JPH05145096A - Transmission type solar cell - Google Patents

Transmission type solar cell

Info

Publication number
JPH05145096A
JPH05145096A JP3334005A JP33400591A JPH05145096A JP H05145096 A JPH05145096 A JP H05145096A JP 3334005 A JP3334005 A JP 3334005A JP 33400591 A JP33400591 A JP 33400591A JP H05145096 A JPH05145096 A JP H05145096A
Authority
JP
Japan
Prior art keywords
film
solar cell
inorganic compound
layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3334005A
Other languages
Japanese (ja)
Inventor
Kunihiko Adachi
邦彦 安達
Takeshi Matsui
雄志 松井
Takuji Oyama
卓司 尾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3334005A priority Critical patent/JPH05145096A/en
Publication of JPH05145096A publication Critical patent/JPH05145096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve the transmittance of a transmission solar cell without sacrificing a solar cell formation area by a method wherein the constitution of a rear electrode is formed into a multilayer structure, which is obtained by laminating in order an inorganic compound film, a metal film and an inorganic compound film and consists of the three layers. CONSTITUTION:When a rear electrode is formed into a three-layer structure of an inorganic compound film 4, a metal film 5 and an inorganic compound film 6, the spectral reflectivity of light, which is reflected in a photoactive layer by the rear electrode and returns, is changed by the constitutions of the respective film thicknesses of the three layers of the films 4, 5 and 6. The spectral transmittance of light, which is reflected from the rear electrode to the photoactive layer, and the spectral transmittance of light, which is transmitted to the side of the atmosphere through the rear electrode, are specified by limiting the film thickness of each layer of this rear electrode in a specified range. The wavelength of the light at the minimum point of reflection is decided by the film thickness of the film 4 and the wavelength of the light at the maximum point of reflection and the reflectivity of the light are decided by the film thickness of the film 6. It is desirable that the film thickness of the film 4 is 600 to 800Angstrom or 1500 to 2000Angstrom from the viewpoint of a conversion efficiency, and is 1500 to 2000Angstrom from the viewpoint of a transmittance. Accordingly, it is desirable that it is finally 1500 to 2000Angstrom .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は入射光の一部が透過する
ことが可能なような構成にした透過型太陽電池に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmissive solar cell having a structure capable of transmitting a part of incident light.

【0002】[0002]

【従来の技術】シリコンを含み、さらに必要に応じて炭
素、窒素、ゲルマニウム、ホウ素、燐及び水素を含む非
晶質合金(以下非晶質シリコンと記す)を光活性層に用
いた太陽電池は、結晶系太陽電池と比較して低コストで
あること、接合形成が容易であること、素子構造上の自
由度が高いこと等の利点を有することから開発が進めら
れ、小面積素子の電卓、腕時計等への応用例が発表され
てきた。
2. Description of the Related Art A solar cell using an amorphous alloy containing silicon and optionally carbon, nitrogen, germanium, boron, phosphorus and hydrogen (hereinafter referred to as amorphous silicon) in a photoactive layer is known. , Low cost compared with crystalline solar cells, easy junction formation, high degree of freedom in device structure, etc. have been promoted development, and calculator of small area device, Applications for wristwatches have been announced.

【0003】従来は、小面積デバイスに開発の主流がお
かれてきたため、出力特性以外の性能に関してはあまり
配慮されてこなかったが、近年、建築、自動車等への応
用を目指して、光透過性の太陽電池の開発が行われるよ
うになってきた。これらの例としては特開昭62−71
70号公報に示されるような第2の電極層として金属お
よび金属酸化物の複合体としたものや、実開昭63−1
78356号公報に示されるような太陽電池形成面上に
太陽電池の非形成領域を設け、入射光を透過するような
構造にしたもの等がある。また特開平2−312285
号公報に示されるような第2の電極層に第1の電極層に
用いたものと同様の透明導電性薄膜を用いた例も報告さ
れている。
Conventionally, the development of the small-area device has been the mainstream, so that the performance other than the output characteristics has not been considered so much, but in recent years, the light transmissivity has been aimed at for application to construction, automobiles and the like. The development of solar cells has started. Examples of these are JP-A-62-71.
No. 70, a composite of a metal and a metal oxide as the second electrode layer, and Japanese Utility Model Laid-Open No. 63-1.
Japanese Patent No. 78356 discloses a structure in which a solar cell non-forming region is provided on a solar cell forming surface to transmit incident light. In addition, JP-A-2-12285
There is also reported an example in which a transparent conductive thin film similar to that used for the first electrode layer is used for the second electrode layer as shown in Japanese Patent Laid-Open Publication No. 2003-242242.

【0004】一方、透過型太陽電池を用いて高効率の太
陽電池を作成する試みとしては、透過型太陽電池を4端
子2層タンデム構造太陽電池のトップセルとして用いた
例があり、この応用例については、 Kim W.Mitchell,"T
oward High Efficiency ThinFilm Power Modules",Opto
electronics Device and Technologies,vol.5,No.2,pp2
75 (以下参考文献(1)という)に詳細が開示されて
いる。
On the other hand, in an attempt to produce a highly efficient solar cell using a transmissive solar cell, there is an example in which the transmissive solar cell is used as a top cell of a four-terminal two-layer tandem structure solar cell. About Kim W. Mitchell, "T
oward High Efficiency ThinFilm Power Modules ", Opto
electronics Device and Technologies, vol.5, No.2, pp2
Details are disclosed in 75 (hereinafter referred to as reference (1)).

【0005】[0005]

【発明が解決しようとする課題】上記の各方法には様々
な問題点が含まれており、いずれの場合においても開示
されている方法では所望の効果を十分に達成することは
できない。例えば特開昭62−7170号公報において
示されている構造では、裏面電極の膜厚構成の最適化が
不完全であるため、可視光の透過率を向上させた結果、
発電に有効な波長域である600nm以下の可視光が利
用されないまま第2電極から再び外側に透過してしま
い、発電出力の低下を招くという問題点があった。
Each of the above methods has various problems, and in any case, the disclosed method cannot sufficiently achieve the desired effect. For example, in the structure disclosed in Japanese Patent Laid-Open No. 62-7170, the optimization of the film thickness composition of the back electrode is incomplete, so that the transmittance of visible light is improved.
There is a problem in that visible light having a wavelength range of 600 nm or less, which is an effective wavelength range for power generation, is transmitted to the outside again from the second electrode without being used, resulting in a decrease in power generation output.

【0006】また実開昭63−178356号公報に示
されるように太陽電池に非形成領域を設けた構造の場合
には、発電領域の面積を狭くしてしまうために基板の実
効的な発電効率を低下させてしまう問題点が存在した。
Further, as shown in Japanese Utility Model Application Laid-Open No. 63-178356, in the case of the structure in which the non-formed region is provided in the solar cell, the effective power generation efficiency of the substrate is reduced because the area of the power generation region is narrowed. There was a problem that reduced the.

【0007】また特開平2−312285号公報または
参考文献(1)に示されているように、第2の電極層と
して透明導電性薄膜を用いた場合には、金属電極を用い
た場合と比較すると太陽電池全体としての透過率は向上
する反面、第1の例と同様の理由によって発電出力が低
下するという欠点に加えて、第2の電極層を充分に低抵
抗化するためには透明導電性薄膜の膜厚を1μm以上の
膜厚にしなくてはならないため、太陽電池作成の効率
(スループット)が大幅に低下してしまうという問題点
も存在した。
Further, as shown in JP-A-2-312285 or Reference (1), when a transparent conductive thin film is used as the second electrode layer, it is compared with the case where a metal electrode is used. Then, although the transmittance of the solar cell as a whole is improved, in addition to the drawback that the power generation output is reduced for the same reason as in the first example, in order to sufficiently reduce the resistance of the second electrode layer, the transparent conductive layer is used. There is also a problem that the efficiency (throughput) of producing a solar cell is significantly reduced because the film thickness of the conductive thin film has to be 1 μm or more.

【0008】[0008]

【課題を解決するための手段】本発明は上記の課題を解
決すべくなされたものであり、透明絶縁基板上に透明導
電性薄膜からなる第1の電極層(以下、透明導電膜と記
す)と、光照射により光起電力を発生する光活性層と、
光を透過することのできる導電性薄膜からなる第2の電
極層(以下、裏面電極と記す)とを堆積してなる透過型
太陽電池において、光活性層が非晶質シリコンからな
り、裏面電極の構成を、無機化合物膜、金属膜、無機化
合物膜が順次積層された3層からなる多層構造とし、好
ましくは3層の薄膜のうち光活性層に接する無機化合物
膜の膜厚を1500Å以上、2000Å以下の範囲に、
金属膜の膜厚を100Å以上、200Å以下の範囲に、
光活性層と接していない側の無機化合物膜の膜厚を40
0Å以上の範囲に設計したことを特徴とする透過型太陽
電池を提供するものである。
The present invention has been made to solve the above problems, and a first electrode layer (hereinafter referred to as a transparent conductive film) formed of a transparent conductive thin film on a transparent insulating substrate. And a photoactive layer that generates a photoelectromotive force by light irradiation,
A transmissive solar cell comprising a second electrode layer (hereinafter, referred to as a back electrode) formed of a conductive thin film capable of transmitting light, wherein the photoactive layer is made of amorphous silicon, and the back electrode Is a multilayer structure composed of three layers in which an inorganic compound film, a metal film, and an inorganic compound film are sequentially laminated, and preferably the inorganic compound film in contact with the photoactive layer has a thickness of 1500 Å or more, Within the range of 2000Å or less,
In the range of 100 Å or more and 200 Å or less of the metal film,
The thickness of the inorganic compound film on the side not in contact with the photoactive layer is 40
The present invention provides a transparent solar cell characterized by being designed in a range of 0 Å or more.

【0009】太陽電池ハンドブック(電気学会、198
5年、コロナ社)等によって明らかにされているよう
に、非晶質シリコン太陽電池の収集効率は図2に示すよ
うに550nm付近にピークを持った曲線となる。収集
効率は短波長側および長波長側で急激に減少し、550
nm付近のピーク波長での収集効率を1とした場合に
は、約400nm以下および640nm以上の波長に対
する収集効率は0.5以下となる。そこで透過型太陽電
池でありながらも十分な変換効率を確保するためには、
電池に入射する光のうちでも400〜640nmの光に
ついては、極力裏面電極から光活性層内に反射させて発
電に利用することが望ましい。
Solar Cell Handbook (Institute of Electrical Engineers, 198)
As is clear from 5 years, Corona Inc., etc., the collection efficiency of an amorphous silicon solar cell is a curve having a peak near 550 nm as shown in FIG. The collection efficiency sharply decreases on the short wavelength side and the long wavelength side, and becomes 550
When the collection efficiency at the peak wavelength near nm is 1, the collection efficiency for wavelengths of about 400 nm or less and 640 nm or more is 0.5 or less. Therefore, in order to ensure sufficient conversion efficiency even though it is a transmissive solar cell,
Of the light that enters the battery, it is desirable that the light of 400 to 640 nm is reflected from the back electrode into the photoactive layer as much as possible and used for power generation.

【0010】一方、人間の目の感度(視感度)は、図3
に示すように400nm付近の短波長側ではほとんど感
知できないのに対し、長波長側では約750nmまで感
知することが可能である。そこで非晶質シリコン層を透
過した光のうち、非晶質シリコンの収集効率が十分に大
きな波長域の光は、再び非晶質シリコン層内に反射して
発電に寄与させる一方、非晶質シリコンが吸収できない
長波長域の光については大気側に透過させられるような
裏面電極があれば、透過率のより高い透過型太陽電池を
作成することができる。本発明になる裏面電極はこのよ
うな要請を実現するものである。
On the other hand, the sensitivity (visual sensitivity) of the human eye is shown in FIG.
As shown in (1), it is almost impossible to detect on the short wavelength side near 400 nm, while it is possible to detect up to about 750 nm on the long wavelength side. Therefore, of the light transmitted through the amorphous silicon layer, the light in the wavelength range in which the collection efficiency of amorphous silicon is sufficiently large is reflected again in the amorphous silicon layer to contribute to power generation, while If there is a back electrode that allows light in the long wavelength range that cannot be absorbed by silicon to be transmitted to the atmosphere side, a transmissive solar cell having higher transmittance can be manufactured. The back electrode according to the present invention fulfills such requirements.

【0011】以下、本発明による透過型太陽電池の構成
を図面に従って説明する。図1は本発明による透過型太
陽電池の断面図である。図中1は、ガラス基板等からな
る透明絶縁性基板を示す。2は透明導電膜を、3は光照
射により光起電力を発生する光活性層を示す。4は裏面
電極の内の第1層目にあたる無機化合物膜を、5は第2
層目にあたる金属膜を、6は第3層目にあたる無機化合
物膜を示す。すなわち、裏面電極は無機化合物膜4/金
属膜5/無機化合物膜6という3層構造からなってい
る。
The structure of the transparent solar cell according to the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a transparent solar cell according to the present invention. In the figure, 1 indicates a transparent insulating substrate made of a glass substrate or the like. Reference numeral 2 denotes a transparent conductive film, and 3 denotes a photoactive layer that generates a photoelectromotive force by light irradiation. 4 is the inorganic compound film corresponding to the first layer of the back electrode, and 5 is the second layer.
A metal film corresponding to a layer is shown, and 6 is an inorganic compound film corresponding to a third layer. That is, the back electrode has a three-layer structure of inorganic compound film 4 / metal film 5 / inorganic compound film 6.

【0012】この様な膜構造にすると3層それぞれの膜
厚構成により、裏面電極により光活性層中に反射されて
戻る光の分光反射率が変化する。この裏面電極各層の膜
厚を特定の範囲に限定することにより、裏面電極から光
活性層に反射する光と裏面電極を通して大気側に透過す
る光の分光透過率を特定することが本発明の具体的な手
段である。
With such a film structure, the spectral reflectance of the light reflected back into the photoactive layer by the back electrode changes depending on the thickness of each of the three layers. By limiting the film thickness of each layer of the back electrode to a specific range, it is possible to specify the spectral transmittance of the light reflected from the back electrode to the photoactive layer and the light transmitted to the atmosphere side through the back electrode. Means.

【0013】本発明になる裏面電極を用いれば、太陽電
池形成面積を犠牲にすることなく透過率を向上させるこ
とができるため「発明が解決しようとする課題」におけ
る第2例(実開昭63−178356号)のような問題
は考慮する必要がなくなる。また第1例(特開昭62−
7170号)および第3例(特開平2−312285
号)のような問題点についても、本発明では透過率を確
保しながら太陽光スペクトルを有効に発電に利用するた
め解決される。
The use of the back electrode according to the present invention makes it possible to improve the transmittance without sacrificing the solar cell formation area. Therefore, the second example in "Problems to be solved by the invention" (Actual Development Sho 63) It is not necessary to consider problems such as No. 178356). In addition, the first example (Japanese Patent Laid-Open No. 62-
No. 7170) and a third example (JP-A-2-312285).
In the present invention, the problems such as (No.) are solved because the sunlight spectrum is effectively used for power generation while ensuring the transmittance.

【0014】さらに生産におけるスループットの低下に
ついても、本発明のような構成にした場合には電極層中
の金属膜により裏面電極層全体の抵抗値を低減すること
が可能となるために非常に速いスループットを得ること
が可能になる。このように本発明の方法によれば、従来
の技術の中で述べた問題点をすべて解決することができ
る。
Further, the decrease in the throughput in the production is very fast because the resistance value of the entire back electrode layer can be reduced by the metal film in the electrode layer in the case of the constitution of the present invention. Throughput can be obtained. As described above, according to the method of the present invention, all the problems described in the conventional art can be solved.

【0015】本発明の目標は、裏面電極の構造を工夫す
ることにより、光電変換の収集効率が高い波長域におい
ては光活性層中への十分な反射率を有し、収集効率が低
い波長域においては逆に反射率が低下し裏面電極を透過
する光量が増加するような構造を実現することであるか
ら、裏面電極の膜厚構成を変化させることにより反射率
の極大値、極小値およびそれらの波長がどのように変化
するかについて詳細の検討を行った。
The object of the present invention is to devise the structure of the back electrode so as to have a sufficient reflectance to the photoactive layer in the wavelength region where the collection efficiency of photoelectric conversion is high, and the wavelength region where the collection efficiency is low. On the contrary, in order to realize a structure in which the reflectance decreases and the amount of light passing through the back electrode increases, the maximum and minimum values of the reflectance and A detailed study was carried out on how the wavelength of the light changes.

【0016】最初に、裏面電極の膜厚構成によるこれら
の値の変化を数値計算によって求めた結果について説明
する。この数値計算を実行するための光学定数としては
光活性層として非晶質シリコンを、裏面電極について
は、無機化合物膜4及び6として酸化インジウムを、金
属膜5として銀を採用した。これらの材料の光学定数は
分光測定により求めた。ただし本発明の内容は裏面電極
を構成する物質をこのように特定した計算例に限定され
るものではない。
First, the results obtained by numerical calculation of changes in these values due to the film thickness configuration of the back electrode will be described. Amorphous silicon was used as the photoactive layer for the optical constants for executing this numerical calculation, indium oxide was used for the inorganic compound films 4 and 6 and silver was used for the metal film 5 for the back electrode. The optical constants of these materials were obtained by spectroscopic measurement. However, the content of the present invention is not limited to the calculation example in which the substance forming the back electrode is specified in this way.

【0017】まず、光活性層に接する側の無機化合物膜
(以下、無機化合物膜4と記す)の膜厚を変化させた場
合の効果について説明する。光活性層中に反射される可
視域の分光反射率および反射率の極小点波長と無機化合
物膜4の膜厚の関係を図4に示す。ここでは金属膜の膜
厚を150Å、大気に接する側の無機化合物膜(以下、
無機化合物膜6と記す)の膜厚を600Åとした。
First, the effect of changing the film thickness of the inorganic compound film (hereinafter referred to as the inorganic compound film 4) on the side in contact with the photoactive layer will be described. FIG. 4 shows the relationship between the spectral reflectance in the visible region reflected in the photoactive layer and the minimum wavelength of the reflectance and the film thickness of the inorganic compound film 4. Here, the thickness of the metal film is 150Å, and the inorganic compound film (hereinafter,
The film thickness of the inorganic compound film 6) was 600 Å.

【0018】図4より明らかなように、光活性層中に反
射される光の波長分布は無機化合物膜4の膜厚により変
化する。最初に現れた極小点(これを第1の極小点とす
る)が無機化合物膜4の膜厚増加に伴い長波長側へと移
動すると、次の極小点(これを第2の極小点とする)が
短波長側に出現する。第2の極小点も無機化合物膜4の
膜厚増加により長波長側に移動し、無機化合物膜4の膜
厚が約1600Åになると更に高次の極小点(これを第
3の極小点とする)が出現し、これも膜厚が厚くなるに
従って長波長側に移動してくる。図4中ではこれを点線
で表わす。
As is apparent from FIG. 4, the wavelength distribution of light reflected in the photoactive layer changes depending on the thickness of the inorganic compound film 4. When the first appearing minimum point (this is referred to as the first minimum point) moves to the long wavelength side as the thickness of the inorganic compound film 4 increases, the next minimum point (this becomes the second minimum point). ) Appears on the short wavelength side. The second minimum point also moves to the long wavelength side due to the increase in the thickness of the inorganic compound film 4, and when the thickness of the inorganic compound film 4 becomes about 1600Å, the higher minimum point (this is the third minimum point). ) Appears, and this also moves to the longer wavelength side as the film thickness increases. This is indicated by a dotted line in FIG.

【0019】無機化合物膜4の膜厚が800Å以上にな
ると、裏面電極の反射率が1.5μm以上の波長域で8
0%以上となり、これが可視光側に裾を引いてくるた
め、第1の極小点は消滅してしまう。なお、無機化合物
膜4の膜厚は極小点波長での光活性層内への反射率にも
影響を与えるが、この効果については後述する。
When the thickness of the inorganic compound film 4 is 800 Å or more, the reflectance of the back electrode is 8 in the wavelength range of 1.5 μm or more.
Since it becomes 0% or more, and this tails toward the visible light side, the first minimum point disappears. The thickness of the inorganic compound film 4 also affects the reflectance into the photoactive layer at the minimum point wavelength, and this effect will be described later.

【0020】次に、無機化合物膜6の膜厚を変化させ
て、同様の検討を行った結果を図5に示す。図5は、金
属膜5の膜厚が150Å、無機化合物膜4の膜厚が15
00Åの場合についての計算結果を示したものである。
図5より明らかなように無機化合物膜6の膜厚を変化さ
せても長波長側の極小点波長(min.2) は殆ど移動がな
い。また短波長側の極小点(min.1) は0Åから300Å
にかけて長波長側に移動するが400Åにおいて再び0
Åと殆ど同じ波長に戻り、それ以上の膜厚では変化しな
い。
Next, FIG. 5 shows the result of conducting the same examination by changing the film thickness of the inorganic compound film 6. In FIG. 5, the thickness of the metal film 5 is 150Å and the thickness of the inorganic compound film 4 is 15
The calculation results for the case of 00Å are shown.
As is clear from FIG. 5, even if the film thickness of the inorganic compound film 6 is changed, the minimum point wavelength (min.2) on the long wavelength side hardly moves. Also, the minimum point (min.1) on the short wavelength side is from 0Å to 300Å
It moves to the long wavelength side over time, but becomes 0 again at 400 Å
It returns to almost the same wavelength as Å, and it does not change when the film thickness is higher than that.

【0021】膜厚の変動等を考慮すれば、無機化合物膜
6の膜厚は400Å以上が好ましい範囲といえる。無機
化合物膜6の膜厚を400Å、800Å、1200Åの
3通りに変化させた場合の光活性層への反射率Rの計算
結果を図6に示す。
Considering the variation of the film thickness and the like, it can be said that the thickness of the inorganic compound film 6 is preferably 400 Å or more. FIG. 6 shows the calculation results of the reflectance R to the photoactive layer when the thickness of the inorganic compound film 6 was changed to 400 Å, 800 Å, and 1200 Å.

【0022】最後に、無機化合物膜4および無機化合物
膜6の膜厚をそれぞれ1500Å、600Åとして、金
属膜5について同様の検討を行った。まず、このような
構造の裏面電極について電気抵抗を検討した結果、金属
膜の膜厚は電極として有効な導電性を確保する観点から
は100Å以上必要であることがわかった。一方透過率
の観点からは、図7に示すように、金属膜の膜厚が20
0Å以上になると極小点の反射率が急激に増加してしま
い十分な透過性を確保できないことがわかる。そこで有
効な膜厚範囲は100〜200Åの範囲となるが、図7
から明らかなように、この範囲では極小点波長はほとん
ど変化しない。
Finally, the same examination was conducted on the metal film 5 with the film thicknesses of the inorganic compound film 4 and the inorganic compound film 6 set to 1500Å and 600Å, respectively. First, as a result of examining the electric resistance of the back electrode having such a structure, it was found that the film thickness of the metal film needs to be 100 Å or more from the viewpoint of ensuring effective conductivity as an electrode. On the other hand, from the viewpoint of transmittance, as shown in FIG.
It can be seen that at 0 Å or more, the reflectance at the minimum point sharply increases and sufficient transparency cannot be secured. Therefore, the effective film thickness range is 100 to 200Å.
As is clear from this, the minimum point wavelength hardly changes in this range.

【0023】図4、図5、図6をまとめると、反射の極
小点波長は無機化合物膜4の膜厚で決定され、反射の極
大点波長とその反射率は無機化合物膜6の膜厚により決
定されることがわかる。一方、図7の結果から、金属膜
の膜厚が100Å以上の範囲では金属膜の膜厚変化によ
る反射極小点の移動はわずかであるが、金属膜の膜厚が
200Å以上になると十分な透過性を確保できないこと
がわかる。
In summary of FIGS. 4, 5 and 6, the minimum wavelength of reflection is determined by the thickness of the inorganic compound film 4, and the maximum wavelength of reflection and its reflectance are determined by the thickness of the inorganic compound film 6. It turns out that it will be decided. On the other hand, according to the results of FIG. 7, the movement of the reflection minimum point due to the change of the metal film thickness is slight in the range of the metal film thickness of 100 Å or more, but when the metal film thickness is 200 Å or more, sufficient transmission It turns out that it is not possible to secure the sex.

【0024】以上の検討結果をもとに、無機化合物膜4
の膜厚を変えながら数種類の太陽電池を作成してその発
電特性と可視光透過特性を調べ、電池性能の観点から最
終的に電極構成を最適化した。太陽電池は、ガラス基板
上に常圧CVD法により酸化錫層を5000Å堆積し、
この上にプラズマCVD法により、ホウ素のドーピング
されたp型非晶質シリコン層200Å、何もドーピング
されていないi型非晶質シリコン3500Å、および燐
のドーピングされたn型非晶質シリコン層500Åを、
さらにスパッタリング法により酸化インジウム、銀、酸
化インジウムからなる裏面電極を順次積層する構成とし
た。
On the basis of the above examination results, the inorganic compound film 4
Several kinds of solar cells were made while changing the film thickness of the, and the power generation characteristics and the visible light transmission characteristics were investigated, and the electrode configuration was finally optimized from the viewpoint of the cell performance. For solar cells, a tin oxide layer of 5000 Å is deposited on a glass substrate by atmospheric pressure CVD,
A p-type amorphous silicon layer 200Å doped with boron, an i-type amorphous silicon layer 3500Å which is not doped with boron, and an n-type amorphous silicon layer 500Å doped with phosphorus are formed by plasma CVD. To
Further, a back electrode made of indium oxide, silver, and indium oxide is sequentially laminated by a sputtering method.

【0025】各種裏面電極を有する太陽電池の反射極小
点の波長、発電特性(開放電圧VOC, 短絡電流JSC, フ
ィルタファクターFF、変換効率η)及び透過率を表1
に示す。これらの結果の中には裏面電極として全く光を
透過しない2000Åの銀電極を用いた試料(No.13 )
の発電特性および、裏面電極のついていない試料の光透
過特性(No.1)も比較のため併記した。表中で裏面電極
の膜厚は、無機化合物膜4(Å)/金属膜5(Å)/無
機化合物膜6(Å)のように表現する。
Table 1 shows the wavelength of the minimum reflection point, power generation characteristics (open circuit voltage V OC , short circuit current J SC , filter factor FF, conversion efficiency η) and transmittance of a solar cell having various back electrodes.
Shown in. Among these results, a sample using a 2000 Å silver electrode that does not transmit any light as the back electrode (No. 13)
The power generation characteristics and the light transmission characteristics (No. 1) of the sample without the back electrode are also shown for comparison. In the table, the film thickness of the back electrode is expressed as follows: inorganic compound film 4 (Å) / metal film 5 (Å) / inorganic compound film 6 (Å).

【0026】[0026]

【表1】 [Table 1]

【0027】上記の結果を理解するために、太陽電池の
変換効率、透過率に直接影響を与える、裏面電極から光
活性層への反射率(実測はできない)を計算した。結果
を図8、9、10、11に示す。試料2、3、4の結果
は、無機化合物膜4の膜厚が400Å以下の場合で、図
4のA領域に該当する領域である。この領域では、無機
化合物膜4の膜厚が増加するのに伴って、変換効率が上
昇するが、反面電池の透過率は低下してくる。この原因
は、無機化合物膜4の膜厚が増加すると、極小点の波長
が長波長側に移動すると同時に極小点での反射率が急激
に増加するためであることが、図8より容易に理解でき
る。
In order to understand the above results, the reflectance (which cannot be measured) from the back electrode to the photoactive layer, which directly affects the conversion efficiency and the transmittance of the solar cell, was calculated. The results are shown in Figures 8, 9, 10, and 11. The results of Samples 2, 3, and 4 are regions corresponding to the region A in FIG. 4 when the thickness of the inorganic compound film 4 is 400 Å or less. In this region, as the thickness of the inorganic compound film 4 increases, the conversion efficiency increases, but the transmittance of the battery decreases. It can be easily understood from FIG. 8 that this is because when the thickness of the inorganic compound film 4 increases, the wavelength of the minimum point moves to the long wavelength side and the reflectance at the minimum point sharply increases. it can.

【0028】無機化合物膜4の膜厚が600Åおよび8
00Åになると(試料5、6がこの例であり、図4のB
領域に該当)図9に示すように2つめの極小点が紫外域
に出現する。無機化合物膜4の膜厚が600Åの場合に
は、反射の極大が400〜500nmの波長域にあるた
め、変換効率が改善されるが、無機化合物膜4の膜厚の
増加にともなって2つめの極小点も長波長側に移動して
くるため、再び効率は低下する。この領域では第1の極
小点の反射率が高いため、電池の透過率は試料2、3、
4よりもさらに低下する。
The thickness of the inorganic compound film 4 is 600Å and 8
At 00Å (Samples 5 and 6 are examples of this, and
This corresponds to the area) As shown in FIG. 9, the second minimum point appears in the ultraviolet region. When the film thickness of the inorganic compound film 4 is 600Å, the conversion efficiency is improved because the maximum of reflection is in the wavelength range of 400 to 500 nm, but the second film is increased as the film thickness of the inorganic compound film 4 increases. Since the minimum point of is also moved to the long wavelength side, the efficiency decreases again. Since the reflectance at the first minimum point is high in this region, the transmittance of the battery is
It is even lower than 4.

【0029】試料7、8、9に示すように無機化合物膜
4の膜厚が1200Å以上になると(図4のC、D、E
領域に該当)、膜厚の増加により極小点での反射率が1
0%以下となり、これが電池の透過率向上に寄与するよ
うになる。特に無機化合物膜4の膜厚が試料8、9に示
すように1500Å以上になると、第3の極小点が出現
し400〜500nmの波長域が反射極大領域になると
ともに650nmまたは750nm付近に出現した第二
の極小点による反射率が10%以下になることが図10
よりわかる。その結果、変換効率、電池透過率ともに、
特に良好な特性を示すようになる。
As shown in Samples 7, 8 and 9, when the thickness of the inorganic compound film 4 is 1200 Å or more (C, D and E in FIG. 4).
(Corresponding to the area), the reflectance at the minimum point is 1 due to the increase in film thickness.
It becomes 0% or less, which contributes to the improvement of the transmittance of the battery. In particular, when the film thickness of the inorganic compound film 4 became 1500 Å or more as shown in Samples 8 and 9, the third minimum point appeared and the wavelength range of 400 to 500 nm became the reflection maximum area and appeared near 650 nm or 750 nm. It can be seen from FIG. 10 that the reflectance due to the second minimum point becomes 10% or less.
I understand more. As a result, both conversion efficiency and battery transmittance
Particularly favorable characteristics are exhibited.

【0030】しかし、無機化合物膜4の膜厚が2000
Åを超えると(試料10、11)、図11に示すように
第3の極小点が可視域に移動してくるため変換効率が低
下してしまう。
However, the thickness of the inorganic compound film 4 is 2000
When it exceeds Å (Samples 10 and 11), the third minimum point moves to the visible region as shown in FIG. 11, so that the conversion efficiency decreases.

【0031】この結果を反射率極小点の波長によって整
理し直すと、変換効率、透過率ともに良好な結果の得ら
れた試料8、9、10では極小点の波長が400nm以
下または640nm以上の領域に存在していることがわ
かる。すなわち400〜640nmの波長域は光活性層
の収集効率が高い領域であり、この波長域の入射光を裏
面電極で反射して再利用することにより光電変換電流が
増加できることがわかる。言いかえれば、この波長域の
光を十分に利用したか否かが変換効率に反映されている
とみて差し支えない。
When the results are rearranged according to the wavelength of the minimum reflectance point, in Samples 8, 9 and 10 in which the conversion efficiency and the transmittance are excellent, the wavelength of the minimum point is 400 nm or less or 640 nm or more. It can be seen that it exists in. That is, it is understood that the wavelength region of 400 to 640 nm is a region where the collection efficiency of the photoactive layer is high, and the photoelectric conversion current can be increased by reflecting the incident light of this wavelength region on the back electrode and reusing it. In other words, it is safe to assume that the conversion efficiency reflects whether or not the light in this wavelength range is fully utilized.

【0032】一方、電池の透過率を向上させるために
は、光の透過する波長(窓と記す)を光活性層の収集効
率が低下する640nm以上の領域にするとともに、窓
での裏面電極の反射率が小さいことが重要である。従っ
て、窓としては反射の極小点を用いることになるが、無
機化合物膜4の膜厚を400〜800Åとして第1の極
小点をこの領域に移動した場合には、図8、9からも明
らかなように裏面電極の反射率が増加してしまうため、
結果として電池の透過率が減少するという不都合が生じ
る。すなわち、窓として第1の極小点を用いることは適
当な選択ではない。
On the other hand, in order to improve the transmittance of the battery, the wavelength through which light is transmitted (referred to as a window) is set to a region of 640 nm or more where the collection efficiency of the photoactive layer is lowered, and the back electrode of the window is It is important that the reflectance is low. Therefore, although the local minimum point of reflection is used as the window, when the thickness of the inorganic compound film 4 is set to 400 to 800 Å and the first local minimum point is moved to this region, it is also clear from FIGS. As the reflectance of the back surface electrode increases,
As a result, there arises a disadvantage that the transmittance of the battery is reduced. That is, using the first local minimum as the window is not a suitable choice.

【0033】これに対して、無機化合物膜4の膜厚を1
500Å以上に増加させ、第2の極小点を窓にした場合
には状況は大きく異なってくる。図10からも明らかな
ように、第2の極小点での裏面電極の反射率は極めて低
い値であり、第2の極小点を窓に用いることは極めて好
ましい選択といえる。同様の検討をさらに高次の極小点
に関して行うことも可能であるが、高次の極小点を窓に
用いるためには無機化合物膜4の膜厚をさらに増加させ
る必要が有り、裏面電極の成膜時間が増加するという不
都合が生じる。
On the other hand, the thickness of the inorganic compound film 4 is set to 1
If you increase it to more than 500Å and use the second minimum point as a window, the situation will be very different. As is clear from FIG. 10, the reflectance of the back surface electrode at the second minimum point is an extremely low value, and it can be said that using the second minimum point for the window is a very preferable selection. It is possible to perform the same study on higher-order minimum points, but it is necessary to further increase the film thickness of the inorganic compound film 4 in order to use the higher-order minimum points for the window, and it is necessary to form the back electrode. The disadvantage occurs that the membrane time increases.

【0034】以上の検討結果を言いかえると、裏面電極
における無機化合物膜4の膜厚は、変換効率の観点から
は、600Å以上800Å以下、または1500Å以上
2000Å以下が好ましい。しかし透過率の観点からは
1500Å以上2000Å以下のみが好ましい範囲とな
るため、最終的には両者の共通部分として1500Å以
上2000Å以下が好ましい範囲となる。
In other words, the thickness of the inorganic compound film 4 on the back electrode is preferably 600 Å or more and 800 Å or less, or 1500 Å or more and 2000 Å or less from the viewpoint of conversion efficiency. However, from the viewpoint of transmittance, only 1,500 Å or more and 2,000 Å or less is a preferable range, and finally 1500 Å or more and 2,000 Å or less is a preferable range as a common portion of both.

【0035】図2を用いて、反射の極小点を窓として用
いるための境界線となる波長640nmと光活性層の収
集効率の関係を求めると、この波長は非晶質シリコンの
収集効率のピークを1とした場合にほぼ0.5となる波
長と対応していることがわかる。この数値(0.5)を
基に無機化合物膜4の膜厚範囲を計算してやれば、任意
の材料系について最適な膜厚構成を決定することができ
る。本実施例についてもこの考えに基いた計算を行った
結果、無機化合物膜4の膜厚の下限が1500Åである
ことがわかった。
Using FIG. 2, the relationship between the wavelength of 640 nm, which is the boundary line for using the minimum point of reflection as a window, and the collection efficiency of the photoactive layer is determined. This wavelength is the peak of the collection efficiency of amorphous silicon. It can be seen that when 1 is set to 1, it corresponds to a wavelength of about 0.5. If the film thickness range of the inorganic compound film 4 is calculated based on this numerical value (0.5), the optimum film thickness configuration can be determined for any material system. As a result of performing calculations based on this idea also in this example, it was found that the lower limit of the film thickness of the inorganic compound film 4 was 1500Å.

【0036】[0036]

【実施例】本発明になる透過型裏面電極の実施例として
表1の試料8を、従来の技術の第1例に準ずる構成とし
て比較例1(試料2)を、従来の技術第3例の構成とし
て比較例2(同12)を、不透明銀電極の例として比較
例3(同13)を、さらに裏面電極を作成しなかった場
合の例として比較例4(同1)を選び、電池の変換効率
と透過率について比較検討した。変換効率の比較結果を
表2に、透過率の比較結果を図12、13にそれぞれ示
す。これらの太陽電池の作成法は表1において説明した
通りである。また、裏面電極の膜厚構成は、表1と同
様、酸化インジウム4(Å)/銀5(Å)/酸化インジ
ウム6(Å)のように表現した。
EXAMPLE Sample 8 in Table 1 is shown as an example of the transmission type back electrode according to the present invention, Comparative Example 1 (Sample 2) is shown as a structure conforming to the first example of the prior art, and Example 3 of the prior art is shown. As a configuration, Comparative Example 2 (Same 12), Comparative Example 3 (Same 13) as an example of an opaque silver electrode, and Comparative Example 4 (Same 1) as an example when the back electrode was not prepared were selected. The conversion efficiency and the transmittance were compared and examined. Table 2 shows the comparison result of the conversion efficiency, and FIGS. 12 and 13 show the comparison result of the transmittance. The method for producing these solar cells is as described in Table 1. Also, the film thickness composition of the back electrode is expressed as in indium oxide 4 (Å) / silver 5 (Å) / indium oxide 6 (Å) as in Table 1.

【0037】[0037]

【表2】 [Table 2]

【0038】4種類の太陽電池の開放電圧VOCはいずれ
も0.83〜0.84V、フィルファクターFFも0.
64〜0.65と裏面電極の構成による差は認められな
い。これより本発明になる裏面電極が光活性層である非
晶質シリコンの物性等には影響を与えていないことがわ
かる。これに対して、光吸収量と比例関係にある短絡電
流JSCについては、本実施例が15.2mAとほぼ比較
例3の不透明太陽電池と同等であるのに対して、比較例
1、2では約15%程度減少してしまうことがわかる。
The open-circuit voltage V OC of each of the four types of solar cells is 0.83 to 0.84 V, and the fill factor FF is 0.
No difference between 64-0.65 and the structure of the back electrode is observed. From this, it can be seen that the back electrode according to the present invention does not affect the physical properties of the amorphous silicon that is the photoactive layer. On the other hand, the short-circuit current J SC, which is proportional to the amount of absorbed light, is 15.2 mA in this example, which is almost equivalent to that of the opaque solar cell of Comparative Example 3, while Comparative Examples 1, 2 Then, it can be seen that it is reduced by about 15%.

【0039】図12、13より明らかなように、透過率
に関しては、実施例と比較例1、2、4の間に大きな差
は認められない。比較例2の裏面電極において光透過率
が向上する原因は、酸化インジウムが光活性層である非
晶質シリコンの反射防止膜として機能するためである。
すなわち、本実施例の透過率は非晶質シリコン太陽電池
としては、ほぼ上限に近い値である。
As is clear from FIGS. 12 and 13, there is no significant difference in transmittance between the example and the comparative examples 1, 2 and 4. The reason why the light transmittance is improved in the back electrode of Comparative Example 2 is that indium oxide functions as an antireflection film of amorphous silicon which is a photoactive layer.
That is, the transmittance of this example is a value close to the upper limit for an amorphous silicon solar cell.

【0040】以上の実施例の検討から、本発明によれ
ば、太陽電池出力を失うことなく太陽電池の透過率を向
上することができるのに対して、従来技術では透過率を
向上させると必ず出力も低下してしまうことがわかる。
すなわち、裏面電極から光活性層への光反射を十分に確
保しながら、太陽電池の透過率を大幅に増加するために
は、本発明になる裏面電極の構成を用いることが最も効
果的であると理解される。
From the examination of the above examples, according to the present invention, it is possible to improve the transmittance of the solar cell without losing the output of the solar cell. It can be seen that the output also drops.
That is, it is most effective to use the configuration of the back electrode according to the present invention in order to significantly increase the transmittance of the solar cell while sufficiently ensuring the light reflection from the back electrode to the photoactive layer. Is understood.

【0041】本発明の光活性層としては、シリコンを主
成分とする非晶質層、あるいはさらに炭素、窒素、ゲル
マニウム、ホウ素、燐、水素のうち少なくとも1種を含
む非晶質合金層からなるものを用いることができる。な
お、実施例中では光活性層の構成としてホウ素がドーピ
ングされたp型非晶質シリコン/何もドーピングされて
いないi型非晶質シリコン/燐のドーピングされたn型
非晶質シリコンという構成を例示してあるが、本発明の
透過型太陽電池はこの構成に限定されるわけではなく、
従来から知られているような構成、例えばp型非晶質シ
リコン層をp型非晶質シリコンカーバイド層やp型微結
晶シリコン層に置き換えた構造にしたり、また複数個の
p−i−nユニットを積層した構造のタンデムセル構造
にすることも可能である。
The photoactive layer of the present invention comprises an amorphous layer containing silicon as a main component or an amorphous alloy layer further containing at least one of carbon, nitrogen, germanium, boron, phosphorus and hydrogen. Any thing can be used. In the embodiment, the photoactive layer has a structure of p-type amorphous silicon doped with boron / i-type amorphous silicon undoped / n-type amorphous silicon doped with phosphorus. However, the transparent solar cell of the present invention is not limited to this configuration,
A conventionally known structure, for example, a structure in which the p-type amorphous silicon layer is replaced with a p-type amorphous silicon carbide layer or a p-type microcrystalline silicon layer, or a plurality of p-i-n It is also possible to use a tandem cell structure in which units are stacked.

【0042】また、実施例の中で示した非晶質シリコン
層の膜厚についても、要求される透過率と変換効率が実
現できるような膜厚に変更可能であることは言うまでも
ない。例えば、非晶質シリコン層の膜厚を本実施例より
も薄くすることにより、出力をある程度犠牲にしても透
過率を向上させることができる。このような構成の場合
には、非晶質シリコン層が、入射した光を1回の通過で
は完全に吸収できないため、裏面電極による反射効果が
さらに有効に作用するはずである。
It is needless to say that the film thickness of the amorphous silicon layer shown in the embodiments can be changed to a film thickness that can achieve the required transmittance and conversion efficiency. For example, by making the thickness of the amorphous silicon layer smaller than that of this embodiment, the transmittance can be improved even if the output is sacrificed to some extent. In such a configuration, the amorphous silicon layer cannot completely absorb the incident light in one pass, so that the reflection effect by the back electrode should work more effectively.

【0043】また裏面電極の膜厚の構成も実施例に示し
た例に限定されるわけではない。また、金属層5として
は、銀、金、銅、白金、パラジウム、クロム、アルミニ
ウム、ニッケル、モリブデンのうち少なくとも1種を用
いることができる。また、金属酸化物層4,6として一
般に知られている種々の透明導電膜(インジウム、錫、
亜鉛、カドミウム、バナジウム、チタンのうち少なくと
も1種を含む導電性酸化物膜)を使用することも可能で
ある。また大面積の太陽電池を作成する際の集積化の方
法も従来から知られている各種の方法を使用することが
可能である。
The configuration of the film thickness of the back electrode is not limited to the example shown in the embodiment. Further, as the metal layer 5, at least one of silver, gold, copper, platinum, palladium, chromium, aluminum, nickel and molybdenum can be used. In addition, various transparent conductive films (indium, tin,
It is also possible to use a conductive oxide film containing at least one of zinc, cadmium, vanadium and titanium). Further, as a method of integration when producing a large-area solar cell, various conventionally known methods can be used.

【0044】[0044]

【発明の効果】本発明の透過型太陽電池を用いれば、従
来いくつか提案されている透過型太陽電池と比較して、
太陽電池特性の低下を招くことなく、透過率の向上、製
造コストの低減を図ることができる。また、本発明にな
る裏面電極において、無機化合物膜6として内部応力の
低い膜を採用することにより、太陽電池に応用した場合
にも、長期的な素子信頼性の向上の改善の効果が期待で
きる。
EFFECTS OF THE INVENTION With the use of the transmissive solar cell of the present invention, compared with some conventionally proposed transmissive solar cells,
It is possible to improve the transmittance and reduce the manufacturing cost without deteriorating the characteristics of the solar cell. Further, in the back electrode according to the present invention, by adopting a film having a low internal stress as the inorganic compound film 6, it is possible to expect an effect of improving the long-term improvement in device reliability even when applied to a solar cell. ..

【0045】また、実施例においては、光活性層が非晶
質シリコン膜により構成される太陽電池について説明し
たが、光活性層が非晶質シリコンカーバイドあるいは銅
インジウムセレンといった材料により構成される場合に
ついても同様の方法により無機化合物膜4の膜厚を限定
する方法が有効であることは言うまでもない。
Further, in the embodiment, the solar cell in which the photoactive layer is composed of an amorphous silicon film has been described. However, when the photoactive layer is composed of a material such as amorphous silicon carbide or copper indium selenium. Needless to say, the method of limiting the film thickness of the inorganic compound film 4 by the same method is effective.

【0046】たとえば非晶質シリコンカーバイドにより
構成される太陽電池についてはまず、その屈折率、減衰
定数の波長分布のデータを得た後、それをもとに裏面電
極との多重反射によって決定される光活性層中への反射
率波長分布を数値計算により求める。その際には上述し
たように、想定する太陽電池の収集効率の最大値を1と
した時に0.5となる波長を目安に裏面電極の反射率の
極小値を定めてやれば良い。
For a solar cell made of amorphous silicon carbide, for example, first, data of wavelength distribution of its refractive index and attenuation constant is obtained, and then it is determined by multiple reflection with the back electrode based on the data. The reflectance wavelength distribution in the photoactive layer is obtained by numerical calculation. At that time, as described above, the minimum value of the reflectance of the back electrode may be determined with a wavelength of 0.5 when the maximum value of the assumed collection efficiency of the solar cell is set to 1.

【0047】すなわち、非晶質シリコンカーバイド太陽
電池については、収集効率が最大値の50%となる波長
は図2に示した収集効率の波長依存性曲線から315n
mおよび560nmであることがわかるから、反射率極
小値の波長が315nm以下もしくは560nm以上と
なるように裏面電極の膜厚構成を決定すれば良い。この
場合、非晶質シリコン太陽電池に比べより視感度の高い
領域が裏面電極から大気側に透過するため非晶質シリコ
ン太陽電池に本発明を適応した場合よりも更に高い透過
率を有する太陽電池が得られる。
That is, for the amorphous silicon carbide solar cell, the wavelength at which the collection efficiency is 50% of the maximum value is 315n from the wavelength dependence curve of the collection efficiency shown in FIG.
Since it can be seen that m and 560 nm, the film thickness configuration of the back electrode may be determined so that the wavelength of the minimum reflectance value is 315 nm or less or 560 nm or more. In this case, since a region having higher visibility than the amorphous silicon solar cell penetrates from the back electrode to the atmosphere side, the solar cell having a higher transmittance than the case where the present invention is applied to the amorphous silicon solar cell. Is obtained.

【0048】さらに、本発明においては裏面電極は大気
と接触しているが、太陽電池の裏面をエチレンビニルア
セテート、ポリビニルブチラール等の透明樹脂やガラス
によって封止して透過型の太陽電池を作成する場合に
も、裏面電極膜厚配分の計算において、封止用の透明材
料の光学定数を代入し、全く同様の計算を行うことによ
り、容易に本発明の手法が応用できる。
Further, although the back electrode is in contact with the atmosphere in the present invention, the back surface of the solar cell is sealed with a transparent resin such as ethylene vinyl acetate or polyvinyl butyral or glass to form a transmissive solar cell. Also in this case, the method of the present invention can be easily applied by substituting the optical constant of the transparent material for sealing in the calculation of the back electrode film thickness distribution and performing exactly the same calculation.

【0049】また、本発明によれば非晶質シリコンと金
属膜の間に透明導電膜が挿入されるため、適切な成膜条
件を設定することにより、シリコン層と金属電極の付着
強度が向上する効果も期待できる。
Further, according to the present invention, since the transparent conductive film is inserted between the amorphous silicon and the metal film, the adhesion strength between the silicon layer and the metal electrode is improved by setting appropriate film forming conditions. The effect of doing can be expected.

【0050】また太陽電池が第1の電極層として酸化
錫、酸化インジウムのような透明導電膜を使用している
場合には、この膜が1μm以上の赤外線に対して優れた
熱線反射性能を有するため、例えば本発明の太陽電池を
自動車のサンルーフ部分に設置した場合も透過光による
室内温度の上昇を避けることができる。
When the solar cell uses a transparent conductive film such as tin oxide or indium oxide as the first electrode layer, this film has excellent heat ray reflection performance for infrared rays of 1 μm or more. Therefore, for example, even when the solar cell of the present invention is installed on the sunroof portion of an automobile, it is possible to avoid an increase in indoor temperature due to transmitted light.

【0051】本発明による裏面電極を用いれば、太陽電
池形成面積を犠牲にすることなく透過率を向上させるこ
とが可能となるため、従来の技術第2例のような問題点
も考慮する必要がなくなる。更に、本発明の透過型太陽
電池を4端子2層タンデム型太陽電池のトップセルとし
て応用した場合も、従来の技術で述べた透明導電膜1層
からなる裏面電極を用いた場合と比較すると、トップセ
ルの発電効率が大幅に向上するものと期待できる。
By using the back electrode according to the present invention, the transmittance can be improved without sacrificing the solar cell formation area. Therefore, it is necessary to consider the problem as in the second example of the related art. Disappear. Furthermore, when the transparent solar cell of the present invention is applied as a top cell of a four-terminal two-layer tandem solar cell, as compared with the case of using the back electrode composed of one transparent conductive film layer described in the prior art, It can be expected that the power generation efficiency of the top cell will be greatly improved.

【0052】一方、銅インジウムセレンを光活性層に用
いた太陽電池は収集効率のピークが700nm以上の長
波長域にあるため、ボトムセルの変換効率を向上させる
ためには、トップセルの透過率がこの波長域で十分確保
されていることが必要である。
On the other hand, a solar cell using copper indium selenium as the photoactive layer has a peak of collection efficiency in a long wavelength region of 700 nm or more. Therefore, in order to improve the conversion efficiency of the bottom cell, the transmittance of the top cell is It is necessary to secure enough in this wavelength range.

【0053】本発明の3層電極を用いた場合には反射の
極小値を700nm付近に設計することが可能であるた
め、トップセル内に反射する短波長光量を最大にしなが
ら、ボトムセルに引渡す長波長光量も最大にすることが
可能となり、タンデム構造の太陽電池の変換効率を大幅
に向上させる効果も期待できる。
When the three-layer electrode of the present invention is used, it is possible to design the minimum value of reflection to be around 700 nm, so that the short wavelength light amount reflected in the top cell is maximized and the length passed to the bottom cell is increased. It is also possible to maximize the amount of wavelength light, and it is expected that the conversion efficiency of the tandem solar cell will be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるところの透過型太陽電池の断面図FIG. 1 is a cross-sectional view of a transparent solar cell according to the present invention.

【図2】非晶質シリコン太陽電池および非晶質シリコン
カーバイド太陽電池の収集効率の波長分布を示すグラフ
FIG. 2 is a graph showing a wavelength distribution of collection efficiency of an amorphous silicon solar cell and an amorphous silicon carbide solar cell.

【図3】視感度の波長依存性を示すグラフFIG. 3 is a graph showing wavelength dependence of luminosity.

【図4】反射極小点の無機化合物膜4の膜厚依存性を示
すグラフ
FIG. 4 is a graph showing the dependency of the minimum reflection point on the thickness of the inorganic compound film 4.

【図5】反射極小点の無機化合物膜6の膜厚依存性を示
すグラフ
FIG. 5 is a graph showing the film thickness dependence of the inorganic compound film 6 at the minimum reflection point.

【図6】無機化合物膜6の膜厚を変化させた場合の裏面
電極の光活性層中へ分光反射率Rを示すグラフ
FIG. 6 is a graph showing the spectral reflectance R into the photoactive layer of the back electrode when the thickness of the inorganic compound film 6 is changed.

【図7】反射極小点の金属膜の膜厚依存性を示すグラフFIG. 7 is a graph showing the dependence of the minimum reflection point on the thickness of the metal film.

【図8】各種裏面電極を有する太陽電池における裏面電
極から光活性層への分光反射率を示すグラフ
FIG. 8 is a graph showing the spectral reflectance from the back electrode to the photoactive layer in a solar cell having various back electrodes.

【図9】各種裏面電極を有する太陽電池における裏面電
極から光活性層への分光反射率を示すグラフ
FIG. 9 is a graph showing the spectral reflectance from the back electrode to the photoactive layer in a solar cell having various back electrodes.

【図10】各種裏面電極を有する太陽電池における裏面
電極から光活性層への分光反射率を示すグラフ
FIG. 10 is a graph showing the spectral reflectance from the back electrode to the photoactive layer in the solar cell having various back electrodes.

【図11】各種裏面電極を有する太陽電池における裏面
電極から光活性層への分光反射率を示すグラフ
FIG. 11 is a graph showing the spectral reflectance from the back electrode to the photoactive layer in a solar cell having various back electrodes.

【図12】各種太陽電池の分光透過率を示すグラフFIG. 12 is a graph showing the spectral transmittance of various solar cells.

【図13】各種太陽電池の分光透過率を示すグラフFIG. 13 is a graph showing the spectral transmittance of various solar cells.

【符号の説明】[Explanation of symbols]

1 透明絶縁性基板 2 透明導電膜 3 光活性層 4 無機化合物膜 5 金属膜 6 無機化合物膜 1 transparent insulating substrate 2 transparent conductive film 3 photoactive layer 4 inorganic compound film 5 metal film 6 inorganic compound film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】透明絶縁基板上に透明導電性薄膜からなる
第1の電極層と、光照射により光起電力を発生する光活
性層と、光を透過することのできる導電性薄膜からなる
第2の電極層とを堆積してなる透過型太陽電池におい
て、光を透過することのできる第2の電極層の構成を、
無機化合物膜、金属膜、無機化合物膜が順次積層された
3層からなる多層膜構造としたことを特徴とする透過型
太陽電池。
1. A first electrode layer comprising a transparent conductive thin film on a transparent insulating substrate, a photoactive layer generating a photoelectromotive force by light irradiation, and a conductive thin film capable of transmitting light. In the transmissive solar cell formed by depositing the second electrode layer, the structure of the second electrode layer capable of transmitting light is
A transmissive solar cell having a multilayer film structure including three layers in which an inorganic compound film, a metal film, and an inorganic compound film are sequentially stacked.
【請求項2】光活性層が非晶質シリコンからなり、第2
の電極層を構成する3層の薄膜のうち光活性層に接する
無機化合物膜の膜厚が1500Å以上、2000Å以下
であることを特徴とする請求項1の透過型太陽電池。
2. The photoactive layer comprises amorphous silicon, and
2. The transparent solar cell according to claim 1, wherein the thickness of the inorganic compound film in contact with the photoactive layer among the three thin films constituting the electrode layer is 1500 Å or more and 2000 Å or less.
【請求項3】第2の電極層において、金属膜の膜厚が1
00Å以上、200Å以下であり、光活性層と接してい
ない側の無機化合物膜の膜厚が400Å以上であること
を特徴とする請求項2の透過型太陽電池。
3. The film thickness of the metal film in the second electrode layer is 1
The transparent solar cell according to claim 2, wherein the inorganic compound film on the side not in contact with the photoactive layer has a film thickness of 400 Å or more, which is 00 Å or more and 200 Å or less.
【請求項4】光活性層が、シリコンを主成分とする非晶
質層、あるいはさらに炭素、窒素、ゲルマニウム、ホウ
素、燐、水素のうち少なくとも1種を含む非晶質合金層
からなることを特徴とする請求項1〜3いずれか1項の
透過型太陽電池。
4. The photoactive layer comprises an amorphous layer containing silicon as a main component or an amorphous alloy layer further containing at least one of carbon, nitrogen, germanium, boron, phosphorus and hydrogen. The transparent solar cell according to any one of claims 1 to 3, which is characterized in that.
【請求項5】第2の電極層の金属膜が、銀、金、銅、白
金、パラジウム、クロム、アルミニウム、ニッケル、モ
リブデンからなる群より選択した少なくとも1種の金属
を主成分として含む金属薄膜であることを特徴とする請
求項1〜4いずれか1項の透過型太陽電池。
5. A metal thin film in which the metal film of the second electrode layer contains as a main component at least one metal selected from the group consisting of silver, gold, copper, platinum, palladium, chromium, aluminum, nickel and molybdenum. The transparent solar cell according to any one of claims 1 to 4, wherein
【請求項6】第2の電極層の無機化合物膜が透明導電性
金属酸化物膜であることを特徴とする請求項1〜5いず
れか1項の透過型太陽電池。
6. The transparent solar cell according to claim 1, wherein the inorganic compound film of the second electrode layer is a transparent conductive metal oxide film.
【請求項7】透明導電性金属酸化物膜が、その主要な金
属成分としてインジウム、錫、亜鉛、カドミウム、バナ
ジウム、チタンのうちの少なくとも1種を含むことを特
徴とする請求項6の透過型太陽電池。
7. The transparent conductive metal oxide film according to claim 6, wherein the transparent conductive metal oxide film contains at least one of indium, tin, zinc, cadmium, vanadium and titanium as a main metal component thereof. Solar cells.
JP3334005A 1991-11-22 1991-11-22 Transmission type solar cell Pending JPH05145096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3334005A JPH05145096A (en) 1991-11-22 1991-11-22 Transmission type solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3334005A JPH05145096A (en) 1991-11-22 1991-11-22 Transmission type solar cell

Publications (1)

Publication Number Publication Date
JPH05145096A true JPH05145096A (en) 1993-06-11

Family

ID=18272434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3334005A Pending JPH05145096A (en) 1991-11-22 1991-11-22 Transmission type solar cell

Country Status (1)

Country Link
JP (1) JPH05145096A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258184A (en) * 2000-03-09 2001-09-21 Fuji Xerox Co Ltd Self power supply card type information recording medium, i/o unit for card type information recording medium, power supply method, and communication method
WO2002005354A1 (en) * 2000-07-06 2002-01-17 Mitsubishi Chemical Corporation Solid photo-electric converting element, process for producing the same, solar cell employing solid photo-electric converting element, and power supply
JP2011146508A (en) * 2010-01-14 2011-07-28 Citizen Holdings Co Ltd Solar cell
WO2013046338A1 (en) * 2011-09-27 2013-04-04 三洋電機株式会社 Solar cell and solar cell module
JP2014505370A (en) * 2011-01-26 2014-02-27 マサチューセッツ インスティテュート オブ テクノロジー Transparent photocell
US9136405B2 (en) 2009-03-18 2015-09-15 Kabushiki Kaisha Toshiba Light transmission type solar cell and method for producing the same
KR101645532B1 (en) * 2016-03-29 2016-08-08 (주) 비제이파워 Solar cell module having an improved generation efficiency by stacking multilayer on surface

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258184A (en) * 2000-03-09 2001-09-21 Fuji Xerox Co Ltd Self power supply card type information recording medium, i/o unit for card type information recording medium, power supply method, and communication method
WO2002005354A1 (en) * 2000-07-06 2002-01-17 Mitsubishi Chemical Corporation Solid photo-electric converting element, process for producing the same, solar cell employing solid photo-electric converting element, and power supply
US9136405B2 (en) 2009-03-18 2015-09-15 Kabushiki Kaisha Toshiba Light transmission type solar cell and method for producing the same
JP2011146508A (en) * 2010-01-14 2011-07-28 Citizen Holdings Co Ltd Solar cell
JP2014505370A (en) * 2011-01-26 2014-02-27 マサチューセッツ インスティテュート オブ テクノロジー Transparent photocell
JP2018032872A (en) * 2011-01-26 2018-03-01 マサチューセッツ インスティテュート オブ テクノロジー Transparent photovoltaic cell
JP2020017737A (en) * 2011-01-26 2020-01-30 マサチューセッツ インスティテュート オブ テクノロジー Transparent photovoltaic cells
US10665801B2 (en) 2011-01-26 2020-05-26 Massachusetts Institute Of Technology Transparent photovoltaic cells
US11424423B2 (en) 2011-01-26 2022-08-23 Massachusetts Institute Of Technology Transparent photovoltaic cells
WO2013046338A1 (en) * 2011-09-27 2013-04-04 三洋電機株式会社 Solar cell and solar cell module
KR101645532B1 (en) * 2016-03-29 2016-08-08 (주) 비제이파워 Solar cell module having an improved generation efficiency by stacking multilayer on surface

Similar Documents

Publication Publication Date Title
US4663495A (en) Transparent photovoltaic module
US5078803A (en) Solar cells incorporating transparent electrodes comprising hazy zinc oxide
US4940495A (en) Photovoltaic device having light transmitting electrically conductive stacked films
KR101739823B1 (en) Layered element, and photovoltaic device including such an element
JP4811945B2 (en) Thin film photoelectric converter
US20080047603A1 (en) Front contact with intermediate layer(s) adjacent thereto for use in photovoltaic device and method of making same
EP1650814B1 (en) Tandem thin film solar cell
US20080105293A1 (en) Front electrode for use in photovoltaic device and method of making same
US20080105298A1 (en) Front electrode for use in photovoltaic device and method of making same
US20080223436A1 (en) Back reflector for use in photovoltaic device
KR101098152B1 (en) Solar cell
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
JPS6257113B2 (en)
US20130312829A1 (en) Photoelectric conversion element
TWI453932B (en) Photovoltaic module and method of manufacturing a photovoltaic module having an electrode diffusion layer
US20100024876A1 (en) Photon trapping solar cell
CN112151623A (en) Heterojunction solar cell and preparation method thereof
JPH05145096A (en) Transmission type solar cell
KR101275840B1 (en) Transparent Solar Cell
CN115380392A (en) Solar cell, multijunction solar cell, solar cell module, and solar power generation system
JP3025392B2 (en) Thin film solar cell and manufacturing method
JP2015141941A (en) Solar battery and solar battery module
KR20190141447A (en) Thin-film solar module and method for manufacturing the same
JPH05145095A (en) Photovoltaic element
JP2011187495A (en) Solar battery module