a conductive wire, and 10 is a mold member.

本発明の一例である発光装置は、図2に示されるように、一般的な砲弾型の形態をなし、マウントリード5の上部カップ内には、GaN系発光ダイオード等からなる第1の発光体(350−430nm発光体)7が、その上に、蛍光体をシリコン樹脂、エポキシ樹脂やアクリル樹脂等のバインダーに混合、分散させ、カップ内に流し込むことにより第2の発光体として形成された蛍光体含有樹脂部8で被覆されることにより固定されている。一方、第1の発光体7とマウントリード5、及び第1の発光体7とインナーリード6は、それぞれ導電性ワイヤー9で導通されており、これら全体がエポキシ樹脂等によるモールド部材10で被覆、保護されてなる。   As shown in FIG. 2, the light emitting device as an example of the present invention has a general bullet shape, and a first light emitter made of a GaN-based light emitting diode or the like is disposed in the upper cup of the mount lead 5. (350-430 nm illuminant) 7 is a phosphor formed as a second illuminant by mixing and dispersing the phosphor in a binder such as silicon resin, epoxy resin or acrylic resin, and pouring it into the cup. It is fixed by being covered with the body-containing resin portion 8. On the other hand, the first light emitter 7 and the mount lead 5, and the first light emitter 7 and the inner lead 6 are each electrically connected by a conductive wire 9, and these are entirely covered with a mold member 10 made of epoxy resin or the like, Protected.

又、この発光素子1を組み込んだ面発光照明装置11は、図3に示されるように、内面を白色の平滑面等の光不透過性とした方形の保持ケース12の底面に、多数の発光装置13を、その外側に発光装置13の駆動のための電源及び回路等(図示せず。)を設けて配置し、保持ケース12の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板14を発光の均一化のために固定してなる。   Further, as shown in FIG. 3, the surface emitting illumination device 11 incorporating the light emitting element 1 has a large number of light emission on the bottom surface of a rectangular holding case 12 whose inner surface is light-opaque such as a white smooth surface. The device 13 is arranged with a power supply and a circuit (not shown) for driving the light emitting device 13 provided outside thereof, and a milky white acrylic plate or the like is provided at a position corresponding to the lid portion of the holding case 12. The diffusion plate 14 is fixed for uniform light emission.

そして、面発光照明装置11を駆動して、発光素子13の第1の発光体に電圧を印加することにより350−430nmの光を発光させ、その発光の一部を、第2の発光体とし
ての蛍光体含有樹脂部における前記蛍光体が吸収し、可視光を発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発光が得られ、この光が拡散板14を透過して、図面上方に出射され、保持ケース12の拡散板14面内において均一な明るさの照明光が得られることとなる。
Then, by driving the surface emitting illumination device 11 and applying a voltage to the first light emitter of the light emitting element 13, light of 350 to 430 nm is emitted, and a part of the light emission is used as the second light emitter. The phosphor in the phosphor-containing resin part absorbs and emits visible light, while light emission with high color rendering properties is obtained by mixing with blue light or the like that is not absorbed by the phosphor. 14, is emitted upward in the drawing, and illumination light with uniform brightness is obtained within the surface of the diffusion plate 14 of the holding case 12.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

