JP2005175449A - Thin film solar cell and manufacturing method therefor - Google Patents

Thin film solar cell and manufacturing method therefor Download PDF

Info

Publication number
JP2005175449A
JP2005175449A JP2004326645A JP2004326645A JP2005175449A JP 2005175449 A JP2005175449 A JP 2005175449A JP 2004326645 A JP2004326645 A JP 2004326645A JP 2004326645 A JP2004326645 A JP 2004326645A JP 2005175449 A JP2005175449 A JP 2005175449A
Authority
JP
Japan
Prior art keywords
film
solar cell
back electrode
protective film
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004326645A
Other languages
Japanese (ja)
Other versions
JP4316475B2 (en
Inventor
Hiromasa Tanamura
浩匡 棚村
Hitoshi Sannomiya
仁 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004326645A priority Critical patent/JP4316475B2/en
Publication of JP2005175449A publication Critical patent/JP2005175449A/en
Application granted granted Critical
Publication of JP4316475B2 publication Critical patent/JP4316475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film solar cell of which back electrode film oxidation can be prevented, and to provide a manufacturing method for the thin film solar cell, by which the thin film solar cell can be manufactured without increasing of steps of process. <P>SOLUTION: The thin film solar cell has, at least, a transparent insulation substrate 1, a transparent and electrically conductive film 2, a photoelectric conversion film 3 and a back electrode film 50 which are formed on the substrate 1 in order and are divided into a plurality of power generation regions. The power generation regions are connected electrically in series. An electrically conductive protection film 6 is formed on the back electrode film 50. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、薄膜太陽電池及びその製造方法に関するものであり、特に、裏面電極膜の硫化や酸化等による腐食・劣化を防止し、かつ薄膜太陽電池の裏面側を発色させるあるいは裏面に着色を施す薄膜太陽電池及びその製造方法に関するものである。   The present invention relates to a thin film solar cell and a method for manufacturing the same, and in particular, prevents corrosion / deterioration due to sulfidation or oxidation of a back electrode film, and colors the back surface of the thin film solar cell or colors the back surface. The present invention relates to a thin film solar cell and a manufacturing method thereof.

従来、薄膜太陽電池の構造の一例として、ガラス等の絶縁透光性基板上に、SnO2、ITO、ZnO等の透明導電膜が形成され、その上に、非晶質半導体のp層、i層、n層がこの順に積層されることにより光電変換層が形成され、その上に、Ag、Al等の裏面電極膜が形成される構造のものがあった。この構造の薄膜太陽電池において、裏面電極膜の硫化や酸化等による腐食・劣化を防止するためには、レジスト膜を形成する方法が従来の薄膜太陽電池及びその製造方法の主流となっていた(特許文献1参照)。
特開2001−10263号公報
Conventionally, as an example of the structure of a thin film solar cell, a transparent conductive film such as SnO 2 , ITO, ZnO or the like is formed on an insulating translucent substrate such as glass, and an amorphous semiconductor p-layer, i There is a structure in which a photoelectric conversion layer is formed by laminating a layer and an n layer in this order, and a back electrode film such as Ag or Al is formed thereon. In the thin film solar cell of this structure, in order to prevent corrosion / deterioration due to sulfidation or oxidation of the back electrode film, a method of forming a resist film has become the mainstream of conventional thin film solar cells and manufacturing methods thereof ( Patent Document 1).
JP 2001-10263 A

しかしながら、上述のように裏面電極膜の腐食・劣化を防止するためにレジスト膜を形成した薄膜太陽電池では、後の逆バイアス検査工程でレジスト膜を一旦拭き取って除去し、検査後に再度レジスト膜を形成しなければならないため二度手間であり、工程数が増加していた。   However, in the thin-film solar cell in which the resist film is formed to prevent the corrosion and deterioration of the back electrode film as described above, the resist film is once wiped and removed in the subsequent reverse bias inspection process, and the resist film is removed again after the inspection. Since it has to be formed, it has been troublesome twice and the number of processes has increased.

本発明は、上述した従来の問題点を解決し、薄膜太陽電池の裏面電極膜の硫化や酸化等による腐食・劣化を防止できる薄膜太陽電池及び工程数増加を招くことなく製造することができる薄膜太陽電池の製造方法を提供することを課題とする。   The present invention solves the above-mentioned conventional problems, and a thin film solar cell that can prevent corrosion and deterioration due to sulfidation or oxidation of the back electrode film of the thin film solar cell, and a thin film that can be manufactured without increasing the number of steps It is an object to provide a method for manufacturing a solar cell.

かくして本発明によれば、絶縁透光性基板と、この基板上に順次形成された透明導電膜、光電変換膜及び裏面電極膜を少なくとも備え、前記基板上で複数の発電領域に分割され、かつ電気的に直列接続された薄膜太陽電池であって、前記裏面電極膜上に、導電性の保護膜が形成されてなる薄膜太陽電池が提供される。   Thus, according to the present invention, an insulating translucent substrate and at least a transparent conductive film, a photoelectric conversion film, and a back electrode film sequentially formed on the substrate are divided into a plurality of power generation regions on the substrate, and There is provided a thin film solar cell electrically connected in series, in which a conductive protective film is formed on the back electrode film.

本発明は別の観点によれば、絶縁透光性基板上に透明導電膜を形成する工程と、前記透明導電膜を複数に分割する工程と、透明導電膜側に光電変換膜を形成する工程と、前記透明導電膜を分割した位置に対して重畳する位置又は離れた位置で、前記光電変換膜を複数に分割する工程と、光電変換膜側に裏面電極膜を形成する工程と、裏面電極膜上に導電性の保護膜を形成する工程と、前記光電変換膜を分割した位置に対して重畳する位置又は離れた位置で、前記保護膜、裏面電極及び光電変換膜からなる積層膜を複数に分割する工程を備えてなる薄膜太陽電池の製造方法が提供される。   According to another aspect of the present invention, a step of forming a transparent conductive film on an insulating translucent substrate, a step of dividing the transparent conductive film into a plurality, and a step of forming a photoelectric conversion film on the transparent conductive film side A step of dividing the photoelectric conversion film into a plurality at a position overlapping or distant from the position where the transparent conductive film is divided, a step of forming a back electrode film on the photoelectric conversion film side, and a back electrode A step of forming a conductive protective film on the film, and a plurality of laminated films composed of the protective film, the back electrode, and the photoelectric conversion film at a position overlapping or distant from the position where the photoelectric conversion film is divided. A method for producing a thin-film solar cell comprising the step of dividing the thin film solar cell is provided.

