JP2005183900A - Light emitting device and lighting system - Google Patents

Light emitting device and lighting system Download PDF

Info

Publication number
JP2005183900A
JP2005183900A JP2004071432A JP2004071432A JP2005183900A JP 2005183900 A JP2005183900 A JP 2005183900A JP 2004071432 A JP2004071432 A JP 2004071432A JP 2004071432 A JP2004071432 A JP 2004071432A JP 2005183900 A JP2005183900 A JP 2005183900A
Authority
JP
Japan
Prior art keywords
light emitting
light
phosphor
emitting device
phosphor particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004071432A
Other languages
Japanese (ja)
Inventor
Kosuke Katabe
浩介 形部
Fumiaki Sekine
史明 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004071432A priority Critical patent/JP2005183900A/en
Publication of JP2005183900A publication Critical patent/JP2005183900A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce luminescent color variation of a light emitting device which emits light whose wavelength is transformed by phosphor particles of three primary colors. <P>SOLUTION: A light emitting device comprises a light emitting element 5 whose luminescence wavelength is 300 to 400 nm, a phosphor particle of La<SB>2</SB>O<SB>2</SB>S:Eu arranged on an optical axis of the light emitting element 5, a phosphor layer 4 constituted by mixing a phosphor particle of ZnS:Cu, Al and a phosphor particle of (BaMgAl)<SB>10</SB>O<SB>12</SB>:Eu into a transparent member. The average particle diameter of each phosphor particle is 1 to 50 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発光ダイオード装置、特に発光素子から発せられる光を波長変換して外部に放出する発光装置および照明装置に関する。   The present invention relates to a light-emitting diode device, and more particularly to a light-emitting device and a lighting device that emits light emitted from a light-emitting element after wavelength conversion.

従来の発光ダイオード(LED)等の発光素子105を収容するための発光装置を図2に示す。図2に示すように、発光装置は、上面の中央部に発光素子105を搭載し、発光素子105と発光素子収納用パッケージ(以下、単にパッケージともいう)の内外を電気的に導通接続するリード端子やメタライズ配線層等から成る配線導体(図示せず)が形成された絶縁体から成る基体101と、基体101の上面に接着固定され、中央部に発光素子105を収納するための貫通孔が形成された、金属、樹脂またはセラミックス等から成る枠体102とから主に構成される。   A light-emitting device for accommodating a light-emitting element 105 such as a conventional light-emitting diode (LED) is shown in FIG. As shown in FIG. 2, the light emitting device has a light emitting element 105 mounted in the center of the upper surface, and leads that electrically connect the inside and outside of the light emitting element 105 and the light emitting element storage package (hereinafter also simply referred to as a package). A base 101 made of an insulator on which a wiring conductor (not shown) composed of a terminal, a metallized wiring layer, etc. is formed, and a through hole for adhering and fixing to the upper surface of the base 101 and accommodating the light emitting element 105 in the central portion. It is mainly composed of the formed frame body 102 made of metal, resin, ceramics or the like.

基体101は酸化アルミニウム質焼結体(アルミナセラミックス)や窒化アルミニウム質焼結体、ムライト質焼結体、ガラスセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂から成る。基体101がセラミックスから成る場合、その上面にメタライズ配線層がタングステン(W)、モリブデン(Mo)−マンガン(Mn)等から成る金属ペーストを高温で焼成して形成される。また、基体101が樹脂から成る場合、基体101をモールド成型する際に、銅(Cu)や鉄(Fe)−ニッケル(Ni)合金等から成るリード端子が基体101の内部に一端部が突出するように固定される。   The substrate 101 is made of an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, a mullite sintered body, ceramics such as glass ceramics, or a resin such as an epoxy resin. When the substrate 101 is made of ceramics, the metallized wiring layer is formed on the upper surface by baking a metal paste made of tungsten (W), molybdenum (Mo) -manganese (Mn), or the like at a high temperature. Further, when the base 101 is made of resin, when the base 101 is molded, one end of a lead terminal made of copper (Cu), iron (Fe) -nickel (Ni) alloy, or the like protrudes into the base 101. To be fixed.

また、枠体102は、アルミニウム(Al)やFe−Ni−コバルト(Co)合金等の金属、アルミナ質焼結体等のセラミックスまたはエポキシ樹脂等の樹脂から成り、切削加工や金型成型または押し出し成型等の成型技術により形成される。さらに、枠体102の中央部には上方に向かうに伴って外側に広がる貫通孔が形成されており、貫通孔の内周面の光の反射率を向上させる場合、この内周面にAl等の金属が蒸着法やメッキ法により被着される。そして、枠体102は、半田、銀ロウ等のロウ材または樹脂接着剤により、基体101の上面に接合される。   The frame body 102 is made of a metal such as aluminum (Al) or Fe-Ni-cobalt (Co) alloy, a ceramic such as an alumina-based sintered body, or a resin such as an epoxy resin. It is formed by a molding technique such as molding. Furthermore, a through hole is formed in the central portion of the frame body 102 so as to spread outward as it goes upward. To improve the light reflectance of the inner peripheral surface of the through hole, Al or the like is provided on the inner peripheral surface. The metal is deposited by vapor deposition or plating. The frame 102 is bonded to the upper surface of the base 101 with a brazing material such as solder, silver brazing, or a resin adhesive.

そして、基体101表面に形成した配線導体(図示せず)と発光素子105の電極とをボンディングワイヤ(図示せず)を介して電気的に接続し、しかる後、発光素子105の表面に蛍光体層104を形成した後に、枠体102の内側に透明樹脂106を充填し熱硬化させることで、発光素子105からの光を蛍光体層104により波長変換し所望の波長スペクトルを有する光を取り出せる発光装置と成すことができる。そして、枠体102の上面に透光性の蓋体103を半田や樹脂接着剤等で接合して発光装置となる。また、発光素子105として発光波長が300〜400nmの紫外領域を含むものを選び、蛍光体層104に含まれる赤、青、緑の3原色の蛍光体粒子の混合比率を調整することで色調を自由に設計することができる。   Then, a wiring conductor (not shown) formed on the surface of the substrate 101 and the electrode of the light emitting element 105 are electrically connected via a bonding wire (not shown), and then the phosphor is applied to the surface of the light emitting element 105. After the layer 104 is formed, the inside of the frame 102 is filled with a transparent resin 106 and thermally cured, whereby the light emitted from the light emitting element 105 is converted by the phosphor layer 104 to extract light having a desired wavelength spectrum. Can be made with equipment. Then, a light-transmitting lid 103 is joined to the upper surface of the frame 102 with solder, a resin adhesive, or the like to form a light emitting device. In addition, the light emitting element 105 is selected to include an ultraviolet region having an emission wavelength of 300 to 400 nm, and the color tone is adjusted by adjusting the mixing ratio of phosphor particles of the three primary colors red, blue, and green contained in the phosphor layer 104. Can be designed freely.

そのような蛍光体粒子としては様々な材料が用いられており、例えば赤はLaS:Eu(EuドープLaS)の蛍光体粒子、緑はZnS:Cu,Alの蛍光体粒子、青は(BaMgAl)1012:Euの蛍光体粒子が用られている。 Various materials are used for such phosphor particles. For example, red is La 2 O 2 S: Eu (Eu-doped La 2 O 2 S) phosphor particles, and green is ZnS: Cu, Al fluorescence. The body particles, blue, are phosphor particles of (BaMgAl) 10 O 12 : Eu.

また一般的に蛍光体粒子は紛体であり、蛍光体粒子単独では蛍光体層104の形成が困難なため、樹脂もしくはガラスなどの透明部材中に蛍光体粒子を混入して発光素子105の表面に塗布し蛍光体層104とするのが一般的である。
特開2003-37298号公報
In general, the phosphor particles are powder, and it is difficult to form the phosphor layer 104 with the phosphor particles alone. Therefore, the phosphor particles are mixed in a transparent member such as a resin or glass to form the surface of the light emitting element 105. In general, the phosphor layer 104 is applied.
Japanese Patent Laid-Open No. 2003-37298

しかしながら前記発光装置において、発光装置の発光色ばらつきが大きいことが問題となっている。一般的に電球や蛍光灯などの発光装置の発光色ばらつきは色温度に対し上下10%の範囲内で制御する必要があり、発光ダイオードを発光素子に用いる発光装置を普及させるためには発光装置の発光色ばらつきを低減させることが重要である。   However, in the light emitting device, there is a problem that the light emission color variation of the light emitting device is large. Generally, the emission color variation of light emitting devices such as light bulbs and fluorescent lamps needs to be controlled within a range of 10% above and below the color temperature, and in order to popularize light emitting devices using light emitting diodes as light emitting elements, light emitting devices It is important to reduce the emission color variation.

発光装置の発光色のばらつきは、発光装置の発光効率のばらつきに依存する傾向があり、発光効率を向上させることによって発光強度のばらつきの少ない安定な発光をさせることができ、それによって、発光色のばらつきも抑制できる。   The variation in the light emission color of the light emitting device tends to depend on the variation in the light emission efficiency of the light emitting device, and by improving the light emission efficiency, stable light emission with little variation in the light emission intensity can be achieved. The variation of can also be suppressed.

そして、発光効率を向上させる手段としては、蛍光体層104の蛍光体粒子含有量や厚みを適度な範囲にすることが提案されている。これによって、発光素子105からの光を効率よく蛍光体粒子で波長変換できるとともに、この波長変換された蛍光を蛍光体層104から効率よく放出することができ、発光効率を向上させることができる。   As a means for improving the luminous efficiency, it has been proposed that the phosphor particle content and thickness of the phosphor layer 104 be in an appropriate range. Accordingly, the wavelength of light from the light emitting element 105 can be efficiently converted by the phosphor particles, and the wavelength-converted fluorescence can be efficiently emitted from the phosphor layer 104, so that the light emission efficiency can be improved.

しかしながら、このように蛍光体層104の蛍光体粒子含有量や厚みを適度な範囲にして発光効率を向上させることにより、発光装置の発光色のばらつきを抑制できるものの、近時の照明装置等の用途に対しては、さらなる発光色ばらつきの低減が要求されている。   However, by improving the luminous efficiency by making the phosphor particle content and thickness of the phosphor layer 104 in an appropriate range in this way, it is possible to suppress variations in the emission color of the light emitting device, but in recent lighting devices, etc. For applications, further reduction in emission color variation is required.

従って本発明は上記問題点に鑑みて成されたものであり、その目的は、発光装置の発光色ばらつきを低減することにある。   Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to reduce variations in emission color of a light emitting device.

本発明の発光装置は、発光波長が300〜400nmである発光素子と、該発光素子の光軸上に配置された、LaS:Euの蛍光体粒子、ZnS:Cu,Alの蛍光体粒子および(BaMgAl)1012:Euの蛍光体粒子を透明部材中に混入させて成る蛍光体層とを具備しており、前記各蛍光体粒子の平均粒径が1〜50μmであることを特徴とする。 The light-emitting device of the present invention includes a light-emitting element having an emission wavelength of 300 to 400 nm, La 2 O 2 S: Eu phosphor particles arranged on the optical axis of the light-emitting element, and ZnS: Cu, Al fluorescence. Body particles and a phosphor layer formed by mixing phosphor particles of (BaMgAl) 10 O 12 : Eu into a transparent member, and the average particle diameter of each phosphor particle is 1 to 50 μm It is characterized by.

本発明の発光装置において、好ましくは、前記透明部材は、前記発光素子が発する光と、前記発光素子からの光によって励起されたそれぞれの前記蛍光体粒子が発する蛍光に対して透明な樹脂またはガラスから成ることを特徴とする。   In the light emitting device of the present invention, preferably, the transparent member is a resin or glass transparent to light emitted from the light emitting element and fluorescence emitted from the respective phosphor particles excited by light from the light emitting element. It is characterized by comprising.

本発明の発光装置において、好ましくは、前記透明部材は、前記発光素子が発する光に対する透過率よりも前記蛍光体粒子が発する蛍光に対する透過率の方が高いことを特徴とする。   In the light emitting device of the present invention, preferably, the transparent member has a higher transmittance for the fluorescence emitted by the phosphor particles than the transmittance for the light emitted by the light emitting element.

本発明の照明装置は、上記本発明の発光装置を所定の配置となるように設置したことを特徴とする。   The illuminating device of the present invention is characterized in that the light emitting device of the present invention is installed in a predetermined arrangement.

本発明の発光装置は、発光波長が300〜400nmである発光素子と、発光素子の光軸上に配置された、LaS:Euの蛍光体粒子、ZnS:Cu,Alの蛍光体粒子および(BaMgAl)1012:Euの蛍光体粒子を透明部材中に混入させて成る蛍光体層とを具備しており、各蛍光体粒子の平均粒径が1〜50μmであることから、蛍光体粒子の表面積を大きくすることができ、1つの蛍光体粒子あたりに照射される光の量を多くするとともに蛍光の放射面を大きくして放射量を多くすることができる。その結果、発光効率を向上させることができ、それによって発光色のばらつきもより低減することができる。 The light emitting device of the present invention includes a light emitting element having an emission wavelength of 300 to 400 nm, a phosphor particle of La 2 O 2 S: Eu, and a phosphor of ZnS: Cu, Al disposed on the optical axis of the light emitting element. A phosphor layer formed by mixing particles and (BaMgAl) 10 O 12 : Eu phosphor particles in a transparent member, and the average particle diameter of each phosphor particle is 1 to 50 μm, The surface area of the phosphor particles can be increased, the amount of light irradiated per phosphor particle can be increased, and the emission surface of the fluorescence can be increased to increase the amount of radiation. As a result, the light emission efficiency can be improved, and thereby the variation in emission color can be further reduced.

また、このような粒径にすることで、蛍光体粒子の結晶内の欠陥や不純物の存在確率を低くすることができ、結晶内の欠陥や不純物によって蛍光の波長がばらつくのを有効に防止して、発光色のばらつきをきわめて有効に抑制できる。   In addition, such a particle size can reduce the probability of existence of defects and impurities in the crystal of the phosphor particles, and effectively prevents the fluorescence wavelength from being varied due to defects and impurities in the crystal. Thus, the variation in the emission color can be extremely effectively suppressed.

本発明の発光装置は、透明部材が、発光素子が発する光と、発光素子からの光によって励起されたそれぞれの蛍光体粒子が発するそれぞれの蛍光に対して透明な樹脂またはガラスから成ることから、発光素子が発する光を良好に蛍光体粒子に照射することができ発光効率を向上して発光色ばらつきを有効に抑制できる。また、蛍光体粒子が発する蛍光を透明部材が吸収する場合は、蛍光が透明部材に吸収される割合が蛍光体粒子から蛍光体層の外表面までの距離によって異なることとなり、発光色ばらつきが生じやすくなるが、蛍光体粒子が発するそれぞれの蛍光に対して透明とすることで、蛍光が透明部材に吸収されず発光色ばらつきをきわめて低減することができる。   In the light emitting device of the present invention, the transparent member is made of a resin or glass that is transparent to the light emitted from the light emitting element and the respective fluorescence emitted from the respective phosphor particles excited by the light from the light emitting element. The light emitted from the light-emitting element can be satisfactorily irradiated onto the phosphor particles, and the luminous efficiency can be improved and the emission color variation can be effectively suppressed. In addition, when the transparent member absorbs the fluorescence emitted by the phosphor particles, the proportion of the fluorescence absorbed by the transparent member varies depending on the distance from the phosphor particles to the outer surface of the phosphor layer, resulting in emission color variations. Although it becomes easy, by making it transparent with respect to each fluorescence emitted from the phosphor particles, the fluorescence is not absorbed by the transparent member, and the emission color variation can be extremely reduced.

本発明の発光装置は、透明部材が、発光素子が発する光に対する透過率よりも蛍光体粒子が発する蛍光に対する透過率の方が高いことから、発光素子から発光された光が蛍光体粒子により波長変換されずに直接蛍光体層から放射されるのを有効に抑制できるとともに蛍光体粒子からの蛍光を蛍光体層から効率よく放射することにより、さらに、発光色ばらつきを抑制することができる。   In the light-emitting device of the present invention, since the transparent member has a higher transmittance for the fluorescence emitted by the phosphor particles than the transmittance for the light emitted by the light-emitting element, the light emitted from the light-emitting element has a wavelength due to the phosphor particles. It is possible to effectively suppress the direct emission from the phosphor layer without being converted and to efficiently emit the fluorescence from the phosphor particles from the phosphor layer, thereby further suppressing the emission color variation.

本発明の照明装置は、上記本発明の発光装置を所定の配置となるように設置したことから、半導体から成る発光素子の電子の再結合による発光を利用しているため、従来の放電を用いた照明装置よりも低消費電力かつ長寿命とすることが可能な小型の照明装置とすることができる。その結果、発光素子から発生する光の中心波長の変動を抑制することができ、長期間にわたり安定した放射光強度かつ放射光角度(配光分布)で光を照射することができるとともに、照射面における色むらや照度分布の偏りが抑制された照明装置とすることができる。   Since the light emitting device of the present invention is installed in a predetermined arrangement, the lighting device of the present invention uses light emission by recombination of electrons of a light emitting element made of a semiconductor. Thus, a small illuminating device that can have lower power consumption and longer life than the existing illuminating device can be obtained. As a result, fluctuations in the center wavelength of light generated from the light emitting element can be suppressed, light can be emitted with a stable radiant light intensity and radiant light angle (light distribution distribution) over a long period of time, and an irradiation surface It is possible to provide a lighting device in which uneven color and uneven illuminance distribution are suppressed.

また、本発明の発光装置を光源として所定の配置に設置するとともに、これらの発光装置の周囲に任意の形状に光学設計した反射治具や光学レンズ、光拡散板等を設置することにより、任意の配光分布の光を放射する照明装置とすることができる。   In addition, the light emitting device of the present invention is installed in a predetermined arrangement as a light source, and by installing a reflection jig, an optical lens, a light diffusing plate, etc. optically designed in an arbitrary shape around these light emitting devices, It can be set as the illuminating device which radiates | emits the light of this light distribution.

本発明の発光装置について以下に詳細に説明する。図1は、本発明の発光装置の実施の形態の一例を示す断面図であり、1は基体、2は枠体、3は蓋体、4は蛍光体層、5は発光素子、6は樹脂やガラスなどの透明部材であり、主としてこれらで発光装置が構成されている。   The light emitting device of the present invention will be described in detail below. FIG. 1 is a cross-sectional view showing an example of an embodiment of a light emitting device according to the present invention. 1 is a base, 2 is a frame, 3 is a lid, 4 is a phosphor layer, 5 is a light emitting element, and 6 is a resin. Or a transparent member such as glass, and the light emitting device is mainly composed of these members.

本発明の発光装置は、発光波長が300〜400nmである発光素子5と、発光素子5の光軸上に配置された、LaS:Euの蛍光体粒子、ZnS:Cu,Alの蛍光体粒子および(BaMgAl)1012:Euの蛍光体粒子を透明部材中に混入させて成る蛍光体層4とを具備しており、各蛍光体粒子の平均粒径が1〜50μmである。 The light-emitting device of the present invention includes a light-emitting element 5 having an emission wavelength of 300 to 400 nm, La 2 O 2 S: Eu phosphor particles arranged on the optical axis of the light-emitting element 5, ZnS: Cu, Al And phosphor layer 4 in which phosphor particles of (BaMgAl) 10 O 12 : Eu are mixed in a transparent member, and the average particle diameter of each phosphor particle is 1 to 50 μm .

これにより、蛍光体粒子の表面積を大きくすることができ、1つの蛍光体粒子あたりに照射される光の量を多くするとともに蛍光の放射面を大きくして放射量を多くすることができる。その結果、発光効率を向上させることができ、それによって発光色のばらつきもより低減することができる。   As a result, the surface area of the phosphor particles can be increased, the amount of light irradiated per phosphor particle can be increased, and the emission surface of the fluorescence can be increased to increase the amount of radiation. As a result, the light emission efficiency can be improved, and thereby the variation in emission color can be further reduced.

また、このような粒径にすることで、蛍光体粒子の結晶内の欠陥や不純物の存在確率を低くすることができ、結晶内の欠陥や不純物によって蛍光の波長がばらつくのを有効に防止して、発光色のばらつきをきわめて有効に抑制できる。   In addition, such a particle size can reduce the probability of existence of defects and impurities in the crystal of the phosphor particles, and effectively prevents the fluorescence wavelength from being varied due to defects and impurities in the crystal. Thus, the variation in the emission color can be extremely effectively suppressed.

本発明における基体1は、酸化アルミニウム質焼結体(アルミナセラミックス)、窒化アルミニウム質焼結体、ムライト質焼結体、ガラスセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂から成る絶縁体であり、発光波長が300〜400nmである発光素子5を支持する支持部材である。   The substrate 1 in the present invention is an insulator made of an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, a mullite sintered body, a ceramic such as glass ceramic, or a resin such as an epoxy resin, It is a support member that supports the light emitting element 5 having an emission wavelength of 300 to 400 nm.

この基体1の表面や内部には、発光装置の内外を電気的に導通接続するためのW、Mo、Mn等の金属粉末から成るメタライズ配線層が形成されており、また、基体1の下面等の外部に露出した表面のメタライズ配線層にCu、Fe−Ni合金等の金属から成るリード端子が接合される。そして、基体1にはLED等の発光波長が300〜400nmである発光素子5が半田、樹脂接着剤、または銀等の金属粉末を樹脂に混入した銀(Ag)−エポキシ樹脂(Agペースト)等の接合材で接合される。そして、基体1のメタライズ配線層に上記発光素子5の電極がボンディングワイヤ(図示せず)を介して電気的に接続される。   A metallized wiring layer made of metal powder such as W, Mo, or Mn is formed on the surface or inside of the substrate 1 to electrically connect the inside and outside of the light emitting device. A lead terminal made of a metal such as Cu or Fe—Ni alloy is joined to the metallized wiring layer on the surface exposed to the outside. The base 1 has a light emitting element 5 having an emission wavelength of 300 to 400 nm such as an LED, such as silver (Ag) -epoxy resin (Ag paste) in which a metal powder such as solder, a resin adhesive, or silver is mixed in the resin. It is joined with the joining material. Then, the electrode of the light emitting element 5 is electrically connected to the metallized wiring layer of the substrate 1 through a bonding wire (not shown).

なお、メタライズ配線層の露出する表面にNiや金(Au)等の耐食性に優れる金属を1〜20μm程度の厚みで被着させておくのがよく、メタライズ配線層が酸化腐食するのを有効に防止できるとともに、メタライズ配線層と発光素子5との接続およびメタライズ配線層とボンディングワイヤとの接続を強固にすることができる。従って、メタライズ配線層の露出表面には、厚さ1〜10μm程度のNiメッキ層と厚さ0.1〜3μm程度のAuメッキ層とが電解メッキ法や無電解メッキ法により順次被着されていることがより好ましい。   It should be noted that a metal having excellent corrosion resistance, such as Ni or gold (Au), should be deposited on the exposed surface of the metallized wiring layer in a thickness of about 1 to 20 μm. In addition to preventing this, the connection between the metallized wiring layer and the light emitting element 5 and the connection between the metallized wiring layer and the bonding wire can be strengthened. Therefore, an Ni plating layer having a thickness of about 1 to 10 μm and an Au plating layer having a thickness of about 0.1 to 3 μm are sequentially deposited on the exposed surface of the metallized wiring layer by an electrolytic plating method or an electroless plating method. Is more preferable.

また、基体1の上面には、基体1の下面側への光の透過を有効に抑制するとともに、基体1の上側に光を効率的に反射させるために、メタライズ配線層に電気的に短絡しないようにして、Al、Ag、Au、白金(Pt)、Cu等の金属を蒸着法やメッキ法により反射層として形成することが好ましい。   Further, the upper surface of the substrate 1 is not electrically short-circuited to the metallized wiring layer in order to effectively suppress the transmission of light to the lower surface side of the substrate 1 and efficiently reflect the light to the upper side of the substrate 1. Thus, it is preferable to form a metal such as Al, Ag, Au, platinum (Pt), or Cu as the reflective layer by vapor deposition or plating.

次に、発光波長が300〜400nmである発光素子5の光を所望の波長の光(例えば、420〜780nmの可視光)に変換するために、発光素子5の表面に蛍光体粒子を混入させた透明部材から成る蛍光体層4を塗布し形成する。その蛍光体粒子は、赤色(約580〜780nm)の蛍光を発生するLaS:Eu、緑色(約450〜650nm)の蛍光を発生するZnS:Cu,Al、青色(420〜550nm)の蛍光を発生する(BaMgAl)1012:Euである。 Next, phosphor particles are mixed into the surface of the light emitting element 5 in order to convert light of the light emitting element 5 having an emission wavelength of 300 to 400 nm into light having a desired wavelength (for example, visible light of 420 to 780 nm). The phosphor layer 4 made of a transparent member is applied and formed. The phosphor particles are La 2 O 2 S: Eu that emits red (about 580 to 780 nm) fluorescence, ZnS: Cu, Al, blue (420 to 550 nm) that emits green (about 450 to 650 nm) fluorescence. (BaMgAl) 10 O 12 : Eu.

これらの蛍光体粒子は紛体であり、蛍光体粒子のみを発光素子5の表面に形成することは困難なため、透明部材中に蛍光体粒子を混入して発光素子5の表面に塗布し蛍光体層4とする。また、透明部材はエポキシ樹脂、シリコーン樹脂、アクリル樹脂、もしくはガラス等から成る。   Since these phosphor particles are powder and it is difficult to form only the phosphor particles on the surface of the light emitting element 5, the phosphor particles are mixed in the transparent member and applied to the surface of the light emitting element 5. Layer 4 is assumed. The transparent member is made of epoxy resin, silicone resin, acrylic resin, glass or the like.

発光波長が300〜400nmである発光素子5は、紫外線領域を主に含む波長帯域の光を発生するものであり、上記の蛍光体粒子はこの波長帯域の光を効率的に蛍光に変換することができる。   The light emitting element 5 having an emission wavelength of 300 to 400 nm generates light in a wavelength band mainly including the ultraviolet region, and the phosphor particles efficiently convert light in this wavelength band into fluorescence. Can do.

そして、本発明においては、LaS:Euの蛍光体粒子、ZnS:Cu,Alの蛍光体粒子および(BaMgAl)1012:Euの蛍光体粒子の粒子径は1〜50μmであるが、粒子径が1μm未満の場合、発光に寄与する蛍光体粒子表面に対し蛍光体粒子の結晶内に含有する欠陥及び不純物の存在確率が高くなりやすく、紫外光のエネルギーが欠陥や不純物で消費される可能性が高くなる。その結果、紫外光のエネルギーが所望の波長に変換される効率が低くなり、蛍光体粒子によって発生した蛍光の強度が低下しやすくなる。すなわち蛍光体粒子の粒子径が小さすぎるものが存在すると、強く蛍光を発する蛍光体粒子と弱く蛍光を発する蛍光体粒子が同時に存在することになり、発光色ばらつきの原因となる。 In the present invention, La 2 O 2 S: Eu phosphor particles, ZnS: Cu, Al phosphor particles, and (BaMgAl) 10 O 12 : Eu phosphor particles have a particle diameter of 1 to 50 μm. However, when the particle diameter is less than 1 μm, the existence probability of defects and impurities contained in the crystal of the phosphor particles tends to increase with respect to the surface of the phosphor particles contributing to light emission, and the energy of ultraviolet light is consumed by the defects and impurities. Is likely to be. As a result, the efficiency with which the energy of ultraviolet light is converted to a desired wavelength is lowered, and the intensity of the fluorescence generated by the phosphor particles tends to decrease. That is, if there are phosphor particles having a particle size that is too small, phosphor particles that emit strong fluorescence and phosphor particles that emit fluorescence weakly exist at the same time, which causes variations in emission color.

また蛍光体粒子の粒径が50μmを超えると、蛍光体粒子の体積に対し発光に寄与する蛍光体粒子表面が狭くなり、その結果、発光強度が低下しやすくなる。すなわち蛍光体粒子の粒子径が大きすぎるものが存在すると、強く蛍光を発する蛍光体粒子と弱く蛍光を発する蛍光体粒子が同時に存在することになり、発光色ばらつきの原因となる。   On the other hand, when the particle diameter of the phosphor particles exceeds 50 μm, the phosphor particle surface that contributes to light emission with respect to the volume of the phosphor particles becomes narrow, and as a result, the emission intensity tends to decrease. That is, if there is a phosphor particle having an excessively large particle diameter, phosphor particles that emit strong fluorescence and phosphor particles that emit weak fluorescence exist at the same time, which causes variations in emission color.

また、本発明の発光装置において、蛍光体層4の透明部材が、発光素子5が発する光と、発光素子5からの光によって励起されたそれぞれの蛍光体粒子が発するそれぞれの蛍光に対して透明な樹脂またはガラスから成ることが好ましい。   In the light emitting device of the present invention, the transparent member of the phosphor layer 4 is transparent to the light emitted from the light emitting element 5 and the respective fluorescence emitted from the respective phosphor particles excited by the light from the light emitting element 5. It is preferably made of a new resin or glass.

これにより、発光素子5が発する光を良好に蛍光体粒子に照射することができ発光効率を向上して発光色ばらつきを有効に抑制できる。また、蛍光体粒子が発する蛍光を透明部材が吸収する場合は、蛍光が透明部材に吸収される割合が蛍光体粒子から蛍光体層の外表面までの距離によって異なることとなり、発光色ばらつきが生じやすくなるが、蛍光体粒子が発するそれぞれの蛍光に対して透明とすることで、蛍光が透明部材に吸収されず発光色ばらつきをきわめて低減することができる。   Thereby, the light emitted from the light emitting element 5 can be satisfactorily applied to the phosphor particles, the luminous efficiency can be improved, and the emission color variation can be effectively suppressed. In addition, when the transparent member absorbs the fluorescence emitted by the phosphor particles, the proportion of the fluorescence absorbed by the transparent member varies depending on the distance from the phosphor particles to the outer surface of the phosphor layer, resulting in emission color variations. Although it becomes easy, by making it transparent with respect to each fluorescence emitted from the phosphor particles, the fluorescence is not absorbed by the transparent member, and the emission color variation can be extremely reduced.

赤色(約580〜780nm)の蛍光を発生するLaS:Euに対し不透明なバインダーを用いた場合、発光装置が発する光は赤成分が減衰し、その結果、色ばらつきが生じやすくなる。 When an opaque binder is used for La 2 O 2 S: Eu that emits red (about 580 to 780 nm) fluorescence, the red component of the light emitted from the light emitting device is attenuated, and as a result, color variation tends to occur. .

青色(420〜550nm)の蛍光を発生する(BaMgAl)1012:Euに対し不透明なバインダーを用いた場合、発光装置が発する光は青成分が減衰し、その結果、色ばらつきが生じやすくなる。 When a binder that is opaque to blue (420 to 550 nm) (BaMgAl) 10 O 12 : Eu is used, the blue component of the light emitted from the light emitting device is attenuated, resulting in color variations. .

緑色(約450〜650nm)の蛍光を発生するZnS:Cu,Alに対し不透明なバインダーを用いた場合、発光装置が発する光は緑成分が減衰し、その結果、色ばらつきが生じやすくなる。   When an opaque binder is used for ZnS: Cu, Al that emits green (about 450 to 650 nm) fluorescence, the green component of the light emitted from the light emitting device is attenuated, and as a result, color variations are likely to occur.

よって、それぞれの蛍光がばらつくと、各波長の蛍光の混合光として放射される発光装置の発光色のばらつきが生じることとなる。   Therefore, when each fluorescence varies, the emission color of the light emitting device radiated as the mixed light of the fluorescence of each wavelength will vary.

このような、発光素子5の光および蛍光体粒子の蛍光に対して透明な透明部材としては、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、もしくは金属アルコキシドの加水分解によって得られるゾル−ゲルガラス等が挙げられる。   Examples of the transparent member transparent to the light of the light emitting element 5 and the fluorescence of the phosphor particles include sol-gel glass obtained by hydrolysis of epoxy resin, silicone resin, acrylic resin, or metal alkoxide. .

さらに、本発明の発光装置において、蛍光体層4の透明部材が、発光素子5が発する光に対する透過率よりも蛍光体粒子が発する蛍光に対する透過率の方が高いことが好ましい。これにより、発光素子5から発光された光が蛍光体粒子により波長変換されずに直接蛍光体層4から放射されるのを有効に抑制できるとともに蛍光体粒子からの蛍光を蛍光体層4から効率よく放射することにより、さらに、発光色ばらつきを抑制することができる。   Furthermore, in the light emitting device of the present invention, it is preferable that the transparent member of the phosphor layer 4 has a higher transmittance for the fluorescence emitted by the phosphor particles than the transmittance for the light emitted by the light emitting element 5. Thereby, it is possible to effectively suppress light emitted from the light emitting element 5 from being directly emitted from the phosphor layer 4 without being wavelength-converted by the phosphor particles, and to efficiently emit fluorescence from the phosphor particles from the phosphor layer 4. By radiating well, the emission color variation can be further suppressed.

このような、発光素子5の光に対する透過率よりも蛍光体粒子の蛍光に対する透過率の方が高い透明部材としては、エポキシ樹脂が挙げられる。   As such a transparent member having a higher transmittance for the fluorescence of the phosphor particles than the transmittance for the light of the light emitting element 5, an epoxy resin may be mentioned.

蛍光体層4は、厚みが0.1〜0.3mmがよい。これにより、発光効率が向上し、それにともなって発光色ばらつきも低減される。   The phosphor layer 4 preferably has a thickness of 0.1 to 0.3 mm. Thereby, the light emission efficiency is improved, and the emission color variation is reduced accordingly.

また、蛍光体層4は、透明部材の含有率が、各蛍光体粒子の合計量を100重量部としたとき、透明部材が80〜150重量部であるのがよい。これにより、発光効率が向上し、それにともなって発光色ばらつきも低減される。   The phosphor layer 4 may have a transparent member content of 80 to 150 parts by weight when the total content of the phosphor particles is 100 parts by weight. Thereby, the light emission efficiency is improved, and the emission color variation is reduced accordingly.

本発明の発光装置は、基体1の発光素子5の搭載部に発光素子5を搭載するとともに発光素子5をボンディングワイヤおよびメタライズ配線層を介して外部の外部電気回路に電気的に導通し、基体1の上面の発光素子5の搭載部の周囲に、枠体2を、樹脂接着剤、はんだ等により接合し、枠体2の内側にガラスや透明樹脂などの透明部材6を充填し、枠体2の上面に透光性の蓋体3を樹脂接着剤、半田等により接合することによって作製される。   The light-emitting device of the present invention has the light-emitting element 5 mounted on the mounting portion of the light-emitting element 5 of the base 1 and electrically connects the light-emitting element 5 to an external external electric circuit via a bonding wire and a metallized wiring layer. The frame body 2 is joined to the periphery of the mounting portion of the light emitting element 5 on the upper surface by a resin adhesive, solder, or the like, and a transparent member 6 such as glass or transparent resin is filled inside the frame body 2. The translucent cover 3 is joined to the upper surface of 2 by a resin adhesive, solder or the like.

枠体2は、酸化アルミニウム質焼結体(アルミナセラミックス)、窒化アルミニウム質焼結体、ムライト質焼結体、ガラスセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂から成る絶縁体、さらにはAl、Cu、Ag、Fe−Ni−Co合金、Fe−Ni合金、ステンレススチール、真鍮等の金属から成る。   The frame 2 is made of an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, a mullite sintered body, a ceramic such as glass ceramics, or an insulator made of a resin such as an epoxy resin, Al, It consists of metals, such as Cu, Ag, a Fe-Ni-Co alloy, a Fe-Ni alloy, stainless steel, brass.

この蓋体3はガラス、サファイア、石英、またはエポキシ樹脂、シリコーン樹脂、アクリル樹脂等の樹脂(プラスチック)などの透明部材から成り、枠体2内側に設置された、発光素子5、メタライズ配線層、ボンディングワイヤ、透明部材6を保護するとともに、発光素子収納用パッケージ内部を気密に封止する。また、蓋体3をレンズ状に形成して光学レンズの機能を付加することによって、蛍光を集光または分散させて所望の放射角度、強度分布で蛍光を外部に取りだすことができる。   The lid 3 is made of a transparent member such as glass, sapphire, quartz, or a resin (plastic) such as epoxy resin, silicone resin, acrylic resin, and the like. The bonding wire and the transparent member 6 are protected, and the inside of the light emitting element storage package is hermetically sealed. Further, by forming the lid 3 in a lens shape and adding the function of an optical lens, it is possible to collect or disperse the fluorescence and extract the fluorescence to the outside with a desired radiation angle and intensity distribution.

また、本発明の発光装置は、1個のものを所定の配置となるように設置したことにより、または複数個を、例えば、格子状や千鳥状,放射状,複数の発光装置から成る、円状や多角形状の発光装置群を同心状に複数群形成したもの等の所定の配置となるように設置したことにより、照明装置とすることができる。これにより、半導体から成る発光素子5の電子の再結合による発光を利用しているため、従来の放電を用いた照明装置よりも低消費電力かつ長寿命とすることが可能であり、発熱の小さな小型の照明装置とすることができる。その結果、発光素子5から発生する光の中心波長の変動を抑制することができ、長期間にわたり安定した放射光強度かつ放射光角度(配光分布)で光を照射することができるとともに、照射面における色むらや照度分布の偏りが抑制された照明装置とすることができる。   In addition, the light emitting device of the present invention is a circular shape in which one device is installed in a predetermined arrangement, or a plurality of light emitting devices, for example, a lattice shape, a staggered shape, a radial shape, or a plurality of light emitting devices. In addition, a lighting device can be obtained by installing the light emitting device groups in a plurality of concentric shapes so as to have a predetermined arrangement. Thereby, since light emission by recombination of electrons of the light emitting element 5 made of a semiconductor is used, it is possible to achieve lower power consumption and longer life than a lighting device using a conventional discharge, and generate less heat. It can be set as a small illuminating device. As a result, fluctuations in the center wavelength of the light generated from the light emitting element 5 can be suppressed, and light can be irradiated with a stable radiant light intensity and radiant light angle (light distribution) over a long period of time. It can be set as the illuminating device by which the color nonuniformity in the surface and the bias of illuminance distribution were suppressed.

また、複数の本発明の発光装置を光源として所定の配置に設置するとともに、これらの発光装置の周囲に任意の形状に光学設計した反射治具や光学レンズ、光拡散板等を設置することにより、任意の配光分布の光を放射できる照明装置とすることができる。   Also, by installing a plurality of light emitting devices of the present invention in a predetermined arrangement as a light source, and installing a reflecting jig, an optical lens, a light diffusing plate, etc. that are optically designed in an arbitrary shape around these light emitting devices It can be set as the illuminating device which can radiate | emit light of arbitrary light distribution.

例えば、図3,図4に示す平面図,断面図のように複数個の発光装置7が発光装置駆動回路基板9に複数列に配置され、発光装置7の周囲に任意の形状に光学設計した反射治具8が設置されて成る照明装置の場合、隣接する一列上に配置された複数個の発光装置7において、隣り合う発光装置7との間隔が最短に成らないような配置、いわゆる千鳥状とすることが好ましい。即ち、発光装置7が格子状に配置される際には、光源となる発光装置7が直線上に配列されることによりグレアが強くなり、このような照明装置が人の視覚に入ってくることにより、不快感や目の障害を起こしやすくなるのに対し、千鳥状とすることにより、グレアが抑制され人間の目に対する不快感や目に及ぼす障害を低減することができる。さらに、隣り合う発光装置7間の距離が長くなることにより、隣接する発光装置7間の熱的な干渉が有効に抑制され、発光装置7が実装された発光装置駆動回路基板9内における熱のこもりが抑制され、発光装置7の外部に効率よく熱が放散される。その結果、人の目に対しても障害の小さい長期間にわたり光学特性の安定した長寿命の照明装置を作製することができる。   For example, a plurality of light emitting devices 7 are arranged in a plurality of rows on the light emitting device drive circuit board 9 as shown in the plan view and the cross-sectional view shown in FIGS. 3 and 4, and are optically designed in an arbitrary shape around the light emitting device 7. In the case of an illuminating device in which the reflecting jig 8 is installed, in a plurality of light emitting devices 7 arranged on the adjacent row, an arrangement in which the interval between the adjacent light emitting devices 7 is not shortest, a so-called staggered pattern. It is preferable that That is, when the light emitting devices 7 are arranged in a grid, the light emitting devices 7 serving as light sources are arranged in a straight line so that the glare becomes strong, and such a lighting device enters the human vision. Thus, discomfort and eye damage are likely to occur, but by forming a staggered pattern, glare is suppressed and discomfort and damage to the eyes of the human eye can be reduced. Further, since the distance between the adjacent light emitting devices 7 is increased, thermal interference between the adjacent light emitting devices 7 is effectively suppressed, and the heat in the light emitting device driving circuit board 9 on which the light emitting device 7 is mounted is reduced. Clouding is suppressed, and heat is efficiently dissipated outside the light emitting device 7. As a result, it is possible to manufacture a long-life lighting device with stable optical characteristics over a long period of time with little obstacles to human eyes.

また、照明装置が、図5,図6に示す平面図,断面図のような発光装置駆動回路基板9上に複数の発光装置7から成る円状や多角形状の発光装置7群を、同心状に複数群形成した照明装置の場合、1つの円状や多角形状の発光装置7群における発光装置7の配置数を照明装置の中央側より外周側ほど多くすることが好ましい。これにより、発光装置7同士の間隔を適度に保ちながら発光装置7をより多く配置することができ、照明装置の照度をより向上させることができる。また、照明装置の中央部の発光装置7の密度を低くして発光装置駆動回路基板9の中央部における熱のこもりを抑制することができる。よって、発光装置駆動回路基板9内における温度分布が一様となり、照明装置を設置した外部電気回路基板やヒートシンクに効率よく熱が伝達され、発光装置7の温度上昇を抑制することができる。その結果、発光装置7は長期間にわたり安定して動作することができるとともに長寿命の照明装置を作製することができる。   In addition, the lighting device is a concentric arrangement of a circular or polygonal light emitting device 7 group composed of a plurality of light emitting devices 7 on the light emitting device drive circuit board 9 as shown in the plan view and the sectional view shown in FIGS. In the case of the illuminating device formed in a plurality of groups, it is preferable to increase the number of the light emitting devices 7 arranged in one circular or polygonal light emitting device group 7 toward the outer peripheral side from the center side of the illuminating device. Thereby, more light-emitting devices 7 can be arrange | positioned, maintaining the space | interval of light-emitting devices 7 moderately, and the illumination intensity of an illuminating device can be improved more. Moreover, the density of the light-emitting device 7 in the central portion of the lighting device can be reduced to suppress heat accumulation in the central portion of the light-emitting device driving circuit board 9. Therefore, the temperature distribution in the light emitting device drive circuit board 9 becomes uniform, heat is efficiently transmitted to the external electric circuit board on which the lighting device is installed and the heat sink, and the temperature rise of the light emitting device 7 can be suppressed. As a result, the light-emitting device 7 can operate stably over a long period of time, and a long-life lighting device can be manufactured.

このような照明装置としては、例えば、室内や室外で用いられる、一般照明用器具、シャンデリア用照明器具、住宅用照明器具、オフィス用照明器具、店装,展示用照明器具、街路用照明器具、誘導灯器具及び信号装置、舞台及びスタジオ用の照明器具、広告灯、照明用ポール、水中照明用ライト、ストロボ用ライト、スポットライト、電柱等に埋め込む防犯用照明、非常用照明器具、懐中電灯、電光掲示板等や、調光器、自動点滅器、ディスプレイ等のバックライト、動画装置、装飾品、照光式スイッチ、光センサ、医療用ライト、車載ライト等が挙げられる。   Examples of such lighting devices include general lighting fixtures, chandelier lighting fixtures, residential lighting fixtures, office lighting fixtures, store lighting, display lighting fixtures, street lighting fixtures, used indoors and outdoors. Guide light fixtures and signaling devices, stage and studio lighting fixtures, advertising lights, lighting poles, underwater lighting lights, strobe lights, spotlights, security lights embedded in power poles, emergency lighting fixtures, flashlights, Examples include electronic bulletin boards and the like, backlights for dimmers, automatic flashers, displays and the like, moving image devices, ornaments, illuminated switches, optical sensors, medical lights, in-vehicle lights, and the like.

本発明の発光装置の実施例を以下に説明する。   Examples of the light emitting device of the present invention will be described below.

発光素子5として主発光ピークが382nmである窒化ガリウム半導体発光素子を用いて、以下のようにして本発明の発光装置を製作した。   Using the gallium nitride semiconductor light-emitting element having a main emission peak of 382 nm as the light-emitting element 5, the light-emitting device of the present invention was manufactured as follows.

アルミナセラミックスから成る基体1と、アルミニウムから成る枠体2と、エポキシ樹脂から成る蓋体3と、シリコーン樹脂から成る透明部材6とを用い、また、蛍光体層4に含まれる蛍光体粒子としては、LaS:Euの粒子、ZnS:Cu,Alの粒子および(BaMgAl)1012:Euの粒子を用いた。なお各蛍光体粒子の配合比率は発光装置の発光色が相対色温度で6000Kになるように調整した。 As the phosphor particles contained in the phosphor layer 4, a base body 1 made of alumina ceramic, a frame body 2 made of aluminum, a lid body 3 made of epoxy resin, and a transparent member 6 made of silicone resin are used. , La 2 O 2 S: Eu particles, ZnS: Cu, Al particles and (BaMgAl) 10 O 12 : Eu particles were used. The blending ratio of each phosphor particle was adjusted so that the light emission color of the light emitting device was 6000K in relative color temperature.

蛍光体粒子を混合する透明部材6としてはシリコーン樹脂を用いた。シリコーン樹脂は蛍光体粒子が発する蛍光および発光素子5が発する光双方に対し透明であり、表1に示すように、シリコーン樹脂は透明部材6に対する発光素子5が発する光に対する透過率より、透明部材6に対する蛍光体粒子が発する蛍光の透過率のほうが高いものであった。

Figure 2005183900
Silicone resin was used as the transparent member 6 for mixing the phosphor particles. The silicone resin is transparent to both the fluorescence emitted from the phosphor particles and the light emitted from the light emitting element 5, and as shown in Table 1, the silicone resin is more transparent than the transmittance of the light emitted from the light emitting element 5 to the transparent member 6. The transmittance of the fluorescence emitted from the phosphor particles with respect to 6 was higher.
Figure 2005183900

蛍光体粒子およびシリコーン樹脂を、蛍光体粒子にエタノールを加えミキサーで24時間攪拌した後、エタノールを大気雰囲気中100℃で乾燥させ除去することにより行ない、粒子径の分布が3種類(表1参照)の蛍光体粒子を含有した透明樹脂で発光素子3を覆うように厚さ0.2mmの蛍光体層4を形成し、図1の構成の発光装置のサンプルを作製した。   Phosphor particles and silicone resin were added by adding ethanol to the phosphor particles and stirring with a mixer for 24 hours, followed by drying and removing ethanol at 100 ° C. in an air atmosphere. Three particle size distributions (see Table 1) The phosphor layer 4 having a thickness of 0.2 mm was formed so as to cover the light emitting element 3 with a transparent resin containing the phosphor particles of), and a sample of the light emitting device having the configuration of FIG.

そして、これらのサンプルの各10個に対しての発光色ばらつきを評価した。なお、発光色ばらつきの評価は相対色温度ばらつきを評価することで行った。なお相対色温度とは、被評価物の色と完全黒体の温度を上昇させた際の色が一致した際の完全黒体の温度のことであり、相対色温度の測定は、積分球式全光束測定システム(Labsphare社製 SLMS1021)を用いて行なった。その結果を表2に示す。

Figure 2005183900
And the emission color dispersion | variation with respect to each 10 pieces of these samples was evaluated. The emission color variation was evaluated by evaluating the relative color temperature variation. The relative color temperature is the temperature of the complete black body when the color of the object to be evaluated matches the color when the temperature of the complete black body is raised, and the relative color temperature is measured using an integrating sphere method. The measurement was performed using a total luminous flux measurement system (SLMS1021 manufactured by Labsphere). The results are shown in Table 2.
Figure 2005183900

表1より蛍光体層4中の蛍光体粒子径の分布が0.1μm以上50μm以下の粒子であるサンプルNo.1は、蛍光体層4中の蛍光体粒子径の分布が1μm以上50μm以下の粒子であるサンプルNo.2と比較して、相対色温度ばらつきが増加した。   From Table 1, the sample No. 1 in which the phosphor particle diameter distribution in the phosphor layer 4 is a particle having a particle size of 0.1 μm to 50 μm. No. 1 is a sample No. 1 in which the phosphor particle diameter distribution in the phosphor layer 4 is a particle having a particle size of 1 μm to 50 μm. Compared with 2, the relative color temperature variation increased.

蛍光体粒子径が1μm未満の場合、発光に寄与する蛍光体粒子表面に対し蛍光体粒子の結晶内に含有する欠陥及び不純物の存在確率が高くなりやすく、発光素子5のエネルギーが欠陥や不純物で消費される可能性が高くなる。その結果、発光素子5のエネルギーが所望の波長に変換される効率が低くなり、蛍光体粒子によって発生した蛍光の強度が低下しやすくなる。   When the phosphor particle diameter is less than 1 μm, the existence probability of defects and impurities contained in the crystal of the phosphor particles is likely to increase with respect to the surface of the phosphor particles contributing to light emission, and the energy of the light emitting element 5 is due to defects and impurities. The possibility of being consumed increases. As a result, the efficiency with which the energy of the light emitting element 5 is converted to a desired wavelength is reduced, and the intensity of the fluorescence generated by the phosphor particles is likely to be reduced.

つまり、サンプルNo.1の蛍光体層4中には蛍光体粒子径が1μm未満の蛍光体粒子が含まれているため、上記考察より蛍光体層4に含まれる蛍光体粒子ごとの発光強度バラツキが大きくなった結果、サンプルNo.1の相対色温度ばらつきが大きくなったと思われる。   That is, sample no. Since the phosphor layer 4 of 1 includes phosphor particles having a phosphor particle diameter of less than 1 μm, the result of the variation in the emission intensity for each phosphor particle included in the phosphor layer 4 is greater than the above consideration. Sample No. The relative color temperature variation of No. 1 seems to have increased.

また、蛍光体層4中の蛍光体粒子径の分布が1μm以上500μm以下の粒子であるサンプルNo.3は、蛍光体層4中の蛍光体粒子径の分布が1μm以上50μm以下の粒子であるサンプルNo.2と比較して、急激に相対色温度ばらつきが増加した。   In addition, the sample particle number distribution in which the phosphor particle diameter distribution in the phosphor layer 4 is 1 μm or more and 500 μm or less is shown. 3 is a sample No. 3 in which the phosphor particle diameter distribution in the phosphor layer 4 is a particle having a particle size of 1 μm or more and 50 μm or less. Compared with 2, the relative color temperature variation increased rapidly.

蛍光体粒子の粒径が50μmを超えると、蛍光体粒子の体積に対し発光に寄与する蛍光体粒子表面が狭くなる。すなわち、蛍光体層4の体積に対する、発光に寄与する蛍光体粒子表面が狭くなり発光強度が低下しやすくなる。   When the particle diameter of the phosphor particles exceeds 50 μm, the phosphor particle surface contributing to light emission becomes narrower with respect to the volume of the phosphor particles. That is, the phosphor particle surface contributing to light emission with respect to the volume of the phosphor layer 4 becomes narrow, and the light emission intensity is likely to decrease.

つまり、サンプルNo.3の蛍光体層4中には蛍光体粒子径が50μmを超える蛍光体粒子が含まれているため、上記考察より蛍光体層4に含まれる蛍光体粒子ごとの発光強度バラツキが大きくなった結果、サンプルNo.3の相対色温度ばらつきが大きくなったと思われる。   That is, sample no. 3 includes phosphor particles having a phosphor particle diameter of more than 50 μm, and as a result of the above consideration, the emission intensity variation of each phosphor particle included in the phosphor layer 4 is increased. Sample No. The relative color temperature variation of No. 3 seems to have increased.

上記結果より蛍光体層4中の蛍光体粒子径の分布が1μm以上50μm以下の粒子であるサンプルNo.2が最も相対色温度ばらつきが小さい結果が得られた。これは、蛍光体層4中のそれぞれの蛍光体粒子において、発光素子5が発する光が蛍光体粒子中の欠陥で消費されることが少なく、効率よく蛍光体層4中の蛍光体粒子を励起させることができ、また蛍光体層4の体積に対する蛍光体粒子表面積も適度な量が得られる結果、相対色温度ばらつきが小さくなったものと思われる。   From the above results, the sample No. 1 in which the phosphor particle size distribution in the phosphor layer 4 is a particle having a particle size of 1 μm to 50 μm. 2 gave the smallest relative color temperature variation. This is because, in each phosphor particle in the phosphor layer 4, light emitted from the light emitting element 5 is less consumed by defects in the phosphor particle, and the phosphor particles in the phosphor layer 4 are efficiently excited. It is considered that as a result of obtaining an appropriate amount of the phosphor particle surface area with respect to the volume of the phosphor layer 4, the variation in relative color temperature is reduced.

以上の結果より、蛍光体層4中の蛍光体粒子径の分布が1μm以上50μm以下の粒子である発光装置を形成することで発光色ばらつきの少ない発光装置をえることができた。   From the above results, it was possible to obtain a light emitting device with little emission color variation by forming a light emitting device in which the particle size distribution in the phosphor layer 4 is particles of 1 μm to 50 μm.

なお、本発明は上記の実施の形態および実施例に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を行うことは何等支障ない。   It should be noted that the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present invention.

また、本発明の照明装置は、複数個の発光装置7を所定の配置となるように設置したものだけでなく、1個の発光装置7を所定の配置となるように設置したものでもよい。   In addition, the lighting device of the present invention is not limited to one in which a plurality of light emitting devices 7 are installed in a predetermined arrangement, but may be one in which one light emitting device 7 is installed in a predetermined arrangement.

本発明の発光装置の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the light-emitting device of this invention. 従来の発光装置を示す断面図である。It is sectional drawing which shows the conventional light-emitting device. 本発明の照明装置の実施の形態の一例を示す平面図である。It is a top view which shows an example of embodiment of the illuminating device of this invention. 図3の照明装置の断面図である。It is sectional drawing of the illuminating device of FIG. 本発明の照明装置の実施の形態の他の例を示す平面図である。It is a top view which shows the other example of embodiment of the illuminating device of this invention. 図5の照明装置の断面図である。It is sectional drawing of the illuminating device of FIG.

符号の説明Explanation of symbols

1:基体
2:枠体
3:蓋体
4:蛍光体層
5:発光素子
6:透明部材
7:発光装置
8:反射治具
9:発光装置駆動回路基板
1: Base body 2: Frame body 3: Cover body 4: Phosphor layer 5: Light emitting element 6: Transparent member 7: Light emitting device 8: Reflecting jig 9: Light emitting device driving circuit board

Claims (4)

発光波長が300〜400nmである発光素子と、該発光素子の光軸上に配置された、LaS:Euの蛍光体粒子、ZnS:Cu,Alの蛍光体粒子および(BaMgAl)1012:Euの蛍光体粒子を透明部材中に混入させて成る蛍光体層とを具備しており、前記各蛍光体粒子の平均粒径が1〜50μmであることを特徴とする発光装置。 A light emitting device having an emission wavelength of 300 to 400 nm, La 2 O 2 S: Eu phosphor particles, ZnS: Cu, Al phosphor particles and (BaMgAl) 10 disposed on the optical axis of the light emitting device And a phosphor layer obtained by mixing phosphor particles of O 12 : Eu in a transparent member, wherein each phosphor particle has an average particle diameter of 1 to 50 μm. 前記透明部材は、前記発光素子が発する光と、前記発光素子からの光によって励起されたそれぞれの前記蛍光体粒子が発する蛍光に対して透明な樹脂またはガラスから成ることを特徴とする請求項1記載の発光装置。 2. The transparent member is made of a resin or glass that is transparent to light emitted from the light emitting element and fluorescence emitted from each of the phosphor particles excited by the light from the light emitting element. The light-emitting device of description. 前記透明部材は、前記発光素子が発する光に対する透過率よりも前記蛍光体粒子が発する蛍光に対する透過率の方が高いことを特徴とする請求項2記載の発光装置。 The light emitting device according to claim 2, wherein the transparent member has a higher transmittance with respect to the fluorescence emitted by the phosphor particles than a transmittance with respect to the light emitted by the light emitting element. 請求項1乃至請求項3のいずれかに記載の発光装置を所定の配置となるように設置したことを特徴とする照明装置。 An illuminating device, wherein the light emitting device according to any one of claims 1 to 3 is installed in a predetermined arrangement.
JP2004071432A 2003-10-30 2004-03-12 Light emitting device and lighting system Pending JP2005183900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071432A JP2005183900A (en) 2003-10-30 2004-03-12 Light emitting device and lighting system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003370212 2003-10-30
JP2003397319 2003-11-27
JP2004071432A JP2005183900A (en) 2003-10-30 2004-03-12 Light emitting device and lighting system

Publications (1)

Publication Number Publication Date
JP2005183900A true JP2005183900A (en) 2005-07-07

Family

ID=34799297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071432A Pending JP2005183900A (en) 2003-10-30 2004-03-12 Light emitting device and lighting system

Country Status (1)

Country Link
JP (1) JP2005183900A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021868A (en) * 2006-07-13 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite member
JP2010532929A (en) * 2007-07-06 2010-10-14 エルジー イノテック カンパニー リミテッド Light emitting device package
WO2019012787A1 (en) * 2017-07-12 2019-01-17 日本電気硝子株式会社 Laminated ceramic substrate and laminated ceramic package
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021868A (en) * 2006-07-13 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite member
JP2010532929A (en) * 2007-07-06 2010-10-14 エルジー イノテック カンパニー リミテッド Light emitting device package
US8610255B2 (en) 2007-07-06 2013-12-17 Lg Innotek Co., Ltd. Light emitting device package
US8890297B2 (en) 2007-07-06 2014-11-18 Lg Innotek Co., Ltd. Light emitting device package
US9368697B2 (en) 2007-07-06 2016-06-14 Lg Innotek Co., Ltd. Light emitting device package
WO2019012787A1 (en) * 2017-07-12 2019-01-17 日本電気硝子株式会社 Laminated ceramic substrate and laminated ceramic package
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11796163B2 (en) 2020-05-12 2023-10-24 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Similar Documents

Publication Publication Date Title
JP3898721B2 (en) Light emitting device and lighting device
JP5196711B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP2006237264A (en) Light emitting device and lighting apparatus
JP2005243973A (en) Light-emitting device and luminaire
JP4671745B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP2006210627A (en) Light emitting element housing package, light emitting unit, and lighting device
JP2006049814A (en) Light emitting device and illumination system
JP3921474B2 (en) Light emitting device and lighting device
JP2007266358A (en) Light-emitting device and illuminator
JP2005159262A (en) Package for housing light emitting element, light emitting device, and lighting system
JP5025143B2 (en) Light emitting device and lighting device
JP2006295230A (en) Light emitting device and lighting apparatus
JP4707433B2 (en) Light emitting device and lighting device
JP2005210042A (en) Light emitting apparatus and illumination apparatus
JP2005277331A (en) Light emitting device and lighting device
JP2006093399A (en) Light-emitting device, its manufacturing method and luminaire
JP2006066657A (en) Light emitting device and lighting device
JP2004343070A (en) Light emitting device and lighting system
JP2006100441A (en) Light emitting element housing package, light emitting device, and illumination device
JP4417757B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP4624069B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP5085851B2 (en) Light emitting device and lighting device
JP4091926B2 (en) Light emitting device and lighting device
JP2006156604A (en) Light emitting device and lighting system
JP2005310911A (en) Package for housing light emitting element, light emitting device, and lighting apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109