JP2005193194A - ポリフェニルスルホン多孔膜およびその製造方法 - Google Patents
ポリフェニルスルホン多孔膜およびその製造方法 Download PDFInfo
- Publication number
- JP2005193194A JP2005193194A JP2004004023A JP2004004023A JP2005193194A JP 2005193194 A JP2005193194 A JP 2005193194A JP 2004004023 A JP2004004023 A JP 2004004023A JP 2004004023 A JP2004004023 A JP 2004004023A JP 2005193194 A JP2005193194 A JP 2005193194A
- Authority
- JP
- Japan
- Prior art keywords
- polyphenylsulfone
- solvent
- phase separation
- porous membrane
- induced phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
【課題】 純水透過性能や分画性能、強度、耐熱性、低吸水性、耐薬品性に優れ、さらに工程制御性、コスト性、孔形成性に優れたポリフェニルスルホン多孔膜およびその製造方法を提供する。
【解決手段】 本発明のポリフェニルスルホン多孔膜は、ポリフェニルスルホンと溶剤との熱誘起相分離により形成されてなる。この多孔膜は、膜表面に平均孔径が3μm以上の微細孔を有し、純水透過速度が30000L/m2/hr/98kPa以上で、分画粒子径が1μm以上である。
【選択図】 なし
【解決手段】 本発明のポリフェニルスルホン多孔膜は、ポリフェニルスルホンと溶剤との熱誘起相分離により形成されてなる。この多孔膜は、膜表面に平均孔径が3μm以上の微細孔を有し、純水透過速度が30000L/m2/hr/98kPa以上で、分画粒子径が1μm以上である。
【選択図】 なし
Description
本発明は、純水透過性能や分画性能、強度、耐熱性、耐薬品性、低吸水性、さらに工程制御性、コスト性、孔形成性に優れたポリフェニルスルホン多孔膜およびその製造方法に関する。
近年、選択透過性を有する分離膜を用いた分離手段の技術がめざましく進展している。このような分離操作の技術は、例えば飲料水、超純水および医薬品の製造工程、醸造製品の除菌・仕上げにおいて、分離手段、洗浄手段および殺菌手段等を含む一連の浄化システムとして実用化されている。これらの用途分野においては、水のファイン化(高度処理)や安全性向上、精度向上などが高いレベルで要求されており分離膜の利用が進んでいる。
分離膜に求められる特性には、透過性能や分画性能だけでなく、強度や耐熱性、耐薬品性に優れることや、さらに低吸水性であることなどが挙げられ、上記のような状況を鑑み、これらの要求特性はさらに高度化している。透過性能や分画性能に関しては、両者のバランスが重要であり、より高い透過速度でより小さな粒子を除去できることが望ましい。強度に関しては、濾過中はもとよりバブリングによる洗浄に耐えうる強度を有することが必要である。また、耐熱性に優れる分離膜は、熱水中の異物除去に利用できるなど適用範囲が広く、薬品洗浄を行なうにあたっては耐薬品性に優れていることも必要である。さらに、低吸水性の分離膜は濾過中の寸法安定性に優れ、より高度な濾過処理を実現することができる。
このような状況のもと、様々なポリマーからなる分離膜が製造されている。分離膜の強度や耐熱性、耐薬品性、吸水性等の性能は膜素材の特性に由来するところが大きいが、分離膜の透過性能や分画性能は製膜方法に大きく依存する。透過性能や分画性能に優れた分離膜を製造する方法として、相分離を利用する場合が多い。そのような相分離を利用した製造方法は、非溶剤誘起相分離法と熱誘起相分離法に大きく分けることができる。
非溶剤誘起相分離法では、ポリマーと溶剤からなる均一なポリマー溶液は、非溶剤の進入や溶剤の外部雰囲気への蒸発による濃度変化によって相分離を起こす。このような非溶剤誘起相分離法を利用した分離膜の素材には、強度や伸度、耐熱性、耐薬品性、さらに低吸水性にも優れるポリスルホンがよく用いられている。例えば、ポリスルホン系樹脂をN,N−ジメチルアセトアミド等の溶剤に溶解後に、凝固浴中で非溶剤誘起相分離を発現させることで分離膜を製造することができることが知られている(例えば、特許文献1参照)。
また、ポリフェニルスルホンはポリスルホンと比較して、さらに耐薬品性や耐熱性に優れるため、ポリフェニルスルホンを膜素材として用いることができればより好ましい。例えば、ポリフェニルスルホン/ポリビニルピロリドン/N,N−ジメチルホルムアミド/水からなる原液を溶解後に、非溶剤誘起相分離を発現させることで分離膜を製造することができることが知られている(例えば、特許文献2参照)。しかし、一般に非溶剤誘起相分離法は、非溶剤中での相分離制御が難しく、非溶剤が必須であるため製造コストがかかり、マクロボイド(粗大孔)が発生しやすいなど、膜物性と工程制御性およびコスト性の面で問題がある。
一方、熱誘起相分離法は通常、以下のステップよりなる。(1)ポリマーと高い沸点を持った溶剤の混合物を高温で溶融させる。(2)成形後、相分離を誘発させるために適当な速度で冷却させ、ポリマーを固化させる。(3)用いた溶剤を抽出する。
また、熱誘起相分離法が、非溶剤誘起相分離法と比較して有利な点は以下のとおりである。(a)膜の強度を弱める要因となるマクロボイドが発生しない。(b)非溶剤誘起相分離法では、溶剤のほかに非溶剤が必要であるため、製造工程における制御が困難であり、再現性も低い。一方、熱誘起相分離法では非溶剤は必要ないため工程制御性およびコスト性に優れ、また再現性も高い。(c)孔径制御が比較的容易で、孔径分布がシャープで良好な孔を形成する孔形成性に優れる。
熱誘起相分離には固−液型熱誘起相分離と液−液型熱誘起相分離が存在し、どちらを発現するかは、ポリマーと溶剤の相容性に起因する。両者の相容性が非常に高い場合は固−液型熱誘起相分離を発現するが、相容性が低くなると液−液型熱誘起相分離を発現し、ついに両者は非相容となる。一般に、液−液型熱誘起相分離ではスピノーダル分解により相分離が進行するため、固−液型熱誘起相分離と比較して共連続構造が発現し易いという特徴を持ち、その結果、孔の連通性や均一性などの孔形成性に優れる分離膜を製造することができる。つまり、透過性能と分画性能に優れる分離膜を製造するには、液−液型熱誘起相分離を発現する適切なポリマーと溶剤の組み合わせを選択することが好ましい。一般に、ポリマーと溶剤が液−液型熱誘起相分離を発現する領域は狭いため、該方法により分離膜を製造する場合、ポリマーと溶剤の適切な組み合わせを選ぶことが極めて重要であることが知られている(例えば、非特許文献1参照)。
特開平11−104235号公報
特開2003−210955号公報
「ケミカル・エンジニヤリング」 化学工業社 1998年6月号453ページ〜464ページ
本発明の目的は、熱誘起相分離法を用いて、純水透過性能や分画性能、強度、耐熱性、耐薬品性、低吸水性に優れ、さらに工程制御性、コスト性、孔形成性に優れたポリフェニルスルホン多孔膜およびそれを製造する方法を提供することにある。
上記の課題を解決する本発明のポリフェニルスルホン多孔膜は、ポリフェニルスルホンと溶剤との熱誘起相分離により形成された多孔膜である。
上記した本発明のポリフェニルスルホン多孔膜は、ポリフェニルスルホン、該ポリフェニルスルホンと特定の温度領域で相容して一相状態になり、かつ温度変化により相分離を起こしうる溶剤とを、該ポリフェニルスルホンと溶剤が相容する温度で混練させた混合液を調製した後、冷却することで熱誘起相分離とポリフェニルスルホンの析出とを起こさせ、次いで溶剤を抽出させることにより製造することができる。
本発明におけるポリフェニルスルホンとは、下記の(1)式で示される繰り返し単位、すなわちビフェニレン基を有し、イソプロピリデン基を有しないものである。この(1)式で示される化学構造をもつポリフェニルスルホンは、ソルベイアドバンストポリマーズ株式会社より「レーデル」の商品名で市販されており、分子量等によって幾つかの種類が存在するが、特定の温度領域で溶剤と相容して一相状態となり、かつ温度変化により熱誘起相分離を起こしうることが必要である。さらに、分子量は高いほど得られる多孔膜の強度が向上するので好ましいが、分子量により相分離形態が変化することに留意する必要がある。例えば、分子量が高くなるにつれて一般に溶剤との相容性が低くなるので、固−液型熱誘起相分離から液−液型熱誘起相分離を経てついには非相容となる。
本発明において用いられる溶剤は、特定の温度領域でポリフェニルスルホンと相容し、かつ温度変化によりポリフェニルスルホンと熱誘起相分離を起こすものが用いられる。相分離には固−液型熱誘起相分離と液−液型熱誘起相分離が存在するが、(1)式で示されるポリフェニルスルホンの場合、2−(ベンジルオキシ)エタノール、ジフェニルスルフィド、テルフェニル、ベンジルアルコール、メチルイミダゾール、N−メチルベンゼンスルホン酸アミド、リン酸トリフェニル等が液−液型熱誘起相分離を発現するため特に好ましい。さらに、溶剤に、(熱誘起相分離温度+30)℃における30秒間の重量減量率が10%以下のものを用いると、膜表面における開孔性(開孔率)がより良好となるため好ましい。この溶剤の重量減量率は、例えば示差熱・熱重量測定装置(以下、TG(熱重量)−DTA(示差熱)と略記することがある)で測定される。このような溶剤としては、例えば、2−(ベンジルオキシ)エタノール、N−メチルベンゼンスルホン酸アミド、リン酸トリフェニルなどが挙げられる。
本発明において熱誘起相分離温度は以下のように定義したものである。ポリフェニルスルホンと溶剤からなる混合液において、相分離形態が固−液熱誘起相分離の場合は、混合液が一相状態である温度から10℃/minの速度で冷却する過程において、ポリフェニルスルホンのガラス転移温度を相分離温度と定義する。また液−液熱誘起相分離の場合は、混合液が一相状態である温度から10℃/minの速度で冷却する過程においてスピノーダル分解を起こし始める温度と定義する。
ポリフェニルスルホンと溶剤からなる混合液が発現する相分離状態が、固−液型熱誘起相分離と液−液型熱誘起相分離のいずれであるかを判断する方法としては、顕微鏡下で観察される滴構造形成温度と、示差走査熱量計(以下、DSCと略記することがある)により観察されるガラス転移温度を比較する方法が一般的である。まず、予め混練しておいた混合液をプレパラート上に調製し、これをホットプレート上に置き、高温側から所定の冷却速度で冷却しつつ、顕微鏡を用いて滴構造形成温度を測定する。またDSCを用いて、同混合物を高温側から所定の冷却速度で冷却することでガラス転移温度を測定する。両測定より得られた滴構造形成温度とガラス転移温度がほぼ同じであれば固−液型熱誘起相分離であり、滴構造形成温度の方が高い場合は液−液型熱誘起相分離であると判断することができる。なお構造制御の観点から、相分離状態は液−液型熱誘起相分離であることが好ましく、さらに滴構造形成温度とガラス転移温度の温度差が5℃以上であることが好ましく、さらに好ましくは10℃以上である。
また、ポリフェニルスルホンと、該ポリフェニルスルホンと特定の温度領域で相容して一相状態となり、かつ温度変化により相分離を起こしうる溶剤との混合液に、さらに無機粒子、および無機粒子と親和性を有する凝集剤を添加し、該ポリフェニルスルホンと溶剤が相容する温度で混練させた混合液を紡糸原液として調製し、押出した後、冷却することで熱誘起相分離と該ポリフェニルスルホンの析出とを起こさせて、上記ポリフェニルスルホン以外の成分である溶剤、無機粒子および凝集剤を抽出させることにより、平均孔径3μm以上の微細孔を有し、純水透過速度が30000L/m2/hr/98kPa以上、分画粒子径1μm以上であるポリフェニルスルホン多孔膜を製造することができる。
本発明において用いられる無機粒子は、多孔膜が大きな孔径を有するための核となるものであり、薬品などによる抽出が容易で粒径分布の比較的狭い微粒子が望ましい。その例として、例えば、シリカ、珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、鉄、亜鉛などの金属酸化物または水酸化物、ナトリウム、カリウム、カルシウム等の塩類などを例示することができる。特に、凝集性を有する無機粒子は、通常であればポリフェニルスルホンと溶剤とが相分離してしまうような組成に添加することでポリフェニルスルホンと溶剤とが相容状態にあるときの安定性が向上する結果、均質な多孔膜を製造することが可能となり、より大きな孔径を有する多孔膜を製造することができる。このような凝集性の点から無機粒子としてはシリカが最良である。また多孔膜の孔径制御、特に孔の連通性を向上させることを目的として、異なる凝集粒子径を有する無機粒子を混合することもできる。
本発明において用いられる凝集剤とは、無機粒子と親和性があり、さらに無機粒子の凝集性を向上させる働きを有する化合物をいう。凝集剤は、このような要件に加えて、ポリフェニルスルホンと溶剤とが相容する温度以上の沸点を有することが必要である。なお、無機粒子の凝集性を向上させる点から、凝集剤は親水基を有する化合物であることがより好ましい。ただし、溶剤が上記凝集剤の要件をも満たす場合は、新たに凝集剤を添加する必要はない。凝集剤の例としては、エチレングリコール、プロピレングリコール、トリエチレングリコール、ポリエチレングリコール、グリセリンなどの多価アルコール類、モノラウリン酸デカグリセリルのようなポリグリセリン脂肪酸エステル類、モノステアリン酸ポリオキシエチレングリセリンのようなポリオキシエチレングリセリン脂肪酸エステル類、ポリオキシエチレンラウリルエーテルやポリオキシエチレンセチルエーテルのようなポリオキシエチレンアルキルエーテル類、ポリオキシエチレンポリオキシプロピレンセチルエーテルのようなポリオキシエチレンポリオキシプロピレンアルキルエーテル類、ポリオキシエチレンノニルフェニルエーテルのようなポリオキシエチレンアルキルフェニルエーテル類、モノパルミチン酸ポリオキシエチレンソルビタンのようなポリオキシエチレンソルビタン脂肪酸エステル類などが挙げられる。さらに、無機粒子の凝集状態を制御するためや、系全体の溶融状態を安定化させるためにこれらを任意の割合で混合することもできる。
上記したポリフェニルスルホンおよび溶剤、またはポリフェニルスルホン、溶剤、無機粒子および凝集剤、からなる混合液の組成は熱誘起相分離を発現し、より好ましくは液−液型熱誘起相分離を発現する組成範囲内である必要がある。さらに製造された多孔膜が実用に耐える強度を持ち、所望の透過性能と分画性能を満たす範囲内で自由に設定することができる。混合液の組成は上記した各構成成分の化学構造等により異なるが、ポリフェニルスルホンと溶剤からなる混合液の場合、ポリフェニルスルホン:溶剤=5〜60:95〜40の範囲内にあることが好ましく、さらに好ましくは10〜40:90〜60の範囲内である。また、ポリフェニルスルホンと溶剤、さらに無機粒子と凝集剤からなる混合液の場合、ポリフェニルスルホン:溶剤:無機粒子:凝集剤=15〜30:25〜80:5〜30:5〜40の範囲内にあることが望ましい。混合液の組成がこの範囲を外れると、成形安定性が低下して均質な多孔膜を製造することが困難となり、また、ポリフェニルスルホンの量が上記した量より多いときには、均質な多孔膜を製造することは可能であっても得られる多孔膜の空隙率が低く、また孔径が小さくなるので、所望の透過性能を得ることが困難となる傾向にある。
上記した混合液には、必要に応じて、酸化防止剤、紫外線吸収剤、親水化剤、滑剤、アンチブロッキング剤、染料、増粘剤などの各種添加剤を本発明の目的を損なわない範囲で添加することができる。
上記した混合液は、二軸混練設備、プラストミル、ミキサーなどを用いて混練される。混練温度はポリフェニルスルホンと溶剤とが相容し、かつ混合液の各成分が分解しない範囲で設定する。混合液は混練された後、十分に気泡が除去され、ギヤポンプなどの計量ポンプで計量した後、シートダイや二重環構造のノズルより押出し、所望の形状に成形される。中空糸状にするときは、二重環構造のノズルの中心部から、空気、窒素などの気体、または上記混合液の押出し温度以上の沸点を有する液体を同時に押出す必要がある。上記二重環構造のノズルの中心部から押出すのに用いられる液体としては、ポリフェニルスルホンを溶解させなければ特に制限はなく、テトラエチレングリコールやプロピレングリコール、エチレングリコール、グリセリンなどの多価アルコール類や、ポリフェニルスルホンと熱誘起相分離を起こす能力を有する溶剤であっても良い。これらを用いると、得られる中空糸の内表面構造を制御することがより容易になるため効果的である。
シートダイやノズルより押出された押出成形物は、例えば冷却といった温度の変化によりポリフェニルスルホンと溶剤とが熱誘起相分離を起こした後、ポリフェニルスルホンが固化する。混合液が、ポリフェニルスルホンの貧溶媒中との接触により固化する時には、上記混合液と貧溶媒の界面にあたる部分が緻密なスキン層を形成し、得られる多孔膜が不均一な構造となり、高い分離精度が得られないおそれがある。冷却の方法は、空気中で行なう方法、液体中に導入する方法、一旦空気中を通した後に液体中に導入する方法などがありいずれの方法を用いても良いが、冷却の速度が多孔膜の強度や伸度、さらに孔径制御に大きく影響するので冷却速度をコントロールできるように雰囲気温度を温風で制御したり、冷却に用いられる液体の温度を制御することが望ましい。冷却に用いられる液体としては工業的には水が好ましいが、溶剤を用いることも可能である。
次いで、上記より形成された成形物から溶剤等を抽出して多孔膜を得る。これら成分の抽出は、押出、固化などの操作と共に工程中で連続して行なうことができるし、成形物を一旦枠やカセなどに巻き取った後に行なっても、あるいは成形物を所定の形状のケースに収納してモジュール化した後に行なっても良い。抽出に用いる抽出剤は、抽出温度においてポリフェニルスルホンの非溶剤であることが必要である。例えば溶剤がベンジルアルコールの場合は、アセトンやメタノールなどが挙げられる。多孔膜は、これらの処理を行なった後に、例えば枠やカセに巻き取った状態で乾燥される。
また、本発明において多孔膜の強度を向上させるために延伸処理を行なうことも可能である。延伸の方法としては、熱延伸、冷延伸、熱固定などの方法を目的とする強度に応じて適宜組み合わせて実施することができる。但し、延伸の程度が過ぎると、得られた多孔膜がフィブリル化を起こして孔がスリット状になり、分離精度が低くなったり、延伸方向に対して垂直方向に対する強度が逆に低下してしまうために好ましくない。膜の濾過においてはあらゆる方向の強度が重要であるため、膜の表面がスリット状の孔にならず円形または楕円形を保持する範囲内で延伸比率を制御する必要がある。延伸は成形後に溶剤等が存在している状態で行なっても、溶剤等を抽出した後で行なっても良い。このような延伸を行なうことで、強度が向上するだけでなく空隙率が高くなる。
このようにポリフェニルスルホンと溶剤を原液として得られた本発明のポリフェニルスルホン多孔膜は、純水透過速度が100L/m2/hr/98kPa以上である。さらに、無機粒子と凝集剤を原液に添加することで、膜表面に平均孔径が3μm以上の微細孔を有し、純水透過速度が30000L/m2/hr/98kPa以上、分画粒子径が1μm以上の多孔膜を製造することができる。孔径が大きくなると湿潤状態でも100kPa以下の低い圧力で空気などの気体が透過できるようになるため、気体逆洗などの物理的手段による洗浄が可能となる。また、膜の断面は網目状の構造が望ましいが、対称構造や非対称構造、またはフィンガーライク構造やボイドを有していても良い。また、多孔膜内の空間の体積比である空隙率は40〜95%、好ましくは60〜90%である。空隙率が40%よりも小さくなると十分な純水透過速度を得ることが困難であり、95%を超えると膜の強度が低下し、膜濾過の実施中に多孔膜の破断や折れが発生して、分離膜としての耐久性に欠ける。
乾燥後の多孔膜を所定本数ずつ束ねて所定形状のケースに収納した後、ウレタン樹脂、エポキシ樹脂等で端部を固定化することによって膜モジュールが得られる。例えば中空糸膜の場合、膜モジュールとしては、中空糸膜の両端が開口固定されているタイプのもの、中空糸膜の一端が開口されかつ他端が密封されているが固定化されていないタイプのもの等、種々の形態のものが公知である。
以下、実施例により本発明を具体的に説明する。なお、本発明はこれによってなんら限定を受けるものではない。
実施例1
ポリフェニルスルホン(ソルベイアドバンストポリマーズ株式会社製、レーデルR−5000)と、溶剤としてN−メチルベンゼンスルホン酸アミド(東京化成工業株式会社製)とを、重量比で20:80の割合になるように二軸混練押出機中に添加した。この混合液の組成を表1に示す。二軸混練押出機中で加熱混練(温度240℃)して、押出機先端のヘッド(温度200℃)内の押出口に装着した中空糸膜成形用紡口の押出し面にある外径2.0mm、内径1.1mmの二重環構造ノズルから押出した。このときテトラエチレングリコールを押出物の中空部内に注入した。
ポリフェニルスルホン(ソルベイアドバンストポリマーズ株式会社製、レーデルR−5000)と、溶剤としてN−メチルベンゼンスルホン酸アミド(東京化成工業株式会社製)とを、重量比で20:80の割合になるように二軸混練押出機中に添加した。この混合液の組成を表1に示す。二軸混練押出機中で加熱混練(温度240℃)して、押出機先端のヘッド(温度200℃)内の押出口に装着した中空糸膜成形用紡口の押出し面にある外径2.0mm、内径1.1mmの二重環構造ノズルから押出した。このときテトラエチレングリコールを押出物の中空部内に注入した。
ノズルから空気中に押出した押出成形物において熱誘起相分離を発現させるために、空中を20cm走行させた。次いで、水浴中(温度70℃)に入れ、約80cm水浴中を通過させて冷却固化させた。得られた中空糸を40℃のアセトン中で60分の浸漬を2回繰り返して溶剤(N−メチルベンゼンスルホン酸アミド)と注入液(テトラエチレングリコール)を抽出除去した後に、水洗、乾燥工程を経て中空糸膜を得た。製造した中空糸膜について以下の手法に従って試験を行なった。試験結果を表2に示す。なお、ポリフェニルスルホン(レーデルR−5000)と溶剤のN−メチルベンゼンスルホン酸アミドを重量比で20:80の割合からなる混合液の熱誘起相分離温度は127℃、また溶剤の2−(ベンジルオキシ)エタノールの157℃における30秒間の重量減量率は0.3%であった。
(平均孔径)
中空糸膜を走査型電子顕微鏡(株式会社日立製作所製、S−3000N)を用いて写真撮影し、写真の視野範囲内に見えるすべての孔の内半径を計測し、計測する孔数が100個以上になるまで上記操作を行なった。その後、上記計測した内半径の平均値を求め、これを平均孔径とした。なお、孔径が0.1μmより小さいため内半径を計測できない場合は、<0.1μmと表記される。
中空糸膜を走査型電子顕微鏡(株式会社日立製作所製、S−3000N)を用いて写真撮影し、写真の視野範囲内に見えるすべての孔の内半径を計測し、計測する孔数が100個以上になるまで上記操作を行なった。その後、上記計測した内半径の平均値を求め、これを平均孔径とした。なお、孔径が0.1μmより小さいため内半径を計測できない場合は、<0.1μmと表記される。
(分画粒子径)
異なる粒子径を有する少なくとも2種類の粒子の阻止率を測定し、その測定値を元にして下記の近似式(2)において、Rが90となるSの値を求め、これを分画粒子径とした。
R=100/(1−m×exp(−a×log(s))) …(2)
(2)式中、aおよびmは中空糸膜によって定まる定数であって、2種類以上の阻止率の測定値をもとに算出される。なお、0.01μm径の粒子の阻止率が90%以上の場合の分画粒子径は、<0.01μmと表記される。
異なる粒子径を有する少なくとも2種類の粒子の阻止率を測定し、その測定値を元にして下記の近似式(2)において、Rが90となるSの値を求め、これを分画粒子径とした。
R=100/(1−m×exp(−a×log(s))) …(2)
(2)式中、aおよびmは中空糸膜によって定まる定数であって、2種類以上の阻止率の測定値をもとに算出される。なお、0.01μm径の粒子の阻止率が90%以上の場合の分画粒子径は、<0.01μmと表記される。
(純水透過速度)
有効長が3cmの片端開放型の中空糸膜モジュールを用いて、原水として純水を利用し、濾過圧力が50kPa、温度が25℃の条件で中空糸膜の外側から内側に濾過(外圧濾過)して時間当たりの透水量を測定し、単位膜面積、単位時間、単位圧力当たりの透水量に換算した数値で算出した。
有効長が3cmの片端開放型の中空糸膜モジュールを用いて、原水として純水を利用し、濾過圧力が50kPa、温度が25℃の条件で中空糸膜の外側から内側に濾過(外圧濾過)して時間当たりの透水量を測定し、単位膜面積、単位時間、単位圧力当たりの透水量に換算した数値で算出した。
(強度、伸度)
引張試験機(株式会社島津製作所製、オートグラフAGS−100G)を用いて測定した。測定は20℃の水中で実施し、チャック間距離は50mm、引張速度は100mm/分とし、破断時の荷重を膜断面積で割ることで強度を決定した。また、伸度は下記の式(3)を用いて決定した。
伸度(%)=(破断時チャック間距離−測定開始時チャック間距離)/測定開始時チャック間距離×100 …(3)
引張試験機(株式会社島津製作所製、オートグラフAGS−100G)を用いて測定した。測定は20℃の水中で実施し、チャック間距離は50mm、引張速度は100mm/分とし、破断時の荷重を膜断面積で割ることで強度を決定した。また、伸度は下記の式(3)を用いて決定した。
伸度(%)=(破断時チャック間距離−測定開始時チャック間距離)/測定開始時チャック間距離×100 …(3)
(熱誘起相分離温度)
ポリフェニルスルホンと溶剤からなる混合液の滴構造形成温度とガラス転移温度を測定することで、熱誘起相分離温度を決定した。滴構造形成温度は、温度コントローラー(Limkam社製、TH−600PM)付きの光学顕微鏡(株式会社ニコン製、ECLIPSE E600POL)を用いて測定した。予め混練しておいた混合液を、混練時の温度で2分間ホールドすることで溶解した後、10℃/分で冷却し、その過程で観察される滴構造形成の温度を測定した。一方ガラス転移温度は、DSC(PERKIN ELMER社製、Pyris1)を用いて測定した。予め混練しておいた混合液を、90℃/分で室温から混練温度まで加熱した後に、混練温度で2分間ホールドし、次いで10℃/分で冷却し、その過程で観察される吸熱ピークからガラス転移温度を見積もった。なお、両測定とも少なくとも2回以上実施し、その平均値から両温度を決定した。上記測定より得られた滴構造形成温度とガラス転移温度の差が±5℃の範囲であれば固−液型熱誘起相分離と判断し、ガラス転移温度を熱誘起相分離温度とした。一方、滴構造形成温度がガラス転移温度よりも5℃以上高ければ液−液型熱誘起相分離と判断し、滴構造形成温度を熱誘起相分離温度とした。
ポリフェニルスルホンと溶剤からなる混合液の滴構造形成温度とガラス転移温度を測定することで、熱誘起相分離温度を決定した。滴構造形成温度は、温度コントローラー(Limkam社製、TH−600PM)付きの光学顕微鏡(株式会社ニコン製、ECLIPSE E600POL)を用いて測定した。予め混練しておいた混合液を、混練時の温度で2分間ホールドすることで溶解した後、10℃/分で冷却し、その過程で観察される滴構造形成の温度を測定した。一方ガラス転移温度は、DSC(PERKIN ELMER社製、Pyris1)を用いて測定した。予め混練しておいた混合液を、90℃/分で室温から混練温度まで加熱した後に、混練温度で2分間ホールドし、次いで10℃/分で冷却し、その過程で観察される吸熱ピークからガラス転移温度を見積もった。なお、両測定とも少なくとも2回以上実施し、その平均値から両温度を決定した。上記測定より得られた滴構造形成温度とガラス転移温度の差が±5℃の範囲であれば固−液型熱誘起相分離と判断し、ガラス転移温度を熱誘起相分離温度とした。一方、滴構造形成温度がガラス転移温度よりも5℃以上高ければ液−液型熱誘起相分離と判断し、滴構造形成温度を熱誘起相分離温度とした。
(溶剤の重量減量率)
溶剤をTG−DTA(理学電機株式会社製、Thermo Plus TG8120)に10mgセットし、(熱誘起相分離温度+30)℃まで500℃/分で昇温後、(熱誘起相分離温度+30)℃で30秒間ホールドし、この時間内における溶剤のTG(熱重量)の重量減量率を見積もった。
溶剤をTG−DTA(理学電機株式会社製、Thermo Plus TG8120)に10mgセットし、(熱誘起相分離温度+30)℃まで500℃/分で昇温後、(熱誘起相分離温度+30)℃で30秒間ホールドし、この時間内における溶剤のTG(熱重量)の重量減量率を見積もった。
実施例2
溶剤として2−(ベンジルオキシ)エタノール(日本乳化剤株式会社製、ベンジルグリコール)を用いた以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2に示す。なお、ポリフェニルスルホン(レーデルR−5000)と溶剤の2−(ベンジルオキシ)エタノールを重量比で20:80の割合からなる混合液の熱誘起相分離温度は145℃、また溶剤の2−(ベンジルオキシ)エタノールの175℃における30秒間の重量減量率は8.9%であった。
溶剤として2−(ベンジルオキシ)エタノール(日本乳化剤株式会社製、ベンジルグリコール)を用いた以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2に示す。なお、ポリフェニルスルホン(レーデルR−5000)と溶剤の2−(ベンジルオキシ)エタノールを重量比で20:80の割合からなる混合液の熱誘起相分離温度は145℃、また溶剤の2−(ベンジルオキシ)エタノールの175℃における30秒間の重量減量率は8.9%であった。
実施例3
ポリフェニルスルホン(ソルベイアドバンストポリマーズ株式会社製、レーデルR−5000)と、溶剤としてN−メチルベンゼンスルホン酸アミド(東京化成工業株式会社製)と、無機粒子としてシリカ1(株式会社トクヤマ製、ファインシールX−45、平均凝集粒子径4.0〜5.0μm)およびシリカ2(株式会社トクヤマ製、ファインシールX−30、平均凝集粒子径2.5〜4.0μm)と、凝集剤としてポリオキシエチレンノニルフェニルエーテル(日光ケミカルズ株式会社製:NP−10)との混合物を用い、かつ、ポリフェニルスルホン:N−メチルベンゼンスルホン酸アミド:シリカ1:シリカ2:ポリオキシエチレンノニルフェニルエーテルを重量比で20:80:2.5:7.5:10としたこと以外は、実施例1と同様にして押出成形物を得た。次いで、溶剤と注入液を抽出した後に、乾熱延伸機により300℃で繊維方向に原長の約1.5倍長となるように延伸処理をした以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2に示す。
ポリフェニルスルホン(ソルベイアドバンストポリマーズ株式会社製、レーデルR−5000)と、溶剤としてN−メチルベンゼンスルホン酸アミド(東京化成工業株式会社製)と、無機粒子としてシリカ1(株式会社トクヤマ製、ファインシールX−45、平均凝集粒子径4.0〜5.0μm)およびシリカ2(株式会社トクヤマ製、ファインシールX−30、平均凝集粒子径2.5〜4.0μm)と、凝集剤としてポリオキシエチレンノニルフェニルエーテル(日光ケミカルズ株式会社製:NP−10)との混合物を用い、かつ、ポリフェニルスルホン:N−メチルベンゼンスルホン酸アミド:シリカ1:シリカ2:ポリオキシエチレンノニルフェニルエーテルを重量比で20:80:2.5:7.5:10としたこと以外は、実施例1と同様にして押出成形物を得た。次いで、溶剤と注入液を抽出した後に、乾熱延伸機により300℃で繊維方向に原長の約1.5倍長となるように延伸処理をした以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2に示す。
Claims (12)
- ポリフェニルスルホンと溶剤との熱誘起相分離により形成されてなることを特徴とするポリフェニルスルホン多孔膜。
- 膜表面に、平均孔径が3μm以上の微細孔を有し、純水透過速度が30000L/m2/hr/98kPa以上で、分画粒子径が1μm以上であることを特徴とする請求項1に記載のポリフェニルスルホン多孔膜。
- ポリフェニルスルホンと溶剤との熱誘起相分離の後、延伸処理されてなることを特徴とする請求項1または2に記載のポリフェニルスルホン多孔膜。
- 溶剤が、(熱誘起相分離温度+30)℃における30秒間の重量減量率が10%以下のものであることを特徴とする請求項1から3のいずれか1項に記載のポリフェニルスルホン多孔膜。
- 多孔膜が中空糸膜であることを特徴とする請求項1から4のいずれか1項に記載のポリフェニルスルホン多孔膜。
- ポリフェニルスルホンと、該ポリフェニルスルホンと特定の温度領域で相容して一相状態となり、かつ温度変化により相分離を起こしうる溶剤とを、該ポリフェニルスルホンと溶剤が相容する温度で混練させた混合液を調製した後、冷却することで熱誘起相分離とポリフェニルスルホンの析出とを起こさせ、次いで溶剤を抽出させることを特徴とするポリフェニルスルホン多孔膜の製造方法。
- ポリフェニルスルホンと、該ポリフェニルスルホンと特定の温度領域で相容して一相状態となり、かつ温度変化により相分離を起こしうる溶剤と、無機粒子と、無機粒子と親和性を有する凝集剤とを、該ポリフェニルスルホンと溶剤が相容する温度で混練させた混合液を調製した後、冷却することで熱誘起相分離と該ポリフェニルスルホンの析出とを起こさせ、次いで溶剤、無機粒子および凝集剤を抽出させることを特徴とするポリフェニルスルホン多孔膜の製造方法。
- 熱誘起相分離と該ポリフェニルスルホンの析出とを起こさせた後、延伸処理されることを特徴とする請求項6または7に記載のポリフェニルスルホン多孔膜の製造方法。
- 溶剤が、2−(ベンジルオキシ)エタノール、ジフェニルスルフィド、テルフェニル、ベンジルアルコール、メチルイミダゾール、N−メチルベンゼンスルホン酸アミド、リン酸トリフェニルからなる群より選ばれる少なくとも1種の溶剤からなることを特徴とする請求項6から8のいずれか1項に記載のポリフェニルスルホン多孔膜の製造方法。
- 溶剤が、(熱誘起相分離温度+30)℃における30秒間の重量減量率が10%以下のものであることを特徴とする請求項6から9のいずれか1項に記載のポリフェニルスルホン多孔膜の製造方法。
- 凝集剤が親水基を有する化合物であることを特徴とする請求項7に記載のポリフェニルスルホン多孔膜の製造方法。
- 多孔膜が中空糸膜であることを特徴とする請求項6から11のいずれか1項に記載のポリフェニルスルホン多孔膜の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004004023A JP2005193194A (ja) | 2004-01-09 | 2004-01-09 | ポリフェニルスルホン多孔膜およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004004023A JP2005193194A (ja) | 2004-01-09 | 2004-01-09 | ポリフェニルスルホン多孔膜およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005193194A true JP2005193194A (ja) | 2005-07-21 |
Family
ID=34818747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004004023A Pending JP2005193194A (ja) | 2004-01-09 | 2004-01-09 | ポリフェニルスルホン多孔膜およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005193194A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102397760A (zh) * | 2010-09-08 | 2012-04-04 | 绵阳美能材料科技有限公司 | 一种聚醚砜中空纤维超滤膜及其制备方法 |
CN109550412A (zh) * | 2018-12-12 | 2019-04-02 | 湖南恒业城市环境科技有限公司 | 一种耐酸性聚苯砜超滤膜及其制备方法 |
CN111278543A (zh) * | 2017-10-27 | 2020-06-12 | Nok株式会社 | 加湿膜用聚苯砜中空纤维膜的制造方法 |
-
2004
- 2004-01-09 JP JP2004004023A patent/JP2005193194A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102397760A (zh) * | 2010-09-08 | 2012-04-04 | 绵阳美能材料科技有限公司 | 一种聚醚砜中空纤维超滤膜及其制备方法 |
CN102397760B (zh) * | 2010-09-08 | 2014-04-09 | 绵阳美能材料科技有限公司 | 一种聚醚砜中空纤维超滤膜及其制备方法 |
CN111278543A (zh) * | 2017-10-27 | 2020-06-12 | Nok株式会社 | 加湿膜用聚苯砜中空纤维膜的制造方法 |
CN111278543B (zh) * | 2017-10-27 | 2022-07-08 | Nok株式会社 | 加湿膜用聚苯砜中空纤维膜的制造方法 |
CN109550412A (zh) * | 2018-12-12 | 2019-04-02 | 湖南恒业城市环境科技有限公司 | 一种耐酸性聚苯砜超滤膜及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101409712B1 (ko) | 불화비닐리덴계 수지로 이루어지는 다공막 및 그 제조 방법 | |
KR100991596B1 (ko) | 할라 막 | |
KR101699296B1 (ko) | 폴리비닐리덴 플루오라이드로 제조된 소수성 오존 안정성 막 | |
KR101657307B1 (ko) | 불소계 중공사막 및 그 제조 방법 | |
JP5318385B2 (ja) | フッ化ビニリデン系樹脂よりなる多孔膜及びその製造方法 | |
JP4599787B2 (ja) | 中空糸膜の製造方法および中空糸膜 | |
BR112016000698B1 (pt) | Membrana de fibra oca porosa de fluoreto de vinilideno hidrofilizada, e seu método de produção e de uso | |
JP6577781B2 (ja) | 中空糸膜、及び中空糸膜の製造方法 | |
JP4564758B2 (ja) | フッ化ビニリデン系樹脂多孔膜の製造方法 | |
KR101394416B1 (ko) | 폴리비닐리덴플루오라이드 중공사막의 제조방법 및이로부터 제조된 중공사막 | |
JP2006218441A (ja) | 多孔質膜及びその製造方法 | |
JP2008062227A (ja) | 製膜原液、多孔膜及び多孔膜の製造方法 | |
JP3724412B2 (ja) | 中空糸膜の製造方法および中空糸膜モジュール | |
JP4269576B2 (ja) | 微多孔膜の製造方法 | |
KR20130040620A (ko) | 친수화 개질 폴리불화비닐리덴 수지를 이용한 고강도 수처리용 중공사막의 제조방법 | |
JP2005193193A (ja) | 半芳香族ポリアミド系多孔膜およびその製造方法 | |
RU2440181C2 (ru) | Пористая мембрана из винилиденфторидной смолы и способ ее получения | |
JP2005193194A (ja) | ポリフェニルスルホン多孔膜およびその製造方法 | |
JP2005193192A (ja) | ポリスルホン系多孔膜およびその製造方法 | |
JP2004041835A (ja) | 中空糸膜およびその製造方法 | |
CN109621747B (zh) | 一种中空纤维微/超滤膜的制备方法 | |
JP2005193201A (ja) | 親水性中空糸膜およびその製造方法 | |
JP3805634B2 (ja) | 多孔質中空糸膜及びその製造方法 | |
WO2011027878A1 (ja) | フッ化ビニリデン系樹脂多孔膜およびその製造方法 | |
KR102584858B1 (ko) | 여과막 형성용 조성물, 이를 이용한 여과막 제조방법 및 여과막 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090421 |