本発明の薄膜太陽電池によれば、導電性の保護膜によって裏面電極膜の硫化や酸化等による腐食・劣化を防止することができると共に、後工程において保護膜を除去することなく逆バイアス検査を行うことが可能となる。この結果、従来のようなレジスト膜の形成の二度手間を無くすことができる。すなわち、従来では逆バイアス検査を行うに際して、裏面電極膜の保護用のレジスト膜を一旦拭き取らなければならず、また逆バイアス検査後に再びレジスト膜を裏面電極膜上に形成しなければならないが、本発明の薄膜太陽電池によればこのような二度手間がなくなり、製品化までの全体の製造工程数を低減することができる。   According to the thin film solar cell of the present invention, the conductive protective film can prevent the back electrode film from being corroded or deteriorated due to sulfidation, oxidation, etc., and can perform a reverse bias inspection without removing the protective film in a subsequent process. Can be done. As a result, it is possible to eliminate the trouble of forming the resist film as in the prior art. That is, when performing a reverse bias inspection in the past, the resist film for protecting the back electrode film must be wiped once, and after the reverse bias inspection, a resist film must be formed again on the back electrode film, According to the thin-film solar cell of the present invention, such a labor is eliminated, and the number of entire manufacturing steps until commercialization can be reduced.

本発明において、裏面電極膜上に形成される導電性の保護膜は、薄膜太陽電池を屋外に設置した場合に、裏面電極が例えば酸性雨による硫化や酸化(自然酸化)によって生じる腐食や劣化を防止するための役割を担うものであり、硫化防止用および/または酸化防止用の膜とすることができる。
本発明において、裏面電極膜上に形成される導電性の保護膜としては透明でも不透明でもよく、特に限定されるものではないが、膜厚としては10〜300nm程度が好ましい。
例えば、保護膜として透明の導電膜を使用することで、薄膜太陽電池の裏面側を光の干渉によって発色させることが可能になる。つまり、透明の保護膜に入射する光は膜の厚みによって干渉する波長が異なるため、所定厚みの保護膜に干渉した特定波長の反射光によって特定の色が発色したように人の目が感知することができる。したがって、酸化防止膜が部分的に厚みの異なるものであれば、薄膜太陽電池の裏面側を複数色に発色させることができるため、色の変化、文字や絵などによって情報を表現することができる。このような情報としては、会社のロゴ等が挙げられ、情報を表現することにより、宣伝効果が得られる。
In the present invention, the conductive protective film formed on the back electrode film prevents corrosion or deterioration caused by sulfidation or oxidation (natural oxidation) caused by acid rain when the thin-film solar cell is installed outdoors. It plays a role for preventing and can be a film for preventing sulfurization and / or preventing oxidation.
In the present invention, the conductive protective film formed on the back electrode film may be transparent or opaque, and is not particularly limited, but the film thickness is preferably about 10 to 300 nm.
For example, by using a transparent conductive film as the protective film, the back surface side of the thin film solar cell can be colored by light interference. In other words, the light that enters the transparent protective film has different wavelengths that interfere with the thickness of the film, so the human eye perceives that a specific color is developed by reflected light of a specific wavelength that interferes with the protective film having a predetermined thickness. be able to. Therefore, if the antioxidant film is partially different in thickness, the back side of the thin film solar cell can be colored in a plurality of colors, so that information can be expressed by color change, characters, pictures, etc. . Such information includes a company logo and the like, and the advertising effect can be obtained by expressing the information.

この透明の導電性の保護膜の材料としては、特に限定されるものではないが、透明であり、導電性を有することに加え、硫化防止、酸化防止、特に硫化防止と酸化防止を兼ねる材料が好ましく、酸化亜鉛、酸化スズ、ITO等が挙げられ、中でも酸化亜鉛が好ましい。酸化亜鉛の場合、保護膜の膜厚が50nmであれば淡い黄色に発色するように見え、100nmであれば淡い紫色に発色するように見える。
一方、保護膜が不透明である場合、光の干渉ではなくその保護膜自体がもつ特有の色が薄膜太陽電池の裏面側に着色されることとなる。この不透明の導電性の保護膜としては、金属膜が容易に形成できる点で好ましい。金属膜の材料としては、特に限定されるものではなく、着色したい色の金属を選択すればよい。例えば、金色に着色する場合は金を、淡い青色に着色する場合は青銅を、赤褐色に着色する場合は銅を選択すればよい。また、金属膜からなる保護膜も、部分的に厚みの異なるものであってもよく、それにより膜表面に微小な段差による陰影が生じ、金属膜の色、陰影による文字や絵などによって情報を表現することができる。
The material for this transparent conductive protective film is not particularly limited, but in addition to being transparent and having conductivity, there are materials that prevent sulfurization and oxidation, and in particular, both sulfurization and oxidation prevention. Preferred examples include zinc oxide, tin oxide, ITO, etc. Among them, zinc oxide is preferable. In the case of zinc oxide, if the protective film has a thickness of 50 nm, it appears to develop a pale yellow color, and if it is 100 nm, it appears to develop a pale purple color.
On the other hand, when the protective film is opaque, a specific color of the protective film itself is colored on the back side of the thin film solar cell, not light interference. This opaque conductive protective film is preferable in that a metal film can be easily formed. The material of the metal film is not particularly limited, and a metal having a color to be colored may be selected. For example, gold may be selected for coloring in gold, bronze for coloring in light blue, and copper for coloring in reddish brown. In addition, the protective film made of a metal film may be partially different in thickness, thereby causing a shadow due to a minute step on the film surface, and information can be obtained by the color of the metal film, characters or pictures due to the shadow, etc. Can be expressed.

