JP2005166527A - Fuel battery cell and fuel battery - Google Patents

Fuel battery cell and fuel battery Download PDF

Info

Publication number
JP2005166527A
JP2005166527A JP2003405709A JP2003405709A JP2005166527A JP 2005166527 A JP2005166527 A JP 2005166527A JP 2003405709 A JP2003405709 A JP 2003405709A JP 2003405709 A JP2003405709 A JP 2003405709A JP 2005166527 A JP2005166527 A JP 2005166527A
Authority
JP
Japan
Prior art keywords
support substrate
solid electrolyte
fuel cell
fuel
interconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003405709A
Other languages
Japanese (ja)
Other versions
JP4412984B2 (en
Inventor
Shoji Yamashita
祥二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003405709A priority Critical patent/JP4412984B2/en
Publication of JP2005166527A publication Critical patent/JP2005166527A/en
Application granted granted Critical
Publication of JP4412984B2 publication Critical patent/JP4412984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel battery cell and a fuel battery, in which internal and external gas interception can be surely carried out, and which are high in power generation performance, even at a comparatively low temperature of 700 to 800°C. <P>SOLUTION: This is the fuel battery cell 33 in which at least a dense solid electrolyte 33c and a porous oxygen side electrode 33d are sequentially installed at one side main face of a porous support substrate 33a having a gas flow-passage 34, and in which an minute interconnector 33f is installed at the other side main face, in which the solid electrolyte 33c formed at the one side main face of the support substrate 33a is extended and installed up to the interconnector 33f end face formed at the other side main face of the support substrate 33a via a side face of the support substrate 33a; and the solid electrolyte 33c is composed of zirconium oxide with which scandium is made into a solid solution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池セル及び燃料電池に関し、特に、支持基板の一方側主面に少なくとも緻密な固体電解質、多孔質な外側電極を順次設け、他方側主面に緻密なインターコネクタを設けてなる燃料電池セル及び燃料電池に関する。   The present invention relates to a fuel cell and a fuel cell, and in particular, at least a dense solid electrolyte and a porous outer electrode are sequentially provided on one side main surface of a support substrate, and a dense interconnector is provided on the other side main surface. The present invention relates to a fuel cell and a fuel cell.

図3は、従来の固体電解質型燃料電池の燃料電池セル1を示すもので、燃料電池セル1は、軸長方向に複数のガス流路3を有する多孔質の支持体を兼ねた扁平な内側電極1a上の外周面に緻密な固体電解質1b、多孔質な導電性セラミックスからなる外側電極1cを順次設けて構成されており、固体電解質1b、外側電極1cから露出した内側電極1aには、外側電極1cに接続しないようにインターコネクタ1dが設けられ、内側電極1aと電気的に接続している。(特許文献1参照)。   FIG. 3 shows a fuel cell 1 of a conventional solid oxide fuel cell. The fuel cell 1 has a flat inner side that also serves as a porous support having a plurality of gas flow paths 3 in the axial direction. A dense solid electrolyte 1b and an outer electrode 1c made of porous conductive ceramics are sequentially provided on the outer peripheral surface of the electrode 1a. The inner electrode 1a exposed from the solid electrolyte 1b and the outer electrode 1c has an outer side. An interconnector 1d is provided so as not to be connected to the electrode 1c, and is electrically connected to the inner electrode 1a. (See Patent Document 1).

このような燃料電池セル1では、燃料電池セル1の形状を扁平状とすることにより、燃料電池セル1当たりの発電部の面積を増加させることができ、発電量を増加させることができる。   In such a fuel cell 1, by making the shape of the fuel cell 1 flat, the area of the power generation unit per fuel cell 1 can be increased, and the amount of power generation can be increased.

燃料電池は、上記燃料電池セル1を収納容器内に複数収納して構成され、例えば、内側電極1a内部に酸素ガス注入管5を通じて酸素含有ガスを供給し、外側電極1cに燃料ガス(水素)を供給して約1000℃で発電される。   The fuel cell is configured by storing a plurality of the fuel cells 1 in a storage container. For example, an oxygen-containing gas is supplied into the inner electrode 1a through an oxygen gas injection pipe 5, and a fuel gas (hydrogen) is supplied to the outer electrode 1c. To generate electricity at about 1000 ° C.

