WO2013046338A1 - Solar cell and solar cell module - Google Patents

Solar cell and solar cell module Download PDF

Info

Publication number
WO2013046338A1
WO2013046338A1 PCT/JP2011/072080 JP2011072080W WO2013046338A1 WO 2013046338 A1 WO2013046338 A1 WO 2013046338A1 JP 2011072080 W JP2011072080 W JP 2011072080W WO 2013046338 A1 WO2013046338 A1 WO 2013046338A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
layer
metal layer
conductive oxide
cell module
Prior art date
Application number
PCT/JP2011/072080
Other languages
French (fr)
Japanese (ja)
Inventor
優也 中村
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2011/072080 priority Critical patent/WO2013046338A1/en
Publication of WO2013046338A1 publication Critical patent/WO2013046338A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell and a solar cell module.
  • Patent Document 1 describes a solar cell in which the back electrode covering the back surface of the photoelectric conversion unit is made of aluminum, titanium, or silver as an example.
  • the solar cell module according to the present invention includes a solar cell and a sealing layer.
  • the solar cell includes a photoelectric conversion unit and a metal layer disposed on one main surface of the photoelectric conversion unit.
  • the sealing layer seals the solar cell.
  • the solar cell includes a conductive oxide layer.
  • the conductive oxide layer is disposed between the metal layer and the sealing layer.
  • the solar cell according to the present invention includes a photoelectric conversion part, a metal layer, and a conductive oxide layer.
  • the metal layer is disposed on substantially the entire main surface of the photoelectric conversion unit.
  • the conductive oxide layer is disposed on the metal layer.
  • a solar cell module having improved reliability can be provided.
  • FIG. 1 is a schematic cross-sectional view of the solar cell module according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the solar cell in the first embodiment.
  • FIG. 3 is a schematic cross-sectional view in which a part of the solar cell in the first embodiment is enlarged.
  • FIG. 4 is a schematic cross-sectional view of the solar cell in the second embodiment.
  • the solar cell module 1 includes a plurality of solar cells 10.
  • the plurality of solar cells 10 are electrically connected by the wiring material 21.
  • the wiring member 21 and the solar cell 10 are bonded by an adhesive layer 22.
  • the adhesive layer 22 is, for example, a cured product of solder or a resin adhesive.
  • the plurality of solar cells 10 are sealed with a sealing material 23 between the first protective member 24 and the second protective member 25.
  • the plurality of solar cells 10 are arranged such that the light receiving surface 10a faces the first protective member 24 side and the back surface 10b faces the second protective member 25 side. That is, light enters the solar cell module 1 from the first protective member 24 side.
  • the first protective member 24 can be made of a light-transmitting member such as light-transmitting glass or plastic.
  • the 2nd protection member 25 can be comprised by weather-resistant members, such as glass and plastics which have translucency, a resin film, and the resin film which interposed metal foil, for example.
  • the sealing material 23 is, for example, an olefin resin, a styrene resin, a vinyl chloride resin, an ester resin, a urethane resin, an ionomer resin, a silicone resin, an acrylic resin, an epoxy resin, an ethylene / vinyl acetate copolymer. (EVA), polyvinyl butyral (PVB) and the like.
  • the solar cell module 1 may be provided with a terminal box on the second protective member 25 for taking out the generated power of the plurality of solar cells 10 to the outside. Moreover, the solar cell module 1 may be provided with a metal or resin frame at the periphery.
  • the solar cell 10 includes a photoelectric conversion unit 11, a first electrode 12, and a second electrode 13.
  • the photoelectric conversion unit 11 is a member that generates carriers such as holes and electrons when receiving light.
  • the photoelectric conversion unit 11 includes a substrate 11a made of a p-type or n-type semiconductor material.
  • the substrate 11a can be made of a semiconductor material such as crystalline silicon or GaAs.
  • a first semiconductor layer 11b having the first conductivity type is disposed on the main surface of the substrate 11a on the light receiving surface 10a side, and the second conductive layer is disposed on the main surface of the substrate 11a on the back surface 10b side.
  • a second semiconductor layer 11c having a mold is disposed.
  • the first conductivity type is one of the p-type and n-type
  • the second conductivity type is the other conductivity type.
  • the first semiconductor layer 11b can be made of, for example, amorphous silicon having the first conductivity type.
  • the second semiconductor layer 11c can be made of amorphous silicon having the second conductivity type, for example.
  • a substantially intrinsic i-type semiconductor layer having a thickness that does not substantially contribute to power generation for example, about several to 250 inches may be disposed.
  • a substantially intrinsic i-type semiconductor layer having a thickness that does not substantially contribute to power generation for example, about several to 250 inches is disposed.
  • the i-type semiconductor layer can be made of, for example, i-type amorphous silicon.
  • the first translucent conductive layer 11d is disposed on the first semiconductor layer 11b.
  • a second light-transmitting conductive layer 11e is disposed on the second semiconductor layer 11c.
  • the first light-transmitting conductive layer 11d and the second light-transmitting conductive layer 11e can be made of a light-transmitting conductive oxide such as indium oxide, zinc oxide, or tin oxide.
  • the photoelectric conversion unit 11 is configured by the first light-transmitting conductive layer 11d, the first semiconductor layer 11b, the substrate 11a, the second semiconductor layer 11c, and the second light-transmitting conductive layer 11e. Has been.
  • the first electrode 12 is disposed on the first main surface 11A of the photoelectric conversion unit 11, and the second electrode 13 is disposed on the second main surface 11B. Is arranged.
  • One of the first and second electrodes 12 and 13 is an electrode that collects minority carriers, and the other is an electrode that collects majority carriers.
  • 11 A of 1st main surfaces are located in the light-receiving side of the photoelectric conversion part 11, and 2nd main surface 11B is located in the back side.
  • the first electrode 12 is made of a metal material in order to reduce resistance loss.
  • the first electrode 12 can be formed by screen printing using a conductive paste such as silver paste, a sputtering method, a vapor deposition method, or the like. Further, the first electrode 12 has a light transmitting shape such as a comb shape having a bus bar portion and a finger portion so that light can enter the light receiving surface 10a.
  • the second electrode 13 has at least a metal layer 13a and a conductive oxide layer 13b disposed on the metal layer 13a. On the conductive oxide layer 13b, a terminal portion 13c for connection with the wiring member 21 may be provided or may not be provided.
  • the metal layer 13a is a member having light reflectivity disposed on substantially the entire surface of the second main surface 11B.
  • the metal layer 13a reflects, to the photoelectric conversion unit 11 side, light that has passed through the photoelectric conversion unit 11 out of light incident from the first main surface 11A side. As a result, the amount of light received by the photoelectric conversion unit 11 increases, so that the photoelectric conversion characteristics of the solar cell 1 can be improved.
  • the conductive oxide layer 13b is disposed on substantially the entire surface of the metal layer 13a.
  • the conductive oxide layer 13b suppresses contact between the metal layer 13a and the sealing layer 23 as described later.
  • the terminal portion 13c may or may not be provided, but for example, is provided in a linear shape extending along the x direction that is the direction in which the wiring member 21 extends.
  • the terminal part 13c can be formed by apply
  • the wiring member 21 and the conductive oxide layer 13b may be electrically connected directly or may be indirectly electrically connected via the terminal portion 13c. Further, the wiring member 21 may be directly electrically connected to both the conductive oxide layer 13b and the terminal portion 13c.
  • the main surface 11a1 on the back surface 10b side of the substrate 11a has irregularities.
  • the unevenness is simultaneously formed when a texture structure for preventing light reflection is formed on the main surface of the substrate 11a on the light receiving surface 10a side.
  • the second main surface 11B of the photoelectric conversion unit 11 is also main. It has a concavo-convex structure reflecting the shape of the surface 11a1.
  • the metal layer 13a has a thickness greater than that of the second semiconductor layer 11c and the second light-transmitting conductive layer 11e. For this reason, the surface of the conductive oxide layer 13b on the metal layer 13a has a concavo-convex structure that is slightly gentler than the concavo-convex structure of the main surface 11a1.
  • the metal layer 13a can be made of an appropriate conductive material such as a metal such as Ag, Cu, Au, Pt, or Sn or an alloy containing at least one of these metals.
  • the metal layer 13a preferably contains at least one of Ag and Cu from the viewpoint of reducing resistance loss and improving light reflectivity. Furthermore, from the viewpoint of manufacturing cost, the metal layer 13a preferably contains Cu.
  • the metal layer and the sealing layer 23 are in direct contact with each other.
  • moisture that has entered the solar cell module from the outside passes through the sealing layer 23 and reaches the metal layer, and as a result, the electrical characteristics of the second electrode 13 may be degraded. is there.
  • the material constituting the metal layer may diffuse into the sealing layer 23 and the characteristics of the sealing layer 23 may be deteriorated.
  • the metal layer contains Cu, discoloration or deterioration of the sealing layer 23 is likely to occur due to diffusion of Cu.
  • the solar cell module 1 includes a conductive oxide layer 13b disposed between the metal layer 13a and the sealing layer 23.
  • the second electrode 13 of the solar cell 10 includes a conductive oxide layer 13b that covers substantially the entire surface of the metal layer a. Since the conductive oxide layer 13b can suppress direct contact between the metal layer 13a and the sealing layer 23, the reliability of the solar cell module can be improved.
  • a solar cell module having good output characteristics and improved reliability can be provided at low cost. Is industrially superior.
  • the thickness of the metal layer 13a is not particularly limited. However, if the thickness of the metal layer 13a is too thin, the light reflectivity decreases and the resistance loss increases. For this reason, the thickness of the metal layer 13a is preferably 100 nm or more, and more preferably 300 nm or more. Further, if the metal layer 13a is too thick, the metal layer 13a is likely to be peeled off due to an increase in internal stress. Or the curvature of the board
  • the metal layer 13a can be formed by various methods such as plating, sputtering, vapor deposition, CVD, and application of conductive paste. In consideration of light reflectivity, the metal layer 13a is preferably formed by sputtering or vapor deposition.
  • the thickness of a layer shall mean the dimension in the z direction which is a lamination direction in the center part in the planar view of the solar cell 10, and the part in which the bus-bar part is not provided.
  • the thickness of a layer shall be the thickness in a top part.
  • the conductive oxide layer 13b can be made of a conductive oxide such as indium oxide, zinc oxide, or tin oxide, similarly to the first and second light-transmitting conductive layers 11d and 11e.
  • a conductive oxide has a property that resistance increases as light transmissivity increases. For example, when the concentration of the dopant added when forming the conductive oxide layer is increased, the resistance is decreased while the light transmittance is decreased. Therefore, in order to reduce the resistance loss of the second electrode 13, it is preferable that the conductive oxide layer 13b has a lower resistance than the second translucent conductive layer 11e.
  • the same material as the base material of the second translucent conductive layer 11e is used as the base material of the conductive oxide layer 13b, and the same material is used as the dopant.
  • the conductive oxide layer 13b of low resistance can be obtained by making the dopant density
  • the metal layer 13a is disposed on a partial region of the second main surface 11B, and the conductive oxide layer 13b is made of a metal
  • the layer 13a is disposed so as to cover the upper surface 13a1 and the side surface 13a2. For this reason, the contact with the metal layer 13a and the sealing material 23 is more effectively suppressed by the conductive oxide layer 13b. Therefore, a solar cell module having improved reliability can be provided.
  • the conductive oxide layer 13b may be in contact with the edge of the second main surface 11B. In this case, a more improved solar cell module can be provided.
  • the photoelectric conversion part is not particularly limited as long as it has a substrate made of a semiconductor material.
  • the photoelectric conversion unit includes a substrate made of a semiconductor material, a p-type region formed by diffusing a p-type dopant on one main surface of the substrate, and an n-type formed by diffusing an n-side dopant on the other main surface of the substrate. It may have a mold region.

Abstract

Provided is a solar cell module having improved reliability. The solar cell module is provided with solar cells and an encapsulating layer. Each of the solar cells includes a photoelectric conversion unit, and a metal layer disposed on one main surface of the photoelectric conversion unit. The encapsulating layer encapsulates the solar cells. Each of the solar cells is provided with a conductive oxide layer. The conductive oxide layer is disposed between the metal layer and the encapsulating layer.

Description

太陽電池及び太陽電池モジュールSolar cell and solar cell module
 本発明は、太陽電池及び太陽電池モジュールに関する。 The present invention relates to a solar cell and a solar cell module.
 近年、環境負荷の低いエネルギー源として、太陽電池に対する注目が高まってきている。例えば特許文献1には、その一例として、光電変換部の裏面を覆う裏面電極がアルミニウムやチタン或いは銀からなる太陽電池が記載されている。 In recent years, solar cells have been attracting attention as an energy source with a low environmental load. For example, Patent Document 1 describes a solar cell in which the back electrode covering the back surface of the photoelectric conversion unit is made of aluminum, titanium, or silver as an example.
特開平5-102504号公報Japanese Patent Laid-Open No. 5-102504
 近年、太陽電池の経時的な光電変換効率の低下を抑制したいという要望がさらに高まってきている。 In recent years, there has been an increasing demand for suppressing the decrease in photoelectric conversion efficiency over time of solar cells.
 本発明に係る太陽電池モジュールは、太陽電池と、封止層とを備えている。太陽電池は、光電変換部、及び光電変換部の一主面の上に配された金属層を含む。封止層は、太陽電池を封止している。太陽電池は、導電性酸化物層を備える。導電性酸化物層は、金属層と封止層との間に配されている。 The solar cell module according to the present invention includes a solar cell and a sealing layer. The solar cell includes a photoelectric conversion unit and a metal layer disposed on one main surface of the photoelectric conversion unit. The sealing layer seals the solar cell. The solar cell includes a conductive oxide layer. The conductive oxide layer is disposed between the metal layer and the sealing layer.
 本発明に係る太陽電池は、光電変換部と、金属層と、導電性酸化物層とを含む。金属層は、光電変換部の一主面の略全面上に配されている。導電性酸化物層は、金属層の上に配されている。 The solar cell according to the present invention includes a photoelectric conversion part, a metal layer, and a conductive oxide layer. The metal layer is disposed on substantially the entire main surface of the photoelectric conversion unit. The conductive oxide layer is disposed on the metal layer.
 本発明によれば、改善された信頼性を有する太陽電池モジュールを提供することができる。 According to the present invention, a solar cell module having improved reliability can be provided.
図1は、第1の実施形態における太陽電池モジュールの略図的断面図である。FIG. 1 is a schematic cross-sectional view of the solar cell module according to the first embodiment. 図2は、第1の実施形態における太陽電池の略図的断面図である。FIG. 2 is a schematic cross-sectional view of the solar cell in the first embodiment. 図3は、第1の実施形態における太陽電池の一部分を拡大した略図的断面図である。FIG. 3 is a schematic cross-sectional view in which a part of the solar cell in the first embodiment is enlarged. 図4は、第2の実施形態における太陽電池の略図的断面図である。FIG. 4 is a schematic cross-sectional view of the solar cell in the second embodiment.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 (第1の実施形態)
 図1に示されるように、太陽電池モジュール1は、複数の太陽電池10を備えている。複数の太陽電池10は、配線材21により電気的に接続されている。配線材21と太陽電池10とは、接着層22により接着されている。接着層22は、例えば、半田や樹脂接着剤の硬化物等である。
(First embodiment)
As shown in FIG. 1, the solar cell module 1 includes a plurality of solar cells 10. The plurality of solar cells 10 are electrically connected by the wiring material 21. The wiring member 21 and the solar cell 10 are bonded by an adhesive layer 22. The adhesive layer 22 is, for example, a cured product of solder or a resin adhesive.
 複数の太陽電池10は、第1の保護部材24と第2の保護部材25との間において封止材23により封止されている。複数の太陽電池10は、受光面10aが第1の保護部材24側を向き、裏面10bが第2の保護部材25側を向くように配されている。すなわち、太陽電池モジュール1には、第1の保護部材24側から光が入射する。 The plurality of solar cells 10 are sealed with a sealing material 23 between the first protective member 24 and the second protective member 25. The plurality of solar cells 10 are arranged such that the light receiving surface 10a faces the first protective member 24 side and the back surface 10b faces the second protective member 25 side. That is, light enters the solar cell module 1 from the first protective member 24 side.
 第1の保護部材24は、例えば、透光性を有するガラスやプラスチック等の透光性の部材により構成することができる。第2の保護部材25は、例えば、透光性を有するガラスやプラスチック、樹脂フィルムや、金属箔を介在させた樹脂フィルム等の耐候性の部材により構成することができる。封止材23は、例えば、オレフィン系樹脂、スチレン系樹脂、塩化ビニル系樹脂、エステル系樹脂、ウレタン系樹脂、アイオノマー樹脂、シリコーン樹脂、アクリル系樹脂、エポキシ系樹脂、エチレン・酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)等の少なくとも一種の樹脂により構成することができる。 The first protective member 24 can be made of a light-transmitting member such as light-transmitting glass or plastic. The 2nd protection member 25 can be comprised by weather-resistant members, such as glass and plastics which have translucency, a resin film, and the resin film which interposed metal foil, for example. The sealing material 23 is, for example, an olefin resin, a styrene resin, a vinyl chloride resin, an ester resin, a urethane resin, an ionomer resin, a silicone resin, an acrylic resin, an epoxy resin, an ethylene / vinyl acetate copolymer. (EVA), polyvinyl butyral (PVB) and the like.
 太陽電池モジュール1には、複数の太陽電池10の発電電力を外部に取り出すための端子ボックスが第2の保護部材25の上に設けられていてもよい。また、太陽電池モジュール1には、周縁部に金属製または樹脂製の枠体が設けられていてもよい。 The solar cell module 1 may be provided with a terminal box on the second protective member 25 for taking out the generated power of the plurality of solar cells 10 to the outside. Moreover, the solar cell module 1 may be provided with a metal or resin frame at the periphery.
 図2に示されるように、太陽電池10は、光電変換部11と、第1の電極12と、第2の電極13とを有する。 As shown in FIG. 2, the solar cell 10 includes a photoelectric conversion unit 11, a first electrode 12, and a second electrode 13.
 光電変換部11は、受光した際に正孔や電子などのキャリアを生成させる部材である。光電変換部11は、p型またはn型の半導体材料からなる基板11aを有する。基板11aは、具体的には、例えば、結晶性シリコンやGaAs等の半導体材料により構成することができる。基板11aの受光面10a側の主面の上には、第1導電型を有する第1の半導体層11bが配されており、基板11aの裏面10b側の主面の上には、第2導電型を有する第2の半導体層11cが配されている。尚、第1導電型はp型及びn型のうちの一方の導電型であり、第2導電型は、他方の導電型である。 The photoelectric conversion unit 11 is a member that generates carriers such as holes and electrons when receiving light. The photoelectric conversion unit 11 includes a substrate 11a made of a p-type or n-type semiconductor material. Specifically, the substrate 11a can be made of a semiconductor material such as crystalline silicon or GaAs. A first semiconductor layer 11b having the first conductivity type is disposed on the main surface of the substrate 11a on the light receiving surface 10a side, and the second conductive layer is disposed on the main surface of the substrate 11a on the back surface 10b side. A second semiconductor layer 11c having a mold is disposed. The first conductivity type is one of the p-type and n-type, and the second conductivity type is the other conductivity type.
 第1の半導体層11bは、例えば、第1導電型を有するアモルファスシリコンにより構成することができる。第2の半導体層11cは、例えば、第2導電型を有するアモルファスシリコンにより構成することができる。第1の半導体層11bと基板11aとの間には、例えば数Å~250Å程度の実質的に発電に寄与しない程度の厚みを有する実質的に真性なi型半導体層が配されていてもよい。同様に、第2の半導体層11cと基板11aとの間には、例えば数Å~250Å程度の実質的に発電に寄与しない程度の厚みを有する実質的に真性なi型半導体層が配されていてもよい。i型半導体層は、例えば、i型アモルファスシリコンにより構成することができる。 The first semiconductor layer 11b can be made of, for example, amorphous silicon having the first conductivity type. The second semiconductor layer 11c can be made of amorphous silicon having the second conductivity type, for example. Between the first semiconductor layer 11b and the substrate 11a, a substantially intrinsic i-type semiconductor layer having a thickness that does not substantially contribute to power generation, for example, about several to 250 inches may be disposed. . Similarly, between the second semiconductor layer 11c and the substrate 11a, a substantially intrinsic i-type semiconductor layer having a thickness that does not substantially contribute to power generation, for example, about several to 250 inches is disposed. May be. The i-type semiconductor layer can be made of, for example, i-type amorphous silicon.
 第1の半導体層11bの上には、第1の透光性導電層11dが配されている。また、第2の半導体層11cの上には、第2の透光性導電層11eが配されている。第1の透光性導電層11d及び第2の透光性導電層11eは、酸化インジウム、酸化亜鉛或いは酸化錫等の、透光性導電酸化物により構成することができる。 The first translucent conductive layer 11d is disposed on the first semiconductor layer 11b. In addition, a second light-transmitting conductive layer 11e is disposed on the second semiconductor layer 11c. The first light-transmitting conductive layer 11d and the second light-transmitting conductive layer 11e can be made of a light-transmitting conductive oxide such as indium oxide, zinc oxide, or tin oxide.
 太陽電池10において、第1の透光性導電層11d、第1の半導体層11b、基板11a、第2の半導体層11c、及び第2の透光性導電層11eにより、光電変換部11が構成されている。 In the solar cell 10, the photoelectric conversion unit 11 is configured by the first light-transmitting conductive layer 11d, the first semiconductor layer 11b, the substrate 11a, the second semiconductor layer 11c, and the second light-transmitting conductive layer 11e. Has been.
 図2に示されるように、光電変換部11の第1の主面11Aの上には第1の電極12が配されており、第2の主面11Bの上には、第2の電極13が配されている。これら第1及び第2の電極12,13のうちの一方が少数キャリアを収集する電極であり、他方が多数キャリアを収集する電極である。なお、第1の主面11Aは光電変換部11の受光側に位置し、第2の主面11Bは裏側に位置する。 As shown in FIG. 2, the first electrode 12 is disposed on the first main surface 11A of the photoelectric conversion unit 11, and the second electrode 13 is disposed on the second main surface 11B. Is arranged. One of the first and second electrodes 12 and 13 is an electrode that collects minority carriers, and the other is an electrode that collects majority carriers. In addition, 11 A of 1st main surfaces are located in the light-receiving side of the photoelectric conversion part 11, and 2nd main surface 11B is located in the back side.
 第1の電極12は、抵抗損失を少なくするため、金属材料から構成されている。第1の電極12は、例えば銀ペースト等の導電性ペーストを用いたスクリーン印刷や、スパッタ法或いは蒸着法等によって形成することができる。また、第1の電極12は、受光面10aに光が入射できるよう、例えばバスバー部及びフィンガー部を有する櫛型形状等の、光透過可能な形状にされている。 The first electrode 12 is made of a metal material in order to reduce resistance loss. The first electrode 12 can be formed by screen printing using a conductive paste such as silver paste, a sputtering method, a vapor deposition method, or the like. Further, the first electrode 12 has a light transmitting shape such as a comb shape having a bus bar portion and a finger portion so that light can enter the light receiving surface 10a.
 第2の電極13は、少なくとも金属層13aと、金属層13aの上に配された導電性酸化物層13bとを有する。導電性酸化物層13bの上に、配線材21との接続用の端子部13cを有していても良いし、無くても良い。 The second electrode 13 has at least a metal layer 13a and a conductive oxide layer 13b disposed on the metal layer 13a. On the conductive oxide layer 13b, a terminal portion 13c for connection with the wiring member 21 may be provided or may not be provided.
 金属層13aは、第2の主面11Bの略全面の上に配された、光反射性を有する部材である。金属層13aは、第1の主面11A側から入射した光のうち光電変換部11を透過した光を、光電変換部11側に反射する。この結果、光電変換部11で受光する光量が増加するので、太陽電池1の光電変換特性を向上させることができる。 The metal layer 13a is a member having light reflectivity disposed on substantially the entire surface of the second main surface 11B. The metal layer 13a reflects, to the photoelectric conversion unit 11 side, light that has passed through the photoelectric conversion unit 11 out of light incident from the first main surface 11A side. As a result, the amount of light received by the photoelectric conversion unit 11 increases, so that the photoelectric conversion characteristics of the solar cell 1 can be improved.
 導電性酸化物層13bは、金属層13aの略全面の上に配されている。導電性酸化物層13bは、後述するように金属層13aと封止層23との接触を抑制する。 The conductive oxide layer 13b is disposed on substantially the entire surface of the metal layer 13a. The conductive oxide layer 13b suppresses contact between the metal layer 13a and the sealing layer 23 as described later.
 端子部13cは、有っても無くても良いが、例えば配線材21の延びる方向であるx方向に沿って延びる線状に設けられる。なお、端子部13cは、例えば、Agなどの導電材料からなる導電材を含むペーストを塗布し、乾燥させることにより形成することができる。 The terminal portion 13c may or may not be provided, but for example, is provided in a linear shape extending along the x direction that is the direction in which the wiring member 21 extends. In addition, the terminal part 13c can be formed by apply | coating and drying the paste containing the electrically conductive material which consists of electrically conductive materials, such as Ag, for example.
 配線材21と導電性酸化物層13bとは、直接電気的に接続される場合もあれば、端子部13cを介して間接的に電気的に接続される場合もある。また、配線材21は、導電性酸化物層13bと端子部13cの両方と直接電気的に接続される場合もある。 The wiring member 21 and the conductive oxide layer 13b may be electrically connected directly or may be indirectly electrically connected via the terminal portion 13c. Further, the wiring member 21 may be directly electrically connected to both the conductive oxide layer 13b and the terminal portion 13c.
 図3に示されるように、基板11aの裏面10b側の主面11a1は、凹凸を有する。この凹凸は、基板11aの受光面10a側の主面に光反射防止用のテクスチャ構造を形成する際に、同時に形成される。第2の半導体層11cの厚み及び第2の透光性導電層11eの厚みは主面11a1の凹凸の大きさに比べて極めて薄いので、光電変換部11の第2の主面11Bも、主面11a1の形状を反映した凹凸構造を有する。また、金属層13aは、第2の半導体層11c及び第2の透光性導電層11eより厚い厚みを有する。このため、金属層13a上の導電性酸化物層13bの表面は、主面11a1の凹凸構造よりも若干緩やかな凹凸構造を有する。 As shown in FIG. 3, the main surface 11a1 on the back surface 10b side of the substrate 11a has irregularities. The unevenness is simultaneously formed when a texture structure for preventing light reflection is formed on the main surface of the substrate 11a on the light receiving surface 10a side. Since the thickness of the second semiconductor layer 11c and the thickness of the second translucent conductive layer 11e are extremely thin compared to the size of the unevenness of the main surface 11a1, the second main surface 11B of the photoelectric conversion unit 11 is also main. It has a concavo-convex structure reflecting the shape of the surface 11a1. The metal layer 13a has a thickness greater than that of the second semiconductor layer 11c and the second light-transmitting conductive layer 11e. For this reason, the surface of the conductive oxide layer 13b on the metal layer 13a has a concavo-convex structure that is slightly gentler than the concavo-convex structure of the main surface 11a1.
 金属層13aは、Ag,Cu,Au,Pt,Sn等の金属やそれらの金属のうちの少なくとも一種を含む合金などの適宜の導電材料により構成することができる。金属層13aは、抵抗損失の低減及び光の反射性の向上の観点から、Ag及びCuの少なくとも一方を含むことが好ましい。さらに製造コストの観点から、金属層13aはCuを含むことが好ましい。 The metal layer 13a can be made of an appropriate conductive material such as a metal such as Ag, Cu, Au, Pt, or Sn or an alloy containing at least one of these metals. The metal layer 13a preferably contains at least one of Ag and Cu from the viewpoint of reducing resistance loss and improving light reflectivity. Furthermore, from the viewpoint of manufacturing cost, the metal layer 13a preferably contains Cu.
 ところで、第2の電極13が最表面に金属層を有する従来の構造では、金属層と封止層23とが直接接している。このような構成では、外部から太陽電池モジュール内に侵入した水分が封止層23内を透過して金属層に到達し、この結果第2の電極13の電気的特性を低下させてしまうおそれがある。また、逆に金属層を構成する材料が封止層23に拡散し、封止層23の特性を低下させるおそれもある。特に金属層がCuを含む場合には、Cuの拡散により封止層23の変色や劣化が生じやすい。 By the way, in the conventional structure in which the second electrode 13 has a metal layer on the outermost surface, the metal layer and the sealing layer 23 are in direct contact with each other. In such a configuration, moisture that has entered the solar cell module from the outside passes through the sealing layer 23 and reaches the metal layer, and as a result, the electrical characteristics of the second electrode 13 may be degraded. is there. On the contrary, the material constituting the metal layer may diffuse into the sealing layer 23 and the characteristics of the sealing layer 23 may be deteriorated. In particular, when the metal layer contains Cu, discoloration or deterioration of the sealing layer 23 is likely to occur due to diffusion of Cu.
 そこで、太陽電池モジュール1は、金属層13aと封止層23との間に配されている導電性酸化物層13bを備えている。具体的に、太陽電池10の第2の電極13は、金属層aの略全面を被う導電性酸化物層13bを備えている。この導電性酸化物層13bによって、金属層13aと封止層23とが直接接することを抑制できるので、太陽電池モジュールの信頼性を向上させることができる。 Therefore, the solar cell module 1 includes a conductive oxide layer 13b disposed between the metal layer 13a and the sealing layer 23. Specifically, the second electrode 13 of the solar cell 10 includes a conductive oxide layer 13b that covers substantially the entire surface of the metal layer a. Since the conductive oxide layer 13b can suppress direct contact between the metal layer 13a and the sealing layer 23, the reliability of the solar cell module can be improved.
 特に、Cuを含む金属層13a上に導電性酸化物層13bを備える構成を用いることにより、良好な出力特性を有し且つ改善された信頼性を有する太陽電池モジュールを、低コストに提供することができ、工業的に優れている。 In particular, by using a configuration including the conductive oxide layer 13b on the metal layer 13a containing Cu, a solar cell module having good output characteristics and improved reliability can be provided at low cost. Is industrially superior.
 尚、金属層13aの厚みは特に限定されない。しかしながら、金属層13aの厚みが薄すぎると光の反射性が低下すると共に抵抗損失が大きくなる。このため、金属層13aの厚みは、100nm以上であることが好ましく、300nm以上であることがより好ましい。また、金属層13aは、厚みが厚すぎると内部応力の増加により剥離が生じ易くなる。或いは基板11aの反りが大きくなる。これらの悪影響を抑制するために、金属層13aの厚みは、10μm以下であることが好ましく、2μm以下であることがより好ましい。また、金属層13aは、めっき法、スパッタリング法、蒸着法、CVD法や、導電性ペーストの塗布等種々の方法により形成することができる。光の反射性を考慮すると、金属層13aはスパッタリング法や蒸着法により形成することが好ましい。 Note that the thickness of the metal layer 13a is not particularly limited. However, if the thickness of the metal layer 13a is too thin, the light reflectivity decreases and the resistance loss increases. For this reason, the thickness of the metal layer 13a is preferably 100 nm or more, and more preferably 300 nm or more. Further, if the metal layer 13a is too thick, the metal layer 13a is likely to be peeled off due to an increase in internal stress. Or the curvature of the board | substrate 11a becomes large. In order to suppress these adverse effects, the thickness of the metal layer 13a is preferably 10 μm or less, and more preferably 2 μm or less. The metal layer 13a can be formed by various methods such as plating, sputtering, vapor deposition, CVD, and application of conductive paste. In consideration of light reflectivity, the metal layer 13a is preferably formed by sputtering or vapor deposition.
 なお、本発明において、層の厚みは、太陽電池10の平面視における中央部であって、バスバー部が設けられていない部分における、積層方向であるz方向における寸法をいうものとする。また、凹凸を有する面の上に配された層においては、層の厚みは、頂部における厚みとする。 In addition, in this invention, the thickness of a layer shall mean the dimension in the z direction which is a lamination direction in the center part in the planar view of the solar cell 10, and the part in which the bus-bar part is not provided. Moreover, in the layer distribute | arranged on the surface which has an unevenness | corrugation, the thickness of a layer shall be the thickness in a top part.
 導電性酸化物層13bは、第1及び第2の透光性導電層11d,11eと同様に、酸化インジウム、酸化亜鉛或いは酸化錫等の導電酸化物により構成することができる。尚、導電性酸化物層13bは、金属層13aを挟んで光電変換部11の反対側に位置するので、透光性は要求されない。一般に、導電性酸化物は、透光性が大きくなる程抵抗が大きくなる性質を有する。例えば、導電性酸化物層を形成する際に添加するドーパントの濃度を多くすると、抵抗が小さくなる一方、光の透過率が低下する。従って、第2の電極13の抵抗損失低減のため、導電性酸化物層13bは、第2の透光性導電層11eよりも低抵抗にすることが好ましい。具体的に、導電性酸化物層13bの母材として、第2の透光性導電層11eの母材と同じ材料を用い、またドーパントも同じ材料を用いる。そして、導電性酸化物層13b中のドーパント濃度を、第2の透光性導電層11e中のドーパント濃度より高くすることで、低抵抗の導電性酸化物層13bを得ることができる。 The conductive oxide layer 13b can be made of a conductive oxide such as indium oxide, zinc oxide, or tin oxide, similarly to the first and second light-transmitting conductive layers 11d and 11e. In addition, since the conductive oxide layer 13b is located on the opposite side of the photoelectric conversion unit 11 with the metal layer 13a interposed therebetween, translucency is not required. In general, a conductive oxide has a property that resistance increases as light transmissivity increases. For example, when the concentration of the dopant added when forming the conductive oxide layer is increased, the resistance is decreased while the light transmittance is decreased. Therefore, in order to reduce the resistance loss of the second electrode 13, it is preferable that the conductive oxide layer 13b has a lower resistance than the second translucent conductive layer 11e. Specifically, the same material as the base material of the second translucent conductive layer 11e is used as the base material of the conductive oxide layer 13b, and the same material is used as the dopant. And the conductive oxide layer 13b of low resistance can be obtained by making the dopant density | concentration in the conductive oxide layer 13b higher than the dopant density | concentration in the 2nd translucent conductive layer 11e.
 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Hereinafter, another example of the preferred embodiment of the present invention will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted.
 (第2の実施形態)
 図4に示されるように、第2の実施形態における太陽電池10Aでは、金属層13aが第2の主面11Bの一部の領域上に配されており、導電性酸化物層13bは、金属層13aの上面13a1及び側面13a2を被うように配されている。このため、導電性酸化物層13bにより、金属層13aと封止材23との接触がより効果的に抑制される。従って、より改善された信頼性を有する太陽電池モジュールを提供することができる。なお、導電性酸化物層13bは、第2の主面11Bの縁部に接触していても良い。この場合、より改善された太陽電池モジュールを提供することができる。
(Second Embodiment)
As shown in FIG. 4, in the solar cell 10A in the second embodiment, the metal layer 13a is disposed on a partial region of the second main surface 11B, and the conductive oxide layer 13b is made of a metal The layer 13a is disposed so as to cover the upper surface 13a1 and the side surface 13a2. For this reason, the contact with the metal layer 13a and the sealing material 23 is more effectively suppressed by the conductive oxide layer 13b. Therefore, a solar cell module having improved reliability can be provided. The conductive oxide layer 13b may be in contact with the edge of the second main surface 11B. In this case, a more improved solar cell module can be provided.
 尚、本発明はここでは記載していない様々な実施形態を含む。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 The present invention includes various embodiments that are not described here. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 例えば、光電変換部は、半導体材料からなる基板を有するものである限りにおいて特に限定されない。光電変換部は、半導体材料からなる基板と、基板の一主面にp型ドーパントを拡散させて形成されたp型領域と、基板の他主面にn側ドーパントを拡散させて形成されたn型領域とを有するものであってもよい。 For example, the photoelectric conversion part is not particularly limited as long as it has a substrate made of a semiconductor material. The photoelectric conversion unit includes a substrate made of a semiconductor material, a p-type region formed by diffusing a p-type dopant on one main surface of the substrate, and an n-type formed by diffusing an n-side dopant on the other main surface of the substrate. It may have a mold region.
1…太陽電池モジュール
10,10A…太陽電池
11…光電変換部
11A…第1の主面
11B…第2の主面
11a…基板
12…第1の電極
13…第2の電極
13a…金属層
13a1…金属層の上面
13a2…金属層の側面
13b…導電性酸化物層
13c…端子部
23…封止材
DESCRIPTION OF SYMBOLS 1 ... Solar cell module 10, 10A ... Solar cell 11 ... Photoelectric conversion part 11A ... 1st main surface 11B ... 2nd main surface 11a ... Substrate 12 ... 1st electrode 13 ... 2nd electrode 13a ... Metal layer 13a1 ... Metal layer upper surface 13a2 ... Metal layer side surface 13b ... Conductive oxide layer 13c ... Terminal portion 23 ... Sealing material

Claims (9)

  1.  光電変換部、及び前記光電変換部の一主面の上に配された金属層を含む太陽電池と、
     前記太陽電池を封止している封止層と、を備え、
     前記太陽電池は、前記金属層と前記封止層との間に配された導電性酸化物層を備える、
     太陽電池モジュール。
    A solar cell including a photoelectric conversion unit and a metal layer disposed on one main surface of the photoelectric conversion unit;
    A sealing layer sealing the solar cell,
    The solar cell includes a conductive oxide layer disposed between the metal layer and the sealing layer.
    Solar cell module.
  2.  請求項1に記載の太陽電池モジュールであって、
     前記金属層は、前記一主面の略全面の上に配されている。
    The solar cell module according to claim 1,
    The metal layer is disposed on substantially the entire surface of the one main surface.
  3.  請求項1または2に記載の太陽電池モジュールであって、
     前記太陽電池に電気的に接続された配線材を備え、
     前記配線材は、前記導電性酸化物層に電気的に接続されている。
    The solar cell module according to claim 1 or 2,
    Comprising a wiring material electrically connected to the solar cell;
    The wiring material is electrically connected to the conductive oxide layer.
  4.  請求項3に記載の太陽電池モジュールであって、
     前記太陽電池は、前記導電性酸化物層上に端子部を有し、
     前記配線材は、前記端子部に接続されている。
    The solar cell module according to claim 3, wherein
    The solar cell has a terminal portion on the conductive oxide layer,
    The wiring material is connected to the terminal portion.
  5.  請求項1~4のいずれか一項に記載の太陽電池モジュールであって、
     前記導電性酸化物層は、前記金属層の上面及び側面を被うように設けられている。
    The solar cell module according to any one of claims 1 to 4,
    The conductive oxide layer is provided so as to cover an upper surface and a side surface of the metal layer.
  6.  請求項1~5のいずれか一項に記載の太陽電池モジュールであって、
     前記金属層は、Cuを含む。
    A solar cell module according to any one of claims 1 to 5,
    The metal layer includes Cu.
  7.  請求項1~6のいずれか一項に記載の太陽電池モジュールであって、
     前記光電変換部は、前記一主面側に配された透光性導電層を含み、
     前記導電性酸化物層は、前記透光性導電層よりも低抵抗である。
    The solar cell module according to any one of claims 1 to 6,
    The photoelectric conversion unit includes a translucent conductive layer disposed on the one main surface side,
    The conductive oxide layer has a lower resistance than the translucent conductive layer.
  8.  請求項7に記載の太陽電池モジュールであって、
     前記透光性導電層及び前記導電性酸化物層は、同じ母材からなり、
     前記導電性酸化物層中のドーパント濃度が、前記透光性導電層中のドーパント濃度より高い。
    The solar cell module according to claim 7, wherein
    The translucent conductive layer and the conductive oxide layer are made of the same base material,
    The dopant concentration in the conductive oxide layer is higher than the dopant concentration in the translucent conductive layer.
  9.  光電変換部と、
     前記光電変換部の一主面の略全面上に配された金属層と、
     前記金属層の上に配された導電性酸化物層と、を含む、太陽電池。
    A photoelectric conversion unit;
    A metal layer disposed on substantially the entire main surface of the photoelectric conversion unit;
    And a conductive oxide layer disposed on the metal layer.
PCT/JP2011/072080 2011-09-27 2011-09-27 Solar cell and solar cell module WO2013046338A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072080 WO2013046338A1 (en) 2011-09-27 2011-09-27 Solar cell and solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072080 WO2013046338A1 (en) 2011-09-27 2011-09-27 Solar cell and solar cell module

Publications (1)

Publication Number Publication Date
WO2013046338A1 true WO2013046338A1 (en) 2013-04-04

Family

ID=47994451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072080 WO2013046338A1 (en) 2011-09-27 2011-09-27 Solar cell and solar cell module

Country Status (1)

Country Link
WO (1) WO2013046338A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145096A (en) * 1991-11-22 1993-06-11 Asahi Glass Co Ltd Transmission type solar cell
JPH11103079A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Manufacture of laminated photovoltaic device
JPH11103081A (en) * 1997-09-29 1999-04-13 Sanyo Electric Co Ltd Photovoltaic element
JP2001053305A (en) * 1999-08-12 2001-02-23 Kanegafuchi Chem Ind Co Ltd Non-single-crystal silicon thin-film photoelectric transfer device
JP2005175449A (en) * 2003-11-19 2005-06-30 Sharp Corp Thin film solar cell and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145096A (en) * 1991-11-22 1993-06-11 Asahi Glass Co Ltd Transmission type solar cell
JPH11103079A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Manufacture of laminated photovoltaic device
JPH11103081A (en) * 1997-09-29 1999-04-13 Sanyo Electric Co Ltd Photovoltaic element
JP2001053305A (en) * 1999-08-12 2001-02-23 Kanegafuchi Chem Ind Co Ltd Non-single-crystal silicon thin-film photoelectric transfer device
JP2005175449A (en) * 2003-11-19 2005-06-30 Sharp Corp Thin film solar cell and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5842170B2 (en) Solar cell module
JP5687506B2 (en) Solar cell and solar cell module
JP5874011B2 (en) Solar cell and solar cell module
JP5306352B2 (en) SOLAR CELL MODULE, SOLAR CELL, AND SOLAR CELL MODULE MANUFACTURING METHOD
CN111615752B (en) Solar cell module
JPWO2015152020A1 (en) Solar cell module and manufacturing method thereof
JP5884077B2 (en) Solar cell and solar cell module
JP6986357B2 (en) Solar cell module
WO2017154384A1 (en) Solar cell module
JP5084133B2 (en) Photovoltaic element, photovoltaic module, and method for producing photovoltaic module
US20130312826A1 (en) Photovoltaic device and photovoltaic module
JP4570373B2 (en) Solar cell module
JP7270631B2 (en) solar module
JP5995007B2 (en) Solar cell module
JP7353272B2 (en) Solar cell device and method for manufacturing solar cell device
US20150027532A1 (en) Solar cell, solar cell module and method of manufacturing solar cell
US11362225B2 (en) Connection member set for solar battery cell, and solar cell string and solar cell module using same
JP2008053303A (en) Solar cell panel
WO2013046338A1 (en) Solar cell and solar cell module
JP5906422B2 (en) Solar cell and solar cell module
JP2016086154A (en) Solar battery module
JP6191925B2 (en) Solar cell module
JPWO2016051631A1 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP