JP2005196981A - 燃料極支持膜式燃料電池中間体及びそれを用いた固体電解質形燃料電池の製造方法 - Google Patents

燃料極支持膜式燃料電池中間体及びそれを用いた固体電解質形燃料電池の製造方法 Download PDF

Info

Publication number
JP2005196981A
JP2005196981A JP2003435172A JP2003435172A JP2005196981A JP 2005196981 A JP2005196981 A JP 2005196981A JP 2003435172 A JP2003435172 A JP 2003435172A JP 2003435172 A JP2003435172 A JP 2003435172A JP 2005196981 A JP2005196981 A JP 2005196981A
Authority
JP
Japan
Prior art keywords
unfired
fuel electrode
layer
solid electrolyte
electrode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003435172A
Other languages
English (en)
Other versions
JP4559068B2 (ja
Inventor
Hiroyuki Tanaka
裕之 田中
Hiroya Ishikawa
浩也 石川
Masahiro Shibata
昌宏 柴田
Masaaki Hattori
昌晃 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003435172A priority Critical patent/JP4559068B2/ja
Publication of JP2005196981A publication Critical patent/JP2005196981A/ja
Application granted granted Critical
Publication of JP4559068B2 publication Critical patent/JP4559068B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】 燃料極支持膜式燃料電池中間体及びそれを用いた固体電解質形燃料電池の製造方法を提供する。
【解決手段】 本発明の燃料極支持膜式燃料電池中間体は、未焼成燃料極基板11(酸化ニッケルと、希土類元素により安定化されたジルコニアとを含有する。)と、この未焼成燃料極基板11に積層された未焼成固体電解質層12(希土類元素により安定化されたジルコニア等からなる。)とを備え、未焼成燃料極基板11は、支持材に接した状態で形成された一面と、ガス雰囲気に接した状態で形成された他面とを有し、この他面に、未焼成固体電解質層12が設けられている。また、本発明の固体電解質形燃料電池の製造方法は、未焼成燃料極基板11と、未焼成固体電解質12とを同時焼成し、その後、この同時焼成より低い温度で未焼成空気極層を焼成することで空気極層を形成することを特徴とする。
【選択図】 図6

Description

本発明は、燃料極支持膜式燃料電池中間体及びそれを用いた固体電解質形燃料電池の製造方法に関する。更に詳しくは、未焼成燃料極基板と、未焼成固体電解質層との接触面積が大きく、優れた発電性能を有する燃料電池を得ることができる燃料極支持膜式燃料電池中間体、及びそれを用いた固体電解質形燃料電池の製造方法に関する。
平板型の固体電解質形燃料電池(以下、「SOFC」と略記することもある。)には、自立膜式と、支持膜式とがある。このうち、自立膜式は、厚膜の固体電解質層が支持体となっているもので、イットリアを用いて安定化されたジルコニア(以下、「YSZ」と略記する。)等からなる比較的厚い(例えば、400〜600μm)固体電解質層の一面に、酸化ニッケル及びYSZ等からなる燃料極、他面に、ランタンストロンチウムマンガナイト等のペロブスカイト型複酸化物などからなる空気極、がそれぞれ比較的薄く(例えば、25〜35μm)形成された単セル構造を有する。一方、支持膜式は固体電解質層を極力薄く形成し、燃料極又は空気極を厚く(例えば、1200〜2500μm)形成して支持基板とし、固体電解質層と、支持基板でない他方の電極とを薄く(例えば、10〜100μm)形成した単セル構造を有する(例えば、特許文献1参照。)。
また、支持膜式の場合、燃料極支持膜式であることが多く、用いられる未焼成燃料極基板は、所定厚さの未焼成燃料極基板を一体に成形する、又は複数の未焼成燃料極基板用シートを所定厚さの未焼成燃料極基板となるように積層する等の種々の方法により作製することができる。このうち、未焼成燃料極基板用シートの積層により未焼成燃料極基板を作製する場合、各々の厚さが150〜800μm程度の複数の未焼成燃料極基板用シートを、通常、3〜10枚積層することで、十分な強度を有する基板とする必要がある(例えば、特許文献2参照。)。
特開2000−260436号公報 特開2002−175814号公報
未焼成燃料極基板用シート等は、通常、樹脂フィルム等からなる支持材の表面において形成されるが、この方法では、未焼成燃料極基板用シート等の支持材と接していた面は、支持材表面が平滑であれば平滑面となり、凹凸を有しておれば凹凸面となる。一方、大気と接していた面は凹凸のある面となる。従って、未焼成固体電解質層と接する面が平滑面である場合もあり、凹凸を有する面である場合もある。そして、未焼成固体電解質層と接する面が平滑面であるときは、接触面積が小さいため、燃料電池反応のための十分な反応場が得られず、高性能なSOFCとすることができないことがあった。しかし、これまで、未焼成固体電解質層を、未焼成燃料極基板用シート等のいずれの面と接触させるかという観点からの検討はなされていなかった。
また、未焼成燃料極基板に用いられる未焼成燃料極基板用シートは、通常、150μm以上の厚さを有しており、このシートが厚さ方向において不均質になるという問題もある。即ち、セラミック粒子等の溶媒に対する分散性の低さに起因する濃度分布の他、例えば、酸化ニッケルとYSZ等の安定化ジルコニアのように比重の差に起因する濃度分布の問題がある。このような濃度分布の問題は、所定厚さに一体に成形された未焼成燃料極基板の場合、厚膜であるためにより顕著である。具体的には、ドクターブレード法等により未焼成燃料極基板用シート等を作製する際に、比重の大きい粒子は沈殿して支持材の側に高濃度となり、一方、比重の小さい粒子は大気側において高濃度となる(例えば、酸化ニッケルの比重は6.72g/cmであり、8質量%のイットリアを含有するYSZの比重は5.90g/cmである。)。このように厚さ方向に不均質な未焼成燃料極基板用シート等を、例えば、1300〜1500℃で焼成した場合、平坦で反り及び歪のない燃料極基板とすることができないという問題がある。更に、荷重をかけて再焼成することで、反り及び歪を修復することもあるが、この再焼成は1250〜1450℃と比較的高温域で行う必要があるため、燃料極基板が緻密化しすぎ、ガス拡散に必要な気孔が減少してSOFCの発電性能が低下するという問題もある。
本発明は、上記の従来の問題を解決するものであり、未焼成燃料極基板と未焼成固体電解質層との接触面積が大きく、優れた発電性能を有するSOFCを得ることができる燃料極支持膜式燃料電池中間体、及びそれを用いた固体電解質形燃料電池の製造方法を提供することを目的とする。更に、燃料極基板と固体電解質層等との積層体に反り、歪等がなく、反り等の修復のための再焼成が必要ない燃料極支持膜式燃料電池中間体、及びそれを用いた固体電解質形燃料電池の製造方法を提供することを目的とする。この中間体を用いた場合、燃料極基板が過度に緻密化されることがなく、燃料極基板における燃料ガスの拡散が十分になされるため、優れた発電性能を有するSOFCとすることができる。
本発明は以下のとおりである。
1.未焼成燃料極基板11と、該未焼成燃料極基板11に積層された未焼成固体電解質層12とを備える燃料極支持膜式燃料電池中間体において、該未焼成燃料極基板11は、支持材2に接した状態で形成された一面111と、ガス雰囲気に接した状態で形成された他面112とを有し、該他面112に、該未焼成固体電解質層12が設けられていることを特徴とする燃料極支持膜式燃料電池中間体。
2.上記未焼成燃料極基板11は、酸化ニッケルと、希土類元素により安定化されたジルコニアとを含有する上記1.に記載の燃料極支持膜式燃料電池中間体。
3.上記未焼成固体電解質層12は、支持材2に接した状態で形成された一面121と、ガス雰囲気に接した状態で形成された他面122とを有し、該他面122と、上記未焼成燃料極基板11の上記他面112とが接するように積層された上記1.又は2.に記載の燃料極支持膜式燃料電池中間体。
4.上記未焼成燃料極基板11は、複数の未焼成燃料極基板用シート113が積層されてなり、各々の該未焼成燃料極基板用シート113は、支持材2に接した状態で形成された一面1131と、ガス雰囲気に接した状態で形成された他面1132とを有し、それぞれの未焼成燃料極基板用シート113の上記一面1131同士及び上記他面1132同士が交互に接して積層されて該未焼成燃料極基板11が形成されている上記1.乃至3.のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体。
5.上記未焼成固体電解質層12の厚さが1〜50μmである上記1.乃至4.のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体。
6.上記未焼成燃料極基板11の厚さが、上記未焼成固体電解質層12の厚さの50倍以上である上記1.乃至5.のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体。
7.上記未焼成固体電解質層12の表面に、更に未焼成反応防止層13が設けられた上記1.乃至6.のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体。
8.上記未焼成反応防止層13が、Ce1−xLn2−δ(Lnは希土類元素であり、0.05≦x≦0.3である。)からなる上記7.に記載の燃料極支持膜式燃料電池中間体。
9.上記未焼成反応防止層13の厚さが1〜20μmである上記7.又は8.に記載の燃料極支持膜式燃料電池中間体。
10.上記未焼成燃料極基板11の厚さが、上記未焼成固体電解質層12の厚さと、上記未焼成反応防止層13の厚さとの合計厚さの50倍以上である上記7.乃至9.のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体。
11.上記1.乃至6.のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体を用いた固体電解質形燃料電池の製造方法であって、上記未焼成燃料極基板11と、上記未焼成固体電解質層12とを同時焼成する同時焼成工程、該未焼成固体電解質層12が焼成されてなる固体電解質層32の表面に未焼成空気極層14を設ける未焼成空気極層形成工程、該未焼成空気極層14を、該同時焼成の温度より低温で焼成して空気極層34を形成する空気極層形成工程、を備えることを特徴とする固体電解質形燃料電池の製造方法。
12.上記7.乃至10.のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体を用いた固体電解質形燃料電池の製造方法であって、上記未焼成燃料極基板11と、上記未焼成固体電解質層12と、上記未焼成反応防止層13とを同時焼成する同時焼成工程、該未焼成反応防止層13が焼成されてなる反応防止層33の表面に未焼成空気極層14を設ける未焼成空気極層形成工程、該未焼成空気極層14を、該同時焼成の温度より低温で焼成して空気極層34を形成する空気極層形成工程、を備えることを特徴とする固体電解質形燃料電池の製造方法。
本発明の燃料極支持膜式燃料電池中間体によれば、未焼成燃料極基板の、ガス雰囲気に接した状態で形成された他面に、未焼成固体電解質層が積層されることで、接触面積が大きくなり、燃料電池反応のための十分な反応場が得られるため、高性能なSOFCとすることができる。
また、未焼成燃料極基板が、酸化ニッケルと、YSZ等の希土類元素により安定化されたジルコニアとを含有する場合は、より高性能なSOFCとすることができる。
更に、未焼成固体電解質層は、支持材に接した状態で形成された一面と、ガス雰囲気に接した状態で形成された他面とを有し、この他面と、未焼成燃料極基板の他面とが接するように積層された場合は、未焼成燃料極基板と、未焼成固体電解質層との接触面積が更に大きくなり、より高性能なSOFCとすることができる。
また、未焼成燃料極基板は、複数の未焼成燃料極基板用シートが積層されてなり、各々の未焼成燃料極基板用シートは、支持材に接した状態で形成された一面と、ガス雰囲気に接した状態で形成された他面とを有し、それぞれの未焼成燃料極基板用シートの一面同士及び他面同士が交互に接して積層されて未焼成燃料極基板が形成されている場合は、未焼成燃料極基板を焼成したときに、セラミック粒子等の厚さ方向の濃度分布に起因する反り及び歪等を防止することができる。そのため、反り等を修復するための再焼成も不要となり、燃料極基板が過度に緻密化され、ガス拡散性が低下することによる発電性能の低下を抑えることができる。
更に、未焼成固体電解質層の厚さが1〜50μmである場合は、焼成後の固体電解質層等における反りなどの発生が防止され、且つ均質な固体電解質層とすることができる。
また、未焼成燃料極基板の厚さが、未焼成固体電解質層の厚さの50倍以上である場合は、未焼成燃料極基板と未焼成固体電解質層との焼成時の収縮率の差に起因する反りの発生を抑えることができる。
更に、未焼成固体電解質層の表面に、更に未焼成反応防止層が設けられた場合は、固体電解質層と空気極層との界面における抵抗の高い反応相の生成を抑えることができ、優れた発電性能を維持することができる。
また、未焼成反応防止層が、Ce1−xLn2−δ(Lnは希土類元素であり、0.05≦x≦0.3である。)からなる場合は、形成される反応防止層のイオン伝導性が高く、且つ未焼成空気極層を焼成する際の、反応防止層と未焼成空気極層との反応性が低いため、抵抗の高い反応相の生成を十分に抑えることができる。
更に、未焼成反応防止層の厚さが1〜20μmである場合は、未焼成空気極層を焼成する際の、固体電解質層と未焼成空気極層との反応を十分に抑えることができ、且つ反応防止層の電気抵抗が過度に大きくならず、発電性能が低下することがない。
また、未焼成燃料極基板の厚さが、未焼成固体電解質層の厚さと、未焼成反応防止層の厚さとの合計厚さの50倍以上である場合は、未焼成燃料極基板と、未焼成固体電解質層及び未焼成反応防止層の各々との焼成時の収縮率の差に起因する反り等の発生を抑えることができる。
更に、未焼成燃料極基板と、未焼成固体電解質層とを同時焼成し、未焼成固体電解質層が焼成されてなる固体電解質層の表面に、同時焼成の温度より低温で焼成することで空気極層が形成される本発明の固体電解質形燃料電池の製造方法、及び未焼成燃料極基板と、未焼成固体電解質層と、未焼成反応防止層とを同時焼成し、未焼成反応防止層が焼成されてなる反応防止層の表面に、同時焼成の温度より低温で焼成することで空気極層が形成される本発明の他の固体電解質形燃料電池の製造方法では、燃料極基板及び空気極層がともにガス拡散が容易な多孔体となり、優れた発電性能を備える固体電解質形燃料電池とすることができる。
以下、本発明を詳細に説明する。
[1]燃料極支持膜式燃料電池中間体
上記「燃料極支持膜式燃料電池中間体」は、図7(中間体102)のように、未焼成燃料極基板11と、この未焼成燃料極基板11に積層された未焼成固体電解質層12と、を備える。
また、図6(中間体101)のように、未焼成燃料極基板11と、この未焼成燃料極基板11に積層された未焼成固体電解質層12と、この未焼成固体電解質層12に積層された未焼成反応防止層13と、を備える。
上記「未焼成燃料極基板11」は、所定厚さの未焼成燃料極基板11として形成されたものでもよく、複数の未焼成燃料極基板用シート113を所定厚さの未焼成燃料極基板11となるように所要枚数積層したものでもよい。所定厚さの未焼成燃料極基板11及び未焼成燃料極基板用シート113は、いずれも支持材2(未焼成燃料極基板11の場合の図1及び未焼成燃料極基板用シート113の場合の図2参照)の表面においてガス雰囲気下に形成される。従って、所定厚さの未焼成燃料極基板11は、支持材2に接した状態で形成された一面111と、ガス雰囲気に接した状態で形成された他面112とを有する。また、未焼成燃料極基板用シート113は、支持材2に接した状態で形成された一面1131と、ガス雰囲気に接した状態で形成された他面1132とを有する。
上記「支持材2」の材質は、その表面において形成される所定厚さの未焼成燃料極基板11及び未焼成燃料極基板用シート113を変質、汚損等させない限り、特に限定されないが、通常、樹脂、ゴム、ガラス等が用いられる。また、支持材2の形状も特に限定されないが、樹脂、ゴムの場合はフィルム、ガラスの場合は板状体とすることができる。更に、所定厚さの未焼成燃料極基板11及び未焼成燃料極基板用シート113を形成するための原料が接する支持材2の表面は、平滑であっても、凹凸を有していてもよいが、支持材の表面に意図して凹凸を形成する必要はなく、一般に平滑な表面を有する支持材2が用いられる。この場合、この平滑面に接した状態で形成された、所定厚さの未焼成燃料極基板11及び未焼成燃料極基板用シート113の各々の一面111、1131はそれぞれ平滑面となる。
尚、この平滑面とは、三次元表面構造解析顕微鏡、走査型レーザー顕微鏡、電子線表面形態解析装置等の光学式表面粗さ測定器、及び触針式表面粗さ計等の接触式表面粗さ測定器などを用いて測定した表面粗さ(算術平均高さRa)が3μm以下、特に1〜3μmである面であることを意味する。
上記「ガス雰囲気」は、所定厚さの未焼成燃料極基板11及び未焼成燃料極基板用シート113を変質、汚損等させない限り、どのような種類のガスからなる雰囲気であってもよいが、操作のし易さ、安全性等の観点から、大気、窒素ガス、不活性ガス等からなる雰囲気であることが好ましい。また、より操作がし易く、且つコストの面でも有利な大気であることが特に好ましく、所定厚さの未焼成燃料極基板11及び未焼成燃料極基板用シート113は、大気雰囲気で形成することができる。このガス雰囲気に接した状態で形成された、所定厚さの未焼成燃料極基板11及び未焼成燃料極基板用シート113の各々の他面112、1132はそれぞれ凹凸面となる。
尚、この凹凸面とは、三次元表面構造解析顕微鏡、走査型レーザー顕微鏡、電子線表面形態解析装置等の光学式表面粗さ測定器、及び触針式表面粗さ計等の接触式表面粗さ測定器などを用いて測定した表面粗さ(算術平均高さRa)が3μmを越える、特に3μmを越え、8μm以下である、更に4〜7μmである面であることを意味する。
所定厚さの未焼成燃料極基板11を用いる場合、この基板の、支持材2の表面に接した状態で形成された一面は、そのまま未焼成燃料極基板11の上記「一面111」を形成することになる。更に、この基板の、ガス雰囲気に接した状態で形成された他面は、そのまま未焼成燃料極基板11の上記「他面112」を形成することとなる。従って、この未焼成燃料極基板11の他面112は凹凸面となり、この凹凸面に未焼成固体電解質層12が設けられることで、未焼成燃料極基板11と未焼成固体電解質層12との接触面積が大きくなり、優れた発電性能を有するSOFCを得ることができる燃料極支持膜式燃料電池中間体とすることができる。
一方、未焼成燃料極基板用シート113を用いる場合、未焼成燃料極基板11は、複数の未焼成燃料極基板用シート113が積層されて形成される。この場合、隣り合う各々のシートの一面と他面のいずれが積層されてもよいが、図4のように、シートが積層されてなる未焼成燃料極基板11の少なくとも他面112が、未焼成燃料極基板用シート113の、ガス雰囲気に接した状態で形成された他面1132(凹凸面)により形成されるように積層する必要がある。この未焼成燃料極基板11の凹凸を有する他面112に、未焼成固体電解質層12が設けられることで、未焼成燃料極基板11と未焼成固体電解質層12との接触面積が大きくなり、優れた発電性能を有するSOFCを得ることができる燃料極支持膜式燃料電池中間体とすることができる。
未焼成燃料極基板用シート113は、上記のように未焼成燃料極基板11の他面112が凹凸面となる限り、どのように積層してもよいが、図5のように、各々の未焼成燃料極基板用シート113を、それぞれのシートの、支持材2に接した状態で形成された一面1131同士、及びガス雰囲気に接した状態で形成された他面1132同士が交互に接するように積層することが好ましい。このように積層し、且つ未焼成燃料極基板11の一方の面(他面112)が凹凸面となるようにして、この凹凸面に、未焼成固体電解質層12が設けられることで、未焼成燃料極基板11と未焼成固体電解質層12との接触面積が大きくなり、優れた発電性能を有するSOFCを得ることができる燃料極支持膜式燃料電池中間体とすることができる。更に、未焼成燃料極基板用シート113の一面1131同士と他面1132同士とが交互に積層されることで、未焼成燃料極基板用シート113に含有されるセラミック粒子等が厚さ方向に濃度分布を有していても、その影響が緩和され、焼成時の反り及び歪等の発生が抑えられる。
未焼成燃料極基板11の厚さは特に限定されないが、0.5〜5mm、特に1〜3mm、更に1.2〜2.5mmとすることができる。未焼成燃料極基板11が0.5〜5mmであれば、固体電解質層等を支持するための十分な機械的強度等を有する支持基板とすることができる。
未焼成燃料極基板11の材質は特に限定されず、未焼成燃料極基板11は、Ni及びFe等の金属の酸化物(NiO、Fe等)と、ジルコニア系セラミック(好ましくはYSZ等の安定化ジルコニア又は部分安定化ジルコニア等)、セリア及び酸化マンガン等のセラミックとの混合物などにより形成することができる。更に、各種の金属、及び金属とセラミックとの混合物などを用いることもできる。金属としては、Pt、Au、Ag、Pd、Ir、Ru、Rh、Ni及びFe等の金属又は2種以上の金属を含有する合金が挙げられる。また、金属とセラミックとの混合物としては、これらの金属又は合金と、ジルコニア系セラミック(好ましくはYSZ等の安定化ジルコニア又は部分安定化ジルコニア等)、セリア及び酸化マンガン等との混合物などが挙げられる。これらのうちでは、酸化ニッケル(SOFCの作動時には還元されてNiとなる。)と、ジルコニア系セラミックとの混合物が好ましく、このジルコニア系セラミックが、イットリア及び/又はスカンジアを用いて安定化又は部分安定化されたものであることがより好ましい。
所定厚さの未焼成燃料極基板11及び未焼成燃料極基板用シート113を、支持材2の表面において形成する方法は特に限定されない。例えば、Ni及びFe等の金属の酸化物粉末とジルコニア系セラミック等のセラミック粉末との混合粉末、各種の金属粉末、及び金属粉末とセラミック粉末との混合粉末などを含有するスラリーを、支持材2の表面に塗布し、その後、乾燥し、更に必要に応じて加熱し、スラリーに含有される有機バインダ等を除去することにより設けることができる。塗布方法は特に限定されず、スクリーン印刷法、ドクターブレード法、スキージ法、スピンコート法等の各種の方法が挙げられる。
上記「未焼成固体電解質層12」を、未焼成燃料極基板11の他面112(凹凸面)に設ける方法は特に限定されない。例えば、固体電解質であるセラミック粉末等を含有するスラリーを、未焼成燃料極基板11の他面112に塗布し、その後、乾燥し、更に必要に応じて加熱し、スラリーに含有される有機バインダ等を除去することにより設けることができる。塗布方法は特に限定されず、スクリーン印刷法、ドクターブレード法、スキージ法、スピンコート法等の各種の方法が挙げられる。
また、未焼成固体電解質層12は、セラミック粉末等を含有するスラリーを用いて予め未焼成固体電解質層12となるシートを形成し、このシートを、未焼成燃料極基板11の他面112に積層して設けることもできる。この場合、シートは、一面が支持材2に接し、且つ他面がガス雰囲気に接した状態で形成されたものであることが好ましい(図3参照)。支持材としては未焼成燃料極基板のときと同様のものを用いることができ、ガス雰囲気としては未焼成燃料極基板の場合と同様の雰囲気とすることができる。更に、このようにして形成された未焼成固体電解質層12となるシートの、ガス雰囲気に接した状態で形成された他面122は、未焼成燃料極基板の場合と同様に凹凸面となる。この他面と、未焼成燃料極基板の他面(凹凸面)とが接するように積層することで、未焼成燃料極基板11と未焼成固体電解質層12との接触面積をより大きくすることができ、更に優れた発電性能を有するSOFCを得ることができる燃料極支持膜式燃料電池中間体とすることができる。
未焼成固体電解質層12の厚さは特に限定されないが、1〜50μmであることが好ましく、特に5〜40、更に5〜30μmであることがより好ましい。未焼成固体電解質層12の厚さが1μm以上であれば、未焼成固体電解質層に生成した気孔が焼成後も残存することによる燃料ガス及び支燃性ガスの漏洩が防止される。また、未焼成固体電解質層12の厚さが50μm以下であれば、固体電解質層の抵抗が過大となることによる発電性能の低下が防止され、且つ未焼成固体電解質層12に含有されるセラミック粒子等の厚さ方向における濃度分布による焼成時の反り、歪等の発生も防止、又は少なくとも抑えられる。更に、未焼成燃料極基板11の厚さは前記のとおりであるが、未焼成燃料極基板11の厚さは、未焼成固体電解質層12の50倍以上、特に75倍以上、更に100倍以上(通常、300倍以下である。)の厚さであることが好ましい。このように未焼成燃料極基板を厚くすることにより、未焼成固体電解質層との収縮率の差による焼成時の反り等の発生を抑えることができる。
未焼成固体電解質層12の材質は特に限定されず、イオン導電性を有する各種の固体電解質を用いることができる。この固体電解質としては、ZrO系固体電解質、LaGaO系固体電解質、BaCeO系固体電解質、SrCeO系固体電解質、SrZrO系固体電解質及びCaZrO系固体電解質等が挙げられる。これらの固体電解質のうちでは、ZrO系固体電解質が好ましい。また、希土類元素の酸化物、特にY、Scを用いて安定化、又は部分安定化されたZrO系固体電解質が、優れたイオン導電性と十分な機械的強度とを併せて有するためより好ましい。
未焼成固体電解質層12の一面には、上記「未焼成反応防止層13」を設けることもできる。固体電解質層はジルコニア系固体電解質により形成されることが多いが、空気極層形成のための焼成時、固体電解質層32と、未焼成空気極層14との界面で抵抗の高い反応相が生成することがある。この反応相の生成により発電性能が低下するが、未焼成固体電解質層12の表面に未焼成反応防止層13を設け、予め反応防止層33を形成し、この反応防止層33の表面に未焼成空気極層14を設け、その後、焼成することで、反応相の生成、及びそれによる発電性能の低下が防止、又は少なくとも抑えられる。
未焼成反応防止層13の厚さは特に限定されないが、1〜20μm、特に2〜10μm、更に2〜8μmとすることが好ましい。未焼成反応防止層13の厚さが1μm以上であれば、未焼成反応防止層13に生成する気孔による固体電解質層と未焼成空気極層との反応が防止される。また、未焼成反応防止層13の厚さが20μm以下であれば、反応防止層の抵抗が過大となることによる発電性能の低下が防止される。また、未焼成燃料極基板11の厚さが、未焼成固体電解質層12の厚さと、未焼成反応防止層13の厚さとの合計厚さの50倍以上、特に75倍以上、更に100倍以上(通常、300倍以下である。)であることが好ましい。このように未焼成燃料極基板11を厚くすることにより、未焼成燃料極基板11と、未焼成固体電解質層12及び未焼成反応防止層13の各々との収縮率の差による焼成時の反り等の発生を抑えることができる。
未焼成反応防止層13の材質は特に限定されないが、通常、CeOのCeの一部が少なくとも1種の希土類元素により置換されたCeO系酸化物が用いられる。このCeO系酸化物は、その一部が希土類元素に置換されたうえ、希土類元素ではない他の元素により更に置換されていてもよい。これらのCeO系酸化物のうちでは、1種の希土類元素により置換された化学式Ce1−xLn2±δ(Lnは希土類元素のうちの1種であり、δは酸素過剰量又は酸素欠損量である。)で表される酸化物が、反応防止の作用に優れるため好ましい。尚、xは、通常、0.05≦x≦0.3である。更に、LnとしてはSm及びGdが好ましい。このようなCeO系酸化物としては、例えば、Ce0.8Sm0.22±δ、Ce0.8Gd0.22±δ等が挙げられる。
また、希土類元素ではない他の元素としては、Ga、Al等が挙げられる。これらの元素により更に置換されたCeO系酸化物は、化学式Ce1−x(Ln1−y2±δ(Lnは希土類元素のうちの1種であり、MはGa、Al等の希土類元素ではない元素であり、δは酸素過剰量又は酸素欠損量である。)で表される。この化学式におけるxは、通常、0.05≦x≦0.3であり、yは、通常、0.005≦y≦0.05である。更に、LnとしてはSm及びGdが好ましい。このようなCeO系酸化物としては、例えば、Ce0.8Sm0.19Ga0.012±δ、Ce0.8Gd0.19Ga0.012±δ等が挙げられる。
未焼成反応防止層13を、未焼成固体電解質層12の一面に設ける方法は特に限定されない。例えば、CeO系酸化物粉末などを含有するスラリーを、未焼成固体電解質層12の一面に塗布し、その後、乾燥し、更に必要に応じて加熱し、スラリーに含有される有機バインダ等を除去することにより設けることができる。塗布方法は特に限定されず、スクリーン印刷法、ドクターブレード法、スキージ法、スピンコート法等の各種の方法が挙げられる。
[2]固体電解質形燃料電池の製造
以下、固体電解質形燃料電池の製造について、その一例の断面を示す模式図である図10及び図11を用いて説明する。
図11の、反応防止層33を有さない固体電解質形燃料電池302の製造方法は、未焼成燃料極基板11と、未焼成固体電解質層12とを同時焼成する同時焼成工程、未焼成固体電解質層12が焼成されてなる固体電解質層32の表面に未焼成空気極層14を設ける未焼成空気極層形成工程(図9参照)、未焼成空気極層14を、同時焼成の温度より低温で焼成して空気極層34を形成する空気極層形成工程、を備える。
また、図10の、反応防止層33を有する固体電解質形燃料電池301の製造方法は、未焼成燃料極基板11と、未焼成固体電解質層12と、未焼成反応防止層13とを同時焼成する同時焼成工程、未焼成反応防止層13が焼成されてなる反応防止層33の表面に未焼成空気極層14を設ける未焼成空気極層形成工程(図8参照)、未焼成空気極層14を、同時焼成の温度より低温で焼成して空気極層34を形成する空気極層形成工程、を備える。
上記「同時焼成工程」は、前記のようにして作製した未焼成燃料極基板11と未焼成固体電解質層12との積層体、又は反応防止層33を有する固体電解質形燃料電池301の場合は、前記のようにして作製した未焼成燃料極基板11、未焼成固体電解質層12及び未焼成反応防止層13からなる積層体を、同時に一体に焼成する工程である。この同時焼成の焼成温度は用いる原料粉末の種類等にもよるが、前記の各種の原料を用いて未焼成燃料極基板11、未焼成固体電解質層12及び未焼成反応防止層13を設ける場合は、1250〜1500℃、特に1250〜1450℃、更に1300〜1450℃とすることが好ましい。焼成温度が1250〜1500℃であれば、固体電解質層32及び反応防止層33が十分に焼結し、また、焼成時に、未焼成固体電解質層12と未焼成反応防止層13との界面における抵抗の高い反応相の生成を抑えることができる。更に、未焼成反応防止層13を設けた場合は、固体電解質層32と未焼成空気極層14との界面における反応による抵抗の高い反応相の生成を抑えることもできる。
尚、焼成温度を保持する時間は、焼成温度にもよるが、30分〜5時間、特に30分〜3時間とすることができる。また、焼成雰囲気は特に限定されず、大気雰囲気、窒素ガス雰囲気、不活性ガス雰囲気等とすることができる。
上記「未焼成空気極層14」の材質は特に限定されず、各種の金属、金属の酸化物、金属の複酸化物等を用いることができる。金属としては、Pt、Au、Ag、Pd、Ir、Ru及びRh等の金属又は2種以上の金属を含有する合金が挙げられる。また、金属の酸化物としては、La、Sr、Ce、Co、Mn及びFe等の酸化物(La、SrO、Ce、Co、MnO及びFeO等)が挙げられる。更に、複酸化物としては、少なくともLa、Pr、Sm、Sr、Ba、Co、Fe及びMn等を含有する複酸化物(La1−xSrCoO系複酸化物、La1−xSrFeO系複酸化物、La1−xSrCo1−yFe系複酸化物、La1−xSrMnO系複酸化物、Pr1−xBaCoO系複酸化物及びSm1−xSrCoO系複酸化物等)が挙げられる。
これらのうちでは複酸化物が好ましく、Ln1−xCoO系複酸化物(Lnは希土類元素であり、MはSr又はBaである。)がより好ましい。また、このLn1−xCoO系複酸化物は、Ln元素及びM元素の他に、更にその他の置換元素を有していてもよい。これらのLn1−xCoO系複酸化物のうちでも、Ln1−xCoO3±δで表され、0.2≦x≦0.8、且つ0≦δ<1(δは酸素過剰量又は酸素欠損量である。)である複酸化物が特に好ましく、LnはLa、Pr及びSmのうちの少なくとも1種であることが更に好ましい。このようなLn1−xCoO系複酸化物としては、例えば、La0.6Sr0.4CoO3±δ、Pr0.5Ba0.5CoO3±δ及びSm0.5Sr0.5CoO3±δ等が挙げられる。
この未焼成空気極層14の大きさは特に限定されないが、固体電解質層32と未焼成空気極層14との反応を防止するため、未焼成空気極層14の全面が、反応防止層33に積層されて設けられることが好ましい。即ち、未焼成空気極層14は、反応防止層33と同じ大きさであるか、反応防止層33よりも小さいことが好ましい。また、未焼成空気極層14の厚さは特に限定されないが、10〜100μm、特に15〜70μm、更に20〜50μmであることが好ましい。未焼成空気極層14の厚さが10〜100μmであれば、電極として十分に機能し、且つ厚すぎて焼成時に反応防止層33から剥離することもない。
未焼成空気極層14を、固体電解質層32又は反応防止層33の表面に設ける方法は特に限定されない。例えば、各種の金属粉末、金属酸化物粉末、金属複酸化物粉末等を含有するスラリーを、固体電解質層32又は反応防止層33の表面に塗布し、その後、乾燥し、更に必要に応じて加熱し、スラリーに含有される有機バインダ等を除去することにより設けることができる。塗布方法は特に限定されず、スクリーン印刷法、ドクターブレード法、スキージ法、スピンコート法等の各種の方法が挙げられる。
未焼成空気極層14は、同時焼成工程における同時焼成の温度より低い温度で焼成され、空気極層34が形成される。未焼成空気極層14は、同時焼成の温度より50〜700℃、特に100〜700℃、更に200〜700℃低い温度で焼成されることが好ましい。更に、未焼成空気極層14の焼成温度は、原料粉末の種類等にもよるが、800〜1300℃、特に800〜1250℃、更に800〜1200℃とすることが好ましい。未焼成空気極層14を800〜1300℃で焼成することで、ガス拡散が容易な多孔体からなる空気極層34を形成することができ、且つ既に焼成されている燃料極基板31が、この焼成により過度に緻密化されることもなく、燃料極基板31におけるガス拡散が損なわれることもない。
尚、焼成温度を保持する時間は、焼成温度にもよるが、30分〜5時間、特に30分〜3時間とすることができる。また、焼成雰囲気は特に限定されず、大気雰囲気、窒素ガス雰囲気、不活性ガス雰囲気等とすることができる。
固体電解質形燃料電池301、302は、燃料極基板31、固体電解質層32及び空気極層34を有し、更に必要に応じて反応防止層33を有する。また、燃料極基板31に燃料ガスを導入する流路を有する金属セパレータ351、空気極層34に支燃性ガスを導入する流路を有する金属セパレータ352、金属セパレータ351と352との間を電気的に絶縁するシールガラス等からなるシール部36を備える。金属セパレータ351、352は、それぞれシール部36を介して固体電解質層32に接合されている。尚、燃料極基板31及び空気極層34から集電するための取り出し電極等を付設することもできる。尚、燃料極基板31及び/又は空気極層34に集電電極を付設し、この集電電極から集電することもできる。このようにすれば、集電効率を向上させることができる。
金属セパレータ351、352は耐熱金属により形成することができる。この耐熱金属としては、ステンレス鋼、ニッケル基合金、クロム基合金等が挙げられる。シール部36は、固体電解質層32と、金属セパレータ351、352の各々とを接合して気密にシールし、燃料ガスの流路と支燃性ガスの流路とを遮断するものである。このシール部36の材質は特に限定されず、ガラス質シール材を用いることができる。ガラス質シール材としては、結晶化ガラス、ガラスセラミックス等が挙げられる。
[3]複数の固体電解質形燃料電池が積層されてなるスタック構造
固体電解質形燃料電池は、複数のSOFCが積層されてなるスタック構造(以下、「SOFCスタック」という。)とすることもできる。このSOFCスタックは種々の構造を有するものとすることができ、例えば、図12及び図13のようなSOFCスタック303、304とすることができる。これらのSOFCスタックは、隣り合う各々のSOFC301、302の、燃料極基板31に燃料ガスを導入する流路を有する金属セパレータ351と、空気極層34に支燃性ガスを導入する流路を有する金属セパレータ352とが、それぞれ接して積層されて形成されている。
[4]発電
固体電解質形燃料電池を用いて発電する場合、燃料極基板側には燃料ガスを導入し、空気極層側には支燃性ガスを導入する。燃料ガスとしては、水素、水素源となる炭化水素、水素と炭化水素との混合ガス、必要に応じて所定温度の水中を通過させた加湿燃料ガス、水蒸気を混合した水蒸気混合燃料ガス及びメタノール等のアルコール類等が挙げられる。炭化水素は特に限定されず、例えば、天然ガス、ナフサ、石炭ガス化ガス等を用いることができる。更に、炭素数が1〜10、特に1〜7、更に1〜4である飽和炭化水素(例えば、メタン、エタン、プロパン、ブタン及びペンタン等)及び不飽和炭化水素(例えば、エチレン及びプロピレン等)を主成分とするものが好ましく、これらのうちでは飽和炭化水素を主成分とするものが特に好ましい。また、燃料ガスは、窒素及びヘリウム、アルゴン等の不活性ガスを50体積%以下含有するものであってもよい。
一方、支燃性ガスとしては、酸素、一酸化炭素、及びこれらと他の気体との混合ガス等を用いることができる。更に、支燃性ガスは、窒素及びヘリウム、アルゴン等の不活性ガスを50体積%以下含有するものであってもよい。支燃性ガスとしては、安全であり、且つ安価な空気が特に好ましい。
以下、実施例により本発明を具体的に説明する。
[1]燃料極支持膜式燃料電池中間体の作製
(1)未焼成燃料極基板用シートの作製
酸化ニッケル(NiO)粉末60質量部と、8モル%のイットリアが固溶されたジルコニア(以下、「8YSZ」という。)粉末40質量部とを混合した。その後、造孔材として30質量部の人造黒鉛粉末を配合し、更に混合した。次いで、分散剤として1質量部のジエチルアミン、及び有機溶媒(トルエンとメチルエチルケトンとを質量比で2:3の割合で混合した溶媒)35質量部を配合し、アルミナ製ポットミルを用いて24時間混合した。その後、可塑剤としてジブチルフタレートを7質量部、バインダとしてポリビニルアルコールを16質量部配合し、更に3時間混合してスラリーを調製した。次いで、このスラリーを用いてドクターブレード法によりポリエステルフィルム上で厚さ200μmの未焼成燃料極基板用シート113を8枚作製した。尚、この未焼成燃料極基板用シート113の作製時、支持材(ポリエステルフィルム)2と接していた側(平滑面)を、以下「平滑面側」といい、大気と接していた側(凹凸面)を、以下「凹凸面側」という。また、前記の方法により測定した凹凸面側の表面粗さ(算術平均高さRa)は5μmであり、平滑面側の表面粗さ(算術平均高さRa)は2μmであった。
(2)未焼成燃料極基板の作製
上記(1)で作製した未焼成燃料極基板用シート113を8枚用いて、以下の(A)及び(B)の方法により積層した。
(A)8枚の未焼成燃料極基板用シートの各々を、隣り合うシートの一方のシートの平滑面側と、他方のシートの凹凸面側とが接するようにして積層し、圧着した。この場合、形成される未焼成燃料極基板の一方の面(他面)は凹凸面となり、他方の面(一面)は平滑面となる。実施例1、3、5及び7では、この未焼成燃料極基板の凹凸面に未焼成固体電解質層を設けた。また、比較例1、2では、この未焼成燃料極基板の平滑面に未焼成固体電解質層を設けた。
(B)8枚の未焼成燃料極基板用シートの各々を、隣り合うシートの一方のシートと他方のシートのそれぞれの平滑面側同士、又は凹凸面側同士が交互に接するようにし、且つ形成される未焼成燃料極基板の一面及び他面がともに凹凸面となるようにして積層し、圧着した(実施例2、4、6及び8で用いた。)。
(3)燃料極支持膜式燃料電池中間体の作製
上記(2)で作製した未焼成燃料極基板11の表面に、以下の(a)及び(b)の方法により未焼成固体電解質層12を形成した。また、以下の(c)の方法により未焼成反応防止層13を形成した。
(a)未焼成固体電解質層をスクリーン印刷により形成した(実施例1、2、5及び6、比較例1、2で用いた。)。
8YSZ粉末100質量部、バインダとしてポリビニルアルコール20質量部及びブチルカルビトール35質量部を混合し、未焼成固体電解質層用のスラリーを調製した。その後、このスラリーを、上記(2)において作製した未焼成燃料極基板11から切り出した縦30mm×横30mm×厚さ1500μmの寸法の試験体の凹凸面(実施例1、2、5及び6)又は平滑面(比較例1、2)に厚さ25μmとなるようにスクリーン印刷し、未焼成固体電解質層12を形成した。
(b)未焼成固体電解質層用シートを作製し、このシートを未焼成燃料極基板11の凹凸面に積層し、圧着した(実施例3、4、7及び8で用いた。)。
8YSZ粉末100質量部、分散剤としてジエチルアミン1質量部、有機溶媒(トルエンとメチルエチルケトンとを質量比で2:3の割合で混合した溶媒)35質量部を、アルミナ製ポットミルを用いて24時間混合した。その後、可塑剤としてジブチルフタレート7質量部、及びバインダとしてポリビニルアルコール20質量部を配合し、更に3時間混合し、スラリーを調製した。次いで、このスラリーを用いてポリエステルフィルム上にドクターブレード法により厚さ25μmの未焼成固体電解質層用シートを作製した。その後、(2)、(A)、(B)で作製した未焼成燃料極基板11の凹凸面に、未焼成固体電解質層用シートを、その大気と接した状態で形成された面を対向させて積層し、圧着した。次いで、縦30mm×横30mmの試験体を切り出し、各々の試験体の未焼成固体電解質層用シートからポリエステルフィルムを剥離した。
(c)未焼成反応防止層の形成(実施例5、6、7及び8、比較例2で用いた。)
上記(a)、(b)で作製された燃料極支持膜式燃料電池中間体の未焼成固体電解質層12の表面に、縦15mm×横15mm×厚さ3μmの未焼成反応防止層13をスクリーン印刷により形成した。
未焼成反応防止層13は、サマリアをドープしたセリア[Sm0.2Ce0.81.9(以下、「SDC」という。)を含有するスラリーを用いて、スクリーン印刷法により形成した。このスラリーは、所定量の酸化サマリウム粉末と酸化セリウム粉末とを使用し、エタノールを溶媒として湿式混合した後、1400℃で6時間保持し、仮焼してSDC粒状体とし、その後、エタノールを溶媒として湿式粉砕して平均粒径0.6μmのSDC粉末とし、次いで、このSDC粉末100質量部に、バインダとしてポリビニルアルコール13質量部及びブチルカルビトール35質量部をそれぞれ配合して調製した。
[2]実験用固体電解質形燃料電池の作製
(1)燃料極支持膜式燃料電池中間体の焼成
上記[1]、(3)、(a)、(b)、(c)で作製された燃料極支持膜式燃料電池中間体を、それぞれ1400℃で1時間保持して同時焼成した。
その結果、(2)、(B)のように、8枚の未焼成燃料極基板用シートの各々を、隣り合うシートの一方のシートと他方のシートのそれぞれの平滑面側同士、又は凹凸面側同士が交互に接するようにして積層し、圧着した場合は、反りのない平坦な中間体が得られた。一方、(2)、(A)のように、8枚の未焼成燃料極基板用シートの各々を、隣り合うシートの一方のシートの平滑面側と、他方のシートの凹凸面側とが接するようにして積層し、圧着した場合は反りが発生したため、焼結体の上面に約0.5kgの錘を載置し、1350℃で3時間保持して、反りを修復するための再焼成を行った。
(2)空気極層及び金属セパレータの形成並びにシール
(i)空気極層の形成
空気極層34を形成するためのセラミック粉末としては、反応防止層33が形成されない実施例1、2、3及び4及び比較例1では、平均粒径2μmの市販のLa0.6Sr0.4MnO(以下、「LSM」と表記する。)粉末を用いた。一方、反応防止層33が形成される実施例5、6、7及び8では、平均粒径2μmの市販のLa0.6Sr0.4CoO(以下、「LSC」と表記する。)粉末を用いた。これは、一般に、LSCはLSMと比較して電極触媒能が高く、高性能なSOFCとするためには有利であるが、ジルコニア系電解質との反応性が高く、反応防止層が形成されない場合は、抵抗の高い反応相が生成し、発電性能が低下するためである。
未焼成空気極層14は、LSM粉末又はLSC粉末100質量部に、バインダとしてポリビニルアルコール13質量部及びブチルカルビトール35質量部を混合してスラリーを調製し、このスラリーを用いてスクリーン印刷により縦5mm×横5mm、厚さ30μmに形成し、その後、LSMの場合は1000℃で1時間保持し、LSCの場合は1200℃で1時間保持して焼成し、それぞれ空気極層34を形成した。
(ii)金属セパレータの形成及びシール
上記のようにして空気極層34を形成した後、積層体の周縁部の8YSZ面と、SUS430からなる実験装置用セパレータ41(直径45mm、厚さ0.1mmであり、中心部に直径15mmの開口部が形成されている。)との間を、結晶化ガラスを用いて形成された実験装置用シール部42により気密に封止し、図14のような、発電性能評価用の実験用固体電解質形燃料電池305を作製した。
[3]発電性能の評価
上記[1]、[2]の手順で作製した実験用固体電解質形燃料電池305を、図15のように、上下からアルミナ管によりシールガラスからなるアルミナ管用シール部44を介して挟持し、上下の各々の内側のアルミナ管432の先端に巻き付けられた白金網45を、それぞれ燃料極基板31と空気極層34とに接触させた。その後、この実験用固体電解質形燃料電池305を電気炉内に収容し、下方の内側アルミナ管432内に水素ガスを流通させ、上方の内側アルミナ管432内に大気と同じ比率で混合した酸素ガスと窒素ガスとの混合ガスを流通させて発電させ、最大出力密度を求めた。結果を表1に示す。
Figure 2005196981
表1によれば、実施例1〜8及び比較例1〜2のいずれにおいても、800℃の開回路電圧は理論値を示していることが分かる。
また、実施例1では、未焼成固体電解質層が積層された未焼成燃料極基板の面が異なる他は構成が同じ比較例1と比較して、出力密度が向上しており、未焼成燃料極基板の凹凸面に固体電解質層を積層することにより接触界面の面積が大きくなった効果が裏付けられている。更に、実施例2では、反り修復のための再焼成をしていないため、燃料極基板の緻密化が抑制され、実施例1より更に出力密度が向上していることが分かる。また、実施例3では、未焼成固体電解質層の形成にシートを使用し、このシートの凹凸面を未焼成燃料極基板の凹凸面に積層したため、実施例1よりも接触界面の面積が更に大きくなり、出力密度がより向上した。更に、実施例4では、未焼成固体電解質層の形成にシートを使用し、このシートの凹凸面を未焼成燃料極基板の凹凸面に積層し、且つ反り修復のための再焼成をしていないため、燃料極基板の緻密化が抑制され、実施例1〜4の中で最も高い出力密度であることが分かる。
尚、反応防止層が形成され、且つ空気極層がLSCにより形成された実施例5〜8では、対応する実施例1〜4の各々の場合と比較し、いずれの場合も出力密度が向上していることが分かる。
一方、未焼成燃料極基板の平滑面に未焼成固体電解質層が形成され、且つ反り修復のための再焼成をしている比較例1では、実施例1、2に比べて出力密度が大きく低下している。また、同様に未焼成燃料極基板の平滑面に未焼成固体電解質層が形成され、且つ反り修復のための再焼成をしている比較例2では、実施例5、6に比べて出力密度が大きく低下していることが分かる。
支持材及びこの支持材の表面において成形された未焼成燃料極基板の断面を示す模式図である。 支持材及びこの支持材の表面において成形された未焼成燃料極基板用シートの断面を示す模式図である。 支持材及びこの支持材の表面において成形された未焼成固体電解質層の断面を示す模式図である。 支持材の表面において成形された未焼成燃料極基板用シートを、その一面及び他面を考慮せずに(但し、積層体、即ち、未焼成燃料極基板の他面が凹凸面側となるようにする。)積層してなる未焼成燃料極基板の断面を示す模式図である。 支持材の表面において成形された未焼成燃料極基板用シートを、各々のシートの一面同士及び他面同士が交互に接するように積層してなる未焼成燃料極基板の断面を示す模式図である。 未焼成反応防止層を有する燃料極支持膜式燃料電池中間体の断面を示す模式図である。 未焼成反応防止層を有さない燃料極支持膜式燃料電池中間体の断面を示す模式図である。 図6の未焼成反応防止層を有する燃料極支持膜式燃料電池中間体を用いて未焼成空気極層を形成した中間製品の断面を示す模式図である。 図7の未焼成反応防止層を有さない燃料極支持膜式燃料電池中間体を用いて未焼成空気極層を形成した中間製品の断面を示す模式図である。 図6の燃料極支持膜式燃料電池中間体を用いてなる固体電解質形燃料電池の一例の断面を示す模式図である。 図7の燃料極支持膜式燃料電池中間体を用いてなる固体電解質形燃料電池の一例の断面を示す模式図である。 図10の固体電解質形燃料電池が組み込まれたSOFCスタックの一例の断面を示す模式図である。 図11の固体電解質形燃料電池が組み込まれたSOFCスタックの一例の断面を示す模式図である。 試験用固体電解質形燃料電池の断面を示す模式図である。 図14の試験用固体電解質形燃料電池を用いて発電性能を評価するための試験装置の模式図である。
符号の説明
101、102;燃料極支持膜式燃料電池中間体、11;未焼成燃料極基板、111;未焼成燃料極基板の一面、112;未焼成燃料極基板の他面、113;未焼成燃料極基板用シート、1131;未焼成燃料極基板用シートの一面、1132;未焼成燃料極基板用シートの他面、12;未焼成固体電解質層、13;未焼成反応防止層、14;未焼成空気極層、2;支持材、301、302;固体電解質形燃料電池、31;燃料極基板、32;固体電解質層、33;反応防止層、34;空気極層、351;燃料ガスの流路を有する金属セパレータ、352;支燃性ガスの流路を有する金属セパレータ、36;シール部、303、304;SOFCスタック、305;試験用固体電解質形燃料電池、41;実験装置用セパレータ、42;実験装置用シール部、431;外側のアルミナ管、432;内側のアルミナ管、44;アルミナ管用シール部、45;白金網。

Claims (12)

  1. 未焼成燃料極基板11と、該未焼成燃料極基板11に積層された未焼成固体電解質層12とを備える燃料極支持膜式燃料電池中間体において、該未焼成燃料極基板11は、支持材2に接した状態で形成された一面111と、ガス雰囲気に接した状態で形成された他面112とを有し、該他面112に、該未焼成固体電解質層12が設けられていることを特徴とする燃料極支持膜式燃料電池中間体。
  2. 上記未焼成燃料極基板11は、酸化ニッケルと、希土類元素により安定化されたジルコニアとを含有する請求項1に記載の燃料極支持膜式燃料電池中間体。
  3. 上記未焼成固体電解質層12は、支持材2に接した状態で形成された一面121と、ガス雰囲気に接した状態で形成された他面122とを有し、該他面122と、上記未焼成燃料極基板11の上記他面112とが接するように積層された請求項1又は2に記載の燃料極支持膜式燃料電池中間体。
  4. 上記未焼成燃料極基板11は、複数の未焼成燃料極基板用シート113が積層されてなり、各々の該未焼成燃料極基板用シート113は、支持材2に接した状態で形成された一面1131と、ガス雰囲気に接した状態で形成された他面1132とを有し、それぞれの未焼成燃料極基板用シート113の上記一面1131同士及び上記他面1132同士が交互に接して積層されて該未焼成燃料極基板11が形成されている請求項1乃至3のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体。
  5. 上記未焼成固体電解質層12の厚さが1〜50μmである請求項1乃至4のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体。
  6. 上記未焼成燃料極基板11の厚さが、上記未焼成固体電解質層12の厚さの50倍以上である請求項1乃至5のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体。
  7. 上記未焼成固体電解質層12の表面に、更に未焼成反応防止層13が設けられた請求項1乃至6のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体。
  8. 上記未焼成反応防止層13が、Ce1−xLn2−δ(Lnは希土類元素であり、0.05≦x≦0.3である。)からなる請求項7に記載の燃料極支持膜式燃料電池中間体。
  9. 上記未焼成反応防止層13の厚さが1〜20μmである請求項7又は8に記載の燃料極支持膜式燃料電池中間体。
  10. 上記未焼成燃料極基板11の厚さが、上記未焼成固体電解質層12の厚さと、上記未焼成反応防止層13の厚さとの合計厚さの50倍以上である請求項7乃至9のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体。
  11. 請求項1乃至6のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体を用いた固体電解質形燃料電池の製造方法であって、
    上記未焼成燃料極基板11と、上記未焼成固体電解質層12とを同時焼成する同時焼成工程、
    該未焼成固体電解質層12が焼成されてなる固体電解質層32の表面に未焼成空気極層14を設ける未焼成空気極層形成工程、
    該未焼成空気極層14を、該同時焼成の温度より低温で焼成して空気極層34を形成する空気極層形成工程、を備えることを特徴とする固体電解質形燃料電池の製造方法。
  12. 請求項7乃至10のうちのいずれか1項に記載の燃料極支持膜式燃料電池中間体を用いた固体電解質形燃料電池の製造方法であって、
    上記未焼成燃料極基板11と、上記未焼成固体電解質層12と、上記未焼成反応防止層13とを同時焼成する同時焼成工程、
    該未焼成反応防止層13が焼成されてなる反応防止層33の表面に未焼成空気極層14を設ける未焼成空気極層形成工程、
    該未焼成空気極層14を、該同時焼成の温度より低温で焼成して空気極層34を形成する空気極層形成工程、を備えることを特徴とする固体電解質形燃料電池の製造方法。
JP2003435172A 2003-12-26 2003-12-26 固体電解質形燃料電池の製造方法 Expired - Fee Related JP4559068B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003435172A JP4559068B2 (ja) 2003-12-26 2003-12-26 固体電解質形燃料電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435172A JP4559068B2 (ja) 2003-12-26 2003-12-26 固体電解質形燃料電池の製造方法

Publications (2)

Publication Number Publication Date
JP2005196981A true JP2005196981A (ja) 2005-07-21
JP4559068B2 JP4559068B2 (ja) 2010-10-06

Family

ID=34815372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435172A Expired - Fee Related JP4559068B2 (ja) 2003-12-26 2003-12-26 固体電解質形燃料電池の製造方法

Country Status (1)

Country Link
JP (1) JP4559068B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008778A (ja) * 2005-07-01 2007-01-18 Chubu Electric Power Co Inc セラミックス材料、酸素電極材料、酸素電極ならびに燃料電池およびその製造方法
JP2009087829A (ja) * 2007-10-01 2009-04-23 Inst Nuclear Energy Research Rocaec 高度整合性固体酸化物形燃料電池用膜電極接合体の製造方法
JP2009218126A (ja) * 2008-03-11 2009-09-24 Inst Nuclear Energy Research Rocaec 高性能固体酸化物形燃料電池膜電極接合体(sofc−mea)に積層する完全緻密な電解質層の製造方法。
JP2011014335A (ja) * 2009-07-01 2011-01-20 Ngk Insulators Ltd 積層焼成体、及びその積層焼成体の製造方法
JP2012079506A (ja) * 2010-09-30 2012-04-19 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用電解質シートの製造方法
JP2012204149A (ja) * 2011-03-25 2012-10-22 Nippon Shokubai Co Ltd アノード支持型ハーフセル及びこれを用いたアノード支持型セル
JP2014089816A (ja) * 2012-10-29 2014-05-15 Toshiba Corp 電気化学セル及びその製造方法
JP2016170976A (ja) * 2015-03-12 2016-09-23 東京瓦斯株式会社 固体酸化物形燃料電池
JP2016195116A (ja) * 2016-04-28 2016-11-17 株式会社日本触媒 アノード支持型ハーフセル及びこれを用いたアノード支持型セル
JP2017069214A (ja) * 2016-11-11 2017-04-06 株式会社東芝 電気化学セル及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135002A (ja) * 1993-11-11 1995-05-23 Tokyo Gas Co Ltd 多孔質基板と一体化したysz膜の作製方法
JP2000243405A (ja) * 1999-02-23 2000-09-08 Fuji Electric Corp Res & Dev Ltd 固体電解質型燃料電池の製造方法
JP2001266909A (ja) * 2000-03-16 2001-09-28 Tokyo Gas Co Ltd 単電池の製造方法、およびその単電池を用いた固体電解質型燃料電池
JP2001283877A (ja) * 2000-04-03 2001-10-12 Tokyo Gas Co Ltd 固体電解質型燃料電池の単電池、およびその製造方法
JP2002343376A (ja) * 2001-05-14 2002-11-29 Tokyo Gas Co Ltd 平板形固体酸化物燃料電池の積層構造
JP2003173802A (ja) * 2001-12-04 2003-06-20 Ngk Spark Plug Co Ltd 固体電解質型燃料電池及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135002A (ja) * 1993-11-11 1995-05-23 Tokyo Gas Co Ltd 多孔質基板と一体化したysz膜の作製方法
JP2000243405A (ja) * 1999-02-23 2000-09-08 Fuji Electric Corp Res & Dev Ltd 固体電解質型燃料電池の製造方法
JP2001266909A (ja) * 2000-03-16 2001-09-28 Tokyo Gas Co Ltd 単電池の製造方法、およびその単電池を用いた固体電解質型燃料電池
JP2001283877A (ja) * 2000-04-03 2001-10-12 Tokyo Gas Co Ltd 固体電解質型燃料電池の単電池、およびその製造方法
JP2002343376A (ja) * 2001-05-14 2002-11-29 Tokyo Gas Co Ltd 平板形固体酸化物燃料電池の積層構造
JP2003173802A (ja) * 2001-12-04 2003-06-20 Ngk Spark Plug Co Ltd 固体電解質型燃料電池及びその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008778A (ja) * 2005-07-01 2007-01-18 Chubu Electric Power Co Inc セラミックス材料、酸素電極材料、酸素電極ならびに燃料電池およびその製造方法
JP2009087829A (ja) * 2007-10-01 2009-04-23 Inst Nuclear Energy Research Rocaec 高度整合性固体酸化物形燃料電池用膜電極接合体の製造方法
JP2009218126A (ja) * 2008-03-11 2009-09-24 Inst Nuclear Energy Research Rocaec 高性能固体酸化物形燃料電池膜電極接合体(sofc−mea)に積層する完全緻密な電解質層の製造方法。
JP2011014335A (ja) * 2009-07-01 2011-01-20 Ngk Insulators Ltd 積層焼成体、及びその積層焼成体の製造方法
JP2012079506A (ja) * 2010-09-30 2012-04-19 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用電解質シートの製造方法
JP2012204149A (ja) * 2011-03-25 2012-10-22 Nippon Shokubai Co Ltd アノード支持型ハーフセル及びこれを用いたアノード支持型セル
JP2014089816A (ja) * 2012-10-29 2014-05-15 Toshiba Corp 電気化学セル及びその製造方法
JP2016170976A (ja) * 2015-03-12 2016-09-23 東京瓦斯株式会社 固体酸化物形燃料電池
JP2016195116A (ja) * 2016-04-28 2016-11-17 株式会社日本触媒 アノード支持型ハーフセル及びこれを用いたアノード支持型セル
JP2017069214A (ja) * 2016-11-11 2017-04-06 株式会社東芝 電気化学セル及びその製造方法

Also Published As

Publication number Publication date
JP4559068B2 (ja) 2010-10-06

Similar Documents

Publication Publication Date Title
JP4737946B2 (ja) 固体電解質形燃料電池
US20130052562A1 (en) Composite anode for a solid oxide fuel cell with improved mechanical integrity and increased efficiency
KR101796502B1 (ko) 지지체식 연결재 코팅막의 제조 방법, 및 이로부터 제조된 지지체식 연결재 코팅막을 포함하는 지지체식 세라믹 연결재
JP4015913B2 (ja) 固体電解質型燃料電池用単電池及びこれを用いた燃料電池
JP2005327507A (ja) 固体電解質形燃料電池及びその製造方法
JP2017117663A (ja) 固体酸化物型電池セル及びその評価装置
JP4559068B2 (ja) 固体電解質形燃料電池の製造方法
JP2002175814A (ja) 固体電解質型燃料電池用燃料極の製造方法並びに固体電解質型燃料電池及びその製造方法
JP2007005135A (ja) 平板型燃料電池セルの製造方法
JP5377222B2 (ja) 燃料電池セル、セルスタック装置および燃料電池モジュールならびに燃料電池装置
US11594748B2 (en) Setter plates and manufacturing methods for ceramic-anode solid oxide fuel cells
JPWO2011093328A1 (ja) 燃料電池セル、燃料電池セル装置および燃料電池モジュールならびに燃料電池装置
JP2007200664A (ja) 固体電解質型燃料電池の製造方法
US10483561B2 (en) Flat plate-shaped solid oxide fuel cell and cell module comprising same
US20230051172A1 (en) Clad porous metal substrate for electrochemical cell
JP2007134133A (ja) 固体電解質型燃料電池
JP2009009738A (ja) 固体電解質形燃料電池及びその製造方法
JP2006059610A (ja) 固体電解質型燃料電池及びその製造方法
JP5714738B1 (ja) 燃料電池
KR101940712B1 (ko) 고체 산화물 연료 전지 및 이의 제조방법
WO2021256221A1 (ja) プロトン伝導型セル構造体、プロトン伝導体、電気化学デバイス、及びプロトン伝導体の製造方法
JP7136185B2 (ja) セル構造体
JP6654903B2 (ja) 固体酸化物形燃料電池用の電極材料とその利用
JP2017139078A (ja) 固体酸化物形燃料電池セル
JP6293418B2 (ja) 固体電解質型燃料電池用電極及び固体電解質型燃料電池セル

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100722

R150 Certificate of patent or registration of utility model

Ref document number: 4559068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees