JP2004343070A - Light emitting device and lighting system - Google Patents

Light emitting device and lighting system Download PDF

Info

Publication number
JP2004343070A
JP2004343070A JP2004071431A JP2004071431A JP2004343070A JP 2004343070 A JP2004343070 A JP 2004343070A JP 2004071431 A JP2004071431 A JP 2004071431A JP 2004071431 A JP2004071431 A JP 2004071431A JP 2004343070 A JP2004343070 A JP 2004343070A
Authority
JP
Japan
Prior art keywords
light emitting
light
particles
emitting device
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004071431A
Other languages
Japanese (ja)
Inventor
Kosuke Katabe
浩介 形部
Fumiaki Sekine
史明 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004071431A priority Critical patent/JP2004343070A/en
Publication of JP2004343070A publication Critical patent/JP2004343070A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a light emitting device with high luminance by adjusting percentage of fluorescent substances of three primary colors and a transparent resin, and thickness of a fluorescent layer formed by mixing the fluorescent substances of three primary colors into the transparent resin. <P>SOLUTION: The light emitting device comprises: a light emitting element 5 whose emission wavelength is 300-400 nm, and the transparent resin, formed by mixing particles of Y<SB>2</SB>O<SB>2</SB>S: Eu, particles of ZnS: Cu, Al, and particles of BaMgAl<SB>10</SB>O<SB>12</SB>: Eu, provided so as to cover the light emitting element 5. When total amount of each particle is made 100 pts.wt., the transparent resin is 80-150 pts.wt. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発光ダイオード等の発光素子から発せられる光を蛍光体により波長変換して外部に放射する発光装置および照明装置に関する。   The present invention relates to a light emitting device and a lighting device that convert light emitted from a light emitting element such as a light emitting diode into a wavelength by using a phosphor and radiate the light to the outside.

従来の発光ダイオード(LED)等の発光素子105を収容するための発光装置を図7に示す。図7に示すように、発光装置は、上面の中央部に発光素子105を搭載し、発光素子105と発光素子収納用パッケージ(以下、単にパッケージともいう)の内外を電気的に導通接続するリード端子やメタライズ配線層等から成る配線導体(図示せず)が形成された絶縁体から成る基体101と、基体101の上面に接着固定され、中央部に発光素子105を収納するための貫通孔が形成された、金属、樹脂またはセラミックス等から成る枠体102とから主に構成される。   FIG. 7 shows a conventional light emitting device for housing a light emitting element 105 such as a light emitting diode (LED). As shown in FIG. 7, the light emitting device has a light emitting element 105 mounted in the center of the upper surface, and leads for electrically conducting connection between the light emitting element 105 and the inside and outside of a light emitting element housing package (hereinafter also simply referred to as a package). A base 101 made of an insulator on which a wiring conductor (not shown) made up of a terminal, a metallized wiring layer, and the like is formed, and a through-hole for adhering and fixing to the upper surface of the base 101 and for accommodating the light emitting element 105 in the center portion is provided. It is mainly composed of the formed frame 102 made of metal, resin, ceramics or the like.

基体101は酸化アルミニウム質焼結体(アルミナセラミックス)や窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂から成る。基体101がセラミックスから成る場合、その上面にメタライズ配線層がタングステン(W),モリブデン(Mo)−マンガン(Mn)等から成る金属ペーストを高温で焼成して形成される。また、基体101が樹脂から成る場合、基体101をモールド成型する際に、銅(Cu)や鉄(Fe)−ニッケル(Ni)合金等から成るリード端子が基体101の内部に一端部が突出するように固定される。   The substrate 101 is made of a ceramic such as an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, a mullite sintered body, a glass ceramic, or a resin such as an epoxy resin. When the base 101 is made of ceramics, a metallized wiring layer is formed on the upper surface by firing a metal paste made of tungsten (W), molybdenum (Mo) -manganese (Mn) or the like at a high temperature. When the base 101 is made of a resin, a lead terminal made of copper (Cu) or an iron (Fe) -nickel (Ni) alloy or the like has one end projecting into the base 101 when the base 101 is molded. To be fixed.

また、枠体102は、アルミニウム(Al)やFe−Ni−コバルト(Co)合金等の金属、アルミナ質焼結体等のセラミックスまたはエポキシ樹脂等の樹脂から成り、切削加工や金型成型または押し出し成型等の成型技術により形成される。さらに、枠体102の中央部には上方に向かうに伴って外側に広がる貫通孔が形成されており、貫通孔の内周面の光の反射率を向上させる場合、この内周面にAl等の金属が蒸着法やメッキ法により被着される。そして、枠体102は、半田、銀ロウ等のロウ材または樹脂接着剤により、基体101の上面に接合される。   The frame body 102 is made of a metal such as an aluminum (Al) or Fe-Ni-cobalt (Co) alloy, a ceramic such as an alumina sintered body, or a resin such as an epoxy resin, and is formed by cutting, molding or extrusion. It is formed by a molding technique such as molding. Further, a through hole is formed in the center of the frame body 102 and extends outward as it goes upward. When the reflectivity of light on the inner peripheral surface of the through hole is to be improved, the inner peripheral surface is made of Al or the like. Is deposited by vapor deposition or plating. Then, the frame body 102 is joined to the upper surface of the base body 101 by a solder, a brazing material such as silver brazing, or a resin adhesive.

そして、基体101表面に形成した配線導体(図示せず)と発光素子105の電極とをボンディングワイヤ(図示せず)を介して電気的に接続し、しかる後、発光素子105の表面に蛍光体層103を形成した後に、枠体102の内側に透明樹脂106を充填し熱硬化させることで、発光素子105からの光を蛍光体層104により波長変換し所望の波長スペクトルを有する光を取り出せる発光装置と成すことができる。そして、枠体102の上面に透光性の蓋体103を半田や樹脂接着剤等で接合して発光装置となる。また、発光素子105として発光波長が300〜400nmの紫外領域を含むのものを選び、蛍光体層104に含まれる赤、青、緑の3原色の蛍光体の混合比率を調整することで色調を自由に設計することができる。   Then, a wiring conductor (not shown) formed on the surface of the base 101 and an electrode of the light emitting element 105 are electrically connected via a bonding wire (not shown). After forming the layer 103, the inside of the frame 102 is filled with the transparent resin 106 and thermally cured, so that the light from the light emitting element 105 is converted in wavelength by the phosphor layer 104 and light having a desired wavelength spectrum can be extracted. Can be made with equipment. Then, a light-transmitting lid 103 is joined to the upper surface of the frame 102 with solder, a resin adhesive, or the like, to form a light emitting device. Also, a light emitting element 105 having an emission wavelength including an ultraviolet region of 300 to 400 nm is selected, and the color tone is adjusted by adjusting the mixture ratio of the three primary color phosphors of red, blue, and green contained in the phosphor layer 104. Can be designed freely.

そのような蛍光体としては様々な材料が用いられており、例えば赤はYS:Eu(EuドープYS)の粒子、緑はZnS:Cu,Alの粒子、青はBaMgAl1012:Euの粒子が用られている。 Various materials are used as such a phosphor. For example, red is Y 2 O 2 S: Eu (Eu-doped Y 2 O 2 S) particles, green is ZnS: Cu, Al particles, and blue is BaMgAl 10 O 12 : Eu particles are used.

また一般的に蛍光体は紛体であり、蛍光体単独では蛍光体層103の形成が困難なため、樹脂もしくはガラスなどの透明材料中に蛍光体を混入して発光素子105の表面に塗布し蛍光体層104とするのが一般的である。
特開2003-37298号公報
In general, the phosphor is a powder, and since it is difficult to form the phosphor layer 103 using the phosphor alone, the phosphor is mixed into a transparent material such as resin or glass and applied to the surface of the light emitting element 105 to form the phosphor. Generally, the body layer 104 is used.
JP 2003-37298 A

しかしながら、蛍光体と透明材料との混練比率と発光装置の輝度、また蛍光体層104の厚さと発光装置の輝度については強い関連性があり、混練比率や蛍光体層104の厚さの変化によって発光装置間で輝度が大きくばらつくという問題点があった。   However, there is a strong relationship between the kneading ratio of the phosphor and the transparent material and the luminance of the light emitting device, and the thickness of the phosphor layer 104 and the luminance of the light emitting device, and the kneading ratio and the thickness of the phosphor layer 104 change. There is a problem that the luminance varies greatly between the light emitting devices.

すなわち、図3に示すように、蛍光体粒子10に対して透明材料の比率が少ないと、蛍光体粒子10が凝集してしまい、その結果、発光素子からの光12によって励起された蛍光11が発光していない蛍光体10aに遮られて外部に放射されず、輝度が落ちるという問題点があった。   That is, as shown in FIG. 3, when the ratio of the transparent material to the phosphor particles 10 is small, the phosphor particles 10 aggregate, and as a result, the fluorescence 11 excited by the light 12 from the light emitting element is generated. There is a problem that the brightness is reduced because the phosphor 10a that does not emit light is not radiated to the outside because it is blocked.

また、図4に示すように、蛍光体粒子13に対して透明材料の比率が多いと、蛍光体粒子13の間に透明材料が入りこみ、発光素子からの光14のうち蛍光体粒子13に当たらずに透明材料を透過する光14aが発生し、その結果、発光装置の輝度が落ちるという問題点があった。   Further, as shown in FIG. 4, when the ratio of the transparent material to the phosphor particles 13 is large, the transparent material enters between the phosphor particles 13 and the light 14 from the light emitting element hits the phosphor particles 13. However, there is a problem in that the light 14a is transmitted through the transparent material, and as a result, the brightness of the light emitting device is reduced.

さらに、図5に示すように、蛍光体層の厚さが薄いと、やはり蛍光体粒子15間の隙間から漏れる発光素子の光16が多くなり、その結果、蛍光体粒子15により波長変換されない光16aが発生し、発光装置の輝度が落ちるという問題点があった。   Further, as shown in FIG. 5, when the thickness of the phosphor layer is small, the light 16 of the light emitting element that also leaks from the gap between the phosphor particles 15 increases, and as a result, the light that is not wavelength-converted by the phosphor particles 15 There was a problem that 16a was generated and the luminance of the light emitting device was reduced.

また、図6に示すように、蛍光体層の厚さが厚いと、空間的に蛍光体粒子17が重なることとなり、発光素子からの光18により励起された蛍光19が重なった蛍光体粒子17aに遮られ、発光装置の輝度が落ちるという問題点があった。   Further, as shown in FIG. 6, when the thickness of the phosphor layer is large, the phosphor particles 17 spatially overlap, and the phosphor particles 17a in which the fluorescence 19 excited by the light 18 from the light emitting element overlaps. And the brightness of the light emitting device is reduced.

従って、本発明は上記従来の問題点に鑑みて完成されたものであり、その目的は、3原色の蛍光体と透明樹脂との比率、および透明樹脂に3原色の蛍光体を混入して成る蛍光体層の厚さを調整することにより、輝度が高い発光装置を作製できるようにするとともに、発光装置間の輝度のバラツキを小さくすることにある。   Accordingly, the present invention has been completed in view of the above-mentioned conventional problems, and its object is to mix the three primary color phosphors with the transparent resin and the ratio of the three primary color phosphors to the transparent resin. By adjusting the thickness of the phosphor layer, a light-emitting device with high luminance can be manufactured, and a variation in luminance between the light-emitting devices is reduced.

本発明の発光装置は、発光波長が300〜400nmである発光素子と、該発光素子を覆うように設けられた、YS:Euの粒子、ZnS:Cu,Alの粒子およびBaMgAl1012:Euの粒子を混入させて成る透明樹脂とを具備しており、前記各粒子の合計量を100質量部としたとき、前記透明樹脂が80〜150質量部であることを特徴とする。 The light emitting device of the present invention, a light emitting element emission wavelength is 300 to 400 nm, provided so as to cover the light-emitting element, Y 2 O 2 S: Eu particles, ZnS: Cu, Al particles and BaMgAl 10 O 12 : a transparent resin obtained by mixing particles of Eu, wherein the transparent resin is 80 to 150 parts by mass when the total amount of the respective particles is 100 parts by mass. .

本発明の発光装置において、好ましくは、前記透明樹脂は厚さが0.1〜0.3mmであることを特徴とする。   In the light emitting device according to the present invention, preferably, the transparent resin has a thickness of 0.1 to 0.3 mm.

本発明の照明装置は、上記本発明の発光装置を所定の配置となるように設置したことを特徴とする。   The lighting device according to the present invention is characterized in that the light emitting device according to the present invention is installed in a predetermined arrangement.

本発明の発光装置は、発光波長が300〜400nmである発光素子と、発光素子を覆うように設けられた、YS:Euの粒子、ZnS:Cu,Alの粒子およびBaMgAl1012:Euの粒子を混入させて成る透明樹脂とを具備しており、各粒子の合計量を100質量部としたとき、透明樹脂が80〜150質量部であることから、発光素子からの光によって蛍光体の粒子が励起されて発生した蛍光が別の粒子に遮られることを防いで、蛍光を効率的に外部に取りだすことができる。その結果、発光装置の輝度を高めることができるとともに、発光装置間で輝度がばらつくのを抑えることができる。 The light emitting device of the present invention, a light emitting element emission wavelength is 300 to 400 nm, provided so as to cover the light emitting element, Y 2 O 2 S: Eu particles, ZnS: Cu, Al particles and BaMgAl 10 O 12 : a transparent resin mixed with Eu particles, and when the total amount of each particle is 100 parts by mass, the transparent resin is 80 to 150 parts by mass. Thus, the fluorescence generated by the excitation of the phosphor particles is prevented from being blocked by other particles, and the fluorescence can be efficiently extracted to the outside. As a result, the luminance of the light-emitting devices can be increased, and variation in luminance between the light-emitting devices can be suppressed.

本発明の発光装置は、好ましくは透明樹脂は厚さが0.1〜0.3mmであることから、発光素子からの光によって蛍光体の粒子が励起されて発生した蛍光が別の粒子に遮られることを防ぐとともに、発光素子の光が蛍光体の粒子を励起せずに粒子間から抜けるのを効果的に抑えることができる。その結果、発光装置の輝度をより高めることができるとともに、発光装置間で輝度がばらつくのをさらに抑えることができる。   In the light emitting device of the present invention, preferably, since the transparent resin has a thickness of 0.1 to 0.3 mm, the fluorescent particles generated by the excitation of the phosphor particles by light from the light emitting element are blocked by other particles. In addition, it is possible to effectively prevent the light of the light emitting element from passing through the phosphor particles without exciting the particles. As a result, it is possible to further increase the luminance of the light emitting devices and to further suppress the luminance variation between the light emitting devices.

本発明の照明装置は、上記本発明の発光装置を所定の配置となるように設置したことから、半導体から成る発光素子の電子の再結合による発光を利用しているため、従来の放電を用いた照明装置よりも低消費電力かつ長寿命とすることが可能な小型の照明装置とすることができる。その結果、発光素子から発生する光の中心波長の変動を抑制することができ、長期間にわたり安定した放射光強度かつ放射光角度(配光分布)で光を照射することができるとともに、照射面における色むらや照度分布の偏りが抑制された照明装置とすることができる。   Since the lighting device of the present invention uses the light-emitting device of the present invention so as to be arranged in a predetermined arrangement, it utilizes light emission by recombination of electrons of a light-emitting element made of a semiconductor. It is possible to provide a compact lighting device that can have lower power consumption and longer life than the lighting device that has been used. As a result, it is possible to suppress the fluctuation of the center wavelength of the light generated from the light emitting element, to irradiate the light with the stable radiated light intensity and the radiated light angle (light distribution) over a long period, and to irradiate the light. In this case, it is possible to provide an illumination device in which uneven color and uneven illuminance distribution are suppressed.

また、本発明の発光装置を光源として所定の配置に設置するとともに、これらの発光装置の周囲に任意の形状に光学設計した反射治具や光学レンズ、光拡散板等を設置することにより、任意の配光分布の光を放射する照明装置とすることができる。   In addition, the light emitting device of the present invention is installed in a predetermined arrangement as a light source, and by installing a reflection jig, an optical lens, a light diffusing plate, and the like optically designed in an arbitrary shape around these light emitting devices, Lighting device that emits light having a light distribution of

本発明の発光装置について以下に詳細に説明する。図1は、本発明の発光装置の実施の形態の一例を示す断面図であり、1は基体、2は枠体、3は蓋体、4は蛍光体層、5は発光素子、6は樹脂やガラスなどの透明部材であり、主としてこれらで発光装置が構成されている。   The light emitting device of the present invention will be described in detail below. FIG. 1 is a cross-sectional view showing an embodiment of a light emitting device according to the present invention, wherein 1 is a base, 2 is a frame, 3 is a lid, 4 is a phosphor layer, 5 is a light emitting element, and 6 is a resin. And a transparent member such as glass. The light emitting device is mainly composed of these.

本発明の発光装置は、発光波長が300〜400nmである発光素子と、発光素子を覆うように設けられた、YS:Euの粒子、ZnS:Cu,Alの粒子およびBaMgAl1012:Euの粒子を混入させて成る透明樹脂とを具備し、各粒子の合計量を100質量部としたとき、透明樹脂が80〜150質量部である。 The light emitting device of the present invention, a light emitting element emission wavelength is 300 to 400 nm, provided so as to cover the light emitting element, Y 2 O 2 S: Eu particles, ZnS: Cu, Al particles and BaMgAl 10 O 12 : a transparent resin containing particles of Eu mixed therein, and when the total amount of each particle is 100 parts by mass, the transparent resin is 80 to 150 parts by mass.

これにより、発光素子5からの光によって蛍光体の粒子が励起されて発生した蛍光が別の粒子に遮られることを防いで、蛍光を効率的に外部に取りだすことができる。すなわち、図2の本発明の作用の概念図に示すように、蛍光体の粒子7は、蛍光体層としての透明樹脂層中において、発光素子5の光8の光軸方向に直交する方向(蛍光体層の面方向)では比較的緻密に、光8の光軸方向では比較的薄くて重ならないように分散して配置されることとなる。その結果、光8は効率よく個々の粒子7に当たり、効率よく粒子7を励起して所望の波長の光9に変換することができる結果、輝度が高くバラツキの少ない発光装置が得られる。   This prevents the fluorescent particles generated by the excitation of the phosphor particles by the light from the light emitting element 5 from being blocked by other particles, so that the fluorescent light can be efficiently extracted to the outside. That is, as shown in the conceptual diagram of the operation of the present invention in FIG. 2, the phosphor particles 7 are arranged in a direction perpendicular to the optical axis direction of the light 8 of the light emitting element 5 in the transparent resin layer as the phosphor layer. In the direction of the phosphor layer (in the plane direction of the phosphor layer), it is relatively dense, and in the optical axis direction of the light 8, it is relatively thin and dispersed so as not to overlap. As a result, the light 8 can efficiently hit the individual particles 7 and efficiently excite the particles 7 to be converted into light 9 having a desired wavelength. As a result, a light-emitting device with high luminance and small variation can be obtained.

本発明における基体1は、酸化アルミニウム質焼結体(アルミナセラミックス),窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂から成る絶縁体であり、発光波長が300〜400nmである発光素子5を支持する支持部材である。   The base 1 in the present invention is an insulator made of a ceramic such as an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, a mullite sintered body, a glass ceramic, or a resin such as an epoxy resin. It is a supporting member for supporting the light emitting element 5 having an emission wavelength of 300 to 400 nm.

この基体1の表面や内部には、発光装置の内外を電気的に導通接続するためのW,Mo,Mn等の金属粉末から成るメタライズ配線層が形成されており、また、基体1の下面等の外部に露出した表面のメタライズ配線層にCu,Fe−Ni合金等の金属から成るリード端子が接合される。そして、基体1にはLED等の発光波長が300〜400nmである発光素子5が半田、樹脂接着剤、または銀等の金属粉末を樹脂に混入した銀(Ag)−エポキシ樹脂(Agペースト)等の接合材で接合される。そして、基体1のメタライズ配線層に上記発光素子5の電極がボンディングワイヤ(図示せず)を介して電気的に接続される。   A metallized wiring layer made of a metal powder of W, Mo, Mn or the like for electrically connecting the inside and outside of the light emitting device is formed on the surface or inside of the base 1, and the lower surface of the base 1 or the like is formed. A lead terminal made of a metal such as a Cu or Fe-Ni alloy is joined to the metallized wiring layer on the surface exposed to the outside of the device. A light emitting element 5 having an emission wavelength of 300 to 400 nm, such as an LED, is formed on the base 1 by soldering, a resin adhesive, or silver (Ag) -epoxy resin (Ag paste) obtained by mixing a metal powder such as silver into a resin. Are joined with the joining material. Then, the electrode of the light emitting element 5 is electrically connected to the metallized wiring layer of the base 1 via a bonding wire (not shown).

なお、メタライズ配線層の露出する表面にNiや金(Au)等の耐食性に優れる金属を1〜20μm程度の厚みで被着させておくのがよく、メタライズ配線層が酸化腐食するのを有効に防止できるとともに、メタライズ配線層と発光素子5との接続およびメタライズ配線層とボンディングワイヤとの接続を強固にすることができる。従って、メタライズ配線層の露出表面には、厚さ1〜10μm程度のNiメッキ層と厚さ0.1〜3μm程度のAuメッキ層とが電解メッキ法や無電解メッキ法により順次被着されていることがより好ましい。   Preferably, a metal having excellent corrosion resistance, such as Ni or gold (Au), having a thickness of about 1 to 20 μm is applied to the exposed surface of the metallized wiring layer to effectively prevent the metallized wiring layer from being oxidized and corroded. In addition to this, the connection between the metallized wiring layer and the light emitting element 5 and the connection between the metallized wiring layer and the bonding wire can be strengthened. Therefore, a Ni plating layer having a thickness of about 1 to 10 μm and an Au plating layer having a thickness of about 0.1 to 3 μm are sequentially deposited on the exposed surface of the metallized wiring layer by an electrolytic plating method or an electroless plating method. Is more preferred.

また、基板1の上面には、基板1の下面側への光の透過を有効に抑制するとともに、基板1の上側に光を効率的に反射させるために、メタライズ配線層に電気的に短絡しないようにして、Al,Ag,Au,Pt,Cu等の金属を蒸着法やメッキ法により反射層として形成することが好ましい。   In addition, the upper surface of the substrate 1 is not electrically short-circuited to the metallized wiring layer in order to effectively suppress transmission of light to the lower surface side of the substrate 1 and efficiently reflect light to the upper side of the substrate 1. Thus, it is preferable to form a metal such as Al, Ag, Au, Pt, and Cu as a reflective layer by a vapor deposition method or a plating method.

次に、発光波長が300〜400nmである発光素子5の光を所望の波長の光(例えば、420〜780nmの可視光)に変換するために、発光素子5の表面に蛍光体の粒子を混入させた透明樹脂から成る蛍光体層4を塗布し形成する。その蛍光体の粒子は、赤色(約580〜780nm)の蛍光を発生するYS:Eu、緑色(約450〜650nm)の蛍光を発生するZnS:Cu,Al、青色(420〜550nm)の蛍光を発生するBaMgAl1012:Euである。 Next, in order to convert light of the light emitting element 5 having an emission wavelength of 300 to 400 nm into light of a desired wavelength (for example, visible light of 420 to 780 nm), phosphor particles are mixed into the surface of the light emitting element 5. The phosphor layer 4 made of the transparent resin thus formed is applied and formed. The phosphor particles include Y 2 O 2 S: Eu which emits red (about 580 to 780 nm) fluorescence, ZnS: Cu, Al which emits green (about 450 to 650 nm) fluorescence, and blue (420 to 550 nm). BaMgAl 10 O 12 : Eu which generates the fluorescence of (1).

これらの蛍光体は紛体であり、蛍光体のみを発光素子5の表面に形成することは困難なため、透明樹脂中に蛍光体の粒子を混入して発光素子5の表面に塗布し蛍光体層4とする。また、透明樹脂はエポキシ樹脂、シリコーン樹脂、アクリル樹脂等から成る。   Since these phosphors are powders and it is difficult to form only the phosphor on the surface of the light emitting element 5, phosphor particles are mixed in a transparent resin and applied to the surface of the light emitting element 5 to form a phosphor layer. 4 is assumed. The transparent resin is made of an epoxy resin, a silicone resin, an acrylic resin, or the like.

発光波長が300〜400nmである発光素子5は、紫外線領域を主に含む波長帯域の光を発生するものであり、上記の蛍光体の粒子はこの波長帯域の光を効率的に蛍光に変換することができる。   The light emitting element 5 having an emission wavelength of 300 to 400 nm generates light in a wavelength band mainly including an ultraviolet region, and the phosphor particles efficiently convert the light in this wavelength band into fluorescent light. be able to.

そして、本発明においては、YS:Euの粒子、ZnS:Cu,Alの粒子およびBaMgAl1012:Euの粒子の合計量を100質量部としたとき、透明樹脂が80〜150質量部であるが、透明樹脂が80質量部未満の場合、蛍光体層4中で蛍光体の粒子同士が凝集し、発光素子5の光により蛍光体が励起されて発生した蛍光が発光していない蛍光体に遮られ易くなり、発光装置の輝度が落ちることとなる。一方、150質量部を超えると、蛍光体層4中の透明樹脂の量が多すぎて、発光素子5の光のうち蛍光体の粒子に当たらずに透明樹脂を透過する光が多く発生し、その結果発光装置の輝度が落ちることとなる。 In the present invention, when the total amount of Y 2 O 2 S: Eu particles, ZnS: Cu, Al particles and BaMgAl 10 O 12 : Eu particles is 100 parts by mass, the transparent resin is 80 to 150 parts by mass. When the amount of the transparent resin is less than 80 parts by mass, the phosphor particles aggregate in the phosphor layer 4, and the phosphor generated by excitation of the phosphor by the light of the light emitting element 5 emits light. The light-emitting device is likely to be blocked by the non-existing phosphor, and the brightness of the light-emitting device is reduced. On the other hand, when the amount exceeds 150 parts by mass, the amount of the transparent resin in the phosphor layer 4 is too large, and a large amount of light of the light-emitting element 5 that passes through the transparent resin without hitting the phosphor particles is generated, As a result, the brightness of the light emitting device is reduced.

また、YS:Euの粒子は80〜90%質量部であることが好ましい。80%質量部未満では、赤色(約580〜780nm)の蛍光の強度が低下し易くなり、その結果蛍光全体の輝度が低下し易くなる。90%質量部を超えると、赤色(約580〜780nm)の蛍光の強度が強くなりすぎ、その結果蛍光全体の輝度が低下し易くなる。 Further, the Y 2 O 2 S: Eu particles preferably account for 80 to 90% by mass. If the amount is less than 80% by mass, the intensity of red (about 580 to 780 nm) fluorescent light tends to decrease, and as a result, the luminance of the entire fluorescent light tends to decrease. If the amount exceeds 90% by mass, the intensity of the red (about 580 to 780 nm) fluorescent light becomes too strong, and as a result, the luminance of the entire fluorescent light tends to decrease.

ZnS:Cu,Alの粒子は3〜5%質量部であることが好ましい。3%質量部未満では、緑色(約450〜650nm)の蛍光の強度が強くなりすぎ、蛍光全体の輝度が低下し易くなる。5%質量部を超えると、緑色(約450〜650nm)の蛍光の強度が強くなりすぎ、その結果蛍光全体の輝度が低下し易くなる。   The ZnS: Cu, Al particles are preferably 3 to 5% by mass. If the amount is less than 3% by mass, the intensity of green (about 450 to 650 nm) fluorescent light is too strong, and the overall luminance of the fluorescent light is likely to decrease. If the amount exceeds 5% by mass, the intensity of green (about 450 to 650 nm) fluorescent light becomes too strong, and as a result, the overall luminance of the fluorescent light tends to decrease.

BaMgAl1012:Euの粒子は5〜17%質量部であることが好ましい。5%質量部未満では、青色(420〜550nm)の蛍光の強度が低下し、その結果蛍光全体の輝度が低下し易くなる。17%質量部を超えると、青色(420〜550nm)の蛍光の強度が強くなりすぎ、その結果蛍光全体の輝度が低下し易くなる。 BaMgAl 10 O 12: Eu particles is preferably from 5 to 17% parts by weight. If the amount is less than 5% by mass, the intensity of the blue (420 to 550 nm) fluorescent light is reduced, and as a result, the luminance of the entire fluorescent light is likely to be reduced. When the content exceeds 17% by mass, the intensity of blue (420 to 550 nm) fluorescent light becomes too strong, and as a result, the luminance of the entire fluorescent light tends to decrease.

また本発明において、透明樹脂は厚さが0.1〜0.3mmであることが好ましい。透明樹脂の厚さが0.1mm未満の場合、蛍光体の粒子間から光が漏れてしまい、発光素子5の光を所望の光に変換する効率が低下する。また、透明樹脂の厚さが0.3mmを超えると、発光素子5の光の光軸方向で蛍光体の粒子が重なり易くなり、その結果、発光素子5の光により蛍光体が励起されて発生した蛍光が発光していない蛍光体に遮られ易くなり、発光装置の輝度が落ち易くなる。   In the present invention, the transparent resin preferably has a thickness of 0.1 to 0.3 mm. When the thickness of the transparent resin is less than 0.1 mm, light leaks from between the particles of the phosphor, and the efficiency of converting the light of the light emitting element 5 into desired light decreases. Further, when the thickness of the transparent resin exceeds 0.3 mm, the phosphor particles easily overlap in the optical axis direction of the light of the light emitting element 5, and as a result, the phosphor is excited by the light of the light emitting element 5 and generated. Fluorescent light is easily blocked by a phosphor that does not emit light, and the luminance of the light emitting device is easily reduced.

本発明の発光装置は、基体1の発光素子5の搭載部に発光素子5を搭載するとともに発光素子5をボンディングワイヤおよびメタライズ配線層を介して外部の外部電気回路に電気的に導通し、基体1の上面の発光素子5の搭載部の周囲に、枠体2を、樹脂接着剤、はんだ等により接合し、枠体2の内側にガラスや透明樹脂などの透明部材6を充填し、枠体2の上面に透光性の蓋体3を樹脂接着剤、半田等により接合することによって作製される。   In the light emitting device of the present invention, the light emitting element 5 is mounted on the mounting portion of the base 1 on which the light emitting element 5 is mounted, and the light emitting element 5 is electrically connected to an external external electric circuit via a bonding wire and a metallized wiring layer. The frame 2 is joined to the periphery of the mounting portion of the light emitting element 5 on the upper surface of the frame 1 by a resin adhesive, solder, or the like, and the inside of the frame 2 is filled with a transparent member 6 such as glass or transparent resin. It is manufactured by joining a light-transmitting lid 3 to the upper surface of the substrate 2 with a resin adhesive, solder, or the like.

枠体2は、酸化アルミニウム質焼結体(アルミナセラミックス),窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂から成る絶縁体、さらにはAl,Cu,Ag,Fe−Ni−Co合金,Fe−Ni合金,ステンレススチール,真鍮等の金属から成る。   The frame 2 is made of a ceramic such as an aluminum oxide sintered body (alumina ceramics), an aluminum nitride sintered body, a mullite sintered body, a glass ceramic, or an insulator made of a resin such as an epoxy resin. It is made of metal such as Cu, Ag, Fe-Ni-Co alloy, Fe-Ni alloy, stainless steel and brass.

この蓋体3はガラス、サファイア、石英、またはエポキシ樹脂,シリコーン樹脂,アクリル樹脂等の樹脂(プラスチック)などの透光性材料から成り、枠体2内側に設置された、発光素子5、メタライズ配線層、ボンディングワイヤ、透明部材6を保護するとともに、発光素子収納用パッケージ内部を気密に封止する。また、蓋体3をレンズ状に形成して光学レンズの機能を付加することによって、蛍光を集光または分散させて所望の放射角度、強度分布で蛍光を外部に取りだすことができる。   The lid 3 is made of a light-transmitting material such as glass, sapphire, quartz, or a resin (plastic) such as epoxy resin, silicone resin, or acrylic resin. The light-emitting element 5 and metallized wiring disposed inside the frame 2 are provided. In addition to protecting the layers, the bonding wires, and the transparent member 6, the inside of the light emitting element housing package is hermetically sealed. Further, by forming the lid 3 into a lens shape and adding the function of an optical lens, it is possible to condense or disperse the fluorescent light and take out the fluorescent light with a desired emission angle and intensity distribution.

また、本発明の発光装置は、1個のものを所定の配置となるように設置したことにより、または複数個を、例えば、格子状や千鳥状,放射状,複数の発光装置から成る、円状や多角形状の発光装置群を同心状に複数群形成したもの等の所定の配置となるように設置したことにより、照明装置とすることができる。これにより、半導体から成る発光素子5の電子の再結合による発光を利用しているため、従来の放電を用いた照明装置よりも低消費電力かつ長寿命とすることが可能であり、発熱の小さな小型の照明装置とすることができる。その結果、発光素子5から発生する光の中心波長の変動を抑制することができ、長期間にわたり安定した放射光強度かつ放射光角度(配光分布)で光を照射することができるとともに、照射面における色むらや照度分布の偏りが抑制された照明装置とすることができる。   Further, the light emitting device of the present invention is obtained by installing one light emitting device in a predetermined arrangement, or by forming a plurality of light emitting devices, for example, in a lattice shape, a staggered shape, a radial shape, or a circular shape including a plurality of light emitting devices. By arranging a plurality of light emitting device groups in a predetermined arrangement, such as a group in which a plurality of light emitting device groups having a polygonal shape are formed concentrically, a lighting device can be obtained. Accordingly, since the light emission by the recombination of the electrons of the semiconductor light emitting element 5 is used, it is possible to achieve lower power consumption and longer life than the conventional lighting device using discharge, and to generate less heat. A small lighting device can be obtained. As a result, the fluctuation of the center wavelength of the light generated from the light emitting element 5 can be suppressed, and the light can be radiated at a stable radiated light intensity and a radiated light angle (light distribution) over a long period of time. It is possible to provide an illuminating device in which uneven color and uneven illuminance distribution on the surface are suppressed.

また、複数の本発明の発光装置を光源として所定の配置に設置するとともに、これらの発光装置の周囲に任意の形状に光学設計した反射治具や光学レンズ、光拡散板等を設置することにより、任意の配光分布の光を放射できる照明装置とすることができる。   Further, by installing a plurality of light emitting devices of the present invention in a predetermined arrangement as a light source, and by installing a reflection jig, an optical lens, a light diffusion plate and the like optically designed in an arbitrary shape around these light emitting devices. The lighting device can emit light having an arbitrary light distribution.

例えば、図8,図9に示す平面図,断面図のように複数個の発光装置21が発光装置駆動回路基板23に複数列に配置され、発光装置21の周囲に任意の形状に光学設計した反射治具22が設置されて成る照明装置の場合、隣接する一列上に配置された複数個の発光装置21において、隣り合う発光装置21との間隔が最短に成らないような配置、いわゆる千鳥状とすることが好ましい。即ち、発光装置21が格子状に配置される際には、光源となる発光装置21が直線上に配列されることによりグレアが強くなり、このような照明装置が人の視覚に入ってくることにより、不快感や目の障害を起こしやすくなるのに対し、千鳥状とすることにより、グレアが抑制され人間の目に対する不快感や目に及ぼす障害を低減することができる。さらに、隣り合う発光装置21間の距離が長くなることにより、隣接する発光装置21間の熱的な干渉が有効に抑制され、発光装置21が実装された発光装置駆動回路基板23内における熱のこもりが抑制され、発光装置21の外部に効率よく熱が放散される。その結果、人の目に対しても障害の小さい長期間にわたり光学特性の安定した長寿命の照明装置を作製することができる。   For example, a plurality of light emitting devices 21 are arranged in a plurality of rows on a light emitting device driving circuit board 23 as shown in the plan view and the sectional view shown in FIGS. In the case of a lighting device in which the reflection jig 22 is provided, in a plurality of light emitting devices 21 arranged in one row adjacent to each other, an arrangement in which the interval between adjacent light emitting devices 21 is not shortest, that is, a so-called staggered shape. It is preferable that That is, when the light-emitting devices 21 are arranged in a grid, the light-emitting devices 21 serving as a light source are arranged in a straight line, thereby increasing the glare. Accordingly, discomfort and eye disorders are more likely to occur. On the other hand, the staggered arrangement suppresses glare and reduces human discomfort and eye disorders. Further, since the distance between the adjacent light-emitting devices 21 is increased, thermal interference between the adjacent light-emitting devices 21 is effectively suppressed, and heat transfer in the light-emitting device drive circuit board 23 on which the light-emitting devices 21 are mounted is performed. The stagnation is suppressed, and heat is efficiently radiated to the outside of the light emitting device 21. As a result, a long-life lighting device with stable optical characteristics for a long period of time with little obstacle to human eyes can be manufactured.

また、照明装置が、図10,図11に示す平面図,断面図のような発光装置駆動回路基板23上に複数の発光装置21から成る円状や多角形状の発光装置21群を、同心状に複数群形成した照明装置の場合、1つの円状や多角形状の発光装置21群における発光装置21の配置数を照明装置の中央側より外周側ほど多くすることが好ましい。これにより、発光装置21同士の間隔を適度に保ちながら発光装置21をより多く配置することができ、照明装置の照度をより向上させることができる。また、照明装置の中央部の発光装置21の密度を低くして発光装置駆動回路基板23の中央部における熱のこもりを抑制することができる。よって、発光装置駆動回路基板23内における温度分布が一様となり、照明装置を設置した外部電気回路基板やヒートシンクに効率よく熱が伝達され、発光装置21の温度上昇を抑制することができる。その結果、発光装置21は長期間にわたり安定して動作することができるとともに長寿命の照明装置を作製することができる。   In addition, the lighting device is configured such that a group of circular or polygonal light emitting devices 21 including a plurality of light emitting devices 21 is concentrically arranged on a light emitting device driving circuit board 23 as shown in the plan view and the sectional view shown in FIGS. In the case of a lighting device in which a plurality of light emitting devices 21 are formed, it is preferable that the number of light emitting devices 21 arranged in one circular or polygonal light emitting device group 21 be larger on the outer peripheral side than on the center side of the lighting device. Accordingly, more light emitting devices 21 can be arranged while maintaining a proper interval between the light emitting devices 21, and the illuminance of the lighting device can be further improved. In addition, the density of the light emitting device 21 in the central portion of the lighting device can be reduced to suppress the accumulation of heat in the central portion of the light emitting device driving circuit board 23. Therefore, the temperature distribution in the light emitting device drive circuit board 23 becomes uniform, heat is efficiently transmitted to the external electric circuit board and the heat sink on which the lighting device is installed, and the temperature rise of the light emitting device 21 can be suppressed. As a result, the light-emitting device 21 can operate stably over a long period of time, and a lighting device with a long life can be manufactured.

このような照明装置としては、例えば、室内や室外で用いられる、一般照明用器具、シャンデリア用照明器具、住宅用照明器具、オフィス用照明器具、店装,展示用照明器具、街路用照明器具、誘導灯器具及び信号装置、舞台及びスタジオ用の照明器具、広告灯、照明用ポール、水中照明用ライト、ストロボ用ライト、スポットライト、電柱等に埋め込む防犯用照明、非常用照明器具、懐中電灯、電光掲示板等や、調光器、自動点滅器、ディスプレイ等のバックライト、動画装置、装飾品、照光式スイッチ、光センサ、医療用ライト、車載ライト等が挙げられる。   Such lighting devices include, for example, general lighting fixtures, chandelier lighting fixtures, residential lighting fixtures, office lighting fixtures, store fixtures, exhibition lighting fixtures, street lighting fixtures used indoors and outdoors. Guidance light equipment and signal equipment, stage and studio lighting equipment, advertising lights, lighting poles, underwater lighting lights, strobe lights, spotlights, security lights embedded in telephone poles, etc., emergency lighting equipment, flashlights, Examples include an electric bulletin board, a dimmer, an automatic blinker, a backlight such as a display, a moving image device, a decorative article, an illuminated switch, an optical sensor, a medical light, a vehicle light, and the like.

本発明の発光装置の実施例を以下に説明する。   An embodiment of the light emitting device of the present invention will be described below.

(実施例1)
発光素子5として主発光ピークが382nmである窒化ガリウム半導体発光素子
を用いて、以下のようにして本発明の発光装置を製作した。
(Example 1)
Using a gallium nitride semiconductor light emitting device having a main emission peak of 382 nm as the light emitting device 5, a light emitting device of the present invention was manufactured as follows.

アルミナセラミックスから成る基体1と、アルミニウムから成る枠体2と、エポキシ樹脂から成る蓋体3と、シリコーン樹脂から成る透明部材6とを用い、また、蛍光体層4に含まれる蛍光体粒子としては、YS:Euの粒子、ZnS:Cu,Alの粒子およびBaMgAl1012:Euの粒子を用いた。また、蛍光体粒子を混合する透明樹脂(バインダー)としてはシリコーン樹脂を用いた。 A substrate 1 made of alumina ceramics, a frame 2 made of aluminum, a lid 3 made of epoxy resin, and a transparent member 6 made of silicone resin are used. Phosphor particles contained in the phosphor layer 4 are as follows. , Y 2 O 2 S: Eu particles, ZnS: Cu, Al particles, and BaMgAl 10 O 12 : Eu particles. A silicone resin was used as a transparent resin (binder) for mixing the phosphor particles.

なお、YS:Euの粒子およびBaMgAl1012:Euの粒子にドープされているEuは、300〜400nmの紫外光を吸収して蛍光を発する性質があり、その蛍光の波長はEuがドープされる母結晶(YS,BaMgAl1012)に依存し、YSの場合は赤色(約580〜780nm)の蛍光を発し、BaMgAl1012の場合は青色(420〜550nm)の蛍光を発する。なお、Euのドープ量は母結晶に対し0.5〜3%質量部程度である。 Eu doped into Y 2 O 2 S: Eu particles and BaMgAl 10 O 12 : Eu particles has a property of absorbing ultraviolet light of 300 to 400 nm to emit fluorescence, and the wavelength of the fluorescence is mother crystals Eu is doped (Y 2 O 2 S, BaMgAl 10 O 12) depending on the case of Y 2 O 2 S fluoresced red (about 580~780Nm), in the case of BaMgAl 10 O 12 It emits blue (420 to 550 nm) fluorescence. The doping amount of Eu is about 0.5 to 3% by mass with respect to the mother crystal.

蛍光体粒子同士の混合は、蛍光体粒子にエタノールを加えミキサーで24時間攪拌した後、エタノールを大気雰囲気中100℃で乾燥させ除去することにより行な
った。
Mixing of the phosphor particles was performed by adding ethanol to the phosphor particles, stirring the mixture for 24 hours with a mixer, and then drying the ethanol at 100 ° C. in an air atmosphere to remove the ethanol.

このとき、蛍光体粒子とシリコーン樹脂との比率が5種類(表1参照)の蛍光体層4となる、蛍光体粒子を含有した透明樹脂のサンプルを作製した。これらのサンプルを用い、図1の構成の発光装置を製作し、輝度を評価した。なお、蛍光体層4の厚さはすべての発光装置で0.2mmとした。輝度の測定は、分光放射輝
度計(ミノルタ社製「CS−1000」)を用いた。その結果を表1に示す。

Figure 2004343070
At this time, a sample of a transparent resin containing phosphor particles was prepared, which became the phosphor layer 4 in which the ratio of the phosphor particles to the silicone resin was five (see Table 1). Using these samples, a light emitting device having the configuration shown in FIG. 1 was manufactured, and the luminance was evaluated. Note that the thickness of the phosphor layer 4 was 0.2 mm in all light emitting devices. The luminance was measured using a spectral radiance meter (“CS-1000” manufactured by Minolta). Table 1 shows the results.
Figure 2004343070

表1より、蛍光体粒子77質量部でシリコーン樹脂100質量部であるサンプルNo.1は、蛍光体粒子80質量部でシリコーン樹脂100質量部であるサンプルNo.2と比較して、急激に輝度が低下した。これは、蛍光体粒子の量に対してシリコーン樹脂の量が多すぎるため、発光素子5の光のうち蛍光体に当たらずに透過する光が発生し、その結果輝度が低下したものと思われる。   From Table 1, it can be seen that the sample No. having 77 parts by mass of the phosphor particles and 100 parts by mass of the silicone resin. Sample No. 1 is 80 parts by mass of phosphor particles and 100 parts by mass of silicone resin. Compared with No. 2, the brightness was sharply reduced. This is probably because the amount of the silicone resin is too large with respect to the amount of the phosphor particles, so that light of the light-emitting element 5 that is transmitted without hitting the phosphor is generated, and as a result, the luminance is reduced. .

また、蛍光体粒子153質量部でシリコーン樹脂100質量部であるサンプルNo.5は、蛍光体粒子150質量部でシリコーン樹脂100質量部であるサンプルNo.4と比較して、急激に輝度が低下した。これは、シリコーン樹脂に対する蛍光体粒子の量が多すぎるため、蛍光体粒子同士の凝集が開始され、その結果、発光素子5の光により蛍光体粒子が励起されて発生した蛍光が、発光していない蛍光体粒子に遮られて輝度が低下したことが原因と思われる。   In addition, the sample No. having 153 parts by mass of the phosphor particles and 100 parts by mass of the silicone resin. Sample No. 5 is 150 parts by mass of phosphor particles and 100 parts by mass of silicone resin. As compared with No. 4, the brightness was sharply reduced. This is because the amount of the phosphor particles with respect to the silicone resin is too large, so that the aggregation of the phosphor particles starts, and as a result, the fluorescence generated by the excitation of the phosphor particles by the light of the light emitting element 5 emits light. This is probably because the brightness was reduced by being blocked by the phosphor particles.

蛍光体粒子80質量部でシリコーン樹脂100質量部であるサンプルNo.2、および蛍光体粒子150質量部でシリコーン樹脂100質量部であるサンプルNo.4については、蛍光体粒子115質量部でシリコーン樹脂100質量部であるサンプルNo.3の輝度を100%とした場合、95%以上の輝度が得られた。これは、蛍光体粒
子が、蛍光体層4中で発光素子5の光の光軸方向に直交する方向(蛍光体層4の面方向)では比較的緻密に、光の光軸方向では比較的薄くて重ならないように分散して配置された結果、発光素子5の光が効率よく個々の蛍光体粒子に当たり、効率よく蛍光体粒子を励起したため、輝度が高くなったものと思われる。
Sample No. 1 in which 80 parts by mass of phosphor particles and 100 parts by mass of silicone resin were used. Sample No. 2 and 150 parts by mass of phosphor particles and 100 parts by mass of silicone resin. For Sample No. 4, Sample No. 4 in which 115 parts by mass of phosphor particles and 100 parts by mass of silicone resin were used. Assuming that the luminance of No. 3 was 100%, a luminance of 95% or more was obtained. This is because the phosphor particles are relatively dense in the direction perpendicular to the optical axis direction of the light of the light emitting element 5 in the phosphor layer 4 (the surface direction of the phosphor layer 4), and relatively in the optical axis direction of the light. It is considered that the brightness was increased because the light of the light emitting element 5 efficiently hit the individual phosphor particles and efficiently excited the phosphor particles as a result of the thin and dispersed arrangement so as not to overlap.

(実施例2)
次に、図1の構成の発光装置において、蛍光体層4の厚さを5種(表2参照)に変化させた5種類のサンプルを作製した。なお、これらのうち1種は表1のサンプルNo.3と同じものとし、上記実施例1と同様に輝度を測定した。その結果を表2に示す。

Figure 2004343070
(Example 2)
Next, in the light emitting device having the configuration shown in FIG. 1, five types of samples in which the thickness of the phosphor layer 4 was changed to five types (see Table 2) were produced. In addition, one of these is the sample No. in Table 1. 3, and the luminance was measured in the same manner as in Example 1 above. Table 2 shows the results.
Figure 2004343070

表2より、蛍光体層4の厚さを0.08mmとしたサンプルNo.6は、蛍光体層4の厚さを0.1mmとしたサンプルNo.7と比較して、急激な輝度の低下が確認された。これは、蛍光体層4の厚さが薄いため蛍光体粒子間から光が漏れてしまい、発光素子5の光を蛍光に変換する効率が劣化したためと思われる。   From Table 2, it can be seen that Sample No. 4 in which the thickness of the phosphor layer 4 was 0.08 mm was obtained. Sample No. 6 was a sample No. 6 in which the thickness of the phosphor layer 4 was 0.1 mm. 7, a sharp decrease in luminance was confirmed. This is presumably because light was leaked from between the phosphor particles because the thickness of the phosphor layer 4 was thin, and the efficiency of the light emitting element 5 to convert light into fluorescence was deteriorated.

また、蛍光体層4の厚さを0.33mmとしたサンプルNo.9は、蛍光体層4の厚さを0.30mmとしたサンプルNo.8と比較して、急激な輝度の低下が確認できた。これは、蛍光体層4の厚さが厚いため、蛍光体粒子が発光素子5の光軸方向で重なってしまい、蛍光体粒子が発した蛍光が発光していない蛍光体粒子に遮られて輝度が低下したものと思われる。   Sample No. 3 in which the thickness of the phosphor layer 4 was 0.33 mm. Sample No. 9 is Sample No. 9 in which the thickness of the phosphor layer 4 is 0.30 mm. Compared with No. 8, a sharp decrease in luminance was confirmed. This is because, since the thickness of the phosphor layer 4 is large, the phosphor particles overlap in the optical axis direction of the light emitting element 5, and the fluorescence emitted by the phosphor particles is blocked by the non-emitted phosphor particles, and the luminance is reduced. Seems to have decreased.

蛍光体層4の厚さを0.1mmとしたサンプルNo.7、および蛍光体層4の厚さを0.3mmとしたサンプルNo.8は、サンプルNo.3の輝度に対して95%以上の輝度が得られた。これは、蛍光体粒子が蛍光体層4中で発光素子5の光の光軸方向に直交する方向(蛍光体層4の面方向)では比較的緻密に、光の光軸方向では比較的薄くて重ならないように分散して配置された結果、発光素子5の光が効率よく個々の蛍光体粒子に当たり、効率よく蛍光体粒子を励起したため、輝度が高くなったものと思われる。   Sample No. 1 in which the thickness of the phosphor layer 4 was 0.1 mm. Sample No. 7 and Sample No. 7 in which the thickness of the phosphor layer 4 was 0.3 mm. 8 is sample No. The luminance of 95% or more with respect to the luminance of 3 was obtained. This is because the phosphor particles are relatively dense in the direction perpendicular to the optical axis direction of the light of the light emitting element 5 in the phosphor layer 4 (plane direction of the phosphor layer 4), and relatively thin in the optical axis direction of the light. As a result, the light from the light emitting element 5 efficiently hit the individual phosphor particles and efficiently excited the phosphor particles. As a result, it was considered that the brightness was increased.

なお、本発明は上記の実施の形態および実施例に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を行うことは何等支障ない。   It should be noted that the present invention is not limited to the above embodiments and examples, and that various changes may be made without departing from the spirit of the present invention.

また、本発明の照明装置は、複数個の発光装置21を所定の配置となるように設置したものだけでなく、1個の発光装置21を所定の配置となるように設置したものでもよい。   Further, the lighting device of the present invention is not limited to one in which a plurality of light emitting devices 21 are arranged in a predetermined arrangement, but may be one in which one light emitting device 21 is arranged in a predetermined arrangement.

本発明の発光装置の実施の形態の一例を示す断面図である。FIG. 1 is a cross-sectional view illustrating an example of a light emitting device according to an embodiment of the present invention. 本発明の発光装置の蛍光発生機能を説明するための蛍光体の粒子の透明樹脂中での分散状態を模式的に示す側面図である。FIG. 4 is a side view schematically illustrating a state of dispersion of phosphor particles in a transparent resin for explaining a fluorescence generating function of the light emitting device of the present invention. 従来の発光装置の蛍光発生機能を説明するための蛍光体の粒子の透明樹脂中での分散状態を模式的に示す側面図である。FIG. 9 is a side view schematically illustrating a state of dispersion of phosphor particles in a transparent resin for explaining a fluorescence generating function of a conventional light emitting device. 従来の発光装置の蛍光発生機能を説明するための蛍光体の粒子の透明樹脂中での分散状態を模式的に示す側面図である。FIG. 9 is a side view schematically illustrating a state of dispersion of phosphor particles in a transparent resin for explaining a fluorescence generating function of a conventional light emitting device. 従来の発光装置の蛍光発生機能を説明するための蛍光体の粒子の透明樹脂中での分散状態を模式的に示す側面図である。FIG. 9 is a side view schematically illustrating a state of dispersion of phosphor particles in a transparent resin for explaining a fluorescence generating function of a conventional light emitting device. 従来の発光装置の蛍光発生機能を説明するための蛍光体の粒子の透明樹脂中での分散状態を模式的に示す側面図である。FIG. 9 is a side view schematically illustrating a state of dispersion of phosphor particles in a transparent resin for explaining a fluorescence generating function of a conventional light emitting device. 従来の発光装置を示す断面図である。FIG. 11 is a cross-sectional view illustrating a conventional light emitting device. 本発明の照明装置の実施の形態の一例を示す平面図である。It is a top view showing an example of an embodiment of a lighting installation of the present invention. 図8の照明装置の断面図である。FIG. 9 is a cross-sectional view of the lighting device of FIG. 8. 本発明の照明装置の実施の形態の他の例を示す平面図である。It is a top view showing other examples of an embodiment of a lighting installation of the present invention. 図10の照明装置の断面図である。It is sectional drawing of the lighting device of FIG.

符号の説明Explanation of reference numerals

1:基体
2:枠体
3:蓋体
4:蛍光体層
5:発光素子
6:透明部材
21:発光装置
22:反射治具
23:発光装置駆動回路基板
1: base 2: frame 3: lid 4: phosphor layer 5: light emitting element 6: transparent member
21: Light emitting device
22: Reflection jig
23: Light emitting device drive circuit board

Claims (3)

発光波長が300〜400nmである発光素子と、該発光素子を覆うように設けられた、YS:Euの粒子、ZnS:Cu,Alの粒子およびBaMgAl1012:Euの粒子を混入させて成る透明樹脂とを具備しており、前記各粒子の合計量を100質量部としたとき、前記透明樹脂が80〜150質量部であることを特徴とする発光装置。 A light emitting element emission wavelength is 300 to 400 nm, provided so as to cover the light-emitting element, Y 2 O 2 S: Eu particles, ZnS: Cu, Al particles and BaMgAl 10 O 12: Eu-particle A light-emitting device comprising: a transparent resin mixed with the transparent resin, wherein the transparent resin is 80 to 150 parts by mass when the total amount of the particles is 100 parts by mass. 前記透明樹脂は厚さが0.1〜0.3mmであることを特徴とする請求項1の発光装置。 The light emitting device according to claim 1, wherein the transparent resin has a thickness of 0.1 to 0.3 mm. 請求項1または請求項2記載の発光装置を所定の配置となるように設置したことを特徴とする照明装置。 An illumination device, wherein the light emitting device according to claim 1 or 2 is installed in a predetermined arrangement.
JP2004071431A 2003-04-21 2004-03-12 Light emitting device and lighting system Pending JP2004343070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071431A JP2004343070A (en) 2003-04-21 2004-03-12 Light emitting device and lighting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003116403 2003-04-21
JP2004071431A JP2004343070A (en) 2003-04-21 2004-03-12 Light emitting device and lighting system

Publications (1)

Publication Number Publication Date
JP2004343070A true JP2004343070A (en) 2004-12-02

Family

ID=33543089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071431A Pending JP2004343070A (en) 2003-04-21 2004-03-12 Light emitting device and lighting system

Country Status (1)

Country Link
JP (1) JP2004343070A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190963A (en) * 2004-12-30 2006-07-20 Ind Technol Res Inst Light emitting diode and structure therefor
WO2006100917A1 (en) * 2005-03-22 2006-09-28 Tanaka Kikinzoku Kogyo K.K. Light emitting element reflector, manufacturing method thereof, and light emitting device using the reflector
JP2006303038A (en) * 2005-04-18 2006-11-02 Kyocera Corp Light emitting device and lighting system
JP2006303039A (en) * 2005-04-18 2006-11-02 Kyocera Corp Light emitting device and lighting system using same
JP2006351773A (en) * 2005-06-15 2006-12-28 Rohm Co Ltd Semiconductor light-emitting apparatus
JP2007194675A (en) * 2007-04-26 2007-08-02 Kyocera Corp Light emitting device
JP2007266445A (en) * 2006-03-29 2007-10-11 Kyocera Corp Light emitting device and lighting device using same
JP2008034536A (en) * 2006-07-27 2008-02-14 Nichia Chem Ind Ltd Light-emitting apparatus and manufacturing method thereof
JP2010092956A (en) * 2008-10-06 2010-04-22 Mitsubishi Electric Corp Led light source and luminary using it
JP2013135139A (en) * 2011-12-27 2013-07-08 Disco Abrasive Syst Ltd Byte cutting method
JP2014225022A (en) * 2014-06-18 2014-12-04 株式会社東芝 Illumination device, imaging device, and portable terminal
JP2019511127A (en) * 2016-03-23 2019-04-18 エルジー イノテック カンパニー リミテッド Optical module

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190963A (en) * 2004-12-30 2006-07-20 Ind Technol Res Inst Light emitting diode and structure therefor
JP4823214B2 (en) * 2005-03-22 2011-11-24 田中貴金属工業株式会社 REFLECTOR FOR LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE HAVING THE REFLECTOR
WO2006100917A1 (en) * 2005-03-22 2006-09-28 Tanaka Kikinzoku Kogyo K.K. Light emitting element reflector, manufacturing method thereof, and light emitting device using the reflector
JP2006303038A (en) * 2005-04-18 2006-11-02 Kyocera Corp Light emitting device and lighting system
JP2006303039A (en) * 2005-04-18 2006-11-02 Kyocera Corp Light emitting device and lighting system using same
JP4671745B2 (en) * 2005-04-18 2011-04-20 京セラ株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4688553B2 (en) * 2005-04-18 2011-05-25 京セラ株式会社 Light emitting device and lighting device
JP2006351773A (en) * 2005-06-15 2006-12-28 Rohm Co Ltd Semiconductor light-emitting apparatus
JP2007266445A (en) * 2006-03-29 2007-10-11 Kyocera Corp Light emitting device and lighting device using same
JP2008034536A (en) * 2006-07-27 2008-02-14 Nichia Chem Ind Ltd Light-emitting apparatus and manufacturing method thereof
JP2007194675A (en) * 2007-04-26 2007-08-02 Kyocera Corp Light emitting device
JP2010092956A (en) * 2008-10-06 2010-04-22 Mitsubishi Electric Corp Led light source and luminary using it
JP2013135139A (en) * 2011-12-27 2013-07-08 Disco Abrasive Syst Ltd Byte cutting method
JP2014225022A (en) * 2014-06-18 2014-12-04 株式会社東芝 Illumination device, imaging device, and portable terminal
JP2019511127A (en) * 2016-03-23 2019-04-18 エルジー イノテック カンパニー リミテッド Optical module
JP7289499B2 (en) 2016-03-23 2023-06-12 スージョウ レキン セミコンダクター カンパニー リミテッド optical module

Similar Documents

Publication Publication Date Title
US7192164B2 (en) Light-emitting apparatus and illuminating apparatus
JP3898721B2 (en) Light emitting device and lighting device
TWI433344B (en) Light emitting apparatus and illuminating apparatus
US20050211991A1 (en) Light-emitting apparatus and illuminating apparatus
JP2006237264A (en) Light emitting device and lighting apparatus
JP2007035885A (en) Light emitting device and illumination device employing it
JP2006210627A (en) Light emitting element housing package, light emitting unit, and lighting device
JP3921474B2 (en) Light emitting device and lighting device
JP2005159262A (en) Package for housing light emitting element, light emitting device, and lighting system
JP4707433B2 (en) Light emitting device and lighting device
JP2004343070A (en) Light emitting device and lighting system
JP5025143B2 (en) Light emitting device and lighting device
JP2006295230A (en) Light emitting device and lighting apparatus
JP2005210042A (en) Light emitting apparatus and illumination apparatus
JP2005277331A (en) Light emitting device and lighting device
JP2006093399A (en) Light-emitting device, its manufacturing method and luminaire
JP2006100441A (en) Light emitting element housing package, light emitting device, and illumination device
JP4417757B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP4624069B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP4091926B2 (en) Light emitting device and lighting device
JP2005310911A (en) Package for housing light emitting element, light emitting device, and lighting apparatus
JP5085851B2 (en) Light emitting device and lighting device
JP2005183900A (en) Light emitting device and lighting system
JP2006093612A (en) Light emitting device and illuminator
JP5312556B2 (en) Light emitting device and lighting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109