本発明において、裏面電極膜の材料としては特に限定されるものではないが、絶縁透光性基板側から入射した光の反射率が高いものが薄膜太陽電池の短絡電流値を上げることができる点で好ましく、例えば銀、アルミニウム、銅等が挙げられるが、中でも銀が好ましい。また、裏面電極膜の膜厚としては、550〜1200nmが好ましく、さらに1層に限らず2層以上の積層膜から構成されていてもよい。2層とする場合、下層には比抵抗が小さく透光性は高い、例えば酸化亜鉛やITO等からなる透明電極層を形成する。一方、上層には反射率の高い、例えばAlやAgからなる金属電極層を形成する。透明電極層の膜厚は50〜200nm程度、金属電極層の膜厚は500〜1000nm程度が好ましい。なお、1層とする場合は、透明電極層を割愛してもかまわない。   In the present invention, the material of the back electrode film is not particularly limited, but a material having a high reflectance of light incident from the insulating translucent substrate side can increase the short circuit current value of the thin film solar cell. Preferably, for example, silver, aluminum, copper and the like can be mentioned, among which silver is preferable. Moreover, as a film thickness of a back surface electrode film, 550-1200 nm is preferable, Furthermore, you may be comprised from the laminated film not only of 1 layer but 2 layers or more. In the case of two layers, a transparent electrode layer made of, for example, zinc oxide or ITO is formed in the lower layer with low specific resistance and high translucency. On the other hand, a metal electrode layer made of, for example, Al or Ag having a high reflectance is formed on the upper layer. The film thickness of the transparent electrode layer is preferably about 50 to 200 nm, and the film thickness of the metal electrode layer is preferably about 500 to 1000 nm. In the case of a single layer, the transparent electrode layer may be omitted.

光電変換膜の材料としては、特に限定されるものではなく、単結晶シリコン、多結晶シリコン、単結晶ゲルマニウム、微結晶シリコン等の結晶系、アモルファスシリコン(a‐Si)、a‐SiC等のアモルファス系、GaAs、InP、CdS、CdTe、CuInSe2等の化合物半導体が挙げられる。また、光電変換膜の構造は、pn接合、pin接合、ヘテロ接合、ショットキー型、多重接合型が挙げられ、特に限定されるものではない。膜厚としては、例えばpn接合の場合、200〜400μm、pin接合の場合、100nm〜5μmが挙げられる。   The material of the photoelectric conversion film is not particularly limited, and crystal systems such as single crystal silicon, polycrystalline silicon, single crystal germanium, and microcrystalline silicon, and amorphous materials such as amorphous silicon (a-Si) and a-SiC Examples thereof include compound semiconductors such as GaAs, InP, CdS, CdTe, and CuInSe2. In addition, the structure of the photoelectric conversion film includes a pn junction, a pin junction, a heterojunction, a Schottky type, and a multiple junction type, and is not particularly limited. Examples of the film thickness include 200 to 400 μm in the case of a pn junction, and 100 to 5 μm in the case of a pin junction.

絶縁透光性基板上に形成される透明導電膜としては、特に限定されるものではないが、酸化亜鉛、酸化スズ、ITO等が挙げられ、中でも酸化スズが好ましい。この透明導電膜の膜厚としては、500〜1500nmが挙げられる。
絶縁透光性基板としては、特に限定されるものではなく、例えばガラス基板を用いることができる。この絶縁透光性基板の厚みは、1〜10mmが挙げられる。
Although it does not specifically limit as a transparent conductive film formed on an insulating translucent board | substrate, Zinc oxide, a tin oxide, ITO etc. are mentioned, Among these, a tin oxide is preferable. As a film thickness of this transparent conductive film, 500-1500 nm is mentioned.
The insulating translucent substrate is not particularly limited, and for example, a glass substrate can be used. As for the thickness of this insulated translucent board | substrate, 1-10 mm is mentioned.

このような本発明の薄膜太陽電池は、絶縁透光性基板上に透明導電膜を形成する工程と、前記透明導電膜を複数に分割する工程と、透明導電膜側に光電変換膜を形成する工程と、前記光電変換膜を複数に分割する工程と、光電変換膜側に裏面電極膜を形成する工程と、裏面電極膜上に導電性の保護膜を形成する工程と、前記保護膜、裏面電極及び光電変換膜からなる積層膜を複数に分割する工程を備えてなる薄膜太陽電池の製造方法によって製造することができる。
本発明の薄膜太陽電池の製造方法によれば、上述のように導電性の保護膜によって裏面電極膜の硫化や酸化等による腐食・劣化を防止することができると共に、後工程において保護膜を除去することなく逆バイアス検査を行うことが可能となり、製品化までの全体の製造工程数を低減することができる。
In such a thin film solar cell of the present invention, a step of forming a transparent conductive film on an insulating translucent substrate, a step of dividing the transparent conductive film, and a photoelectric conversion film on the transparent conductive film side are formed. A step, a step of dividing the photoelectric conversion film into a plurality of steps, a step of forming a back electrode film on the photoelectric conversion film side, a step of forming a conductive protective film on the back electrode film, the protective film, the back surface It can be produced by a method for producing a thin film solar cell comprising a step of dividing a laminated film comprising an electrode and a photoelectric conversion film into a plurality of pieces.
According to the method for manufacturing a thin film solar cell of the present invention, as described above, the conductive protective film can prevent the back electrode film from being corroded or deteriorated due to sulfidation or oxidation, and the protective film is removed in a subsequent process. Therefore, it is possible to perform a reverse bias inspection without the need to reduce the total number of manufacturing steps until commercialization.

上述の製造方法において、絶縁透光性基板上に透明導電膜を形成する方法、透明導電膜側に光電変換膜を形成する方法、光電変換膜側に裏面電極膜を形成する方法及び裏面電極膜上に導電性の保護膜を形成する方法は、公知技術の蒸着法、スパッタ法、CVD法等が挙げられる。   In the above manufacturing method, a method of forming a transparent conductive film on an insulating translucent substrate, a method of forming a photoelectric conversion film on the transparent conductive film side, a method of forming a back electrode film on the photoelectric conversion film side, and a back electrode film Examples of the method for forming a conductive protective film on the surface include known techniques such as vapor deposition, sputtering, and CVD.

また、上述の製造方法において、透明導電膜を複数に分割する方法、光電変換膜を複数に分割する方法及び保護膜、裏面電極及び光電変換膜からなる層を複数に分割する方法は、公知技術のレーザ加工、エッチング、物理研磨 等が挙げられるが、中でもレーザ加工(例えばYAGレーザ)による方法が好ましい。特に、上層のみを選択的に分割して下層(この場合、透明電極膜)の破損を避けるには、波長選択性のあるYAG SHGレーザを用いることが好ましい。
また、透明電極膜を分割して形成される溝(透明電極膜分離ライン)の幅は10〜500μm程度が好ましく、光電変換膜を分割して形成される溝(光電変換膜分離ライン)の幅は50〜100μm程度が好ましく、保護膜、裏面電極及び光電変換膜からなる積層膜を分割して形成される溝(裏面電極膜分離ライン)の幅は50〜100μm程度が好ましい。さらに、上記光電変換膜分離ラインを形成する位置は、上記透明電極膜分離ラインと50μm程度重畳する位置乃至50μm程度離れた位置が好ましく、上記裏面電極膜分離ラインを形成する位置は、光電変換膜分離ラインと50μm程度重畳する位置乃至150μm程度離れた位置が好ましい。
Further, in the above-described manufacturing method, a method for dividing a transparent conductive film into a plurality of methods, a method for dividing a photoelectric conversion film into a plurality of methods, and a method for dividing a layer made of a protective film, a back electrode, and a photoelectric conversion film into a plurality of known techniques Among these, laser processing, etching, physical polishing, and the like can be mentioned. Among them, a method by laser processing (for example, YAG laser) is preferable. In particular, in order to selectively divide only the upper layer and avoid damage to the lower layer (in this case, the transparent electrode film), it is preferable to use a YAG SHG laser having wavelength selectivity.
The width of the groove (transparent electrode film separation line) formed by dividing the transparent electrode film is preferably about 10 to 500 μm, and the width of the groove (photoelectric conversion film separation line) formed by dividing the photoelectric conversion film. Is preferably about 50 to 100 μm, and the width of a groove (back electrode film separation line) formed by dividing a laminated film composed of a protective film, a back electrode and a photoelectric conversion film is preferably about 50 to 100 μm. Further, the position where the photoelectric conversion film separation line is formed is preferably a position overlapping with the transparent electrode film separation line by about 50 μm or a position separated by about 50 μm, and the position where the back electrode film separation line is formed is the photoelectric conversion film. A position overlapping with the separation line by about 50 μm or a position separated by about 150 μm is preferable.

また、本発明の製造方法によれば、保護膜を形成する工程において、上述のように部分的に保護膜の膜厚を異ならせる場合は、(1)保護膜を形成する工程が、裏面電極膜上に第1の保護膜を形成する工程と、この第1の保護膜上に所定パターン形状のマスクを用いて第2の保護膜を形成する工程を含むことにより、あるいは(2)保護膜を形成する工程が、裏面電極膜上に形成した保護膜を所定パターン形状のマスクを用いてエッチングする工程を含むことにより、保護膜の部分的な膜厚変化を施すことができる。エッチングは、ウエットあるいはドライのどちらでもよい。また、マスクは従来公知の方法によって形成することができる。   Further, according to the manufacturing method of the present invention, in the step of forming the protective film, when the thickness of the protective film is partially different as described above, (1) the step of forming the protective film includes the back electrode. Including a step of forming a first protective film on the film and a step of forming a second protective film on the first protective film using a mask having a predetermined pattern shape, or (2) a protective film When the step of forming includes a step of etching the protective film formed on the back electrode film using a mask having a predetermined pattern shape, a partial thickness change of the protective film can be performed. Etching may be either wet or dry. The mask can be formed by a conventionally known method.

(1)の場合、例えば、第1の保護膜の膜厚を10〜50nm程度とし、その上に第2の保護膜を100〜200nm程度で形成することにより、保護膜が透明であれば光の干渉を利用して複数色に発色させて色の変化、文字や絵などによって情報を表現することができ、保護膜が不透明であればその膜の色、表面の陰影による文字や絵などによって情報を表現することができる。   In the case of (1), for example, if the thickness of the first protective film is about 10 to 50 nm and the second protective film is formed thereon with a thickness of about 100 to 200 nm, the light is protected if the protective film is transparent. It is possible to express information by changing colors, characters, pictures, etc. by using multiple interference colors, and if the protective film is opaque, depending on the color of the film, the letters, pictures, etc. due to shading on the surface Information can be expressed.

(2)の場合、例えば、保護膜を膜厚100〜200nm程度で形成し、この保護膜の表面を部分的に50〜150nm程度エッチングすることにより、上述のように情報を表現することができる。
また、(1)、(2)のように裏面電極膜上に導電性の保護膜を形成するに際して、マスクを用いることで膜厚変化を容易に施すことができ、工程の複雑化を防ぐことができる。
In the case of (2), for example, information can be expressed as described above by forming a protective film with a film thickness of about 100 to 200 nm and partially etching the surface of the protective film about 50 to 150 nm. .
Further, when a conductive protective film is formed on the back electrode film as in (1) and (2), the film thickness can be easily changed by using a mask, and the process is prevented from becoming complicated. Can do.

以下、本発明の薄膜太陽電池の実施例を図面に基づいて詳説する。なお、本発明は実施例に限定されるものではない。   Hereinafter, embodiments of the thin-film solar cell of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to an Example.

[実施例1]
図1は、本発明の実施例1の薄膜太陽電池におけるセル構造の一部を示し、かつその製造方法を説明するための要部拡大断面図である。
この実施例の薄膜太陽電池(セル)は、ガラス基板1と、ガラス基板1上に短冊状に複数形成された透明導電膜2と、隣接する透明導電膜2、2に接触した状態で堆積された複数の光電変換膜3と、各光電変換膜3上に形成された複数の裏面電極膜50と、各裏面電極膜50上に形成された保護膜6とから構成されている。
[Example 1]
FIG. 1 is an enlarged cross-sectional view of a main part for illustrating a part of the cell structure in the thin-film solar battery of Example 1 of the present invention and for explaining the manufacturing method thereof.
The thin film solar cell (cell) of this embodiment is deposited in contact with the glass substrate 1, the transparent conductive film 2 formed in a strip shape on the glass substrate 1, and the adjacent transparent conductive films 2 and 2. The plurality of photoelectric conversion films 3, the plurality of back electrode films 50 formed on each photoelectric conversion film 3, and the protective film 6 formed on each back electrode film 50.

ガラス基板1は、一辺:560mm、他辺:925mm、厚み:1.8mmである。
透明導電膜2は、酸化スズからなり、ガラス基板1上に幅540nm程度の透明導電膜分離ライン7を隔てて短冊状に72個並列している。
The glass substrate 1 has one side: 560 mm, the other side: 925 mm, and a thickness: 1.8 mm.
The transparent conductive film 2 is made of tin oxide, and 72 pieces of strips are arranged in parallel on the glass substrate 1 with a transparent conductive film separation line 7 having a width of about 540 nm.

光電変換効膜3は、隣接する透明導電膜2、2間の透明導電膜分離ライン7内に一部が埋め込まれ、かつ一方の透明導電膜2の端部上面(透明導電膜分離ライン7近傍)から他方の透明導電膜2の中央部上面を越える位置まで積層した状態で、合計72個設けられている。また、各光電変換膜3には、上記一方の透明導電膜2の端部近傍に、製造時に形成された後述の光電変換膜分離ライン8を有している。この光電変換膜3は、非晶質シリコンにてHp層、Hi層、Hn層の構造に形成されてなり、合計の厚みは300nm程度である。   A part of the photoelectric conversion effect film 3 is embedded in the transparent conductive film separation line 7 between the adjacent transparent conductive films 2 and 2, and the upper surface of one end of the transparent conductive film 2 (in the vicinity of the transparent conductive film separation line 7). ) To a position exceeding the upper surface of the central portion of the other transparent conductive film 2, a total of 72 are provided. Each photoelectric conversion film 3 has a photoelectric conversion film separation line 8 described later formed at the time of manufacture near the end of the one transparent conductive film 2. The photoelectric conversion film 3 is formed of amorphous silicon in a structure of an Hp layer, a Hi layer, and an Hn layer, and the total thickness is about 300 nm.

裏面電極膜50は、下層の透明電極膜4と上層の金属電極膜5の2層構造であり、各電極膜4、5は、光電変換膜3の光電変換膜分離ライン8内に一部が埋め込まれた状態で光電変換膜3上に積層されている。透明電極膜4は酸化亜鉛からなり、厚みは100nm程度であり、金属電極膜5は銀からなり、厚みは300nm程度である。
保護膜6は、酸化亜鉛からなり、裏面電極膜50の硫化防止用兼酸化防止用の膜であり、厚みは150nm程度である。
The back electrode film 50 has a two-layer structure of a lower transparent electrode film 4 and an upper metal electrode film 5, and each of the electrode films 4 and 5 is partially in the photoelectric conversion film separation line 8 of the photoelectric conversion film 3. It is laminated on the photoelectric conversion film 3 in an embedded state. The transparent electrode film 4 is made of zinc oxide and has a thickness of about 100 nm, and the metal electrode film 5 is made of silver and has a thickness of about 300 nm.
The protective film 6 is made of zinc oxide, is a film for preventing sulfidation and oxidation of the back electrode film 50, and has a thickness of about 150 nm.

次に、図1を参照しながら実施例1の薄膜太陽電池(セル)の製造について説明する。
まず、予め透明導電膜2を形成したガラス基板1を用意した。このガラス基板1は、予め透明導電膜2がガラス基板1の片側表面と全周囲端面に形成されている。次に、レーザ光を用いて透明導電膜2のパターニングを行なった。この際、透明導電膜2によく吸収されるYAG基本波レーザ光を用い、レーザ光をガラス基板1側から入射させることにより、透明導電膜2が短冊状に分離されて、幅:80μm程度の透明電極膜分離ライン7が形成された。
Next, manufacture of the thin film solar cell (cell) of Example 1 will be described with reference to FIG.
First, a glass substrate 1 on which a transparent conductive film 2 was formed in advance was prepared. As for this glass substrate 1, the transparent conductive film 2 is previously formed in the one side surface of the glass substrate 1, and a perimeter edge. Next, the transparent conductive film 2 was patterned using a laser beam. At this time, the YAG fundamental wave laser light that is well absorbed by the transparent conductive film 2 is used, and the transparent conductive film 2 is separated into strips by making the laser light incident from the glass substrate 1 side, and the width is about 80 μm. A transparent electrode membrane separation line 7 was formed.

続いて、透明導電膜2が形成されたガラス基板1を純水で洗浄し、乾燥した後、Hp層、Hi層、Hn層からなる光電変換膜3を、公知技術のプラズマCVD法により合計厚み:300nmで形成した。次に、レーザ光を用いて光電変換膜3のみをパターニングした。この際、レーザ光による透明導電膜2の損傷を避けるため、波長選択性のある、YAGSHGレーザを用い、レーザ光をガラス基板1側から入射させることにより、光電変換膜3を短冊状に分離して、幅:100μmの光電変換膜分離ライン8を、透明電極膜分離ライン7と140μm程度離れた位置に形成した。   Subsequently, the glass substrate 1 on which the transparent conductive film 2 is formed is washed with pure water and dried, and then the photoelectric conversion film 3 including the Hp layer, the Hi layer, and the Hn layer is formed with a total thickness by a known plasma CVD method. : Formed at 300 nm. Next, only the photoelectric conversion film 3 was patterned using a laser beam. At this time, in order to avoid damage to the transparent conductive film 2 due to the laser beam, the photoelectric conversion film 3 is separated into a strip shape by using a YAGSHHG laser having wavelength selectivity and making the laser beam incident from the glass substrate 1 side. Then, the photoelectric conversion membrane separation line 8 having a width of 100 μm was formed at a position separated from the transparent electrode membrane separation line 7 by about 140 μm.

続いて、公知技術のRFマグネトロンスパッタリング法により透明電極層4、金属電極層5をこの順で積層することにより、裏面電極膜50を形成した。
その後、裏面電極膜50上に、1000Åの厚さで酸化亜鉛からなる保護膜6を公知技術のRFマグネトロンスパッタリング法により形成した。
Subsequently, the back electrode film 50 was formed by laminating the transparent electrode layer 4 and the metal electrode layer 5 in this order by a well-known RF magnetron sputtering method.
Thereafter, a protective film 6 made of zinc oxide with a thickness of 1000 mm was formed on the back electrode film 50 by a known RF magnetron sputtering method.

さらに、YAG SHGレーザを用いて、レーザ光をガラス基板1側から入射させることにより裏面電極膜50のパターニングを行った。これにより、保護膜6及び裏面電極膜50が短冊状に分離され、同時に光電変換膜3も除去されて、裏面電極膜分離ライン9が幅:80μmで形成された。
最後に、超音波洗浄により、裏面電極分離ライン9のパターニング残滓を取り除いた。
このようにして、保護膜6、裏面電極膜50及び光電変換膜3を貫通して略同一形状にパターニングされて、絶縁透光性基板1上で72個の発電領域(光電変換素子)に分割され、各発電領域が直列接続された集積型薄膜太陽電池セルが得られた。
Further, the back electrode film 50 was patterned by using a YAG SHG laser and making laser light incident from the glass substrate 1 side. As a result, the protective film 6 and the back electrode film 50 were separated into strips, and at the same time, the photoelectric conversion film 3 was also removed, and the back electrode film separation line 9 was formed with a width of 80 μm.
Finally, the patterning residue on the back electrode separation line 9 was removed by ultrasonic cleaning.
In this manner, the protective film 6, the back electrode film 50 and the photoelectric conversion film 3 are penetrated to be patterned into substantially the same shape, and divided into 72 power generation regions (photoelectric conversion elements) on the insulating translucent substrate 1. Thus, an integrated thin-film solar cell in which the power generation regions are connected in series was obtained.

[試験1]
上述の製造方法により作製された、保護膜が無い集積型薄膜太陽電池セル(比較例1)と、保護膜を有する集積型薄膜太陽電池セル(実施例1)を、裏面電極膜50の金属電極層5の光反射率を測定した。測定は、太陽電池セルの作製直後(金属電極層5(Ag膜)の成膜直後)と、太陽電池セルを屋外に384時間設置した後に行った。表1に、保護膜6が無い裏面電極膜50の金属電極層5(Ag膜)の反射率の経時変化を示した。また、表2に、保護膜6(ZnO膜)を形成した金属電極層5(Ag膜)の反射率の経時変化を示した。この場合、保護膜6をウエットエッチング(エッチャント:酢酸)して金属電極層5の表面を剥き出して測定した。
[Test 1]
An integrated thin-film solar cell without a protective film (Comparative Example 1) and an integrated thin-film solar cell with a protective film (Example 1) produced by the above-described manufacturing method are used as metal electrodes for the back electrode film 50. The light reflectance of the layer 5 was measured. The measurement was performed immediately after the production of the solar cell (immediately after the formation of the metal electrode layer 5 (Ag film)) and after the solar cell was installed outdoors for 384 hours. Table 1 shows the change over time in the reflectance of the metal electrode layer 5 (Ag film) of the back electrode film 50 without the protective film 6. Table 2 shows the change over time in the reflectance of the metal electrode layer 5 (Ag film) on which the protective film 6 (ZnO film) is formed. In this case, the protective film 6 was wet-etched (etchant: acetic acid) and the surface of the metal electrode layer 5 was stripped and measured.

Figure 2005175449
Figure 2005175449

Figure 2005175449
Figure 2005175449

波長300〜1000nmの波長の反射光の反射率を測定した結果、表1より、保護膜6を形成しなかった金属電極層5では、波長300〜900nmの範囲で反射率が低下していることが分かった。これは、金属酸化層5が酸性雨により硫化したためであると考えられる。一方、表2より、保護膜6を形成していた金属電極層5では、波長300〜1000nmの範囲で高い反射率を維持していることが分かる。なお、表2において、1%未満の反射率の低下は見られるが、これは硫化による低下ではなく、エッチングによりAg膜の表面形状が荒れたためであると考えられる。   As a result of measuring the reflectance of the reflected light having a wavelength of 300 to 1000 nm, from Table 1, the metal electrode layer 5 in which the protective film 6 was not formed has a reduced reflectance in the wavelength range of 300 to 900 nm. I understood. This is presumably because the metal oxide layer 5 was sulfided by acid rain. On the other hand, it can be seen from Table 2 that the metal electrode layer 5 in which the protective film 6 was formed maintains a high reflectance in the wavelength range of 300 to 1000 nm. In Table 2, a decrease in reflectance of less than 1% is observed, but this is not due to sulfidation, but is thought to be because the surface shape of the Ag film was roughened by etching.

[試験2]
上述のようにして作製した、実施例1の集積型薄膜太陽電池セル(基板サイズ560mm×925mm)の特性を測定した。
測定の結果、AM1.5(100mW/cm2 )において、短絡光電流Isc=0.733[A]、開放端電圧Voc=64.883[V]、曲線因子F.F.=0.695、最適動作点出力Pmax=33.046[W]であった。
[Test 2]
The characteristics of the integrated thin film solar cell of Example 1 (substrate size 560 mm × 925 mm) produced as described above were measured.
As a result of measurement, in AM1.5 (100 mW / cm 2 ), the short-circuit photocurrent Isc = 0.733 [A], the open-circuit voltage Voc = 64.883 [V], the fill factor F.I. F. = 0.695, and the optimum operating point output Pmax was 33.046 [W].

[試験3]
裏面電極膜の金属電極層5がアルミニウムからなること以外は、上述の実施例1の製造方法と同様に実施例2の集積型薄膜太陽電池セルと、保護膜の無い比較例2の集積型薄膜太陽電池セルを作製し、実施例2および比較例2について実施例1と同様の方法で裏面電極膜50の金属電極層5の光反射率を測定した。測定は、太陽電池セルの作製直後(金属電極層5(Al膜)の成膜直後)と、太陽電池セルを室内に384時間設置した後に行った。表3に、保護膜6が無い裏面電極膜50の金属電極層5(Al膜)の反射率の経時変化を示した。また、表4に、保護膜6(ZnO膜)を形成した金属電極層5(Al膜)の反射率の経時変化を示した。この場合、保護膜6をウエットエッチング(エッチャント:酢酸)して金属電極層5の表面を剥き出して測定した。
[Test 3]
The integrated thin film solar cell of Example 2 and the integrated thin film of Comparative Example 2 having no protective film are the same as the manufacturing method of Example 1 except that the metal electrode layer 5 of the back electrode film is made of aluminum. A solar battery cell was produced, and the light reflectance of the metal electrode layer 5 of the back electrode film 50 was measured in the same manner as in Example 1 for Example 2 and Comparative Example 2. The measurement was performed immediately after the solar cell was fabricated (immediately after the formation of the metal electrode layer 5 (Al film)) and after the solar cell was placed in the room for 384 hours. Table 3 shows the change with time of the reflectance of the metal electrode layer 5 (Al film) of the back electrode film 50 without the protective film 6. Table 4 shows the change over time in the reflectance of the metal electrode layer 5 (Al film) on which the protective film 6 (ZnO film) is formed. In this case, the protective film 6 was wet-etched (etchant: acetic acid) and the surface of the metal electrode layer 5 was stripped and measured.

Figure 2005175449
Figure 2005175449

Figure 2005175449
Figure 2005175449

波長300〜1000nmの波長の反射光の反射率を測定した結果、表3より、保護膜6を形成しなかった金属電極層5では、波長300〜900nmの範囲で反射率が低下していることが分かった。これは、金属酸化層5が自然酸化したためであると考えられる。一方、表4より、保護膜6を形成していた金属電極層5では、波長300〜1000nmの範囲で高い反射率を維持していることが分かる。なお、表4において、1%未満の反射率の低下は見られるが、これは酸化による低下ではなく、エッチングによりAl膜の表面形状が荒れたためであると考えられる。   As a result of measuring the reflectance of the reflected light having a wavelength of 300 to 1000 nm, from Table 3, the metal electrode layer 5 in which the protective film 6 was not formed has a reduced reflectance in the wavelength range of 300 to 900 nm. I understood. This is considered to be because the metal oxide layer 5 was naturally oxidized. On the other hand, it can be seen from Table 4 that the metal electrode layer 5 in which the protective film 6 was formed maintains a high reflectance in the wavelength range of 300 to 1000 nm. In Table 4, a decrease in reflectance of less than 1% is observed, but this is not due to oxidation, but is thought to be because the surface shape of the Al film was roughened by etching.

[試験4]
上述のようにして作製した、実施例2の集積型薄膜太陽電池セル(基板サイズ560mm×925mm)の特性を測定した。
測定の結果、AM1.5(100mW/cm2 )において、短絡光電流Isc=0.733[A]、開放端電圧Voc=64.883[V]、曲線因子F.F.=0.695、最適動作点出力Pmax=33.046[W]であった。
[Test 4]
The characteristics of the integrated thin film solar cell of Example 2 (substrate size 560 mm × 925 mm) produced as described above were measured.
As a result of measurement, in AM1.5 (100 mW / cm 2 ), the short-circuit photocurrent Isc = 0.733 [A], the open-circuit voltage Voc = 64.883 [V], the fill factor F.I. F. = 0.695, and the optimum operating point output Pmax was 33.046 [W].

本発明の実施例の薄膜太陽電池におけるセル構造の一部を示し、かつその製造方法を説明するための要部拡大断面図である。It is a principal part expanded sectional view for showing a part of cell structure in the thin film solar cell of the Example of this invention, and demonstrating the manufacturing method.

符号の説明Explanation of symbols

1 ガラス基板(絶縁透光性基板)
2 透明導電膜
3 光電変換膜
4 透明電極層
5 金属電極層
6 保護膜
7 透明電極膜分離ライン
8 光電変換膜分離ライン
9 裏面電極膜分離ライン
50 裏面電極膜
1 Glass substrate (insulating translucent substrate)
2 transparent conductive film 3 photoelectric conversion film 4 transparent electrode layer 5 metal electrode layer 6 protective film 7 transparent electrode film separation line 8 photoelectric conversion film separation line 9 back electrode film separation line 50 back electrode film

Claims (12)

絶縁透光性基板と、この基板上に順次形成された透明導電膜、光電変換膜及び裏面電極膜を少なくとも備え、前記基板上で複数の発電領域に分割され、かつ電気的に直列接続された薄膜太陽電池であって、
前記裏面電極膜上に、導電性の保護膜が形成されてなることを特徴とする薄膜太陽電池。
An insulating translucent substrate and at least a transparent conductive film, a photoelectric conversion film, and a back electrode film sequentially formed on the substrate are divided into a plurality of power generation regions on the substrate and electrically connected in series. A thin film solar cell,
A thin film solar cell, wherein a conductive protective film is formed on the back electrode film.
保護膜が、裏面電極膜の硫化防止用および/または酸化防止用の膜である請求項1に記載の薄膜太陽電池。   The thin film solar cell according to claim 1, wherein the protective film is a film for preventing sulfurization and / or preventing oxidation of the back electrode film. 裏面電極膜が銀からなる請求項1または2に記載の薄膜太陽電池。   The thin film solar cell according to claim 1, wherein the back electrode film is made of silver. 保護膜が透明である請求項1〜3の何れか1つに記載の薄膜太陽電池。   The thin film solar cell according to claim 1, wherein the protective film is transparent. 保護膜が酸化亜鉛からなる請求項1〜4の何れか1つに記載の薄膜太陽電池。   The thin film solar cell according to any one of claims 1 to 4, wherein the protective film is made of zinc oxide. 保護膜が不透明である請求項1〜3の何れか1つに記載の薄膜太陽電池。   The thin film solar cell according to claim 1, wherein the protective film is opaque. 保護膜の膜厚が部分的に異なる請求項1〜6の何れか1つに記載の薄膜太陽電池。   The thin film solar cell according to any one of claims 1 to 6, wherein the thickness of the protective film is partially different. 絶縁透光性基板上に透明導電膜を形成する工程と、
前記透明導電膜を複数に分割する工程と、
透明導電膜側に光電変換膜を形成する工程と、
前記透明導電膜を分割した位置に対して重畳する位置又は離れた位置で、前記光電変換膜を複数に分割する工程と、
光電変換膜側に裏面電極膜を形成する工程と、
裏面電極膜上に導電性の保護膜を形成する工程と、
前記光電変換膜を分割した位置に対して重畳する位置又は離れた位置で、前記保護膜、裏面電極及び光電変換膜からなる積層膜を複数に分割する工程を備えてなることを特徴とする薄膜太陽電池の製造方法。
Forming a transparent conductive film on the insulating translucent substrate;
Dividing the transparent conductive film into a plurality of parts;
Forming a photoelectric conversion film on the transparent conductive film side;
A step of dividing the photoelectric conversion film into a plurality at a position overlapping or distant from the position where the transparent conductive film is divided;
Forming a back electrode film on the photoelectric conversion film side;
Forming a conductive protective film on the back electrode film;
A thin film comprising a step of dividing the laminated film composed of the protective film, the back electrode, and the photoelectric conversion film into a plurality at a position overlapping or distant from the position where the photoelectric conversion film is divided A method for manufacturing a solar cell.
保護膜が、裏面電極膜の硫化防止用および/または酸化防止用の膜である請求項8に記載の薄膜太陽電池の製造方法。   The method for producing a thin-film solar cell according to claim 8, wherein the protective film is a film for preventing sulfidation and / or preventing oxidation of the back electrode film. 保護膜を形成する工程において、部分的に保護膜の膜厚を異ならせる請求項8または9に記載の薄膜太陽電池の製造方法。   The method for manufacturing a thin-film solar cell according to claim 8 or 9, wherein in the step of forming the protective film, the thickness of the protective film is partially varied. 保護膜を形成する工程が、裏面電極膜上に第1の保護膜を形成する工程と、この第1の保護膜上に所定パターン形状のマスクを用いて第2の保護膜を形成する工程を含む請求項10に記載の薄膜太陽電池の製造方法。   The step of forming the protective film includes the step of forming the first protective film on the back electrode film and the step of forming the second protective film on the first protective film using a mask having a predetermined pattern shape. The manufacturing method of the thin film solar cell of Claim 10 containing. 保護膜を形成する工程が、裏面電極膜上に形成した保護膜を所定パターン形状のマスクを用いてエッチングする工程を含む請求項10に記載の薄膜太陽電池の製造方法。   The method of manufacturing a thin film solar cell according to claim 10, wherein the step of forming the protective film includes a step of etching the protective film formed on the back electrode film using a mask having a predetermined pattern shape.
JP2004326645A 2003-11-19 2004-11-10 Thin film solar cell and manufacturing method thereof Expired - Fee Related JP4316475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326645A JP4316475B2 (en) 2003-11-19 2004-11-10 Thin film solar cell and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003389503 2003-11-19
JP2004326645A JP4316475B2 (en) 2003-11-19 2004-11-10 Thin film solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005175449A true JP2005175449A (en) 2005-06-30
JP4316475B2 JP4316475B2 (en) 2009-08-19

Family

ID=34741926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326645A Expired - Fee Related JP4316475B2 (en) 2003-11-19 2004-11-10 Thin film solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4316475B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287926A (en) * 2006-04-17 2007-11-01 Kaneka Corp Integrated thin film photoelectric conversion device, and method of manufacturing same
JP2010087060A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Solar cell module
JP2011151135A (en) * 2010-01-20 2011-08-04 Kyocera Corp Photoelectric conversion module
WO2013046338A1 (en) * 2011-09-27 2013-04-04 三洋電機株式会社 Solar cell and solar cell module
JP2016066826A (en) * 2010-07-09 2016-04-28 鷹羽産業株式会社 Panel, method of manufacturing panel, solar cell module, printing device, and printing method
JP2020154278A (en) * 2019-03-20 2020-09-24 テトス カンパニー,リミテッド LED display module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287926A (en) * 2006-04-17 2007-11-01 Kaneka Corp Integrated thin film photoelectric conversion device, and method of manufacturing same
JP2010087060A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Solar cell module
JP2011151135A (en) * 2010-01-20 2011-08-04 Kyocera Corp Photoelectric conversion module
JP2016066826A (en) * 2010-07-09 2016-04-28 鷹羽産業株式会社 Panel, method of manufacturing panel, solar cell module, printing device, and printing method
US9559241B2 (en) 2010-07-09 2017-01-31 Takanoha Trading Co., Ltd. Panel, method for producing panel, solar cell module, printing apparatus, and printing method
WO2013046338A1 (en) * 2011-09-27 2013-04-04 三洋電機株式会社 Solar cell and solar cell module
JP2020154278A (en) * 2019-03-20 2020-09-24 テトス カンパニー,リミテッド LED display module
CN111724696A (en) * 2019-03-20 2020-09-29 股份有限会社太特思 LED display module
CN111724696B (en) * 2019-03-20 2022-04-12 股份有限会社太特思 LED display module

Also Published As

Publication number Publication date
JP4316475B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
US4593151A (en) Photoelectric conversion device
JP5535709B2 (en) SOLAR CELL, SOLAR CELL MODULE USING THE SOLAR CELL, AND SOLAR CELL MANUFACTURING METHOD
CN105378940B (en) The translucent photovoltaic monocell of thin layer
JP5774204B2 (en) Photovoltaic element, manufacturing method thereof, and solar cell module
US4542578A (en) Method of manufacturing photovoltaic device
KR101863294B1 (en) Solar cell and method for fabricating the same
JP6817764B2 (en) Solar cell and manufacturing method of solar cell
US20050253142A1 (en) Solar cell and its manufacturing method
JPWO2004064167A1 (en) Translucent thin film solar cell module and manufacturing method thereof
JPH0472392B2 (en)
JP2009152222A (en) Manufacturing method of solar cell element
CN103081123A (en) Device for generating solar power and method for manufacturing same
JPWO2010064549A1 (en) Method for manufacturing thin film photoelectric conversion device
JP2005277113A (en) Stacked solar cell module
JP4316475B2 (en) Thin film solar cell and manufacturing method thereof
JP2000133828A (en) Thin-film solar cell and manufacture thereof
JP2001203376A (en) Solar cell
JP7127042B2 (en) PHOTOELECTRIC CONVERSION MODULE AND METHOD OF MANUFACTURING PHOTOELECTRIC CONVERSION MODULE
JP4568531B2 (en) Integrated solar cell and method of manufacturing integrated solar cell
US4764476A (en) Method of making photoelectric conversion device
JP2000114555A (en) Manufacture of thin film solar cell
JP3243229B2 (en) Solar cell module
JP2010098266A (en) Photovoltaic element and method of manufacturing the same
JPH1012903A (en) Photoelectric transducer
JP6004946B2 (en) Solar cell and solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees