JP2005191279A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2005191279A
JP2005191279A JP2003430808A JP2003430808A JP2005191279A JP 2005191279 A JP2005191279 A JP 2005191279A JP 2003430808 A JP2003430808 A JP 2003430808A JP 2003430808 A JP2003430808 A JP 2003430808A JP 2005191279 A JP2005191279 A JP 2005191279A
Authority
JP
Japan
Prior art keywords
interlayer insulating
insulating film
etching
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003430808A
Other languages
English (en)
Inventor
Kiminori Kiyono
公師 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Leading Edge Technologies Inc
Original Assignee
Semiconductor Leading Edge Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Leading Edge Technologies Inc filed Critical Semiconductor Leading Edge Technologies Inc
Priority to JP2003430808A priority Critical patent/JP2005191279A/ja
Publication of JP2005191279A publication Critical patent/JP2005191279A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】 コンタクトホールを安定して形成し、且つ、ダマシンプロセスにおいてオーバーエッチングも防ぐことができる半導体装置の製造方法を提供することを目的とする。
【解決手段】 コンタクト領域を有する半導体層の上に層間絶縁層と第3の層間絶縁膜を形成し、前記第3の層間絶縁膜に開口を形成し、前記第3の層間絶縁膜の前記開口に露出する前記層間絶縁層をエッチングすることにより、前記コンタクト領域に至るコンタクトホールを形成して金属により埋め込み、その上に第4の層間絶縁膜とトレンチ開口を有するマスクを形成し、前記トレンチ開口に露出する前記第4の層間絶縁膜を、前記第3の層間絶縁膜に対するエッチング速度よりも前記第4の層間絶縁膜に対するエッチング速度のほうが大なる条件によりエッチングすることにより前記第3の層間絶縁膜に至るトレンチを形成して金属により埋め込む。
【選択図】 図1

Description

本発明は、半導体装置の製造方法に関し、特に、半導体装置の素子基板部分と配線層との絶縁構造及び電気接続構造を形成するための半導体装置の製造方法に関する。
半導体装置、特に半導体集積回路の高集積化、微細化が進展するにつれてゲート電極が細線化され、ゲート酸化膜も薄膜化され、それに伴い、基板と配線層とを接続するコンタクト形成工程においても微細加工の限界に達しつつある。これらコンタクト形成工程においても、現在開発途上にある技術は「65nmノード」とよばれるものであり、目標のコンタクトホール(接続孔)の径は90nm程度となる。また、微細化の進展に伴い、接続孔部分が素子分離領域内に落ちることがあり、素子分離の機能が果たせずリーク電流発生につながるおそれもある。素子分離領域を保護するため、酸化膜のみの絶縁層の下に酸化膜以外の絶縁膜、例えば窒化膜を用いて、素子分離部分の酸化膜を保護する工夫も行われている。
一方、配線材料も、従来のAl−Cu系合金から低抵抗のCu合金を使用する方向へ進んでいる。ただし、Cu合金を用いる場合、Al−Cu系合金の配線パターンの形成時に使用されていたドライエッチング工程を用いることはできず、溝加工を施した層間絶縁膜中にCu合金を堆積しCMPによって平坦化を行う「ダマシンプロセス(damascene process)」と呼ばれる工程が採用されている(例えば、特許文献1)。
特開2002−110824号公報
しかし、通常の接続孔の形成プロセスにおいては、レジストパターン率が極めて高い。レジストも微細化によって薄膜化し、ドライエッチング時におけるレジストの劣化も激しなる。このためコンタクトホールの形成に際して、十分なオーバーエッチングを行うことができず、コンタクト抵抗値等の電気特性値に対して「ばらつき」が生じることがある。
一方、ダマシン配線プロセスにおいては、層間絶縁膜にコンタクトホールを形成する際に、オーバーエッチングによる下層のエッチングを防ぐ必要がある。 本発明は、かかる課題の認識に基づいてなされたものであり、その目的は、コンタクトホールの形成を安定して実施し、且つ、ダマシンプロセスにおいて、コンタクトホールの形成に際してオーバーエッチングも防ぐことができる半導体装置の製造方法を提供することにある。
上記目的を達成するため、本発明によれば、コンタクト領域を有する半導体層の上に層間絶縁層を形成する工程と、前記層間絶縁層の上に第3の層間絶縁膜を形成する工程と、前記第3の層間絶縁膜に開口を形成する工程と、前記第3の層間絶縁膜の前記開口に露出する前記層間絶縁層をエッチングすることにより、前記コンタクト領域に至るコンタクトホールを形成する工程と、前記コンタクトホールを金属により埋め込む工程と、前記第3の層間絶縁膜の上に、第4の層間絶縁膜を形成する工程と、前記第4の絶縁膜の上にトレンチ開口を有するマスクを形成する工程と、前記トレンチ開口に露出する前記第4の層間絶縁膜を、前記第3の層間絶縁膜に対するエッチング速度よりも前記第4の層間絶縁膜に対するエッチング速度のほうが大なる条件によりエッチングすることにより前記第3の層間絶縁膜に至るトレンチを形成する工程と、前記トレンチを金属により埋め込む工程と、を備えたことを特徴とする半導体装置の製造方法が提供される。
ここで、前記層間絶縁層は、第1の層間絶縁膜と、前記第1の層間絶縁膜の上に形成された第2の層間絶縁膜と、を有し、前記第1の層間絶縁膜と前記第3の層間絶縁膜とは、実質的に同一の材料からなり、前記第2の層間絶縁膜と前記第3の層間絶縁膜とは、実質的に異なる材料からなるものとすることができる。
また、前記コンタクトホールを形成する工程は、前記第3の層間絶縁膜に対するエッチング速度よりも前記第2の層間絶縁膜に対するエッチング速度のほうが大なる条件により前記第2の層間絶縁膜をエッチングする第1のエッチング工程と、 前記第2の層間絶縁膜に対するエッチング速度よりも前記第1の層間絶縁膜に対するエッチング速度のほうが大なる条件により前記第1の層間絶縁膜をエッチングする第2のエッチング工程と、を含むものとすることができる。
また、前記第2の層間絶縁膜と前記第4の層間絶縁膜とは、実質的に同一の材料からなるものとすることができる。
また、前記第3の層間絶縁膜の厚みは、前記第1の層間絶縁膜の厚みよりも大なるものとすることができる。
また、 前記第3の層間絶縁膜は、前記開口が前記層間絶縁層に向けて徐々に縮小する順テーパ状の断面を有するものとすることができる。
また、前記トレンチ開口を有するマスクは、前記第3の層間絶縁膜と実質的に同一の材料からなるものとすることができる。
また、前記第3の層間絶縁膜は、シリコン窒化物、シリコン炭化物、シリコン炭酸化物及びシリコン酸窒化物よりなる群から選択されたいずれかからなるものとすることができる。
また、前記第4の層間絶縁膜は、シリコン酸化物、シリコン酸フッ化物、ホウ素リン・ケイ酸ガラス、リン・ケイ酸ガラス及び有機シリコンよりなる群から選択されたいずれかからなるものとすることができる。
また、前記コンタクト領域は、金属のシリサイドを含むものとすることができる。
本発明ではこの欠点を補充するため素子分離部分の酸化膜を保護する膜と同一の材質を持つハードマスクを用いて、レジスト耐性が安定したコンタクトホールの形成を目指すとともに、このハードマスクをダマシン形成時のストッパーとして用い、工程の簡略化を目指す。また、窒化膜ハードマスクをエッチング加工する際に順テーパー形状であれば、所望のコンタクト径より微細化が可能である。
本発明によれば、コンタクトホールを形成するためのハードマスクを、金属配線のトレンチを形成する際にエッチングストッパとして兼用でき、プロセスを簡略化するとともに精密な構造を再現性よく製造することができる。その結果として、微細なコンタクトホールを安定して形成でき、かつコンタクト抵抗のウェーハ面内ばらつきも極めて小さくすることができる半導体装置の製造方法を提供することができ、産業上のメリットは多大である。
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は、本発明により製造される半導体装置の要部断面構造を例示する模式図である。 すなわち、同図は、半導体集積回路を構成するMOSFET(Metal Oxide Semiconductor Field Effect Transister)の要部断面構造を表す。
シリコン基板の表面部分が素子分離領域101により絶縁分離され、これら分離されたウエル102のそれぞれにMOSFETが形成されている。それぞれのMOSFETは、ソース領域107、ドレイン領域108と、これらの間に設けられたチャネル103と、を有する。チャネル103の上には、ゲート絶縁膜104を介してゲート電極106が設けられている。ソース・ドレイン領域107、108とチャネル103との間には、いわゆる「ショートチャネル効果」などを防ぐ目的で、LDD(lightly doped drain)領域103Dが設けられている。そして、これらLDD領域103Dの上には、ゲート電極106に隣接してゲート側壁105が設けられている。ゲート側壁105は、LDD領域103Dをセルフアライン(自己整合)的に形成するために設けられている。
また、ソース・ドレイン領域107、108とゲート電極106の上には、電極とのコンタクトを改善するためにシリサイド層119が設けられている。これら構造体の上は、第1の層間絶縁膜110と第2の層間絶縁膜111と第3の層間絶縁膜112により覆われ、これらを貫通するコンタクトホールを介して、ソースコンタクト113S、ゲートコンタクト113G、ドレインコンタクト113Dが形成されている。ここで、第1の層間絶縁膜110と第3の層間絶縁膜112は、例えば、窒化シリコンにより形成され、第2の層間絶縁膜111は、例えば、酸化シリコンにより形成することができる。
さらに、この上に、第4の層間絶縁膜114と第5の層間絶縁膜115が形成されている。そして、これらを貫通するトレンチにソース配線116S、ゲート配線116G、ドレイン配線116Dがそれぞれ埋め込み形成されている。ここで、第4の層間絶縁膜114は酸化シリコンにより形成され、第5の層間絶縁膜115は、窒化シリコンにより形成することができる。
以上説明したような半導体装置を製造するに際して、本発明によれば、第3の層間絶縁膜112をハードマスクとして用い、さらにエッチングストッパとして用いることができる。
すなわち、第2の層間絶縁膜111にコンタクトホールを形成する工程において、第3の層間絶縁膜112をハードマスクとして用いることができる。さらにその下の第1の層間絶縁膜110にコンタクトホールを形成する際にも、第3の層間絶縁膜112をハードマスクとして用いることができる。この際に、第1の層間絶縁膜110と第3の層間絶縁膜112とが同質の材料(例えば、窒化シリコン)からなる場合には、第3の層間絶縁膜112を第1の層間絶縁膜110よりも厚く形成することによりマスクとして用いることができる。
このようにすれば、ソースコンタクト113S、ゲートコンタクト113G、ドレインコンタクト113Dのコンタクトホールを精密に形成することができ、オーバーエッチングも防ぐことができる。その結果として、微小なコンタクトを確実且つ容易に形成し、素子サイズの微細化を実現できる。
一方、第4の層間絶縁膜114にトレンチを形成する工程において、第3の層間絶縁膜112をエッチングストッパとして用いることができる。例えば、第3の層間絶縁膜112を窒化シリコンにより形成し、第4の層間絶縁膜114を酸化シリコンにより形成すれば、第3の層間絶縁膜112をエッチングストッパとして用いることができる。その結果として、ダマシンプロセスのためのトレンチの形成に際して、トレンチのオーバーエッチングを防ぎ、所望の配線構造を精密に形成することが可能となる。
図2乃至図7は、本発明の実施の形態にかかる半導体装置の製造方法を表す工程断面図である。
まず、図2(a)に表したように、MOSトランジスタの要部を形成する。すなわち、Si基板上に素子分離領域101、ウェル102、チャネル103、ゲート絶縁膜104、ゲート電極106、LDD注入サイドウォール105を順次形成し、ソース領域107、ドレイン領域108の形成を行う。さらに、コバルトスパッタ、RTP(rapid thermalprocessing)を順次行い、シリサイド領域109を形成する。
次に、図2(b)に表したように、第1の層間絶縁膜110及び第2の層間絶縁膜111を形成する。すなわち、第1の層間絶縁膜110として、ジクロロシランとアンモニアガスを用い、LP−CVD(low pressure chemical vapor deposition)により760℃において厚みが50nmのシリコン窒化膜を形成する。次いで、第2の層間絶縁膜111として、TEOS(tetra ethoxy silane)ガスを用い、プラズマCVDにより600℃において厚みが600nmのシリコン酸化膜を形成する。
次に、図2(c)に表したように、この上に第3の層間絶縁膜112として、第1の層間絶縁膜110と同様にLP−CVDにより760℃において例えば厚み120nm程度のシリコン窒化膜を形成する。さらに、レジストを塗布してパターニングすることにより、レジストパターン120を形成する。レジストパターン120は、例えば、ArF露光機を用いて120nm径に露光することにより形成する。
次に、図3(a)に表したように、レジストパターン120をマスクとして第3の層間絶縁膜112のエッチングを行う。エッチング方法としては、例えば、ICP(induction coupled prasma)型反応性イオンエッチング装置を用いることができる。第3の層間絶縁膜112のエッチングに際しては、例えば、CH:50sccm O:50sccm の混合ガスを用いて6.7パスカル(Pa)にてエッチングすることにより、層間絶縁膜112に開口部121を形成することができる。
次に、図3(b)に表したように、酸素プラズマによるアッシングを実施してレジストマスク120を除去する。
その後、図3(c)に表したように、第2の層間絶縁膜111に接続孔(コンタクトホール)を形成する。第2の層間絶縁膜111の接続孔形成を行う際には、C:50sccm、CO:50sccm、O:50sccmおよびAr:200sccmの混合ガスを用いて6.7パスカルにて反応性イオンエッチングを行う。このようにして、第2の層間絶縁膜111の接続孔122を形成する。
この時に、シリコン窒化膜からなる第3の層間絶縁膜112をエッチングマスクして用いることにより、安定したエッチングができる。すなわち、第2の層間絶縁膜111を構成するシリコン酸化膜と、第3の層間絶縁膜112を構成するシリコン窒化膜とでは、エッチング速度を異ならせることにより、大きなエッチング選択比を得ることが容易である。従って、第3の層間絶縁膜112により確実にマスクされた状態を維持しつつ、第2の層間絶縁膜111をエッチングできる。つまり、マスクの劣化によるエッチング開口サイズの変動などの問題を解消して、所望の開口を安定的に形成することができる。
一方、第1の層間絶縁膜110は、第3の層間絶縁膜112と同一のシリコン窒化膜により形成されているので、エッチングストッパとして確実に作用する。つまり、オーバーエッチングやアンダーエッチングなどによる問題を解消することもできる。
次に、図4(a)に表したように、第1の層間絶縁膜110に接続孔を形成する。第1の層間絶縁膜110と第3の層間絶縁膜112を同質の材料により形成した場合には、このエッチング工程において、第3の層間絶縁膜112もエッチングされる。そこで、第3の層間絶縁膜112を第1の層間絶縁膜110よりも厚く形成しておくことが必要である。エッチング条件としては、反応性イオンエッチング法により、CH:50sccm O:50sccmおよびAr:200sccmの混合ガスを用いて6.7パスカルにてエッチング行うことができる。このようにして第1の層間絶縁膜110に形成されたコンタクトホールの直径は、約110nmであり、第3の層間絶縁膜112の残存量は、厚みにして約70nm程度であった。
次に、図4(b)に表したように、コンタクト金属を堆積する。
そして、化学機械研磨法(chemical mechanical polishing:CMP)により研磨して表面を平坦化させて、図4(c)に表したようにコンタクト金属を埋め込んだ構造を形成できる。なお、この際にも、第3の層間絶縁膜112を設けることにより、CMPによる研磨に対して、第2の層間絶縁膜111を保護することができる。つまり、酸化シリコンなどの比較的柔らかい材料により形成された第2の層間絶縁膜111の上に、窒化シリコンなどの比較的堅い材料からなる第3の層間絶縁膜112を設けることによりCMPの研磨の際に、第2の層間絶縁膜111が研磨されて膜厚が薄くなることを防ぐことができる。その結果として、配線間容量の増大や電流リークなどの問題を抑制できる。
次に、図5(a)に表したように、第4の層間絶縁膜114として、例えば、酸化シリコンを堆積する。そして、さらに、図5(b)に表したように、第5の層間絶縁膜115として、例えば窒化シリコンを堆積する。
次に、図6(a)に表したように、レジストパターン123を形成する。
そして、図6(b)に表したように、第5の層間絶縁膜115と第4の層間絶縁膜114をそれぞれエッチングすることにより、トレンチ124を形成する。第5の層間絶縁膜112のエッチングに際しては、例えば、CH:50sccm O:50sccm の混合ガスを用いて6.7パスカル(Pa)にてエッチングすることにより、層間絶縁膜115に開口部を形成することができる。
しかる後に、第4の層間絶縁膜114にトレンチを形成する。第4の層間絶縁膜114にトレンチを形成する際には、C:50sccm、CO:50sccm、O:50sccmおよびAr:200sccmの混合ガスを用いて6.7パスカルにて反応性イオンエッチング行うことができる。この際に、第5の層間絶縁膜115をハードマスクとして用い、同時に、第3の層間絶縁膜112をエッチングストッパとして用いることができる。すなわち、酸化シリコンにより形成された第4の層間絶縁膜114をエッチングする際に、窒化シリコンにより形成された第5の層間絶縁膜115をハードマスクとして用い、同じく窒化シリコンにより形成された第3の層間絶縁膜112をエッチングストッパとして用いることにより、オーバーエッチングなどを抑制してトレンチを精密に形成できる。
この後、図7(a)に表したように、配線用の金属を堆積し、CMPによって研磨して平滑化することにより、図7(b)に表したように、トレンチにソース配線116S、ゲート配線116G、ドレイン配線116Dがそれぞれ埋め込まれた層間配線構造を形成できる。
以上説明したように、本実施形態によれば、第3の層間絶縁膜112を設けることにより、第2の層間絶縁膜111のコンタクトホールの形成工程におけるハードマスクとして用いることにより、オーバーエッチングなどを抑制して、ソース・ゲート・ドレインに対する微小なコンタクトを精密に形成することができる。
また、ソースコンタクト113S、ゲートコンタクト113G、ドレインコンタクト113Dを形成するCMP工程において、第2の層間絶縁膜111を保護することができる。
そしてさらに、第4の層間絶縁膜114に配線用のトレンチを形成する際に、第3の層間絶縁膜112をエッチングストッパとして用いることができる。
その結果として、従来よりも微細な半導体集積回路を確実に製造できる。
本発明者が上記具体例にかかる半導体装置の製造方法を実施した結果、8インチウェーハ内で、直径110nmのコンタクトホールを形成した場合の寸法ばらつきがプラスマイナス3nm以下であり、コンタクト抵抗の平均値が30Ωでばらつきがプラスマイナス1.5Ω以下であった。
なお、第1の層間絶縁膜110、第3の層間絶縁膜112及び第5の層間絶縁膜115の材料としては、上記具体例において用いたシリコン窒化物(SiN)の他にも、例えば、シリコン炭化物(SiC)、シリコン炭酸化膜(SiO)あるいはシリコン酸窒化物(SiO)などを用いることができる。
一方、第2の層間絶縁膜111及び第4の層間絶縁膜114の材料としては、上記具体例の他にも、例えば、BPSG(Boron-doped Phospho-Silicate Glass:ホウ素・リン・ケイ酸ガラス)、PSG(Phospho-Silicate Glass:リン・ケイ酸ガラス)、酸化フッ化シリコン(SiO)などを用いることもできる。またさらに、第2の層間絶縁膜111及び第4の層間絶縁膜114の材料としては、有機シリコンを用いることもできる。すなわち、第1の層間絶縁膜110、第3の層間絶縁膜112及び第5の層間絶縁膜115と、第2の層間絶縁膜111及び第4の層間絶縁膜114と、の間で適切なエッチング選択比が得られればよい。
図8乃至図10は、本発明の比較例としての半導体装置の製造方法の一部を表す工程断面図である。
本比較例の要部について簡単に説明すると以下の如くである。
すなわち、図8(a)に表したように、第2の層間絶縁膜111を堆積した後に、レジストパターン120を形成する。レジストパターン120は、ArF露光機を用いて120nm径に露光した。
次に、図8(b)に表したように、コンタクトホールを開口した。まず第2の層間絶縁膜111のコンタクトホール形成を行う際には、C:50sccm、CO:50sccm、O:50sccmおよびAr:200sccmの混合ガスを用いて6.7パスカルにてエッチング行い、第2の層間絶縁膜部分111のコンタクトホール122を形成した。次に、レジストパターン120を酸素プラズマにて除去した後に、CH:50sccm O:50sccmおよびAr:200sccmの混合ガスを用いて6.7パスカルにてエッチング行い、第1の層間絶縁膜部分のコンタクトホールを形成した。なお、この際得られたコンタクトホールの直径は表面部分で120nm程度であった。
しかる後に、図8(c)に表したように、コンタクトホールを金属電極で埋め込み、CMPにより平坦化して、ソースコンタクト113S、ゲートコンタクト113G、ドレインコンタクト113Dを形成した。
その後、図9(a)に表したように、第3の層間絶縁膜112を形成し、さらに、図9(b)に表したように、第4の層間絶縁膜114と第5の層間絶縁膜115を形成した。 しかる後に、図10(a)に表したようにトレンチ125を形成し、さらに図10(b)に表したように、第3の層間絶縁膜112にコンタクト開口を形成した。この後、トレンチを金属で埋め込んで、配線層を形成した。
以上説明した比較例の場合、図8に関して前述したように、第2の層間絶縁膜111の開口に際して、レジストパターン113によるマスクを用いてエッチングを行う。しかし、レジストではエッチングプロセスに対する耐性が低く、コンタクトホール122のサイズの制御性が低下する。また、レジスト113の耐性が低いために、エッチングに際してオーバーエッチングできない。このために、ソース・ゲート・ドレインにおけるコンタクト抵抗が高くなりやすく、且つばらつくという問題が生ずる。
本発明者が本比較例を実施した結果、8インチウェーハ内で、コンタクトホールの直径の平均は、120nmであり、その寸法ばらつきがプラスマイナス10nm、コンタクト抵抗の平均値が30Ωでばらつきがプラスマイナス7Ωと大きかった。
図11は、本発明の第2の具体例にかかる半導体装置の製造方法により得られた構造を表す断面図である。
また、図12は、本具体例の半導体装置の製造方法の要部を表す工程断面図である。これらの図面については、図1乃至図10に関して前述したものと同様の要素には同一の符号を付して詳細な説明は省略する。
本具体例においては、第3の層間絶縁膜112をエッチングする際のエッチング条件を変えることにより、その開口形状を略テーパ状とする。こうすることにより、より微小なコンタクトホールを形成することができる。
すなわちまず、図12(a)に表したように、第3の層間絶縁膜112の上に、レジストパターン113を形成する。なお、レジストパターン113は、ArF露光機を用いて120nm径の開口をパターニングした。
次に、図12(b)に表したように、レジストパターン113をマスクとして第3の層間絶縁膜112のエッチングを行った。エッチング方法としてはICP型反応性イオンエッチング装置を用いた。ここで、CH:50sccm O:50sccm の混合ガスを用いて13.3パスカルにてシリコン窒化膜をエッチングし第3の層間絶縁膜112の開口部を形成した。この時、エッチング圧力を図3に関して前述した条件(6.7パスカル)よりも上げることにより、図12(b)に表したように、窒化膜からなる第3の層間絶縁膜112を略テーパ状にエッチングすることができる。
この後、図12(c)に表したように、酸素プラズマによるアッシングにてレジストパターン113を除去する。
しかる後に、図3(c)乃至図7(b)に関して前述した工程を実施することにより、図11に表した半導体装置が完成する。
以上説明したように、本具体例においては、第3の層間絶縁膜112を略テーパ状にエッチングすることにより、接続孔(コンタクトホール)のサイズを縮小させ、素子サイズをさらに微細化させて、集積度を上げることができる。
本具体例において、第1の層間絶縁膜110に形成されたコンタクトホール116の直径は、表面部分で90nm程度であった。また、このコンタクトホールの寸法ばらつきはプラスマイナス2.5nm以下、コンタクト抵抗の平均値が40Ωでばらつきがプラスマイナス2Ω以下であった。
すなわち、本変型例においても、図2乃至図7に関して前述したものと同様にコンタクトホールのサイズのばらつきやコンタクト抵抗のばらつきが極めて小さく、同時に、安定して低いコンタクト抵抗が得られた。
以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。
例えば、半導体装置の具体的な構造やサイズ、材料などついては、当業者が適宜設計変更して適用したものも、本発明の要旨を含む限り、本発明の範囲に包含される。
また、各層の形成方法、形成条件、加工条件、エッチング条件、熱処理条件などについても、具体例にとして前述したもの以外にも当業者が適宜設計したものも本発明の範囲に包含される。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての触媒CVD装置及び触媒CVD法は、本発明の範囲に包含される。
本発明により製造される半導体装置の要部断面構造を例示する模式図である。 本発明の実施の形態にかかる半導体装置の製造方法を表す工程断面図である。 本発明の実施の形態にかかる半導体装置の製造方法を表す工程断面図である。 本発明の実施の形態にかかる半導体装置の製造方法を表す工程断面図である。 本発明の実施の形態にかかる半導体装置の製造方法を表す工程断面図である。 本発明の実施の形態にかかる半導体装置の製造方法を表す工程断面図である。 本発明の実施の形態にかかる半導体装置の製造方法を表す工程断面図である。 本発明の比較例としての半導体装置の製造方法の一部を表す工程断面図である。 本発明の比較例としての半導体装置の製造方法の一部を表す工程断面図である。 本発明の比較例としての半導体装置の製造方法の一部を表す工程断面図である。 本発明の第2の具体例の半導体装置の製造方法により得られた半導体装置を表す断面図である。 本発明の第2の具体例の半導体装置の製造方法を表す工程断面図である。
符号の説明
101 素子分離領域
102 ウェル
103 チャネル
103D LDD領域
104 ゲート絶縁膜
105 ゲート側壁
106 ゲート電極
107 ソース領域
108 ドレイン領域
109 シリサイド領域
110 第1の層間絶縁膜(シリコン窒化膜)
111 第2の層間絶縁膜(シリコン酸化膜)
112 第3の層間絶縁膜(シリコン窒化膜)
113D ドレインコンタクト
113G ゲートコンタクト
113S ソースコンタクト
113 コンタクト
114 第4の層間絶縁膜(シリコン酸化膜)
115 第5の層間絶縁膜(シリコン窒化膜)
116D ドレイン配線
116G ゲート配線
116S ソース配線

Claims (10)

  1. コンタクト領域を有する半導体層の上に層間絶縁層を形成する工程と、
    前記層間絶縁層の上に第3の層間絶縁膜を形成する工程と、
    前記第3の層間絶縁膜に開口を形成する工程と、
    前記第3の層間絶縁膜の前記開口に露出する前記層間絶縁層をエッチングすることにより、前記コンタクト領域に至るコンタクトホールを形成する工程と、
    前記コンタクトホールを金属により埋め込む工程と、
    前記第3の層間絶縁膜の上に、第4の層間絶縁膜を形成する工程と、
    前記第4の絶縁膜の上にトレンチ開口を有するマスクを形成する工程と、
    前記トレンチ開口に露出する前記第4の層間絶縁膜を、前記第3の層間絶縁膜に対するエッチング速度よりも前記第4の層間絶縁膜に対するエッチング速度のほうが大なる条件によりエッチングすることにより前記第3の層間絶縁膜に至るトレンチを形成する工程と、
    前記トレンチを金属により埋め込む工程と、
    を備えたことを特徴とする半導体装置の製造方法。
  2. 前記層間絶縁層は、第1の層間絶縁膜と、前記第1の層間絶縁膜の上に形成された第2の層間絶縁膜と、を有し、
    前記第1の層間絶縁膜と前記第3の層間絶縁膜とは、実質的に同一の材料からなり、
    前記第2の層間絶縁膜と前記第3の層間絶縁膜とは、実質的に異なる材料からなることを特徴とする請求項1記載の半導体装置の製造方法。
  3. 前記コンタクトホールを形成する工程は、前記第3の層間絶縁膜に対するエッチング速度よりも前記第2の層間絶縁膜に対するエッチング速度のほうが大なる条件により前記第2の層間絶縁膜をエッチングする第1のエッチング工程と、 前記第2の層間絶縁膜に対するエッチング速度よりも前記第1の層間絶縁膜に対するエッチング速度のほうが大なる条件により前記第1の層間絶縁膜をエッチングする第2のエッチング工程と、を含むことを特徴とする請求項2記載の半導体装置の製造方法。
  4. 前記第2の層間絶縁膜と前記第4の層間絶縁膜とは、実質的に同一の材料からなることを特徴とする請求項2または3に記載の半導体装置の製造方法。
  5. 前記第3の層間絶縁膜の厚みは、前記第1の層間絶縁膜の厚みよりも大なることを特徴とする請求項2〜4のいずれか1つに記載の半導体装置の製造方法。
  6. 前記第3の層間絶縁膜は、前記開口が前記層間絶縁層に向けて徐々に縮小する順テーパ状の断面を有することを特徴とする請求項1〜5のいずれか1に記載の半導体装置の製造方法。
  7. 前記トレンチ開口を有するマスクは、前記第3の層間絶縁膜と実質的に同一の材料からなることを特徴とする請求項1〜6のいずれか1つに記載の半導体装置の製造方法。
  8. 前記第3の層間絶縁膜は、シリコン窒化物、シリコン炭化物、シリコン炭酸化物及びシリコン酸窒化物よりなる群から選択されたいずれかからなることを特徴とする請求項1〜7のいずれか1つに記載の半導体装置の製造方法。
  9. 前記第4の層間絶縁膜は、シリコン酸化物、シリコン酸フッ化物、ホウ素リン・ケイ酸ガラス、リン・ケイ酸ガラス及び有機シリコンよりなる群から選択されたいずれかからなることを特徴とする請求項1〜8のいずれか1つに記載の半導体装置の製造方法。
  10. 前記コンタクト領域は、金属のシリサイドを含むことを特徴とする請求項1〜9のいずれか1つに記載の半導体装置の製造方法。
JP2003430808A 2003-12-25 2003-12-25 半導体装置の製造方法 Pending JP2005191279A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430808A JP2005191279A (ja) 2003-12-25 2003-12-25 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003430808A JP2005191279A (ja) 2003-12-25 2003-12-25 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2005191279A true JP2005191279A (ja) 2005-07-14

Family

ID=34789072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430808A Pending JP2005191279A (ja) 2003-12-25 2003-12-25 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2005191279A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110077A (ja) * 2005-10-12 2007-04-26 Hynix Semiconductor Inc 半導体素子のコンタクトホール形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110077A (ja) * 2005-10-12 2007-04-26 Hynix Semiconductor Inc 半導体素子のコンタクトホール形成方法

Similar Documents

Publication Publication Date Title
US7871923B2 (en) Self-aligned air-gap in interconnect structures
JP3790237B2 (ja) 半導体装置の製造方法
US7875547B2 (en) Contact hole structures and contact structures and fabrication methods thereof
US7256137B2 (en) Method of forming contact plug on silicide structure
US6093590A (en) Method of fabricating transistor having a metal gate and a gate dielectric layer with a high dielectric constant
JP2006041337A (ja) 窒化珪素膜の製造方法及び半導体装置の製造方法
US7615494B2 (en) Method for fabricating semiconductor device including plug
JP2010258221A (ja) 半導体装置及びその製造方法
US6727150B2 (en) Methods of forming trench isolation within a semiconductor substrate including, Tshaped trench with spacers
KR100597768B1 (ko) 반도체 소자의 게이트 스페이서형성방법
US7566924B2 (en) Semiconductor device with gate spacer of positive slope and fabrication method thereof
JP3312604B2 (ja) 半導体装置の製造方法
US6524938B1 (en) Method for gate formation with improved spacer profile control
US7371629B2 (en) N/PMOS saturation current, HCE, and Vt stability by contact etch stop film modifications
US6184113B1 (en) Method of manufacturing a gate electrode in a semiconductor device
JP2006148052A (ja) 半導体素子の格納電極形成方法
JP2005191279A (ja) 半導体装置の製造方法
US7135407B2 (en) Method of manufacturing a semiconductor device
JP2005191280A (ja) 半導体装置の製造方法
JP2007234740A (ja) 半導体装置の製造方法
KR100321693B1 (ko) 티타늄실리사이드를이용한반도체소자의게이트전극및비트라인형성방법
KR100307968B1 (ko) 플러그폴리를 갖는 반도체장치의 층간절연막 형성방법
KR100677990B1 (ko) 반도체 소자의 제조 방법
US20050106835A1 (en) Trench isolation structure and method of manufacture therefor
KR100925026B1 (ko) 반도체 소자 제조방법

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20050427

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20050427

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD03 Notification of appointment of power of attorney

Effective date: 20050729

Free format text: JAPANESE INTERMEDIATE CODE: A7423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050809