JP2005190764A - 燃料電池システムにおける気密試験方法 - Google Patents

燃料電池システムにおける気密試験方法 Download PDF

Info

Publication number
JP2005190764A
JP2005190764A JP2003428973A JP2003428973A JP2005190764A JP 2005190764 A JP2005190764 A JP 2005190764A JP 2003428973 A JP2003428973 A JP 2003428973A JP 2003428973 A JP2003428973 A JP 2003428973A JP 2005190764 A JP2005190764 A JP 2005190764A
Authority
JP
Japan
Prior art keywords
fuel cell
pressure
gas
fuel
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003428973A
Other languages
English (en)
Inventor
Hiroshi Igarashi
大士 五十嵐
Kenichiro Ueda
健一郎 上田
Kuniaki Oshima
邦明 尾島
Yoshinobu Hasuka
芳信 蓮香
Shinji Yoshikawa
慎司 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003428973A priority Critical patent/JP2005190764A/ja
Publication of JP2005190764A publication Critical patent/JP2005190764A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】 燃料電池システムを車両に搭載した状態で、その気密試験を実施できるようにする。
【解決手段】 出力電流がゼロの状態で、ECU30は、遮断弁12を開弁して、水素タンク11から燃料電池1に水素ガスを供給する。次いで、遮断弁12を閉弁し、燃料電池1を含む、ライン19b、19c、19d、19e、19fに水素ガスの流入を遮断した閉空間を形成する。閉空間の圧力を圧力センサ18によって検出し、その検出値に基づいて、燃料電池1を含む閉空間の気密性を判定する。
【選択図】 図1

Description

本発明は、車両(燃料電池電気自動車)に搭載される燃料電池システムにおいて、燃料系の気密性を判定可能な気密試験方法に関する。
燃料電池システムにおいて燃料系のガス漏洩を検出するため、従来、燃料電池の水素供給ラインと、空気供給ラインにそれぞれ窒素ガスを充填して密閉し、燃料電池のアノード極側の圧力をカソード極側の圧力より大きく維持した状態で、カソード極側で窒素量を計量し、窒素量の増加を検出することによって、ガス漏洩を検出する技術が知られている(特許文献1)。
しかしながら、この検出方法では、窒素量の増加度合いによってアノード極とカソード極との間に設けられた電解質膜の気密性を判定できるものの、水素供給ラインの気密性については判定できないという問題があった。
また、気密試験を行うに際して、窒素ガスを充填するために、窒素ガス源を水素供給ライン、空気供給ラインにそれぞれ接続する必要があるので、配管の繋ぎ変え作業が必要で、車両の場合、気密試験の実施が面倒であるという問題があった。
このほか、給水管の水漏洩を検出する方法として、特許文献2開示の技術が知られている。この技術は、コンプレッサによって給水管内に所定の圧力の空気を充填して密閉し、充填された空気の圧力変化で漏洩を検出するものである。この技術を用いることによって、水素供給ラインを含めて燃料電池のアノード極の気密試験を行うことができる。
特開平5−205762号公報(段落0018、図3) 特開平5−79943号公報(全文)
しかしながら、特許文献2開示の技術でも、空気を充填するため、コンプレッサを水素供給ラインに接続する必要があることから、前記同様に気密試験を容易に実施できない。一般に、燃料電池システムにおけるガス漏洩は、走行時の振動や衝撃によって起きることが多いため、ガス漏洩を迅速に検出できれば、早期に対応措置をとることができるが、前記いずれの技術も、前記の理由によって燃料電池システムを車両に搭載したまま、気密試験が容易に行えないという問題があった。
本発明は、このような従来の問題点に鑑み、燃料電池システムを車両に搭載したまま、簡単に気密試験が行える燃料電池システムにおける気密試験方法を提供することを目的とする。
このため本発明は、電解質膜を酸化剤極と燃料極とにより挟んで構成され、前記酸化剤極に酸化剤ガス、前記燃料極に燃料ガスをそれぞれ供給することによって発電を行う燃料電池を有する燃料電池システムにおいて、前記供給される酸化剤ガスの圧力により、前記燃料ガスの供給を制御する圧力調整手段と、前記燃料極側の圧力を検出する圧力検出手段とを備え、前記圧力調整手段を介して前記燃料極に検査用ガスを供給し、その供給を遮断した後、前記圧力検出手段の検出値に基づいて前記燃料極側の気密性を判定する気密試験方法とした。
本発明によれば、燃料電池システムを車両に搭載したまま、簡単に気密試験が行える。このため、気密試験の労力を削減することができる。また、気密試験を頻繁に行うことも可能になるので、気密低下を早期に検知することが可能になる。
また、気密試験を行うに際して、供給される酸化剤ガスの圧力により、検査用ガスの供給を制御できるため、電解質膜の両側で圧力の均衡を取ることができ、極間差圧による電解質膜の破損などを防止できる効果が得られる。
以下、本発明の実施の形態を図に基づいて説明する。
図1は、車両に搭載される燃料電池システムの構成を示す図である。
燃料電池1は、電解質膜1aをアノード極(燃料極)10とカソード極(酸化剤極)20とにより挟んで構成されている。燃料電池1のアノード極10には、水素供給ライン19(ライン19a、19b、19c、19d、19e、19f)が接続され、この水素供給ライン19を介して、水素タンク11から、燃料電池1のアノード極10に水素ガスを供給することができる。水素タンク11には、例えば、圧力が35MPa以上に圧縮された水素が貯蔵されている。
水素供給ライン19には、水素タンク11側から、遮断弁12、レギュレータ15(圧力調整手段)、エゼクタ16、圧力センサ18が順次に設けられている。
遮断弁12は、その動作がECU30に制御され、開弁状態では水素タンク11から燃料電池1に水素ガスの供給が可能になり、閉弁状態ではその供給が遮断される。
レギュレータ15は、パイロット操作圧力弁であり、燃料電池1のカソード極20に供給される空気の圧力をパイロット圧としており、燃料電池1に供給される水素ガスの圧力を調整している。
エゼクタ16は、ライン19e、19fを介して燃料電池1から排出された未反応の水素ガスをライン19dに戻して燃料電池1に還流させている。
パージ弁17は、ECU30の制御信号で開閉し、通常は閉状態にある。パージ弁17を開弁したときは、燃料電池1内の水や不要となった水素ガスが排出ラインAから排出される。気密試験を行う際には閉状態にされる。
水素タンク11からの水素ガスは、水素供給ライン19を介して燃料電池1のアノード極10に供給され、燃料電池1で消費されなかった水素ガスは、エゼクタ16によってアノード極10に還流されるため、パージ弁17が閉弁している状態で、遮断弁12を閉弁すると、燃料電池1のアノード極10を含む、ライン19b、19c、19d、19e、19fが水素ガスの流入が遮断された閉空間となる。
このとき、燃料電池1の出力電流がゼロの場合、発電に伴って水素ガスが消費され閉空間の圧力が低下することはない。したがって、閉空間内の圧力の変化を検出することによって、燃料電池1を含む閉空間の気密性を判定することができる。
燃料電池1のカソード極20には空気供給ライン29aを介して空気過給器21が接続され、空気過給器21によって加圧された空気が、空気供給ライン29aから燃料電池1のカソード極20に供給される。燃料電池1を通過した空気は、排出ラインBから大気中に排出される。空気過給器21は、ECU30に制御されている。
空気過給器21によって燃料電池1のカソード極20に加圧した空気が供給されるとき、供給される空気の圧力がパイロット圧としてアノード極10側のレギュレータ15に印加され、レギュレータ15は、燃料電池1に供給される空気の圧力に応じた圧力になるように水素ガスの供給を調整する。これによって、燃料電池1のアノード圧力とカソード圧力を略同一の圧力に保つことができ、アノード極10とカソード極20との極間差圧による電解質膜1aの損傷を防止することができる。
次に、前記燃料電池システムにおける水素系の気密試験について説明する。図2は、気密試験の流れを示すフローチャートである。
まず、ステップS1において、ECU30は、ガス漏洩を検出するガス漏洩検出モードに移行するか否かを判断する。ガス漏洩検出モードへの移行は、負荷への出力電流がゼロになっているときに行われるものとする。ガス漏洩検出モードに移行すると判断すると、負荷を遮断してステップS2へ進む。
ステップS2においては、ECU30が遮断弁12に開弁信号を出力して開弁する。
遮断弁12の開弁によって、水素タンク11から水素供給ライン19を介して燃料電池1に検査用ガスとしての水素ガスが流れるが、空気過給器21が停止状態であるため、レギュレータ15がほぼ絞り込んだ状態にあり、アノード極10には少量の水素ガスしか供給されない。したがって、このときアノード圧力はほぼゼロに保たれている。
ステップS3において、ECU30は、起動信号を出力して空気過給器21を起動する。これによって、燃料電池1のカソード極20に加圧された空気が供給され、供給される空気の圧力がさらにパイロット圧として、レギュレータ15に印加されるので、レギュレータ15の調整で、燃料電池1のアノード極10には、空気の圧力と略同じ圧力の水素ガスが供給される。その結果、電解質膜1aの両側でほぼ同じ圧力が生成され、極間差圧を考慮した気密試験を実施することができる。
ステップS4において、ECU30は、圧力センサ18の検出値を入力し、アノード圧力として所定圧力との比較によって、アノード圧力の大きさを判断する。
アノード圧力が所定圧力より小さい場合、一定時間後に再び圧力センサ18から検出値を入力し同判断を行う。
ステップS4の判断で、アノード圧力が所定圧力以上になった場合、気密試験に必要な圧力に達したとして、ステップS6において、ECU30は空気過給器21に停止信号を出力して停止させる。
ステップS7において、ECU30は、閉弁信号を出力して遮断弁12を閉弁する。
これによって、燃料電池1のアノード極10を含む、ライン19b、19c、19d、19e、19fが水素ガスの流入が遮断された閉空間になる。このとき、燃料電池1の出力電流がゼロのため、発電に伴って燃料電池1および閉空間内の水素ガスが消費されることはなく、ガス漏洩がなければアノード圧力が維持されている。
なお、レギュレータ15の上流側にあるライン19bには、下流側にあるライン19cより高い圧力が存在することから、気密試験を行っている閉空間部分の圧力が低下すると、ライン19b内の水素ガスがレギュレータ15を介して閉空間側に供給されることになる。しかし、遮断弁12が遮断されていることと、遮断弁12とレギュレータ15との間のライン19bの空間容積は少なく設計されていること、さらにライン19bの水素ガスが閉空間側に入り込むことは考慮して試験を行うので、ライン19bから閉空間側に水素ガスが供給されても、気密試験に支障が生じることはない。
ステップS8において、圧力センサ18の検出値を入力し、検出値P1として保存する。
ステップS9において、検出値P1を入力してから、所定時間を経過したか否かを判断する。経過していなければ、引き続き、同判断を行う。
検出値P1を入力してから所定時間を経過した場合、ステップS10において、ECU30は、圧力センサ18から現在の検出値を検出値P2として入力する。
ステップS11において、ECU30は、検出値P1とP2との差分値(P1−P2)を演算した上で、所定値Mとの比較を行う。所定値Mは例えばラインbからの水素ガスの流入を考慮して設定することができる。
その結果、差分値が所定値M以下であれば、閉空間に顕著な圧力変化がないものとしてステップS12において、ECU30は燃料電池1および閉空間にガス漏洩がないと判断する。この判断をもって気密性が維持されていると判断する。
差分値が所定値Mより大きければ、閉空間に顕著な圧力変化があるものとしてステップS13において、ECU30は燃料電池1および閉空間にガス漏洩があると判断する。この判断をもって気密性が低下したと判断する。気密性が低下したと判断した場合は、例えば警報などを行ってドライバや整備員に知らせることができる。
本実施の形態は以上のように構成され、遮断弁12を開弁し、燃料電池1に水素ガスを供給した後、遮断弁12を閉弁し、燃料電池1を含む、ライン19b、19c、19d、19e、19fに水素ガスの流入を遮断した閉空間を形成し、この閉空間の圧力を検出することによって、気密試験を実施するため、燃料電池システムを車両に搭載した状態で、その気密試験を実施するができる。また、この気密試験は手軽に行えるので、適宜に実施することによって、ガス漏洩を早期に発見し、例えば早い段階でサービス店に持ち込むなどの対応処置を取らせることができる。
また、気密試験の実施に当って、カソード極20に空気を供給し、燃料電池1に流れる水素ガスの供給を制御するため、電解質膜1aの両側で、圧力の均衡が取れて極間差圧による電解質膜1aの損傷を防止することができる。また、これによって、例えば、アノード圧力を高めて、気密試験の精度を上げることもできる。圧力は温度によって変化することから、一定の温度を保った状態で気密試験を実施するのが好ましい。
前記実施の形態では、気密試験の実施に当って、検査用ガスとして燃料ガスである水素ガスを用いたため、ECU30における遮断弁12の制御を変更することで実施が可能である。検査用ガスとしては水素ガス以外に、例えば一般的に利用されている窒素ガスを用いることもできる。
次に、別の実施の形態として窒素ガスを利用する場合の気密試験について説明する。
窒素ガスを利用する場合、燃料電池システム自身が窒素ガス源を有していないため、図1に示すように水素供給ライン19のライン19bに第2遮断弁14を介して窒素ガスを外部から供給できるようにする。
このようにレギュレータ15の上流側から窒素ガスの供給を行うことによって、レギュレータ15は、供給される窒素ガスに対して圧力調整が行え、気密試験の実施に必要な圧力をレギュレータ15で調整できるとともに、前記実施の形態と同様に、電解質膜1aの両側で圧力の均衡が取れた状態で、気密試験を行うことができる。
気密試験の実施に際しては、ECU30は、パージ弁17を開弁した状態で、第2遮断弁14を開弁して窒素ガスを供給する。この窒素ガスの供給で、水素供給ライン19における遮断弁12の下流側に溜まった水素を排出させてパージ弁17を閉弁する。
その後、前記の実施の形態と同様に、第2遮断弁14の制御で、燃料電池1に窒素ガスを供給した後、その供給を遮断し、窒素ガスの流入を遮断した閉空間内の圧力を検出することによって、気密試験を行うことができる。
気密試験の流れについては、前記実施の形態と同様で、すなわち図2のフローチャートにおける遮断弁12を第2遮断弁14に置き換えることによって、窒素ガスによる気密試験を行うことができる。
以上で具体的な実施の形態の説明を終えるが、本発明の態様はこの実施の形態に限られるものではない。本発明の趣旨を逸脱しない範囲で適宜変更可能である。例えば本実施の形態では、気密試験を実施している間に、空気過給器21を起動させて、極間差圧を小さくするようにしたが、空気過給器21の起動がなくても、気密試験を実施することが可能である。
また、空気過給器21による空気の供給は、アノード圧力が上昇している間だけでなく、気密試験の全過程を通じて行うことも可能である。この場合、閉空間が形成され空気圧を検出している間でも、電解質膜の両側で圧力の均衡が取れ、極間差圧による電解質膜1aの破損をより効果的に保護することができる。
車両用燃料電池システムを示す図である。 気密試験の流れを示すフローチャートである。
符号の説明
1 燃料電池
1a 電解質膜
10 アノード極
11 水素タンク
12 遮断弁
14 第2遮断弁
15 レギュレータ
16 エゼクタ
17 パージ弁
18 圧力センサ
19 水素供給ライン
20 カソード極
21 空気過給器
29a 空気供給ライン
30 ECU
A 排出ライン
B 排出ライン

Claims (1)

  1. 電解質膜を酸化剤極と燃料極とにより挟んで構成され、前記酸化剤極に酸化剤ガス、前記燃料極に燃料ガスをそれぞれ供給することによって発電を行う燃料電池を有する燃料電池システムにおいて、
    前記供給される酸化剤ガスの圧力により前記燃料ガスの供給を制御する圧力調整手段と、
    前記燃料極側の圧力を検出する圧力検出手段とを備え、
    前記圧力調整手段を介して前記燃料極に検査用ガスを供給し、その供給を遮断した後、前記圧力検出手段の検出値に基づいて前記燃料極側の気密性を判定することを特徴とする燃料電池システムにおける気密試験方法。
JP2003428973A 2003-12-25 2003-12-25 燃料電池システムにおける気密試験方法 Pending JP2005190764A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428973A JP2005190764A (ja) 2003-12-25 2003-12-25 燃料電池システムにおける気密試験方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428973A JP2005190764A (ja) 2003-12-25 2003-12-25 燃料電池システムにおける気密試験方法

Publications (1)

Publication Number Publication Date
JP2005190764A true JP2005190764A (ja) 2005-07-14

Family

ID=34787772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428973A Pending JP2005190764A (ja) 2003-12-25 2003-12-25 燃料電池システムにおける気密試験方法

Country Status (1)

Country Link
JP (1) JP2005190764A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033426A1 (ja) * 2004-09-21 2006-03-30 Toyota Jidosha Kabushiki Kaisha 燃料電池システム、該システムの異常検出方法及び移動体
CN104950870A (zh) * 2015-05-07 2015-09-30 昆山弗尔赛能源有限公司 一种燃料电池控制器硬件在环实时测试平台
CN112903206A (zh) * 2019-12-04 2021-06-04 国家能源投资集团有限责任公司 气密性检测系统及气密性检测方法
WO2023051526A1 (zh) * 2021-09-28 2023-04-06 国家能源投资集团有限责任公司 燃料电池及其气密性检测方法
JP7338610B2 (ja) 2020-11-11 2023-09-05 トヨタ自動車株式会社 燃料電池のガスリーク検査装置、およびその方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033426A1 (ja) * 2004-09-21 2006-03-30 Toyota Jidosha Kabushiki Kaisha 燃料電池システム、該システムの異常検出方法及び移動体
CN104950870A (zh) * 2015-05-07 2015-09-30 昆山弗尔赛能源有限公司 一种燃料电池控制器硬件在环实时测试平台
CN112903206A (zh) * 2019-12-04 2021-06-04 国家能源投资集团有限责任公司 气密性检测系统及气密性检测方法
JP7338610B2 (ja) 2020-11-11 2023-09-05 トヨタ自動車株式会社 燃料電池のガスリーク検査装置、およびその方法
WO2023051526A1 (zh) * 2021-09-28 2023-04-06 国家能源投资集团有限责任公司 燃料电池及其气密性检测方法

Similar Documents

Publication Publication Date Title
US7882728B2 (en) Dual anomaly judgment device for a fuel cell
US8486577B2 (en) Fuel cell system
CA2632963C (en) Fuel cell system, moving object equipped with fuel cell system, and abnormality judgment method for fuel cell system
KR101958119B1 (ko) 연료 전지 시스템 및 연료 전지 시스템에 있어서의 수소 누설 판정 방법
US7127937B1 (en) Method for leak detection in gas feeding systems with redundant valves
JP5070685B2 (ja) 燃料電池システム、ガス漏れ検知装置およびガス漏れ検知方法
US7581431B2 (en) Gas leak detection device and method for same
US9147893B2 (en) Failure diagnostic device for discharge valve
JP4941730B2 (ja) 燃料供給装置及び車両
JP5470234B2 (ja) 燃料電池のクロスリーク判定方法と燃料電池システム
JP2005011703A (ja) 燃料電池システムおよびガス漏洩検知方法
US11063273B2 (en) Fuel cell system
JP2003308868A (ja) ガス燃料供給装置
JP4033376B2 (ja) 燃料供給装置
JP4849332B2 (ja) 燃料供給装置
JP2005347185A (ja) 燃料電池システム及びその異常判定方法
JP2008298103A (ja) 制御装置、燃料ガス供給システム、及び燃料ガス容器
JP2005190764A (ja) 燃料電池システムにおける気密試験方法
JP2007051917A (ja) 気密性異常判断装置およびガス供給装置
JP2007173158A (ja) 燃料電池システム
KR20180095984A (ko) 연료전지 시스템 고압용기 압력센서 고장 진단 방법
JP2009037884A (ja) 燃料電池システム
JP4629986B2 (ja) 燃料電池システム
JP4211001B2 (ja) 高圧タンクシステムのガス漏れ検出装置
JP2005276546A (ja) 異常検知システム