Ba(NO32の水溶液、Ca(NO32・4H2Oの水溶液、Mg(NO32・6H2Oの水溶液、Eu(NO33・6H2Oの水溶液、Mn(NO32・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO32、Ca(NO32・4H2O、Mg(NO32・6H2O、Eu(NO33・6H2O、Mn(NO32・6H2O、S
iO2のモル比が1.218:0.23:0.512:0.01:0.03:1)を白金
容器中で混合し、乾燥後、4%の水素を含む窒素ガス流下1050℃で2時間加熱することにより焼成し、蛍光体Ba1.218Ca0.23Mg0.512Eu0.01Mn0.03SiO4(第2の
発光体に用いる蛍光体)を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−1に、その赤成分のピークの波長、後述の比較例2の赤成分のピークの強度を100としたときの強度(以下、相対強度、という)、及び半値幅、並びに、室温(23℃)下での輝度を1としたときに対する、本蛍光体とGaN系発光ダイオードとを組み合わせて発光させたときの作動状態を想定した80℃及び100℃下での輝度の割合、色度座標のx値、y値、ピーク群の半値幅を示す。本蛍光体は、強度と半値幅が十分大きいため、高い演色性を与え、かつ、ピーク波長が615―645nmの領域内なので、鮮やかな深赤色成分を含む鮮やかな白色発光となっていることがわかる。GaN系半導体と組み合わせたときに生じる100℃近辺の温度でも室温と変わりない輝度を与えることがわかる。
Ba (NO 3 ) 2 aqueous solution, Ca (NO 3 ) 2 .4H 2 O aqueous solution, Mg (NO 3 ) 2 .6H 2 O aqueous solution, Eu (NO 3 ) 3 .6H 2 O aqueous solution, Mn ( NO 3 ) 2 · 6H 2 O aqueous solution and colloidal silica (SiO 2 ) suspension (Ba (NO 3 ) 2 , Ca (NO 3 ) 2 · 4H 2 O, Mg (NO 3 ) 2 · 6H 2 O, Eu (NO 3 ) 3 · 6H 2 O, Mn (NO 3 ) 2 · 6H 2 O, S
An iO 2 molar ratio of 1.218: 0.23: 0.512: 0.01: 0.03: 1) was mixed in a platinum vessel, dried, and then dried at 1050 ° C. under a nitrogen gas flow containing 4% hydrogen. The phosphor Ba 1.218 Ca 0.23 Mg 0.512 Eu 0.01 Mn 0.03 SiO 4 (phosphor used for the second luminous body) was manufactured by heating for 2 hours. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 1 shows the wavelength of the peak of the red component, the intensity when the intensity of the peak of the red component of Comparative Example 2 described later is 100 (hereinafter referred to as relative intensity), the half-value width, and room temperature (23 ° C) The luminance ratio at 80 ° C. and 100 ° C. assuming the operating state when the phosphor and the GaN-based light emitting diode are combined and the chromaticity coordinates when the luminance at 1 ° C. is 1 The x value, y value, and the half width of the peak group are shown. Since this phosphor has a sufficiently large intensity and half-width, it gives high color rendering properties and has a peak wavelength in the region of 615 to 645 nm, so that it can emit bright white light containing a bright deep red component. Understand. It can be seen that even when the temperature is around 100 ° C. generated when combined with a GaN-based semiconductor, the luminance is the same as that at room temperature.

なお、赤成分のピークとは、発光スペクトル中の590nm以上の領域におけるピークのことを指す。また、ピーク群の半値幅とは、発光スペクトルがどれだけ幅広く分布していて、どれだけ演色性が高いかを知る目安となるものであり、図4の如く、発光スペクトル中の最大ピークの強度の、半分以上の強度を有する波長領域の幅の総和と定義する。
(比較例1)
Ba(NO32の水溶液、Ca(NO32・4H2Oの水溶液、Mg(NO32・6H2Oの水溶液、Eu(NO33・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO32、Ca(NO32・4H2O、Mg(NO32・6H2O、Eu(NO33・6H2O、SiO2のモル比が1.187:0.396:0.198:0.2:0.02:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba1.187Ca0.396Mg0.198Eu0.2Mn0.02SiO4を製造した。GaN系発光ダイオー
ドの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−1に、その赤成分のピークの波長、相対強度、半値幅、及び、室温(23℃)下での輝度を1としたときに対する、本蛍光体とGaN系発光ダイオードとを組み合わせて発光させたときの作動状態を想定した80℃及び100℃下での輝度の割合、色度座標のx値、y値、ピーク群の半値幅を示す。Euモル比を0.01から0.2と大きくすると、80℃や100℃下での輝度が室温下に比べ低下してしまうことがわかる。
(比較例2)
Ba(NO32の水溶液、Ca(NO32・4H2Oの水溶液、Mg(NO32・6H2Oの水溶液、Eu(NO33・6H2Oの水溶液、Mn(NO32・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO32、Ca(NO32・4H2O、Mg(NO32・6H2O、Eu(NO33・6H2O、Mn(NO32・6H2O、S
iO2のモル比が1.144:0.216:0.48:0.01:0.15:1)を仕込
み原液として使用すること以外は、実施例1と同様にして蛍光体Ba1.144Ca0.216Mg0.48Eu0.01Mn0.15SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波
長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−1に、その赤成分のピークの波長、相対強度、半値幅、及び、室温(23℃)下での輝度を1としたときに対する、本蛍光体とGaN系発光ダイオードとを組み合わせて発光させたときの作動状態を想定した80℃及び100℃下での輝度の割合、色度座標のx値、y値、ピーク群の半値幅を示す。実施例1において、Mnモル比を0.03から0.15と大きくすると、赤色の発光強度が大きく低下することがわかる。
(比較例3)
Ba(NO32の水溶液、Ca(NO32・4H2Oの水溶液、Mg(NO32・6H2Oの水溶液、Eu(NO33・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO32、Ca(NO32・4H2O、Mg(NO32・6H2O、Eu(NO33・6H2O、SiO2のモル比が1.2:0.2:0.4:0.2:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba1.2Ca0.2Mg0.4
0.2SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−1に、色度座標のx値、y値、ピーク群の半値幅を示す。590nm以上のピークは見られず、Mnが添加されないと、赤色ピークが現れないことがわかる。
The red component peak refers to a peak in a region of 590 nm or more in the emission spectrum. The half width of the peak group is a measure for knowing how widely the emission spectrum is distributed and how high the color rendering is, and as shown in FIG. 4, the intensity of the maximum peak in the emission spectrum. Is defined as the sum of the widths of the wavelength regions having an intensity of more than half.
(Comparative Example 1)
Ba (NO 3 ) 2 aqueous solution, Ca (NO 3 ) 2 · 4H 2 O aqueous solution, Mg (NO 3 ) 2 · 6H 2 O aqueous solution, Eu (NO 3 ) 3 · 6H 2 O aqueous solution, and colloidal Silica (SiO 2 ) suspensions (Ba (NO 3 ) 2 , Ca (NO 3 ) 2 .4H 2 O, Mg (NO 3 ) 2 .6H 2 O, Eu (NO 3 ) 3 .6H 2 O, The phosphor Ba 1.187 Ca is the same as in Example 1 except that the molar ratio of SiO 2 is 1.187: 0.396: 0.198: 0.2: 0.02: 1). 0.396 Mg 0.198 Eu 0.2 Mn 0.02 SiO 4 was produced. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 1 shows a combination of the phosphor and a GaN-based light-emitting diode when the red component peak wavelength, relative intensity, half-width, and luminance at room temperature (23 ° C.) are set to 1. The ratio of the luminance under 80 ° C. and 100 ° C., the x value, the y value of the chromaticity coordinates, and the half-value width of the peak group are shown assuming the operating state at the time. It can be seen that when the Eu molar ratio is increased from 0.01 to 0.2, the luminance at 80 ° C. or 100 ° C. decreases compared to that at room temperature.
(Comparative Example 2)
Ba (NO 3 ) 2 aqueous solution, Ca (NO 3 ) 2 .4H 2 O aqueous solution, Mg (NO 3 ) 2 .6H 2 O aqueous solution, Eu (NO 3 ) 3 .6H 2 O aqueous solution, Mn ( NO 3 ) 2 · 6H 2 O aqueous solution and colloidal silica (SiO 2 ) suspension (Ba (NO 3 ) 2 , Ca (NO 3 ) 2 · 4H 2 O, Mg (NO 3 ) 2 · 6H 2 O, Eu (NO 3 ) 3 · 6H 2 O, Mn (NO 3 ) 2 · 6H 2 O, S
Phosphor Ba 1.144 Ca in the same manner as in Example 1 except that the molar ratio of iO 2 is 1.144: 0.216: 0.48: 0.01: 0.15: 1). 0.216 Mg 0.48 Eu 0.01 Mn 0.15 SiO 4 was produced. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 1 shows a combination of the phosphor and a GaN-based light-emitting diode when the red component peak wavelength, relative intensity, half-width, and luminance at room temperature (23 ° C.) are set to 1. The ratio of the luminance under 80 ° C. and 100 ° C., the x value, the y value of the chromaticity coordinates, and the half-value width of the peak group are shown assuming the operating state at the time. In Example 1, it is understood that when the Mn molar ratio is increased from 0.03 to 0.15, the red light emission intensity is greatly reduced.
(Comparative Example 3)
Ba (NO 3 ) 2 aqueous solution, Ca (NO 3 ) 2 · 4H 2 O aqueous solution, Mg (NO 3 ) 2 · 6H 2 O aqueous solution, Eu (NO 3 ) 3 · 6H 2 O aqueous solution, and colloidal Silica (SiO 2 ) suspensions (Ba (NO 3 ) 2 , Ca (NO 3 ) 2 .4H 2 O, Mg (NO 3 ) 2 .6H 2 O, Eu (NO 3 ) 3 .6H 2 O, The phosphor Ba 1.2 Ca 0.2 Mg 0.4 E was used in the same manner as in Example 1 except that the molar ratio of SiO 2 was 1.2: 0.2: 0.4: 0.2: 1).
u 0.2 SiO 4 was produced. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 1 shows the x value and y value of the chromaticity coordinates, and the half width of the peak group. It can be seen that no peak of 590 nm or more is observed, and no red peak appears when Mn is not added.

Figure 2005200584
Figure 2005200584

面発光型GaN系ダイオードに膜状蛍光体を接触又は成型させた発光装置の一例を示す図。The figure which shows an example of the light-emitting device which made the film-like fluorescent substance contact or shape | mold to the surface emitting type GaN-type diode. 本発明中の蛍光体と、第1の発光体(350−430nm発光体)とから構成される発光装置の一実施例を示す模式的断面図である。It is typical sectional drawing which shows one Example of the light-emitting device comprised from the fluorescent substance in this invention, and a 1st light-emitting body (350-430 nm light-emitting body). 本発明の面発光照明装置の一例を示す模式的断面図。The typical sectional view showing an example of the surface emitting illumination device of the present invention. ピーク群の半値幅を測定する方法を表した図。The figure showing the method of measuring the half value width of a peak group.

符号の説明Explanation of symbols

1;第2の発光体
2;面発光型GaN系LD
3;基板
4;発光装置
5;マウントリード
6;インナーリード
7;第1の発光体(350〜430nmの発光体)
8;本発明中の蛍光体を含有させた樹脂部
9;導電性ワイヤー
10;モールド部材
11;発光素子を組み込んだ面発光照明装置
12;保持ケース
13;発光装置
14;拡散板

1; second light emitter 2; surface-emitting GaN-based LD
3; Substrate 4; Light emitting device 5; Mount lead 6; Inner lead 7; First light emitter (light emitter of 350 to 430 nm)
8; Resin part containing phosphor in the present invention 9; Conductive wire 10; Mold member 11; Surface-emitting illumination device 12 incorporating a light-emitting element; Holding case 13; Light-emitting device 14;

Claims (7)

下記一般式[1]の化学組成を有する結晶相を有する蛍光体。
Figure 2005200584
(但し、M1は、1価の元素、Eu,Mn,Mgを除く2価の元素、3価の元素、5価の
元素の群から選ばれる少なくとも1種の元素を表し、2価の元素が占める割合が80mol%以上であり、Ba,Ca,Srの合計が占める割合が40mol%以上であり、BaとCaの合計に対するCaの割合(モル比)が0.2未満である。M2は、SiおよびG
eを合計で90mol%以上含む4価の元素群を表し、Zは、−1価、−2価の元素、H、Nからなる群から選ばれる少なくとも1種の元素である。aは0.0003≦a≦0.01、bは0<b<0.075、c,dは0<c/(c+d)≦0.8、a,b,c,dは1.8≦(a+b+c+d)≦2.2、e,fは0≦f/(e+f)≦0.035、および3.6≦(e+f)≦4.4を満足する数である。)
A phosphor having a crystal phase having a chemical composition represented by the following general formula [1].
Figure 2005200584
(However, M 1 represents a monovalent element, a divalent element other than Eu, Mn, and Mg, at least one element selected from the group of trivalent elements, and pentavalent elements. is not less proportion of more than 80 mol%, Ba, Ca, the percentage of total occupied Sr not less than 40 mol%, the proportion of Ca to the sum of Ba and Ca (mole ratio) is less than 0.2 .M 2 Si and G
A tetravalent element group containing 90 mol% or more of e in total is represented, and Z is at least one element selected from the group consisting of a −1 valent element, a −2 valent element, H, and N. a is 0.0003 ≦ a ≦ 0.01, b is 0 <b <0.075, c and d are 0 <c / (c + d) ≦ 0.8, and a, b, c and d are 1.8 ≦ (A + b + c + d) ≦ 2.2, e and f are numbers satisfying 0 ≦ f / (e + f) ≦ 0.035 and 3.6 ≦ (e + f) ≦ 4.4. )
1の中でBa、Ca、Srの合計が占める割合が80mol%以上であることを特徴と
する請求項1に記載の蛍光体。
The phosphor according to claim 1, wherein a ratio of the total of Ba, Ca, and Sr in M 1 is 80 mol% or more.
2の中でSiが占める割合が80mol%以上であることを特徴とする1又は2に記載
の蛍光体。
The phosphor according to 1 or 2, wherein the proportion of Si in M 2 is 80 mol% or more.
350−430nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、第2の発光体が、請求項1〜3のいずれか1項に記載の蛍光体を含有してなることを特徴とする発光装置。 In a light-emitting device including a first light-emitting body that generates light of 350 to 430 nm and a second light-emitting body that generates visible light when irradiated with light from the first light-emitting body, the second light-emitting body includes: A light emitting device comprising the phosphor according to any one of claims 1 to 3. 第1の発光体がレーザーダイオード又は発光ダイオードであることを特徴とする請求項4に記載の発光装置。 The light emitting device according to claim 4, wherein the first light emitter is a laser diode or a light emitting diode. 請求項4又は5に記載の発光装置を有する照明装置。 An illumination device comprising the light emitting device according to claim 4. 請求項4又は5に記載の発光装置を有する画像表示装置。

An image display device comprising the light emitting device according to claim 4.

JP2004009771A 2004-01-16 2004-01-16 Phosphor, and light emitting device, lighting device, and image display device using the same Expired - Fee Related JP4363194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009771A JP4363194B2 (en) 2004-01-16 2004-01-16 Phosphor, and light emitting device, lighting device, and image display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009771A JP4363194B2 (en) 2004-01-16 2004-01-16 Phosphor, and light emitting device, lighting device, and image display device using the same

Publications (3)

Publication Number Publication Date
JP2005200584A true JP2005200584A (en) 2005-07-28
JP2005200584A5 JP2005200584A5 (en) 2007-03-01
JP4363194B2 JP4363194B2 (en) 2009-11-11

Family

ID=34822700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009771A Expired - Fee Related JP4363194B2 (en) 2004-01-16 2004-01-16 Phosphor, and light emitting device, lighting device, and image display device using the same

Country Status (1)

Country Link
JP (1) JP4363194B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088966A1 (en) * 2006-02-02 2007-08-09 Mitsubishi Chemical Corporation Complex oxynitride phosphor, light-emitting device using same, image display, illuminating device, phosphor-containing composition and complex oxynitride
JP2007200877A (en) * 2005-12-27 2007-08-09 Showa Denko Kk Light guide member, surface light source device, and display device
JP2009538387A (en) * 2006-05-26 2009-11-05 ダリアン ルーミングライト サイエンス アンド テクノロジー カンパニー リミテッド Silicate phosphor, manufacturing method thereof, and light emitting device using silicate phosphor
JP2012186494A (en) * 2007-07-12 2012-09-27 Koito Mfg Co Ltd Light-emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200877A (en) * 2005-12-27 2007-08-09 Showa Denko Kk Light guide member, surface light source device, and display device
WO2007088966A1 (en) * 2006-02-02 2007-08-09 Mitsubishi Chemical Corporation Complex oxynitride phosphor, light-emitting device using same, image display, illuminating device, phosphor-containing composition and complex oxynitride
US7833436B2 (en) 2006-02-02 2010-11-16 Mitsubishi Chemical Corporation Multinary oxynitride phosphor, and light emitting device, image display, illuminating device and phosphor-containing composition using the same, and multinary oxynitride
KR101096473B1 (en) 2006-02-02 2011-12-20 미쓰비시 가가꾸 가부시키가이샤 Complex oxynitride phosphor, light-emitting device using same, image display, illuminating device, phosphor-containing composition and complex oxynitride
JP2009538387A (en) * 2006-05-26 2009-11-05 ダリアン ルーミングライト サイエンス アンド テクノロジー カンパニー リミテッド Silicate phosphor, manufacturing method thereof, and light emitting device using silicate phosphor
JP2012186494A (en) * 2007-07-12 2012-09-27 Koito Mfg Co Ltd Light-emitting device

Also Published As

Publication number Publication date
JP4363194B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
EP1715023B1 (en) Phosphor and including the same, light emitting apparatus, illuminating apparatus and image display
JP4617890B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP2005298805A (en) Light emitting device and illumination device
JP2006332134A (en) White light-emitting diode
JP4168776B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4706358B2 (en) Blue light emitting phosphor and method for manufacturing the same, light emitting device, illumination device, backlight for display and display
JP4972904B2 (en) Phosphor, method for manufacturing the phosphor, light-emitting device using the phosphor, image display device, and illumination device
JP4411841B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4165255B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4389513B2 (en) Light emitting device, lighting device, and image display device
JP4363194B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP2007009141A (en) Blue light-emitting phosphor and its manufacturing method, light-emitting apparatus, illumination apparatus, back light for display, and display
JP4617889B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4617888B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4561064B2 (en) Light emitting device, lighting device, and image display device
JP5326986B2 (en) Phosphor used in light emitting device
JP2004235546A (en) Light emitting device and lighting device and display using it
JP2004253747A (en) Light emitting device and lighting device using same
JP2010059429A (en) Phosphor, luminescent device using the same, image display and illuminating device
JP4337468B2 (en) Light emitting device, lighting device, and image display device
JP4337465B2 (en) Light emitting device, lighting device, and image display device
JP4246502B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP2005064189A (en) Light emitting device, lighting device and image display device
JP4433847B2 (en) Phosphor, light emitting device using the same, image display device, and illumination device
KR20070003377A (en) White diode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees