WO2023051526A1 - 燃料电池及其气密性检测方法 - Google Patents

燃料电池及其气密性检测方法 Download PDF

Info

Publication number
WO2023051526A1
WO2023051526A1 PCT/CN2022/121737 CN2022121737W WO2023051526A1 WO 2023051526 A1 WO2023051526 A1 WO 2023051526A1 CN 2022121737 W CN2022121737 W CN 2022121737W WO 2023051526 A1 WO2023051526 A1 WO 2023051526A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
valve
tested
shut
anode
Prior art date
Application number
PCT/CN2022/121737
Other languages
English (en)
French (fr)
Inventor
龚思琦
姚金松
于双恩
任天龙
李初福
刘智恩
Original Assignee
国家能源投资集团有限责任公司
北京低碳清洁能源研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家能源投资集团有限责任公司, 北京低碳清洁能源研究院 filed Critical 国家能源投资集团有限责任公司
Publication of WO2023051526A1 publication Critical patent/WO2023051526A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of fuel cells, in particular to a fuel cell and a method for detecting air tightness thereof.
  • High-temperature fuel cells refer to fuel cells that can operate under high-temperature conditions, such as solid oxide fuel cells (Solid Oxide Fuel Cell, referred to as "SOFC”) that operate at 600-1000 ° C, and the airtightness of the fuel cell stack at high temperatures Not only is it different from low temperature, but it also has a great influence on the output performance of the stack.
  • SOFC Solid Oxide Fuel Cell
  • the anode must be in a non-oxidizing atmosphere at high temperature; otherwise, the anode will be oxidized, causing local thermal stress, causing changes in the structure of the anode, affecting the output performance of the stack, and even causing cell rupture, resulting in internal leakage of the stack.
  • the stack is very sensitive to pressure and pressure difference at high temperature, so the gas tightness detection of the stack at high temperature requires a control strategy for the anode gas and the stack pressure.
  • the pressure difference between the anode inlet and the cathode inlet, the pressure difference between the anode inlet and the anode outlet, and the pressure difference between the cathode inlet and the cathode outlet are below a certain pressure value, such as 10kPa, too high
  • a certain pressure value such as 10kPa
  • Fuel cells and their airtightness detection methods in the prior art often do not indicate whether they can be used at high temperatures. On the premise that it does not have an anode gas supply control strategy and a pressure difference control strategy suitable for high temperature, it should not be suitable for high temperature detection environment.
  • the fuel cell and its airtightness detection method in the prior art can complete all the airtightness detections through one installation, there is no need to disassemble the adjustment interface in the middle, and some can detect the leakage of each cavity and the gap between the cavities. Inside channeling. However, it cannot realize online detection, that is, stop the operation of the fuel cell during the operation of the fuel cell, perform an air tightness test, and then continue the operation of the fuel cell without going through the process of heating and cooling.
  • the present application proposes a fuel cell and an airtightness detection method thereof.
  • the anode inlet of the fuel cell can be connected with the gas source of air tightness detection gas, so as to ensure that the anode is in a non-oxidative atmosphere at high temperature, avoid anode oxidation, local thermal stress, avoid anode structure changes, and avoid affecting the output of the stack performance, to avoid cell rupture, to avoid internal leakage of the stack, so as to test the air tightness of the fuel cell stack under test at high temperature.
  • the structure of the fuel cell is conducive to the online detection of the fuel cell stack to be tested, that is, the operation of the fuel cell is stopped during the operation of the fuel cell, the air tightness test is performed, and then the operation of the fuel cell is continued without experiencing temperature rise, cooling process.
  • the present invention provides a fuel cell, which includes: a raw gas supply system, which is used to supply raw gas to the fuel cell, which includes parallel raw gas supply branches, each raw gas supply branch and raw gas
  • the main cut-off valves are connected in series; a branch cut-off valve is set on the raw material gas supply branch; an air tightness test system includes a first cut-off valve, an air tightness detector, and a second cut-off valve connected in sequence along the air flow direction.
  • a cut-off valve is arranged adjacent to the gas source of the air-tightness detection gas and is located downstream of the gas source of the gas-tightness detection gas; and, the anode outlet of the fuel cell stack to be tested is provided with an anode outlet stop valve; wherein, the raw material
  • the gas supply system is connected in parallel with the air tightness testing system and communicates with the anode inlet of the fuel cell stack to be tested.
  • the anode inlet of the fuel cell can be connected with the gas source of the air tightness detection gas, so as to ensure that the anode is in a non-oxidizing atmosphere at high temperature, avoid anode oxidation, local thermal stress, avoid anode structure changes, and avoid Affect the output performance of the stack, avoid the rupture of the battery sheet, and avoid the internal leakage of the stack, so as to detect the air tightness of the fuel cell stack to be tested at high temperature.
  • the structure of the fuel cell is conducive to the online detection of the fuel cell stack to be tested, that is, the operation of the fuel cell is stopped during the operation of the fuel cell, the air tightness test is performed, and then the operation of the fuel cell is continued without experiencing temperature rise, cooling process.
  • the raw material gas supply system includes a parallel hydrogen supply line and a nitrogen supply line, and the hydrogen supply line and the nitrogen supply line are connected in series with the main cut-off valve of the raw material gas; the hydrogen supply line is close to The hydrogen source is provided with a hydrogen shut-off valve; the nitrogen supply pipeline is provided with a nitrogen shut-off valve near the nitrogen source.
  • the anode inlet and the cathode inlet of the fuel cell stack to be tested are respectively provided with an anode inlet pressure sensor and a cathode inlet pressure sensor.
  • the anode inlet and the cathode inlet of the fuel cell stack to be tested are respectively provided with an anode inlet pressure sensor and a cathode inlet pressure sensor, which can monitor the pressure difference between the anode inlet and the cathode inlet in real time, which is beneficial to avoid excessive pressure Or the pressure difference will have an impact on the battery sheet and the sealing material, which is conducive to avoiding the rupture of the battery sheet, thereby helping to avoid internal or external leakage of the stack.
  • a decompression valve, a pressure sensor and an expansion tank are arranged between the air tightness detector and the second shut-off valve.
  • the expansion tank can supplement the anode in the fuel cell stack to be tested with gas-tight detection gas, ensure the positive pressure in the anode chamber, and protect the anode of the stack.
  • the cathode inlet and the cathode outlet of the fuel cell stack to be tested are respectively provided with a cathode inlet stop valve and a cathode outlet stop valve.
  • a hydrogen pressure reducing valve and a hydrogen mass flowmeter are arranged downstream of the hydrogen gas pressure reducing valve, and pressure sensors are arranged on both sides of the hydrogen gas pressure reducing valve;
  • a nitrogen decompression valve and a nitrogen mass flowmeter are arranged downstream, and pressure sensors are provided on both sides of the nitrogen decompression valve;
  • a pressure reducing valve, pressure sensors are arranged on both sides of the airtight gas pressure reducing valve.
  • the air tightness detection gas is composed of nitrogen and hydrogen, wherein the content of hydrogen is between 5-20%. Through this embodiment, it is ensured that the air-tightness detection gas is a non-oxidizing gas.
  • the fuel cell further includes a control system to realize automatic control of the fuel cell.
  • a control system to realize automatic control of the fuel cell.
  • the present invention also provides a method for detecting the airtightness of the fuel cell described in the first aspect and any embodiment thereof, the method for detecting the airtightness includes the following steps: before the airtightness detection, the The fuel cell stack to be tested is in the working state. At this time, the raw gas supply system supplies raw gas to the anode inlet of the fuel cell stack to be tested.
  • the outlet shut-off valve is in an open state; after the reaction, the gas is discharged from the anode outlet; the air enters the fuel cell stack to be tested from the cathode inlet and is discharged from the cathode outlet; during the air tightness test, firstly the fuel cell stack to be tested In the state of open circuit voltage, close the branch line shut-off valve and the main raw material gas shut-off valve, and at the same time, open the first shut-off valve and the second shut-off valve. At this time, the air tightness detector is in the pressure maintaining mode to detect the The anode of the battery stack is purged; after the purge is completed, close the first shut-off valve and the anode outlet shut-off valve to perform an air tightness test.
  • the air tightness detector is in the detection mode to detect the fuel to be tested Leakage of the battery stack; after the test, if the air tightness test is qualified, close the second shut-off valve, open the branch line shut-off valve, the raw gas main shut-off valve and the anode outlet shut-off valve, so that the fuel cell stack to be tested Back to work.
  • the anode inlet of the fuel cell can be communicated with the gas source of the gas-tight detection gas, so as to ensure that the anode is in a non-oxidizing atmosphere at high temperature, avoid anode oxidation, local thermal stress, and avoid anode Structural changes to avoid affecting the output performance of the stack, avoiding the rupture of the battery sheet, and avoiding the internal leakage of the stack, so as to test the air tightness of the fuel cell stack to be tested at high temperature.
  • the structure of the fuel cell is conducive to the online detection of the fuel cell stack to be tested, that is, the operation of the fuel cell is stopped during the operation of the fuel cell, the air tightness test is performed, and then the operation of the fuel cell is continued without experiencing temperature rise, cooling process.
  • both the cathode inlet shut-off valve and the cathode outlet shut-off valve are in an open state; when detecting the overall leakage of the fuel cell stack to be tested When measuring, after the purge is completed, the cathode inlet shut-off valve and the cathode outlet shut-off valve are in the open state.
  • the internal leakage of the stack is the difference between the overall leakage of the fuel cell stack to be tested and the external leakage of the fuel cell stack to be tested.
  • the expansion tank when detecting the leakage of the fuel cell stack to be tested, supplies air tightness detection gas to the anode of the fuel cell stack to be tested through the second stop valve;
  • the volume of the expansion tank is greater than the volume of the anode chamber.
  • the air tightness detector is switched to the pressure maintaining mode, and the first stop valve and the anode outlet stop valve are opened.
  • the anode of the fuel cell stack to be tested is immediately purged to ensure that the anode is in a non-oxidizing atmosphere at high temperature, avoiding anode oxidation, local thermal stress, and avoiding anode Structural changes to avoid affecting the output performance of the stack, avoiding the rupture of the battery sheet, and avoiding the internal leakage of the stack, so as to test the air tightness of the fuel cell stack to be tested at high temperature.
  • the readings of the pressure sensor between the expansion tank and the air tightness detector and the pressure sensor at the anode inlet are all less than the preset pressure value, and the pressure sensor at the anode inlet and the cathode inlet
  • the difference between the readings of the pressure sensor is less than the preset pressure difference, and the outlet pressure of the air tightness detector in the pressure maintaining state is the preset pressure value; after the purge is completed, when the expansion tank and the air tightness detector
  • the air tightness detector switches from the pressure holding mode to the detection mode.
  • the preset pressure value and the preset pressure difference are set according to the pressure bearing characteristics of different fuel cell stacks to be tested; neither the preset pressure value nor the preset pressure difference is higher than 10 kPa.
  • both the preset pressure value and the preset pressure difference are between 3-5 kPa.
  • control system is connected with the hydrogen shut-off valve, the nitrogen shut-off valve, the feed gas main shut-off valve, the anode outlet shut-off valve, the first shut-off valve, the second shut-off valve, the cathode inlet shut-off valve, and the cathode outlet shut-off valve.
  • Valves, pressure reducing valves, pressure sensors, hydrogen mass flow meters, nitrogen mass flow meters and air tightness detectors are connected by communication, so as to realize the automatic control of the fuel cell. Through this embodiment, it is beneficial to realize the automatic control of the fuel cell and ensure the safety of the fuel cell stack to be tested.
  • the control system when the pressure is higher than the preset pressure value or when the pressure difference is higher than the preset pressure difference, the control system will give an alarm to ensure the safety of the fuel cell stack to be tested. Through this embodiment, it is beneficial to further ensure the safety of the fuel cell stack to be tested.
  • the fuel cell and its airtightness detection method provided by the present application have the following beneficial effects.
  • the anode inlet of the fuel cell can be connected with the air source of the air tightness detection gas, so as to ensure that the anode is in a non-oxidizing atmosphere at high temperature, avoid anode oxidation, local thermal stress, and anode structure changes , to avoid affecting the output performance of the stack, avoiding the rupture of the cell sheet, and avoiding the internal leakage of the stack, so as to detect the air tightness of the fuel cell stack to be tested at high temperature.
  • the structure of the fuel cell is conducive to the online detection of the fuel cell stack to be tested, that is, the operation of the fuel cell is stopped during the operation of the fuel cell, the air tightness test is performed, and then the operation of the fuel cell is continued without experiencing temperature rise, cooling process.
  • the leakage amount of the fuel cell stack to be tested can be successfully obtained, and the fuel cell stack to be tested can be used.
  • the overall leakage of the battery stack and the external leakage of the fuel cell stack to be tested are used to obtain the internal leakage of the fuel cell stack to be tested.
  • the expansion tank can supplement the anode in the fuel cell stack to be tested with air-tight detection gas, ensure the positive pressure in the anode chamber, and protect the anode of the stack.
  • Fig. 1 shows a schematic structural diagram of a fuel cell according to an embodiment of the present invention.
  • this embodiment provides a fuel cell, which includes: a raw gas supply system, which is used to supply raw gas to the fuel cell, which includes parallel hydrogen supply pipelines and nitrogen supply pipelines, hydrogen supply
  • the pipeline and the nitrogen supply pipeline are connected in series with the main cut-off valve 11 of the feed gas;
  • the hydrogen supply pipeline is provided with a hydrogen shut-off valve 1 near the hydrogen source;
  • the nitrogen supply pipeline is provided with a nitrogen shut-off valve 6 near the nitrogen source;
  • the air tightness test system includes The first cut-off valve 12, the air tightness detector 16, and the second cut-off valve 20 connected in sequence along the gas flow direction, the first cut-off valve 12 is adjacent to the gas source of the air-tightness detection gas and is located in the gas source of the air-tightness detection gas. and, the fuel cell stack 23 to be tested, its anode outlet is provided with an anode outlet shut-off valve 22; connected.
  • the hot zone in FIG. 1 refers to the high temperature zone of the fuel cell, and the electric stack 23 is located in the hot zone.
  • the fuel cell of this embodiment includes an airtightness testing system, which enables the anode inlet of the fuel cell to communicate with the gas source of the airtightness detection gas, thereby ensuring that the anode is in a non-oxidizing atmosphere at high temperature, and avoiding anode oxidation, Local thermal stress, avoiding changes in the structure of the anode, avoiding affecting the output performance of the stack 23, avoiding cell rupture, and avoiding internal leakage of the stack 23, so as to detect the air tightness of the fuel cell stack 23 under high temperature;
  • the air tightness detection gas is a non-oxidizing gas.
  • the existing fuel cell cannot realize online detection, that is, stop the operation of the fuel cell during the operation of the fuel cell, perform an air tightness test, and then continue the operation of the fuel cell without going through the heating and cooling process.
  • the feedstock gas supply system of the fuel cell in this embodiment is connected in parallel with the air tightness testing system and communicates with the anode inlet of the fuel cell stack 23 to be tested.
  • the fuel cell stack 23 to be tested is in working condition.
  • the raw gas supply system supplies hydrogen and nitrogen to the anode inlet of the fuel cell stack 23 to be tested.
  • the hydrogen shutoff valve 1, the nitrogen shutoff valve 6 and The raw material gas main shut-off valve 11 is in an open state, and the anode outlet shut-off valve 22 is in an open state; after the reaction, the gas is discharged from the anode outlet; the air enters the fuel cell stack 23 to be tested from the cathode inlet and is discharged from the cathode outlet.
  • the air tightness test first make the fuel cell stack 23 to be tested in the state of open circuit voltage, close the hydrogen shut-off valve 1, the nitrogen shut-off valve 6 and the raw material gas main shut-off valve 11, and at the same time, open the first shut-off valve 12 and the second shut-off valve.
  • the shut-off valve 20 supplies air tightness detection gas to the anode inlet of the fuel cell stack 23 to be tested, wherein the air tightness detection gas is a non-oxidizing gas.
  • the air tightness detector 16 is in a pressure-holding mode for purging the anode of the fuel cell stack 23 to be tested.
  • the air-tightness detector 16 is switched to the detection mode to detect the leakage of the fuel cell stack 23 to be tested. .
  • the structure of the fuel cell is conducive to realizing the on-line detection of the fuel cell stack 23 to be tested, that is, the operation of the fuel cell is stopped during the operation of the fuel cell, the air tightness test is performed, and then the operation of the fuel cell is continued without any experience. Heating and cooling process.
  • the anode inlet of the fuel cell can be connected with the gas source of the air tightness detection gas, so as to ensure that the anode is in a non-oxidizing atmosphere at high temperature, avoid anode oxidation, local thermal stress, avoid anode structure changes, and avoid Affect the output performance of the electric stack 23, avoid causing cell rupture, and avoid internal leakage of the electric stack 23, so as to detect the airtightness of the fuel cell electric stack 23 under high temperature.
  • the structure of the fuel cell is conducive to the online detection of the fuel cell stack 23 to be tested, that is, the operation of the fuel cell is stopped during the operation of the fuel cell, the air tightness test is performed, and then the operation of the fuel cell is continued without experiencing a temperature rise. , Cooling process.
  • the anode inlet and the cathode inlet of the fuel cell stack 23 to be tested are respectively provided with an anode inlet pressure sensor 21 and a cathode inlet pressure sensor 26.
  • the electric stack 23 is very sensitive to pressure and pressure difference at high temperature, but the prior art does not have a control strategy for the anode gas and the pressure of the electric stack 23 at high temperature. According to the pressure-bearing performance of different stacks 23, it is generally required that the pressure difference between the anode inlet and the cathode inlet, the pressure difference between the anode inlet and the anode outlet, and the pressure difference between the cathode inlet and the cathode outlet should be below a certain pressure value, such as 10kPa. In the prior art, because there is no differential pressure control strategy suitable for high temperature, excessive pressure or differential pressure will affect the battery sheet and sealing material, which may cause the battery sheet to rupture, causing internal leakage or external leakage of the stack 23. leak.
  • the anode inlet and the cathode inlet of the fuel cell stack 23 to be tested are respectively provided with an anode inlet pressure sensor 21 and a cathode inlet pressure sensor 26, which can monitor the pressure difference between the anode inlet and the cathode inlet in real time, which is beneficial to avoid excessive pressure.
  • High pressure or pressure difference will affect the battery sheet and sealing material, which is beneficial to avoid battery sheet rupture, thereby helping to avoid internal leakage or external leakage of the battery stack 23 .
  • a pressure reducing valve 3 a pressure sensor 18 and an expansion tank 19 are arranged between the air tightness detector 16 and the second stop valve 20 .
  • the expansion tank 19 When detecting the leakage of the fuel cell stack 23 to be tested, the expansion tank 19 supplies air-tight detection gas to the anode of the fuel cell stack 23 to be tested by the second stop valve 20; In the atmosphere, the volume of the expansion tank 19 is greater than the volume of the anode chamber.
  • the volume of the expansion tank 19 is larger than the total volume of the anode channels in the fuel cell stack 23 to be tested.
  • the capacity expansion tank 19 can give the gas to be tested. Measuring the anode in the fuel cell stack 23 to supplement the air tightness detection gas can also ensure the positive pressure in the anode chamber and protect the anode of the stack 23.
  • the expansion tank 19 can supplement the anode in the fuel cell stack 23 to be tested with gas-tight detection gas, ensure the positive pressure in the anode chamber, and protect the anode of the stack 23 .
  • the cathode inlet and the cathode outlet of the fuel cell stack 23 to be tested are respectively provided with a cathode inlet stop valve 24 and a cathode outlet stop valve 25 .
  • the cathode inlet shut-off valve 24 and the cathode outlet shut-off valve 25 are opened to obtain the overall leakage of the fuel cell stack 23 to be tested.
  • the cathode inlet cut-off valve 24 and the cathode outlet cut-off valve 25 are closed to obtain the leakage amount of the fuel cell stack 23 to be tested.
  • the internal leakage of the fuel cell stack 23 to be tested is the difference between the overall leakage of the fuel cell stack 23 to be tested and the external leakage of the fuel cell stack 23 to be tested.
  • the cathode inlet shut-off valve 24 and the cathode outlet shut-off valve 25 respectively at the cathode inlet and the cathode outlet of the fuel cell stack 23 to be tested the external leakage of the fuel cell stack 23 to be tested can be successfully obtained.
  • the internal leakage of the fuel cell stack 23 to be tested can be obtained by using the overall leakage of the fuel cell stack 23 to be tested and the external leakage of the fuel cell stack 23 to be tested.
  • a hydrogen pressure reducing valve 3 and a hydrogen mass flowmeter 5 are arranged downstream of the hydrogen cut-off valve 1, and a pressure sensor 2 and a pressure sensor 4 are respectively arranged on both sides of the hydrogen pressure reducing valve 3
  • the downstream of the nitrogen cut-off valve 6 is provided with a nitrogen pressure reducing valve 8 and a nitrogen mass flowmeter 10, and the both sides of the nitrogen pressure reducing valve 3 are respectively provided with a pressure sensor 7 and a pressure sensor 9;
  • An airtight gas decompression valve 14 is arranged between the gauges 16, and a pressure sensor 13 and a pressure sensor 15 are respectively arranged on both sides of the airtight gas decompression valve 14.
  • the supply of hydrogen, nitrogen or air tightness detection gas can be reduced when needed, and the supply can be precisely adjusted and controlled.
  • the air tightness detection gas is composed of nitrogen and hydrogen, wherein the content of hydrogen is between 5-20%.
  • the air-tightness detection gas is a non-oxidizing gas.
  • the fuel cell further includes a control system to realize automatic control of the fuel cell.
  • This embodiment also provides a method for detecting the air tightness of the above-mentioned fuel cell.
  • the gas supply system supplies hydrogen and nitrogen to the anode inlet of the fuel cell stack 23 to be tested, the hydrogen shut-off valve 1, the nitrogen shut-off valve 6 and the feed gas main shut-off valve 11 are in an open state, and the anode outlet shut-off valve 22 is in an open state; after the reaction , the gas is discharged from the anode outlet; the air enters the fuel cell stack 23 to be tested from the cathode inlet and is discharged from the cathode outlet; during the air tightness test, at first the fuel cell stack 23 to be tested is in the state of open circuit voltage, and the hydrogen shut-off valve 1 is closed , nitrogen shut-off valve 6 and raw material gas main shut-off valve 11, simultaneously, open the first shut-off valve 12 and the second shut-off valve 20, at this moment, the air tightness detector 16 is in the pressure-holding mode, for the fuel cell stack 23 to be tested
  • the air tightness detector 16 is in the detection mode to detect the electrical Leakage of the stack 23; after the detection is over, if the air tightness detection is qualified, close the second shut-off valve 20, open the hydrogen shut-off valve 1, the nitrogen shut-off valve 6, the feed gas main shut-off valve 11 and the anode outlet shut-off valve 22, so that The fuel cell stack 23 to be tested returns to the working state.
  • the anode inlet of the fuel cell can be communicated with the gas source of the gas-tight detection gas, so as to ensure that the anode is in a non-oxidizing atmosphere at high temperature, avoid anode oxidation, local thermal stress, and avoid anode Structural changes avoid affecting the output performance of the stack 23, avoiding cell rupture, and avoiding internal leakage of the stack 23, so as to detect the airtightness of the fuel cell stack 23 under high temperature.
  • the structure of the fuel cell is conducive to the online detection of the fuel cell stack 23 to be tested, that is, the operation of the fuel cell is stopped during the operation of the fuel cell, the air tightness test is performed, and then the operation of the fuel cell is continued without experiencing a temperature rise. , Cooling process.
  • both the cathode inlet stop valve 24 and the cathode outlet stop valve 25 are in an open state; when the overall leakage of the fuel cell stack 23 to be tested is detected, the blower After sweeping, the cathode inlet shut-off valve 24 and the cathode outlet shut-off valve 25 are in an open state.
  • the cathode inlet shut-off valve 24 and the cathode outlet shut-off valve 25 are in an open state to obtain the overall leakage of the fuel cell stack 23 to be tested.
  • the leakage amount is the difference between the overall leakage amount of the fuel cell stack 23 to be tested and the external leakage amount of the fuel cell stack 23 to be tested.
  • the external leakage of the fuel cell stack 23 to be tested can be successfully obtained, and the overall leakage of the fuel cell stack 23 to be tested and the external leakage of the fuel cell stack 23 to be tested can be used to obtain The internal leakage of the fuel cell stack 23 to be tested.
  • the expansion tank 19 when detecting the leakage of the fuel cell stack 23 to be tested, supplies air tightness detection gas to the anode of the fuel cell stack 23 to be tested through the second shut-off valve 20;
  • the volume is larger than the anode chamber volume.
  • the expansion tank 19 can supplement the anode in the fuel cell stack 23 to be tested with gas-tight detection gas, ensure the positive pressure in the anode chamber, and protect the anode of the stack 23 .
  • the air tightness detector 16 is switched to the pressure maintaining mode, and the first stop valve 12 and the anode outlet stop valve 22 are opened.
  • the anode of the fuel cell stack 23 to be tested is immediately purged to ensure that the anode is in a non-oxidizing atmosphere at high temperature, avoiding anode oxidation, local thermal stress, and
  • the change of the anode structure avoids affecting the output performance of the stack 23, avoiding the rupture of the cells, and avoiding the internal leakage of the stack 23, so as to detect the air tightness of the fuel cell stack 23 under high temperature.
  • the readings of the pressure sensor 18 between the expansion tank 19 and the air tightness detector 16 and the anode inlet pressure sensor 21 are all less than the preset pressure value, and the anode inlet pressure sensor 21 and the cathode
  • the difference of the reading of inlet pressure sensor 26 is less than preset differential pressure, and the outlet pressure of the air tightness detector 16 that is in pressure-holding state is preset pressure value;
  • the preset pressure value and the preset pressure difference are set according to the pressure bearing characteristics of different fuel cell stacks 23 to be tested; neither the preset pressure value nor the preset pressure difference is higher than 10 kPa.
  • both the preset pressure value and the preset pressure difference are between 3-5kPa.
  • control system is connected with the hydrogen shut-off valve 1, the nitrogen shut-off valve 6, the feed gas main shut-off valve 11, the anode outlet shut-off valve 22, the first shut-off valve 12, the second shut-off valve 20, the cathode inlet shut-off valve 24, Cathode outlet stop valve 25, pressure reducing valve 3, pressure reducing valve 8, pressure reducing valve 14, pressure reducing valve 17, pressure sensor 2, pressure sensor 4, pressure sensor 7, pressure sensor 9, pressure sensor 13, pressure sensor 15,
  • the hydrogen mass flowmeter 5, the nitrogen mass flowmeter 10 and the air tightness detector 16 are connected by communication, so as to realize the automatic control of the fuel cell.
  • control system when the pressure is higher than the preset pressure value or when the pressure difference is higher than the preset pressure difference, the control system will give an alarm to ensure the safety of the fuel cell stack 23 to be tested.
  • this embodiment provides a fuel cell, which includes: a raw gas supply system, which is used to supply raw gas to the fuel cell, which includes parallel hydrogen supply pipelines and nitrogen supply pipelines, hydrogen supply
  • the pipeline and the nitrogen supply pipeline are connected in series with the main cut-off valve 11 of the feed gas;
  • the hydrogen supply pipeline is provided with a hydrogen shut-off valve 1 near the hydrogen source;
  • the nitrogen supply pipeline is provided with a nitrogen shut-off valve 6 near the nitrogen source;
  • the air tightness test system includes The first cut-off valve 12, the air tightness detector 16, and the second cut-off valve 20 connected in sequence along the gas flow direction, the first cut-off valve 12 is adjacent to the gas source of the air-tightness detection gas and is located in the gas source of the air-tightness detection gas. and, the fuel cell stack 23 to be tested, its anode outlet is provided with an anode outlet shut-off valve 22; connected.
  • the fuel cell of this embodiment includes an airtightness testing system, which enables the anode inlet of the fuel cell to communicate with the gas source of the airtightness detection gas, thereby ensuring that the anode is in a non-oxidizing atmosphere at high temperature, and avoiding oxidation of the anode, Local thermal stress, avoiding changes in the structure of the anode, avoiding affecting the output performance of the stack 23, avoiding cell rupture, and avoiding internal leakage of the stack 23, so as to detect the air tightness of the fuel cell stack 23 under high temperature;
  • the air tightness detection gas is a non-oxidizing gas.
  • the existing fuel cell cannot realize online detection, that is, stop the operation of the fuel cell during the operation of the fuel cell, perform an air tightness test, and then continue the operation of the fuel cell without going through the heating and cooling process.
  • the feed gas supply system of the fuel cell in this embodiment is connected in parallel with the air tightness testing system and communicates with the anode inlet of the fuel cell stack 23 to be tested.
  • the fuel cell stack 23 to be tested is in working condition.
  • the raw gas supply system supplies hydrogen and nitrogen to the anode inlet of the fuel cell stack 23 to be tested.
  • the hydrogen shutoff valve 1, the nitrogen shutoff valve 6 and The raw material gas main shut-off valve 11 is in an open state, and the anode outlet shut-off valve 22 is in an open state; after the reaction, the gas is discharged from the anode outlet; the air enters the fuel cell stack 23 to be tested from the cathode inlet and is discharged from the cathode outlet.
  • the air tightness test first make the fuel cell stack 23 to be tested in the state of open circuit voltage, close the hydrogen shut-off valve 1, the nitrogen shut-off valve 6 and the raw material gas main shut-off valve 11, and at the same time, open the first shut-off valve 12 and the second shut-off valve.
  • the shut-off valve 20 supplies air tightness detection gas to the anode inlet of the fuel cell stack 23 to be tested, wherein the air tightness detection gas is a non-oxidizing gas.
  • the air tightness detector 16 is in a pressure-holding mode for purging the anode of the fuel cell stack 23 to be tested.
  • the air-tightness detector 16 is switched to the detection mode to detect the leakage of the fuel cell stack 23 to be tested. .
  • the structure of the fuel cell is conducive to realizing the on-line detection of the fuel cell stack 23 to be tested, that is, the operation of the fuel cell is stopped during the operation of the fuel cell, the air tightness test is performed, and then the operation of the fuel cell is continued without any experience. Heating and cooling process.
  • the anode inlet of the fuel cell can be connected with the gas source of the air tightness detection gas, so as to ensure that the anode is in a non-oxidizing atmosphere at high temperature, avoid anode oxidation, local thermal stress, avoid anode structure changes, and avoid Affect the output performance of the electric stack 23, avoid causing cell rupture, and avoid internal leakage of the electric stack 23, so as to detect the airtightness of the fuel cell electric stack 23 under high temperature.
  • the structure of the fuel cell is conducive to the online detection of the fuel cell stack 23 to be tested, that is, the operation of the fuel cell is stopped during the operation of the fuel cell, the air tightness test is performed, and then the operation of the fuel cell is continued without experiencing a temperature rise. , Cooling process.
  • the feed gas supply system includes parallel hydrogen supply pipelines and nitrogen supply pipelines.
  • the hydrogen supply pipeline is composed of a hydrogen shut-off valve 1, a pressure sensor 2, a pressure reducing valve 3, a pressure sensor 4 and a hydrogen mass flowmeter 5 connected in sequence, wherein the hydrogen shut-off valve 1 is connected to a hydrogen source.
  • the nitrogen supply pipeline is composed of a nitrogen shut-off valve 6 , a pressure sensor 7 , a pressure reducing valve 8 , a pressure sensor 9 and a nitrogen mass flowmeter 10 connected in sequence, wherein the nitrogen shut-off valve 6 is connected to a nitrogen source.
  • the parallel hydrogen supply pipeline and nitrogen supply pipeline are connected in series with the raw material gas main cut-off valve 11 to form a raw material gas supply system.
  • the airtightness testing system comprises a first stop valve 12, a pressure sensor 13, a pressure reducing valve 14, a pressure sensor 15, an airtightness detector 16, a pressure reducing valve 17,
  • the pressure sensor 18 and the second stop valve 20 constitute.
  • the feed gas supply system is connected in parallel with the air tightness testing system and connected in series with the anode inlet pressure sensor 21 , and the other end of the anode inlet pressure sensor 21 is connected to the anode of the fuel cell stack 23 to be tested.
  • the anode outlet is provided with an anode outlet shut-off valve 22.
  • the cathode inlet is provided with a cathode inlet pressure sensor 26 .
  • Control system and hydrogen shut-off valve 1 nitrogen shut-off valve 6, feed gas main shut-off valve 11, anode outlet shut-off valve 22, first shut-off valve 12, second shut-off valve 20, pressure reducing valve 3, pressure reducing valve 8, pressure reducing valve Valve 14, pressure reducing valve 17, pressure sensor 2, pressure sensor 4, pressure sensor 7, pressure sensor 9, pressure sensor 13, pressure sensor 15, pressure sensor 18, hydrogen mass flowmeter 5, nitrogen mass flowmeter 10 and airtight
  • the property detector 16 is connected by communication, thereby realizing the automatic control of the fuel cell.
  • the fuel cell also includes an exhaust exhaust system, which includes a treatment device and an exhaust pipeline behind the anode outlet and the cathode outlet.
  • Utilizing this embodiment is conducive to real-time monitoring of various pressures and pressure differences, avoiding excessive pressure or pressure differences from affecting the battery sheet and sealing material, and helping to avoid battery sheet rupture, thereby helping to avoid internal leakage or leakage of the battery stack 23. Leakage. At the same time, when necessary, the supply of hydrogen, nitrogen or air tightness detection gas can be reduced, and its supply can be precisely adjusted and controlled.
  • the cathode inlet and the cathode outlet of the fuel cell stack 23 to be tested are respectively provided with a cathode inlet shut-off valve 24 and a cathode outlet shut-off valve 25, wherein the cathode inlet
  • the stop valve 24 is arranged close to the air source, and the cathode inlet pressure sensor 26 is located downstream of the cathode inlet stop valve 24 .
  • the cathode inlet shut-off valve 24 and the cathode outlet shut-off valve 25 are opened to obtain the overall leakage of the fuel cell stack 23 to be tested.
  • the cathode inlet cut-off valve 24 and the cathode outlet cut-off valve 25 are closed to obtain the leakage amount of the fuel cell stack 23 to be tested.
  • the internal leakage of the fuel cell stack 23 to be tested is the difference between the overall leakage of the fuel cell stack 23 to be tested and the external leakage of the fuel cell stack 23 to be tested.
  • both the cathode inlet shut-off valve 24 and the cathode outlet shut-off valve 25 are connected in communication with the control system.
  • the cathode inlet shut-off valve 24 and the cathode outlet shut-off valve 25 respectively at the cathode inlet and the cathode outlet of the fuel cell stack 23 to be tested the external leakage of the fuel cell stack 23 to be tested can be successfully obtained.
  • the internal leakage of the fuel cell stack 23 to be tested can be obtained by using the overall leakage of the fuel cell stack 23 to be tested and the external leakage of the fuel cell stack 23 to be tested.
  • an expansion tank 19 is provided on the side of the second stop valve 20 away from the anode inlet pressure sensor 21 .
  • the expansion tank 19 When detecting the leakage of the fuel cell stack 23 to be tested, the expansion tank 19 supplies air-tight detection gas to the anode of the fuel cell stack 23 to be tested by the second stop valve 20; In the atmosphere, the volume of the expansion tank 19 is greater than the volume of the anode chamber.
  • the volume of the expansion tank 19 is larger than the total volume of the anode channels in the fuel cell stack 23 to be tested.
  • the capacity expansion tank 19 can give the gas to be tested. Measuring the anode in the fuel cell stack 23 to supplement the air tightness detection gas can also ensure the positive pressure in the anode chamber and protect the anode of the stack 23.
  • the expansion tank 19 can supplement the anode in the fuel cell stack 23 to be tested with gas-tight detection gas, ensure the positive pressure in the anode chamber, and protect the anode of the stack 23 .
  • the airtightness detection method in the present application is also applicable to the airtightness detection of fuel cells at normal temperature or low temperature.

Abstract

本申请提供了一种燃料电池及其气密性检测方法。该燃料电池包括:原料气供给系统,其用于向燃料电池提供原料气,氢气供应管线和氮气供应管线与原料气总截止阀串联;气密性测试系统,其包括沿着气流方向依次连接的第一截止阀、气密性检测仪、第二截止阀;以及,待测燃料电池电堆;其中,原料气供给系统与气密性测试系统并联并与待测燃料电池电堆的阳极进口连通。该燃料电池的阳极进口能够与气密性检测气体的气源连通,从而保证高温下阳极处于非氧化性气氛环境中,避免阳极氧化,避免阳极结构变化,避免影响电堆的输出性能,避免造成电池片破裂,以避免电堆内漏,从而在高温下检测待测燃料电池电堆的气密性。

Description

燃料电池及其气密性检测方法 技术领域
本发明涉及燃料电池技术领域,尤其涉及一种燃料电池及其气密性检测方法。
背景技术
高温燃料电池指在高温条件下能够运行的燃料电池,例如在600-1000℃运行的固体氧化物燃料电池(Solid Oxide Fuel Cell,简称“SOFC”),高温下燃料电池的电堆的气密性不仅与低温下有差别,还对电堆的输出性能有很大的影响。
但是高温下燃料电池的电堆的气密性的检测非常困难。首先,必须保证高温下阳极必须是非氧化性气氛;否则,阳极会被氧化,造成局部的热应力,引发阳极结构变化,影响电堆的输出性能,甚至造成电池片破裂,导致电堆内漏。再者,高温下电堆对于压力和压差非常敏感,因此高温下电堆的气密性检测需要对阳极气体和电堆压力制定控制策略。根据不同电堆的承压性能,一般要求阳极进口和阴极进口的压差、阳极进口和阳极出口的压差以及阴极进口和阴极出口的压差在某个压力值以下,例如10kPa,过高的压力或压差会对电池片及密封材料产生影响,可能会导致电池片破裂,引发电堆的内漏或外漏。
现有技术中的燃料电池及其气密性检测方法,往往没有说明是否能在高温下使用。在其不具有适于高温的阳极气体供给控制策略和压差控制策略的前提下,其应不适用于高温检测环境。另外,尽管现有技术中的燃料电池及其气密性检测方法能够通过一次安装,完成所有气密性检测,中途无需拆卸调整接口,并且有些可以检测各腔体的外漏和腔体间的内窜。但是,其不能实现在线检测,即在燃料电池运行过程中停止燃料电池的运行,进行气密性测试,然后继续燃料电池的运行,无需经历升温、降温过程。
发明内容
针对上述现有技术中的问题,本申请提出了一种燃料电池及其气密性检测方法。该燃料电池的阳极进口能够与气密性检测气体的气源连通,从而保证高温下阳极处于非氧化性气氛环境中,避免阳极氧化、局部热应力,避免阳极结构变化,避免影响电堆的输出性能,避免造成电池片破裂,以避免电堆内漏,从而在高温下检测待测燃料电池电堆的气密性。同时,该燃料电池的结构有利于实现待测燃料电池电堆的在线检测,即在燃料电池运行过程中停止燃料电池的运行,进行气密性测试,然后继续燃料电池的运行,无需经历升温、降温过程。
第一方面,本发明提供了一种燃料电池,该燃料电池包括:原料气供给系统,其用于向燃料电池提供原料气,其包括并联的原料气供应支线,各个原料气供应支线与原料气总截止阀串联;原料气供应支线上设置有支线截止阀;气密性测试系统,其包括沿着气流方向依次连接的第一截止阀、气密性检测仪、第二截止阀,所述第一截止阀邻近气密性检测 气体的气源设置且位于气密性检测气体的气源的下游;以及,待测燃料电池电堆,其阳极出口设置有阳极出口截止阀;其中,所述原料气供给系统与所述气密性测试系统并联并与所述待测燃料电池电堆的阳极进口连通。利用该燃料电池,该燃料电池的阳极进口能够与气密性检测气体的气源连通,从而保证高温下阳极处于非氧化性气氛环境中,避免阳极氧化、局部热应力,避免阳极结构变化,避免影响电堆的输出性能,避免造成电池片破裂,以避免电堆内漏,从而在高温下检测待测燃料电池电堆的气密性。同时,该燃料电池的结构有利于实现待测燃料电池电堆的在线检测,即在燃料电池运行过程中停止燃料电池的运行,进行气密性测试,然后继续燃料电池的运行,无需经历升温、降温过程。
在第一方面的一个实施方式中,原料气供给系统包括并联的氢气供应管线和氮气供应管线,所述氢气供应管线和所述氮气供应管线与原料气总截止阀串联;所述氢气供应管线靠近氢气源处设置有氢气截止阀;所述氮气供应管线靠近氮气源处设置有氮气截止阀。
在第一方面的一个实施方式中,所述待测燃料电池电堆的阳极进口和阴极进口分别设置有阳极进口压力传感器和阴极进口压力传感器。通过该实施方式,在待测燃料电池电堆的阳极进口和阴极进口分别设置有阳极进口压力传感器和阴极进口压力传感器,能够实时监测阳极进口和阴极进口的压差,有利于避免过高的压力或压差会对电池片及密封材料产生影响,有利于避免电池片破裂,从而有利于避免电堆的内漏或外漏。
在第一方面的一个实施方式中,所述气密性检测仪与所述第二截止阀之间设置有减压阀、压力传感器和扩容罐。通过该实施方式,扩容罐能够给待测燃料电池电堆内的阳极补充气密性检测气体,能够保证阳极腔室内的正压,保护电堆阳极。
在第一方面的一个实施方式中,所述待测燃料电池电堆的阴极进口和阴极出口分别设置有阴极进口截止阀和阴极出口截止阀。通过该实施方式,通过在待测燃料电池电堆的阴极进口和阴极出口分别设置阴极进口截止阀和阴极出口截止阀,能够成功地获取待测燃料电池电堆的外漏泄漏量,并能够利用待测燃料电池电堆的整体泄漏量与待测燃料电池电堆的外漏泄漏量获取待测燃料电池电堆的内漏泄漏量。
在第一方面的一个实施方式中,所述氢气截止阀的下游设置有氢气减压阀和氢气质量流量计,所述氢气减压阀的两侧均设置有压力传感器;所述氮气截止阀的下游设置有氮气减压阀和氮气质量流量计,所述氮气减压阀的两侧均设置有压力传感器;所述第一截止阀与所述气密性检测仪之间设置有气密性气体减压阀,所述气密性气体减压阀的两侧均设置有压力传感器。通过该实施方式,能够在需要时,减少氢气、氮气或气密性检测气体的供应量,并对其供应量进行精准调节和控制。
在第一方面的一个实施方式中,所述气密性检测气体由氮气和氢气构成,其中氢气的含量在5-20%之间。通过该实施方式,保证了气密性检测气体为非氧化性气体。
在第一方面的一个实施方式中,该燃料电池还包括控制系统,以实现燃料电池的自动控制。通过该实施方式,有利于实现燃料电池的自动控制,确保待测燃料电池电堆的安全 性。
第二方面,本发明还提供了一种检测第一方面及其任一实施方式所述的燃料电池的气密性检测方法,该气密性检测方法包括以下步骤:气密性检测前,所述待测燃料电池电堆处于工作状态,此时,所述原料气供给系统向所述待测燃料电池电堆的阳极进口供应原料气,支线截止阀以及原料气总截止阀处于打开状态,阳极出口截止阀处于打开状态;反应后,气体从阳极出口排出;空气从阴极进口进入所述待测燃料电池电堆从阴极出口排出;气密性测试时,首先使所述待测燃料电池电堆处于开路电压的状态,关闭支线截止阀以及原料气总截止阀,同时,开启第一截止阀和第二截止阀,此时,气密性检测仪处于保压模式,以对所述待测燃料电池电堆的阳极进行吹扫;吹扫结束后,关闭第一截止阀和阳极出口截止阀,进行气密性检测,此时,气密性检测仪处于检测模式,以检测所述待测燃料电池电堆的泄漏量;检测结束后,如果气密性检测合格,关闭第二截止阀,打开支线截止阀、原料气总截止阀以及阳极出口截止阀,以使所述待测燃料电池电堆回到工作状态。利用该检测方法,在检测时,该燃料电池的阳极进口能够与气密性检测气体的气源连通,从而保证高温下阳极处于非氧化性气氛环境中,避免阳极氧化、局部热应力,避免阳极结构变化,避免影响电堆的输出性能,避免造成电池片破裂,以避免电堆内漏,从而在高温下检测待测燃料电池电堆的气密性。同时,该燃料电池的结构有利于实现待测燃料电池电堆的在线检测,即在燃料电池运行过程中停止燃料电池的运行,进行气密性测试,然后继续燃料电池的运行,无需经历升温、降温过程。
在第二方面的一个实施方式中,所述待测燃料电池电堆处于工作状态时,阴极进口截止阀和阴极出口截止阀均处于打开状态;在检测所述待测燃料电池电堆的整体泄漏量时,吹扫结束后,阴极进口截止阀和阴极出口截止阀处于打开状态。通过该实施方式,能够成功获取待测燃料电池电堆的整体泄漏量。
在第二方面的一个实施方式中,在检测所述待测燃料电池电堆的外漏泄漏量时,吹扫结束后,关闭阴极进口截止阀和阴极出口截止阀;所述待测燃料电池电堆的内漏泄漏量为所述待测燃料电池电堆的整体泄漏量与所述待测燃料电池电堆的外漏泄漏量之差。通过该实施方式,能够成功地获取待测燃料电池电堆的外漏泄漏量,并能够利用待测燃料电池电堆的整体泄漏量与待测燃料电池电堆的外漏泄漏量获取待测燃料电池电堆的内漏泄漏量。
在第二方面的一个实施方式中,在检测所述待测燃料电池电堆的泄漏量时,扩容罐通过第二截止阀向所述待测燃料电池电堆的阳极供应气密性检测气体;所述扩容罐的体积大于阳极腔室体积。通过该实施方式,扩容罐能够给待测燃料电池电堆内的阳极补充气密性检测气体,能够保证阳极腔室内的正压,保护电堆阳极。
在第二方面的一个实施方式中,在检测过程中,发现泄漏量超过阳极腔室体积,立即停止检测,气密性检测仪切换至保压模式,打开第一截止阀和阳极出口截止阀。通过该实施方式,在泄漏量超过阳极腔室体积后,立刻对待测燃料电池电堆的阳极进行吹扫,保证 高温下阳极处于非氧化性气氛环境中,避免阳极氧化、局部热应力,避免阳极结构变化,避免影响电堆的输出性能,避免造成电池片破裂,以避免电堆内漏,从而在高温下检测待测燃料电池电堆的气密性。
在第二方面的一个实施方式中,吹扫状态下,扩容罐与气密性检测仪之间的压力传感器以及阳极进口压力传感器的读数均小于预设压力值,且阳极进口压力传感器与阴极进口压力传感器的读数的差值小于预设压差,且处于保压状态的气密性检测仪的出口压力为预设压力值;吹扫结束后,当扩容罐与气密性检测仪之间的压力传感器以及阳极进口压力传感器的读数稳定在预设压力值时,气密性检测仪从保压模式切换至检测模式。通过该实施方式,通过实时监测各个压力和压差,有利于避免过高的压力或压差会对电池片及密封材料产生影响,有利于避免电池片破裂,从而有利于避免电堆的内漏或外漏。
在第二方面的一个实施方式中,预设压力值和预设压差根据不同待测燃料电池电堆的承压特性进行设定;预设压力值和预设压差均不高于10kPa。通过该实施方式,有利于避免过高的压力或压差会对电池片及密封材料产生影响,有利于避免电池片破裂,从而有利于避免电堆的内漏或外漏。
在第二方面的一个实施方式中,预设压力值和预设压差均在3-5kPa之间。通过该实施方式,有利于进一步避免过高的压力或压差会对电池片及密封材料产生影响,有利于避免电池片破裂,从而有利于避免电堆的内漏或外漏。
在第二方面的一个实施方式中,控制系统与氢气截止阀、氮气截止阀、原料气总截止阀、阳极出口截止阀、第一截止阀、第二截止阀、阴极进口截止阀、阴极出口截止阀、减压阀、压力传感器、氢气质量流量计、氮气质量流量计以及气密性检测仪通信连接,从而实现燃料电池的自动控制。通过该实施方式,有利于实现燃料电池的自动控制,确保待测燃料电池电堆的安全性。
在第二方面的一个实施方式中,当压力高于预设压力值或当压差高于预设压差时,所述控制系统报警,以确保待测燃料电池电堆的安全性。通过该实施方式,有利于进一步确保待测燃料电池电堆的安全性。
本申请提供的燃料电池及其气密性检测方法,相较于现有技术,具有如下的有益效果。
1、利用该燃料电池,该燃料电池的阳极进口能够与气密性检测气体的气源连通,从而保证高温下阳极处于非氧化性气氛环境中,避免阳极氧化、局部热应力,避免阳极结构变化,避免影响电堆的输出性能,避免造成电池片破裂,以避免电堆内漏,从而在高温下检测待测燃料电池电堆的气密性。同时,该燃料电池的结构有利于实现待测燃料电池电堆的在线检测,即在燃料电池运行过程中停止燃料电池的运行,进行气密性测试,然后继续燃料电池的运行,无需经历升温、降温过程。
2、实时监控各个压力、压差,避免过高的压力或压差会对电池片及密封材料产生影响,有利于避免电池片破裂,从而有利于避免电堆的内漏或外漏。同时,在需要的情况下, 能够减少氢气、氮气或气密性检测气体的供应量,并对其供应量进行精准调节和控制。
3、通过在待测燃料电池电堆的阴极进口和阴极出口分别设置阴极进口截止阀和阴极出口截止阀,能够成功地获取待测燃料电池电堆的外漏泄漏量,并能够利用待测燃料电池电堆的整体泄漏量与待测燃料电池电堆的外漏泄漏量获取待测燃料电池电堆的内漏泄漏量。
4、扩容罐能够给待测燃料电池电堆内的阳极补充气密性检测气体,能够保证阳极腔室内的正压,保护电堆阳极。
上述技术特征可以各种适合的方式组合或由等效的技术特征来替代,只要能够达到本发明的目的。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述,其中:
图1显示了根据本发明一实施例的燃料电池的结构示意图。
附图标记清单:
1-氢气截止阀;2-压力传感器;3-减压阀;4-压力传感器;5-氢气质量流量计;6-氮气截止阀;7-压力传感器;8-减压阀;9-压力传感器;10-氮气质量流量计;11-原料气总截止阀;12-第一截止阀;13-压力传感器;14-减压阀;15-压力传感器;16-气密性检测仪;17-减压阀;18-压力传感器;19-扩容罐;20-第二截止阀;21-阳极进口压力传感器;22-阳极出口截止阀;23-电堆;24-阴极进口截止阀;25-阴极出口截止阀;26-阴极进口压力传感器。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例。
具体实施方式
下面将结合附图对本发明作进一步说明。
如图1所示,本实施方式提供了一种燃料电池,该燃料电池包括:原料气供给系统,其用于向燃料电池提供原料气,其包括并联的氢气供应管线和氮气供应管线,氢气供应管线和氮气供应管线与原料气总截止阀11串联;氢气供应管线靠近氢气源处设置有氢气截止阀1;氮气供应管线靠近氮气源处设置有氮气截止阀6;气密性测试系统,其包括沿着气流方向依次连接的第一截止阀12、气密性检测仪16、第二截止阀20,第一截止阀12邻近气密性检测气体的气源设置且位于气密性检测气体的气源的下游;以及,待测燃料电池电堆23,其阳极出口设置有阳极出口截止阀22;其中,原料气供给系统与气密性测试系统并联并与待测燃料电池电堆23的阳极进口连通。
图1中热区指代燃料电池的高温区域,电堆23位于热区中。
现有技术中高温下燃料电池的电堆23的气密性的检测非常困难,现有的气密性检测方法无法保证高温下阳极环境为非氧化性气氛。其无法避免阳极被氧化,造成局部的热应 力,无法避免阳极结构变化,影响电堆23的输出性能,甚至造成电池片破裂,导致电堆23内漏。
本实施方式的燃料电池包括气密性测试系统,其能够使燃料电池的阳极进口能够与气密性检测气体的气源连通,从而保证高温下阳极处于非氧化性气氛环境中,避免阳极氧化、局部热应力,避免阳极结构变化,避免影响电堆23的输出性能,避免造成电池片破裂,以避免电堆23内漏,从而在高温下检测待测燃料电池电堆23的气密性;其中,气密性检测气体为非氧化性气体。
同时,现有的燃料电池不能实现在线检测,即在燃料电池运行过程中停止燃料电池的运行,进行气密性测试,然后继续燃料电池的运行,无需经历升温、降温过程。
本实施方式的燃料电池的原料气供给系统与气密性测试系统并联并与待测燃料电池电堆23的阳极进口连通。
气密性检测前,待测燃料电池电堆23处于工作状态,此时,原料气供给系统向待测燃料电池电堆23的阳极进口供应氢气和氮气,氢气截止阀1、氮气截止阀6以及原料气总截止阀11处于打开状态,阳极出口截止阀22处于打开状态;反应后,气体从阳极出口排出;空气从阴极进口进入待测燃料电池电堆23从阴极出口排出。
气密性测试时,首先使待测燃料电池电堆23处于开路电压的状态,关闭氢气截止阀1、氮气截止阀6以及原料气总截止阀11,同时,开启第一截止阀12和第二截止阀20,向待测燃料电池电堆23的阳极进口供应气密性检测气体,其中,气密性检测气体为非氧化性气体。此时,气密性检测仪16处于保压模式,以对待测燃料电池电堆23的阳极进行吹扫。
吹扫结束后,关闭第一截止阀12和阳极出口截止阀22,进行气密性检测,此时,气密性检测仪16转换至检测模式,以检测待测燃料电池电堆23的泄漏量。
检测结束后,如果气密性检测合格,关闭第二截止阀20,打开氢气截止阀1、氮气截止阀6、原料气总截止阀11以及阳极出口截止阀22,以使待测燃料电池电堆23回到工作状态。
明显地,该燃料电池的结构有利于实现待测燃料电池电堆23的在线检测,即在燃料电池运行过程中停止燃料电池的运行,进行气密性测试,然后继续燃料电池的运行,无需经历升温、降温过程。
利用该燃料电池,该燃料电池的阳极进口能够与气密性检测气体的气源连通,从而保证高温下阳极处于非氧化性气氛环境中,避免阳极氧化、局部热应力,避免阳极结构变化,避免影响电堆23的输出性能,避免造成电池片破裂,以避免电堆23内漏,从而在高温下检测待测燃料电池电堆23的气密性。同时,该燃料电池的结构有利于实现待测燃料电池电堆23的在线检测,即在燃料电池运行过程中停止燃料电池的运行,进行气密性测试,然后继续燃料电池的运行,无需经历升温、降温过程。
在一个实施方式中,如图1所示,待测燃料电池电堆23的阳极进口和阴极进口分别 设置有阳极进口压力传感器21和阴极进口压力传感器26。
高温下电堆23对于压力和压差非常敏感,但是现有技术没有在高温下对阳极气体和电堆23压力制定控制策略。根据不同电堆23的承压性能,一般要求阳极进口和阴极进口的压差、阳极进口和阳极出口的压差以及阴极进口和阴极出口的压差在某个压力值以下,例如10kPa。现有技术中,由于不具有适于高温的压差控制策略,过高的压力或压差会对电池片及密封材料产生影响,可能会导致电池片破裂,引发电堆23的内漏或外漏。
通过该实施方式,在待测燃料电池电堆23的阳极进口和阴极进口分别设置有阳极进口压力传感器21和阴极进口压力传感器26,能够实时监测阳极进口和阴极进口的压差,有利于避免过高的压力或压差会对电池片及密封材料产生影响,有利于避免电池片破裂,从而有利于避免电堆23的内漏或外漏。
在一个实施方式中,如图1所示,气密性检测仪16与第二截止阀20之间设置有减压阀3、压力传感器18和扩容罐19。
在检测待测燃料电池电堆23的泄漏量时,扩容罐19通过第二截止阀20向待测燃料电池电堆23的阳极供应气密性检测气体;以保证证高温下阳极处于非氧化性气氛中,扩容罐19的体积大于阳极腔室体积。
优选地,扩容罐19的体积大于待测燃料电池电堆23内的阳极流道的总体积。
在气密性检测时,即使待测燃料电池电堆23内的阳极的泄漏量很大,将其内原有的气密性检测气体全部泄完,由于具有扩容罐19,扩容罐19能够给待测燃料电池电堆23内的阳极补充气密性检测气体,也能够保证阳极腔室内的正压,保护电堆23阳极。
通过该实施方式,扩容罐19能够给待测燃料电池电堆23内的阳极补充气密性检测气体,能够保证阳极腔室内的正压,保护电堆23阳极。
在一个实施方式中,如图1所示,待测燃料电池电堆23的阴极进口和阴极出口分别设置有阴极进口截止阀24和阴极出口截止阀25。
在检测待测燃料电池电堆23的整体泄漏量时,阴极进口截止阀24和阴极出口截止阀25处于打开状态,以获取待测燃料电池电堆23的整体泄漏量。
在检测待测燃料电池电堆23的外漏泄漏量时,阴极进口截止阀24和阴极出口截止阀25处于关闭状态,以获取待测燃料电池电堆23的外漏泄漏量。
待测燃料电池电堆23的内漏泄漏量为待测燃料电池电堆23的整体泄漏量与待测燃料电池电堆23的外漏泄漏量之差。
通过该实施方式,通过在待测燃料电池电堆23的阴极进口和阴极出口分别设置阴极进口截止阀24和阴极出口截止阀25,能够成功地获取待测燃料电池电堆23的外漏泄漏量,并能够利用待测燃料电池电堆23的整体泄漏量与待测燃料电池电堆23的外漏泄漏量获取待测燃料电池电堆23的内漏泄漏量。
在一个实施方式中,如图1所示,氢气截止阀1的下游设置有氢气减压阀3和氢气质 量流量计5,氢气减压阀3的两侧分别设置有压力传感器2和压力传感器4;氮气截止阀6的下游设置有氮气减压阀8和氮气质量流量计10,氮气减压阀3的两侧分别设置有压力传感器7和压力传感器9;第一截止阀12与气密性检测仪16之间设置有气密性气体减压阀14,气密性气体减压阀14的两侧分别设置有压力传感器13和压力传感器15。
通过该实施方式,能够在需要时,减少氢气、氮气或气密性检测气体的供应量,并对其供应量进行精准调节和控制。
在一个实施方式中,气密性检测气体由氮气和氢气构成,其中氢气的含量在5-20%之间。
通过该实施方式,保证了气密性检测气体为非氧化性气体。
在一个实施方式中,该燃料电池还包括控制系统,以实现燃料电池的自动控制。
通过该实施方式,有利于实现燃料电池的自动控制,确保待测燃料电池电堆23的安全性。
本实施方式还提供了一种检测上述燃料电池的气密性检测方法,该气密性检测方法包括以下步骤:气密性检测前,待测燃料电池电堆23处于工作状态,此时,原料气供给系统向待测燃料电池电堆23的阳极进口供应氢气和氮气,氢气截止阀1、氮气截止阀6以及原料气总截止阀11处于打开状态,阳极出口截止阀22处于打开状态;反应后,气体从阳极出口排出;空气从阴极进口进入待测燃料电池电堆23从阴极出口排出;气密性测试时,首先使待测燃料电池电堆23处于开路电压的状态,关闭氢气截止阀1、氮气截止阀6以及原料气总截止阀11,同时,开启第一截止阀12和第二截止阀20,此时,气密性检测仪16处于保压模式,以对待测燃料电池电堆23的阳极进行吹扫;吹扫结束后,关闭第一截止阀12和阳极出口截止阀22,进行气密性检测,此时,气密性检测仪16处于检测模式,以检测待测燃料电池电堆23的泄漏量;检测结束后,如果气密性检测合格,关闭第二截止阀20,打开氢气截止阀1、氮气截止阀6、原料气总截止阀11以及阳极出口截止阀22,以使待测燃料电池电堆23回到工作状态。
利用该检测方法,在检测时,该燃料电池的阳极进口能够与气密性检测气体的气源连通,从而保证高温下阳极处于非氧化性气氛环境中,避免阳极氧化、局部热应力,避免阳极结构变化,避免影响电堆23的输出性能,避免造成电池片破裂,以避免电堆23内漏,从而在高温下检测待测燃料电池电堆23的气密性。同时,该燃料电池的结构有利于实现待测燃料电池电堆23的在线检测,即在燃料电池运行过程中停止燃料电池的运行,进行气密性测试,然后继续燃料电池的运行,无需经历升温、降温过程。
在一个实施方式中,待测燃料电池电堆23处于工作状态时,阴极进口截止阀24和阴极出口截止阀25均处于打开状态;在检测待测燃料电池电堆23的整体泄漏量时,吹扫结束后,阴极进口截止阀24和阴极出口截止阀25处于打开状态。
在检测待测燃料电池电堆23的整体泄漏量时,阴极进口截止阀24和阴极出口截止阀 25处于打开状态,以获取待测燃料电池电堆23的整体泄漏量。
通过该实施方式,能够成功获取待测燃料电池电堆23的整体泄漏量。
在一个实施方式中,在检测待测燃料电池电堆23的外漏泄漏量时,吹扫结束后,关闭阴极进口截止阀24和阴极出口截止阀25;待测燃料电池电堆23的内漏泄漏量为待测燃料电池电堆23的整体泄漏量与待测燃料电池电堆23的外漏泄漏量之差。
通过该实施方式,能够成功地获取待测燃料电池电堆23的外漏泄漏量,并能够利用待测燃料电池电堆23的整体泄漏量与待测燃料电池电堆23的外漏泄漏量获取待测燃料电池电堆23的内漏泄漏量。
在一个实施方式中,在检测待测燃料电池电堆23的泄漏量时,扩容罐19通过第二截止阀20向待测燃料电池电堆23的阳极供应气密性检测气体;扩容罐19的体积大于阳极腔室体积。
通过该实施方式,扩容罐19能够给待测燃料电池电堆23内的阳极补充气密性检测气体,能够保证阳极腔室内的正压,保护电堆23阳极。
在一个实施方式中,在检测过程中,发现泄漏量超过阳极腔室体积,立即停止检测,气密性检测仪16切换至保压模式,打开第一截止阀12和阳极出口截止阀22。
通过该实施方式,在泄漏量超过阳极腔室体积后,立刻对待测燃料电池电堆23的阳极进行吹扫,保证高温下阳极处于非氧化性气氛环境中,避免阳极氧化、局部热应力,避免阳极结构变化,避免影响电堆23的输出性能,避免造成电池片破裂,以避免电堆23内漏,从而在高温下检测待测燃料电池电堆23的气密性。
在一个实施方式中,吹扫状态下,扩容罐19与气密性检测仪16之间的压力传感器18以及阳极进口压力传感器21的读数均小于预设压力值,且阳极进口压力传感器21与阴极进口压力传感器26的读数的差值小于预设压差,且处于保压状态的气密性检测仪16的出口压力为预设压力值;吹扫结束后,当扩容罐19与气密性检测仪16之间的压力传感器18以及阳极进口压力传感器21的读数稳定在预设压力值时,气密性检测仪16从保压模式切换至检测模式。
通过该实施方式,通过实时监测各个压力和压差,有利于避免过高的压力或压差会对电池片及密封材料产生影响,有利于避免电池片破裂,从而有利于避免电堆23的内漏或外漏。
在一个实施方式中,预设压力值和预设压差根据不同待测燃料电池电堆23的承压特性进行设定;预设压力值和预设压差均不高于10kPa。
通过该实施方式,有利于避免过高的压力或压差会对电池片及密封材料产生影响,有利于避免电池片破裂,从而有利于避免电堆23的内漏或外漏。
在一个实施方式中,预设压力值和预设压差均在3-5kPa之间。
通过该实施方式,有利于进一步避免过高的压力或压差会对电池片及密封材料产生影 响,有利于避免电池片破裂,从而有利于避免电堆23的内漏或外漏。
在一个实施方式中,控制系统与氢气截止阀1、氮气截止阀6、原料气总截止阀11、阳极出口截止阀22、第一截止阀12、第二截止阀20、阴极进口截止阀24、阴极出口截止阀25、减压阀3、减压阀8、减压阀14、减压阀17、压力传感器2、压力传感器4、压力传感器7、压力传感器9、压力传感器13、压力传感器15、氢气质量流量计5、氮气质量流量计10以及气密性检测仪16通信连接,从而实现燃料电池的自动控制。
通过该实施方式,有利于实现燃料电池的自动控制,确保待测燃料电池电堆23的安全性。
在一个实施方式中,当压力高于预设压力值或当压差高于预设压差时,控制系统报警,以确保待测燃料电池电堆23的安全性。
通过该实施方式,有利于进一步确保待测燃料电池电堆23的安全性。
实施例一
如图1所示,本实施例提供了一种燃料电池,该燃料电池包括:原料气供给系统,其用于向燃料电池提供原料气,其包括并联的氢气供应管线和氮气供应管线,氢气供应管线和氮气供应管线与原料气总截止阀11串联;氢气供应管线靠近氢气源处设置有氢气截止阀1;氮气供应管线靠近氮气源处设置有氮气截止阀6;气密性测试系统,其包括沿着气流方向依次连接的第一截止阀12、气密性检测仪16、第二截止阀20,第一截止阀12邻近气密性检测气体的气源设置且位于气密性检测气体的气源的下游;以及,待测燃料电池电堆23,其阳极出口设置有阳极出口截止阀22;其中,原料气供给系统与气密性测试系统并联并与待测燃料电池电堆23的阳极进口连通。
现有技术中高温下燃料电池的电堆23的气密性的检测非常困难,现有的气密性检测方法无法保证高温下阳极环境为非氧化性气氛。其无法避免阳极被氧化,造成局部的热应力,无法避免阳极结构变化,影响电堆23的输出性能,甚至造成电池片破裂,导致电堆23内漏。
本实施例的燃料电池包括气密性测试系统,其能够使燃料电池的阳极进口能够与气密性检测气体的气源连通,从而保证高温下阳极处于非氧化性气氛环境中,避免阳极氧化、局部热应力,避免阳极结构变化,避免影响电堆23的输出性能,避免造成电池片破裂,以避免电堆23内漏,从而在高温下检测待测燃料电池电堆23的气密性;其中,气密性检测气体为非氧化性气体。
同时,现有的燃料电池不能实现在线检测,即在燃料电池运行过程中停止燃料电池的运行,进行气密性测试,然后继续燃料电池的运行,无需经历升温、降温过程。
本实施例的燃料电池的原料气供给系统与气密性测试系统并联并与待测燃料电池电堆23的阳极进口连通。
气密性检测前,待测燃料电池电堆23处于工作状态,此时,原料气供给系统向待测 燃料电池电堆23的阳极进口供应氢气和氮气,氢气截止阀1、氮气截止阀6以及原料气总截止阀11处于打开状态,阳极出口截止阀22处于打开状态;反应后,气体从阳极出口排出;空气从阴极进口进入待测燃料电池电堆23从阴极出口排出。
气密性测试时,首先使待测燃料电池电堆23处于开路电压的状态,关闭氢气截止阀1、氮气截止阀6以及原料气总截止阀11,同时,开启第一截止阀12和第二截止阀20,向待测燃料电池电堆23的阳极进口供应气密性检测气体,其中,气密性检测气体为非氧化性气体。此时,气密性检测仪16处于保压模式,以对待测燃料电池电堆23的阳极进行吹扫。
吹扫结束后,关闭第一截止阀12和阳极出口截止阀22,进行气密性检测,此时,气密性检测仪16转换至检测模式,以检测待测燃料电池电堆23的泄漏量。
检测结束后,如果气密性检测合格,关闭第二截止阀20,打开氢气截止阀1、氮气截止阀6、原料气总截止阀11以及阳极出口截止阀22,以使待测燃料电池电堆23回到工作状态。
明显地,该燃料电池的结构有利于实现待测燃料电池电堆23的在线检测,即在燃料电池运行过程中停止燃料电池的运行,进行气密性测试,然后继续燃料电池的运行,无需经历升温、降温过程。
利用该燃料电池,该燃料电池的阳极进口能够与气密性检测气体的气源连通,从而保证高温下阳极处于非氧化性气氛环境中,避免阳极氧化、局部热应力,避免阳极结构变化,避免影响电堆23的输出性能,避免造成电池片破裂,以避免电堆23内漏,从而在高温下检测待测燃料电池电堆23的气密性。同时,该燃料电池的结构有利于实现待测燃料电池电堆23的在线检测,即在燃料电池运行过程中停止燃料电池的运行,进行气密性测试,然后继续燃料电池的运行,无需经历升温、降温过程。
实施例二
在实施例一的基础上,原料气供给系统包括并联的氢气供应管线和氮气供应管线。如图1所示,氢气供应管线由依次连接地氢气截止阀1、压力传感器2、减压阀3、压力传感器4和氢气质量流量计5构成,其中氢气截止阀1与氢气源连接。如图1所示,氮气供应管线由依次连接地氮气截止阀6、压力传感器7、减压阀8、压力传感器9和氮气质量流量计10构成,其中氮气截止阀6与氮气源连接。
如图1所示,并联的氢气供应管线与氮气供应管线与原料气总截止阀11串联,形成原料气供给系统。
如图1所示,气密性测试系统包括沿着气流方向依次连接的第一截止阀12、压力传感器13、减压阀14、压力传感器15、气密性检测仪16、减压阀17、压力传感器18和第二截止阀20构成。
原料气供给系统与气密性测试系统并联并与阳极进口压力传感器21串联,阳极进口压力传感器21的另一端连接待测燃料电池电堆23的阳极。阳极出口设置有阳极出口截止 阀22。
阴极进口设置有阴极进口压力传感器26。
控制系统与氢气截止阀1、氮气截止阀6、原料气总截止阀11、阳极出口截止阀22、第一截止阀12、第二截止阀20、减压阀3、减压阀8、减压阀14、减压阀17、压力传感器2、压力传感器4、压力传感器7、压力传感器9、压力传感器13、压力传感器15、压力传感器18、氢气质量流量计5、氮气质量流量计10以及气密性检测仪16通信连接,从而实现燃料电池的自动控制。
另外,该燃料电池还包括尾气排放系统,其包括阳极出口和阴极出口后方的处理装置和排放管路。
利用该实施例有利于实时监控各个压力、压差,避免过高的压力或压差会对电池片及密封材料产生影响,有利于避免电池片破裂,从而有利于避免电堆23的内漏或外漏。同时,在需要的情况下,能够减少氢气、氮气或气密性检测气体的供应量,并对其供应量进行精准调节和控制。
实施例三
在实施例一或实施例二的基础上,如图1所示,待测燃料电池电堆23的阴极进口和阴极出口分别设置有阴极进口截止阀24和阴极出口截止阀25,其中,阴极进口截止阀24靠近空气源设置,阴极进口压力传感器26位于阴极进口截止阀24的下游。
在检测待测燃料电池电堆23的整体泄漏量时,阴极进口截止阀24和阴极出口截止阀25处于打开状态,以获取待测燃料电池电堆23的整体泄漏量。
在检测待测燃料电池电堆23的外漏泄漏量时,阴极进口截止阀24和阴极出口截止阀25处于关闭状态,以获取待测燃料电池电堆23的外漏泄漏量。
待测燃料电池电堆23的内漏泄漏量为待测燃料电池电堆23的整体泄漏量与待测燃料电池电堆23的外漏泄漏量之差。
优选地,阴极进口截止阀24和阴极出口截止阀25均与控制系统通信连接。
通过该实施例,通过在待测燃料电池电堆23的阴极进口和阴极出口分别设置阴极进口截止阀24和阴极出口截止阀25,能够成功地获取待测燃料电池电堆23的外漏泄漏量,并能够利用待测燃料电池电堆23的整体泄漏量与待测燃料电池电堆23的外漏泄漏量获取待测燃料电池电堆23的内漏泄漏量。
实施例四
在实施例一、实施例二或实施例三的基础上,如图1所示,第二截止阀20远离阳极进口压力传感器21的一侧设置有扩容罐19。
在检测待测燃料电池电堆23的泄漏量时,扩容罐19通过第二截止阀20向待测燃料电池电堆23的阳极供应气密性检测气体;以保证证高温下阳极处于非氧化性气氛中,扩容罐19的体积大于阳极腔室体积。
优选地,扩容罐19的体积大于待测燃料电池电堆23内的阳极流道的总体积。
在气密性检测时,即使待测燃料电池电堆23内的阳极的泄漏量很大,将其内原有的气密性检测气体全部泄完,由于具有扩容罐19,扩容罐19能够给待测燃料电池电堆23内的阳极补充气密性检测气体,也能够保证阳极腔室内的正压,保护电堆23阳极。
通过该实施例,扩容罐19能够给待测燃料电池电堆23内的阳极补充气密性检测气体,能够保证阳极腔室内的正压,保护电堆23阳极。
本申请中的气密性检测方法同样适用于常温或低温下燃料电池的气密性检测。
在本发明的描述中,需要理解的是,术语“上”、“下”、“底”、“顶”、“前”、“后”、“内”、“外”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实施例仅仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其他所述实施例中。

Claims (18)

  1. 一种燃料电池,其特征在于,包括:
    原料气供给系统,其用于向所述燃料电池提供原料气,其包括并联的原料气供应支线,各个所述原料气供应支线与原料气总截止阀串联;各个所述原料气供应支线上设置有支线截止阀;
    气密性测试系统,其包括沿着气流方向依次连接的第一截止阀、气密性检测仪、第二截止阀,所述第一截止阀邻近气密性检测气体的气源设置且位于气密性检测气体的气源的下游;以及,
    待测燃料电池电堆,其包括阳极进口和阳极出口,所述阳极出口设置有阳极出口截止阀;
    其中,所述原料气供给系统与所述气密性测试系统并联并与所述待测燃料电池电堆的阳极进口连通。
  2. 根据权利要求1所述的燃料电池,其特征在于,所述原料气供给系统包括并联的氢气供应管线和氮气供应管线,所述氢气供应管线和所述氮气供应管线与原料气总截止阀串联;所述氢气供应管线靠近氢气源处设置有氢气截止阀;所述氮气供应管线靠近氮气源处设置有氮气截止阀。
  3. 根据权利要求1所述的燃料电池,其特征在于,所述待测燃料电池电堆的阳极进口和阴极进口分别设置有阳极进口压力传感器和阴极进口压力传感器。
  4. 根据权利要求3所述的燃料电池,其特征在于,所述气密性检测仪与所述第二截止阀之间设置有减压阀、压力传感器和扩容罐。
  5. 根据权利要求1所述的燃料电池,其特征在于,所述待测燃料电池电堆的阴极进口和阴极出口分别设置有阴极进口截止阀和阴极出口截止阀。
  6. 根据权利要求2所述的燃料电池,其特征在于,所述氢气截止阀的下游设置有氢气减压阀和氢气质量流量计,所述氢气减压阀的两侧均设置有压力传感器;
    所述氮气截止阀的下游设置有氮气减压阀和氮气质量流量计,所述氮气减压阀的两侧均设置有压力传感器;
    所述第一截止阀与所述气密性检测仪之间设置有气密性气体减压阀,所述气密性气体减压阀的两侧均设置有压力传感器。
  7. 根据权利要求1所述的燃料电池,其特征在于,所述气密性检测气体由氮气和氢气构成,其中氢气的含量在5-20%之间。
  8. 根据权利要求1所述的燃料电池,其特征在于,还包括控制系统,以实现燃料电池的自动控制。
  9. 一种检测权利要求1-8中任一项所述的燃料电池的气密性检测方法,其特征在于,包括以下步骤:
    气密性检测前,所述待测燃料电池电堆处于工作状态,此时,所述原料气供给系统向所述待测燃料电池电堆的阳极进口供应原料气,所述支线截止阀以及所述原料气总截止阀处于打开状态,所述阳极出口截止阀处于打开状态;反应后,气体从所述阳极出口排出;空气从阴极进口进入所述待测燃料电池电堆从阴极出口排出;
    气密性测试时,首先使所述待测燃料电池电堆处于开路电压的状态,关闭所述支线截止阀以及所述原料气总截止阀,同时,开启所述第一截止阀和所述第二截止阀,此时,气密性检测仪处于保压模式,以对所述待测燃料电池电堆的阳极进行吹扫;
    吹扫结束后,关闭所述第一截止阀和所述阳极出口截止阀,进行气密性检测,此时,气密性检测仪处于检测模式,以检测所述待测燃料电池电堆的泄漏量;
    检测结束后,如果气密性检测合格,关闭所述第二截止阀,打开所述支线截止阀、所述原料气总截止阀以及所述阳极出口截止阀,以使所述待测燃料电池电堆回到工作状态。
  10. 根据权利要求9所述的燃料电池的气密性检测方法,其特征在于,所述待测燃料电池电堆处于工作状态时,所述阴极进口截止阀和所述阴极出口截止阀均处于打开状态;
    在检测所述待测燃料电池电堆的整体泄漏量时,吹扫结束后,所述阴极进口截止阀和所述阴极出口截止阀处于打开状态。
  11. 根据权利要求9所述的燃料电池的气密性检测方法,其特征在于,在检测所述待测燃料电池电堆的外漏泄漏量时,吹扫结束后,关闭所述阴极进口截止阀和所述阴极出口截止阀;
    所述待测燃料电池电堆的内漏泄漏量为所述待测燃料电池电堆的整体泄漏量与所述待测燃料电池电堆的外漏泄漏量之差。
  12. 根据权利要求9所述的燃料电池的气密性检测方法,其特征在于,在检测所述待测燃料电池电堆的泄漏量时,扩容罐通过所述第二截止阀向所述待测燃料电池电堆的阳极供应气密性检测气体;
    所述扩容罐的体积大于阳极腔室体积。
  13. 根据权利要求12所述的燃料电池的气密性检测方法,其特征在于,在检测过程中,发现泄漏量超过阳极腔室体积,立即停止检测,所述气密性检测仪切换至保压模式,打开所述第一截止阀和所述阳极出口截止阀。
  14. 根据权利要求9所述的燃料电池的气密性检测方法,其特征在于,吹扫状态下,扩容罐与气密性检测仪之间的压力传感器以及阳极进口压力传感器的读数均小于预设压力值,且阳极进口压力传感器与阴极进口压力传感器的读数的差值小于预设压差,且处于保压状态的气密性检测仪的出口压力为预设压力值;吹扫结束后,当扩容罐与气密性检测仪之间的压力传感器以及阳极进口压力传感器的读数稳定在预设压力值时,气密性检测仪从保压模式切换至检测模式。
  15. 根据权利要求14所述的燃料电池的气密性检测方法,其特征在于,预设压力值和 预设压差根据不同待测燃料电池电堆的承压特性进行设定;预设压力值和预设压差均不高于10kPa。
  16. 根据权利要求14所述的燃料电池的气密性检测方法,其特征在于,预设压力值和预设压差均在3-5kPa之间。
  17. 根据权利要求9所述的燃料电池的气密性检测方法,其特征在于,控制系统与氢气截止阀、氮气截止阀、所述原料气总截止阀、所述阳极出口截止阀、所述第一截止阀、所述第二截止阀、阴极进口截止阀、阴极出口截止阀、减压阀、压力传感器、氢气质量流量计、氮气质量流量计以及气密性检测仪通信连接,从而实现燃料电池的自动控制。
  18. 根据权利要求17所述的燃料电池的气密性检测方法,其特征在于,当压力高于预设压力值或当压差高于预设压差时,所述控制系统报警,以确保待测燃料电池电堆的安全性。
PCT/CN2022/121737 2021-09-28 2022-09-27 燃料电池及其气密性检测方法 WO2023051526A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111142918.6A CN115882010A (zh) 2021-09-28 2021-09-28 燃料电池及其气密性检测方法
CN202111142918.6 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023051526A1 true WO2023051526A1 (zh) 2023-04-06

Family

ID=85763438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121737 WO2023051526A1 (zh) 2021-09-28 2022-09-27 燃料电池及其气密性检测方法

Country Status (2)

Country Link
CN (1) CN115882010A (zh)
WO (1) WO2023051526A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116505033B (zh) * 2023-06-28 2023-12-22 佛山市清极能源科技有限公司 一种燃料电池空气系统泄漏诊断方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10231208A1 (de) * 2002-07-10 2004-01-22 General Motors Corporotion, Detroit Verfahren und Vorrichtung zur Untersuchung eines Brennstoffzellensystems
JP2005190764A (ja) * 2003-12-25 2005-07-14 Honda Motor Co Ltd 燃料電池システムにおける気密試験方法
CN110987324A (zh) * 2019-12-27 2020-04-10 浙江锋源氢能科技有限公司 一种燃料电池气密性测试设备和测试方法
CN111579173A (zh) * 2020-05-21 2020-08-25 东风汽车集团有限公司 一种燃料电池系统三腔保压气密性自动检测设备及其检测方法
CN111693229A (zh) * 2020-07-17 2020-09-22 北京新研创能科技有限公司 一种具备气密性在线检测功能的电堆测试装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10231208A1 (de) * 2002-07-10 2004-01-22 General Motors Corporotion, Detroit Verfahren und Vorrichtung zur Untersuchung eines Brennstoffzellensystems
JP2005190764A (ja) * 2003-12-25 2005-07-14 Honda Motor Co Ltd 燃料電池システムにおける気密試験方法
CN110987324A (zh) * 2019-12-27 2020-04-10 浙江锋源氢能科技有限公司 一种燃料电池气密性测试设备和测试方法
CN111579173A (zh) * 2020-05-21 2020-08-25 东风汽车集团有限公司 一种燃料电池系统三腔保压气密性自动检测设备及其检测方法
CN111693229A (zh) * 2020-07-17 2020-09-22 北京新研创能科技有限公司 一种具备气密性在线检测功能的电堆测试装置及系统

Also Published As

Publication number Publication date
CN115882010A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
CN207649860U (zh) 一种质子交换膜燃料电池双极板气密性检测装置
CN104180958B (zh) 一种燃料电池电堆泄漏率测试装置与方法
WO2023051526A1 (zh) 燃料电池及其气密性检测方法
CN108120568A (zh) 一种燃料电池电堆气密性实时检测设备
CN103900773A (zh) 一种燃料电池堆在线气密性检测装置及方法
CN103063375A (zh) 一种研究燃料电池电堆组装力与密封性的在线测试方法
CN110987324A (zh) 一种燃料电池气密性测试设备和测试方法
CN210603771U (zh) 一种质子交换膜氢燃料单电池测漏装置
CN110987322A (zh) 一种燃料电池电堆气密性检测装置以及检测方法
CN112285193A (zh) 一种电池质谱进样系统
CN111129549A (zh) 快速检测燃料电池堆串漏的系统及方法
CN111982420B (zh) 一种燃料电池电堆压差式漏气测试装置及测试方法
CN113670807A (zh) 一种用于胶料绝氧老化试验的试验装置和试验方法
CN213071187U (zh) 用于空冷型燃料电池电堆的测试装置
CN112304532A (zh) 一种燃料电池气密性检测设备及检测方法
CN215178450U (zh) 一种石墨双极板流道裂纹的检测装置
CN101487759A (zh) 超低温环境应力、位移和气密性能的测试系统和测试方法
CN212432449U (zh) 一种燃料电池堆自动检漏装置
CN110797557B (zh) 一种燃料电池气密性和吹扫检测控制装置和检测控制方法
CN114858360A (zh) 一种燃料电池检测装置及方法
CN213120998U (zh) 一种多功能的燃料电池电堆测漏台
CN218916712U (zh) 一种燃料电池电堆用的气密检测装置
CN114076661A (zh) 一种燃料电池堆自动检漏装置及方法
KR20090113335A (ko) 연료셀스택의 불투과성 시험 방법
JP2006170918A (ja) ガスリーク評価装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874911

Country of ref document: EP

Kind code of ref document: A1