この燃料電池セル1の内側電極1aと固体電解質1b、外側電極1cが重なり合っている部分が発電部であり、この発電部で発生した電流は内側電極1aを電流経路とし、インターコネクタ1dを介して他の燃料電池セル1へと接続される。   A portion where the inner electrode 1a, the solid electrolyte 1b, and the outer electrode 1c of the fuel cell 1 overlap each other is a power generation unit, and the current generated in the power generation unit uses the inner electrode 1a as a current path and passes through an interconnector 1d. It is connected to another fuel cell 1.

この燃料電池セルでは、固体電解質1bとしてYを含有するZrO(YSZ)が用いられているが、近年においては、固体電解質材料としてScを含有するZrOも知られている(特許文献2参照)。 In this fuel cell, ZrO 2 (YSZ) containing Y 2 O 3 is used as the solid electrolyte 1b. Recently, ZrO 2 containing Sc 2 O 3 is also known as a solid electrolyte material. (See Patent Document 2).

燃料電池セルを作製する方法としては、従来、内側電極1aと固体電解質1bとを同時焼成により形成することが知られている。この同時焼成法は、非常に簡単なプロセスで製造工程数が少なく、コスト低減に有利である。
特開昭63−261678号公報 特開平06−116026号公報
As a method for producing a fuel cell, it is conventionally known that the inner electrode 1a and the solid electrolyte 1b are formed by simultaneous firing. This co-firing method is a very simple process, has a small number of manufacturing steps, and is advantageous for cost reduction.
JP-A 63-261678 Japanese Patent Application Laid-Open No. 06-1116026

しかしながら、このような燃料電池セル1でも、得られる発電性能は十分でなく、未だ低いという問題があった。即ち、燃料電池セル1では、固体電解質1bの厚みを薄くし、内側電極1aの厚みを薄くし、電流経路を短くし、さらに内側電極1aの幅を広くすることで燃料電池セル1当たりの発電量を増加させることが可能となるものの、燃料電池セル1の曲率の大きい曲面状の側面に応力が集中し、例えば、焼成や発電の際に燃料電池セル1の側面に位置する緻密な固体電解質1bにクラックが発生しやすいという問題があった。   However, even such a fuel cell 1 has a problem that the power generation performance obtained is not sufficient and is still low. That is, in the fuel cell 1, the power generation per fuel cell 1 is reduced by reducing the thickness of the solid electrolyte 1b, the inner electrode 1a, the current path, and the width of the inner electrode 1a. Although the amount can be increased, stress concentrates on the curved side surface of the fuel cell 1 having a large curvature. For example, a dense solid electrolyte positioned on the side surface of the fuel cell 1 during firing or power generation There was a problem that cracks were likely to occur in 1b.

内側電極1aの側面が曲面状ではなく、平面である場合においても、側面と主面との間に形成された角部の固体電解質にクラックが発生しやすいという問題があった。   Even when the side surface of the inner electrode 1a is not a curved surface but a flat surface, there is a problem in that cracks are likely to occur in the solid electrolyte at the corner formed between the side surface and the main surface.

即ち、燃料電池セル1では、燃料電池セル1の曲率(曲率半径の小さい)の大きい曲面状の側面に最も応力が集中しやすく、応力が側面に位置する固体電解質1bの強度を超えた場合、側面の固体電解質1bにクラックが発生し、燃料電池セル1内外のガスの遮断ができなくなり、燃料電池セル1の発電性能が劣化する。   That is, in the fuel cell 1, when the stress is most likely to be concentrated on the curved side surface having a large curvature (small curvature radius) of the fuel cell 1 and the stress exceeds the strength of the solid electrolyte 1b located on the side surface, Cracks occur in the solid electrolyte 1b on the side surface, and the gas inside and outside the fuel cell 1 cannot be shut off, and the power generation performance of the fuel cell 1 is deteriorated.

また、燃料電池セル1内外でのガスの遮断ができなくなるため、発電の基となる燃料電池セル1内外での酸素分圧差が減少するため、他の燃料電池セル1においても発電量が低下する
また、固体電解質がYを含有するZrO(YSZ)から形成されていたため、作動温度を700℃から800℃に低温化すると、固体電解質の導電率が低いため、発電性能が低くなるという問題があった。
In addition, since it becomes impossible to shut off the gas inside and outside the fuel cell 1, the difference in oxygen partial pressure between the inside and outside of the fuel cell 1 that is the basis of power generation is reduced, so that the amount of power generation also decreases in other fuel cells 1. In addition, since the solid electrolyte is made of ZrO 2 (YSZ) containing Y 2 O 3 , when the operating temperature is lowered from 700 ° C. to 800 ° C., the electric conductivity of the solid electrolyte is low, so the power generation performance is lowered. There was a problem.

本発明は、内外のガス遮断を確実に行うことができるとともに、700〜800℃の比較的低温でも発電性能が高い燃料電池セル及び燃料電池を提供することを目的とする。   An object of the present invention is to provide a fuel cell and a fuel cell that can reliably shut off gas inside and outside and have high power generation performance even at a relatively low temperature of 700 to 800 ° C.

本発明の燃料電池セルは、ガス流路を有する多孔質支持基板の一方側主面に少なくとも緻密な固体電解質、多孔質な外側電極を順次設け、他方側主面に緻密なインターコネクタを設けてなる燃料電池セルであって、前記支持基板の一方側主面に形成された固体電解質を、前記支持基板の側面を介して前記支持基板の他方側主面に形成されたインターコネクタ端面まで延設するとともに、前記固体電解質が、スカンジウムを固溶せしめた酸化ジルコニウムからなることを特徴とする。   The fuel cell of the present invention is provided with at least a dense solid electrolyte and a porous outer electrode sequentially on one main surface of a porous support substrate having a gas flow path, and a dense interconnector on the other main surface. A solid electrolyte formed on one main surface of the support substrate and extending to a connector end surface formed on the other main surface of the support substrate via a side surface of the support substrate. In addition, the solid electrolyte is made of zirconium oxide in which scandium is dissolved.

このような燃料電池セルでは、固体電解質をスカンジウムを固溶せしめた酸化ジルコニウムで形成したため、従来から用いられているYを含有するZrO(YSZ)よりも強度が高く、例えば、応力が強く発生しやすい支持基板の薄い側面に形成された場合であっても、固体電解質におけるクラック発生を防止でき、緻密なインターコネクタ及び緻密な固体電解質で多孔質な支持基板を取り囲むことができるとともに、支持基板の厚みを薄くし、幅を広くし、かつ、固体電解質の厚みを薄くしたとしても、固体電解質におけるクラック発生を防止でき、燃料電池セルの内外のガスを有効に遮断できる。また、スカンジウムを固溶させて安定化した酸化ジルコニウムは、YSZよりも、700〜800℃の温度域での導電率が高いため、発電性能を向上できる。 In such a fuel cell, since the solid electrolyte is formed of zirconium oxide in which scandium is dissolved, the strength is higher than that of ZrO 2 (YSZ) containing Y 2 O 3 conventionally used. Even when it is formed on the thin side surface of the support substrate that is likely to be strongly generated, it is possible to prevent the occurrence of cracks in the solid electrolyte, and to surround the porous support substrate with a dense interconnector and a dense solid electrolyte. Even if the thickness of the support substrate is reduced, the width is increased, and the thickness of the solid electrolyte is reduced, the generation of cracks in the solid electrolyte can be prevented, and the gas inside and outside the fuel cell can be effectively shut off. In addition, zirconium oxide stabilized by dissolving scandium has higher conductivity in the temperature range of 700 to 800 ° C. than YSZ, and thus power generation performance can be improved.

スカンジウムは3〜15モル%の量で固溶されることが望ましい。これにより、固体電解質のイオン伝導度が高くなり、発電性能が向上する。特に、8〜12モル%固溶することが望ましい。   Scandium is preferably dissolved in an amount of 3 to 15 mol%. Thereby, the ionic conductivity of a solid electrolyte becomes high, and electric power generation performance improves. In particular, it is desirable to dissolve 8 to 12 mol%.

また、本発明の燃料電池セルは、支持基板の主面間の厚みが2〜5μmであることを特徴とする。このような薄い支持基板では、その側面における応力は大きくなる傾向があり、固体電解質の強度が要求されるため、本発明を好適に用いることができる。   The fuel cell of the present invention is characterized in that the thickness between the main surfaces of the support substrate is 2 to 5 μm. In such a thin support substrate, the stress on the side surface tends to increase, and the strength of the solid electrolyte is required. Therefore, the present invention can be suitably used.

さらに、本発明の燃料電池セルは、支持基板の側面は、外側に凸となる曲面状であることを特徴とする。支持基板の側面を曲面状とすることにより、支持基板の側面に形成された固体電解質に発生する応力を小さくすることができる。支持基板の側面は、曲率半径1〜3μmの曲面である場合には、支持基板の側面の曲率半径が小さくなるに従って固体電解質に発生する応力が大きくなるため、本発明を好適に用いることができる。   Furthermore, the fuel battery cell of the present invention is characterized in that the side surface of the support substrate is a curved surface that protrudes outward. By making the side surface of the support substrate a curved surface, the stress generated in the solid electrolyte formed on the side surface of the support substrate can be reduced. When the side surface of the support substrate is a curved surface having a curvature radius of 1 to 3 μm, the stress generated in the solid electrolyte increases as the curvature radius of the side surface of the support substrate decreases, so that the present invention can be suitably used. .

また、本発明の燃料電池セルは、希土類元素酸化物とNi及び/又はNiOとを主成分とする支持基板の一方側主面に、燃料側電極、固体電解質、酸素側電極が順次形成され、前記支持基板の希土類元素が、Y、Lu、Yb、Tm、Er、Ho、Dy、Gd、Sm及びPrのうち少なくとも1種であることを特徴とする。   In the fuel cell of the present invention, a fuel-side electrode, a solid electrolyte, and an oxygen-side electrode are sequentially formed on one side main surface of a support substrate mainly composed of a rare earth element oxide and Ni and / or NiO. The rare earth element of the support substrate is at least one of Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Sm, and Pr.

このような燃料電池セルでは、支持基板中の上記希土類酸化物が、焼成時や発電中における鉄族金属やその酸化物との固溶、反応をほとんど生じない。さらに、この希土類酸化物は、固体電解質や燃料極中の希土類元素が固溶して安定化したジルコニアの熱膨張係数(約10.8×10−6/℃)よりも遥かに小さく、例えばYやYbは、熱膨張係数が約8.14×10−6/℃であり、従って希土類酸化物の含有比率を制御することにより、支持基板の熱膨張係数を固体電解質層や燃料極の熱膨張係数に近づけることができ、熱膨張差に起因するクラックの発生や剥離を有効に抑制することができる。 In such a fuel cell, the rare earth oxide in the support substrate hardly causes solid solution or reaction with the iron group metal or its oxide during firing or power generation. Furthermore, this rare earth oxide is much smaller than the thermal expansion coefficient (about 10.8 × 10 −6 / ° C.) of zirconia stabilized by solid solution of the rare earth element in the solid electrolyte and the fuel electrode. 2 O 3 and Yb 2 O 3 have a thermal expansion coefficient of about 8.14 × 10 −6 / ° C. Therefore, by controlling the content ratio of the rare earth oxide, the thermal expansion coefficient of the support substrate is changed to the solid electrolyte layer. And the thermal expansion coefficient of the fuel electrode can be brought close to, and the generation and separation of cracks due to the difference in thermal expansion can be effectively suppressed.

本発明の燃料電池は、上記燃料電池セルを収納容器内に複数収納してなることを特徴とする。上記したように、本発明の燃料電池セルは、内外のガス遮断を確実に行うことができるとともに、700〜800℃の比較的低温でも発電性能が高いため、ガスリークなどによる燃料電池の発電量が低下するなどの不具合を防止でき、発電性能及び耐久性に優れた燃料電池を提供できる。   The fuel cell according to the present invention is characterized in that a plurality of the fuel cells are accommodated in a storage container. As described above, the fuel battery cell of the present invention can reliably shut off the gas inside and outside, and has high power generation performance even at a relatively low temperature of 700 to 800 ° C. A fuel cell excellent in power generation performance and durability can be provided by preventing problems such as lowering.

さらに、本発明の燃料電池は、分散型発電用として用いられることを特徴とする。例えば、1kW程度の発電性能を有する家庭用の燃料電池システムや、7kW以下の発電性能を有する店舗用の燃料電池システムに用いられる燃料電池セルは小型であり、支持基板自体も薄くなるため、支持基板の側面に発生する応力が大きくなる傾向にあるため、本発明を好適に用いることができる。   Furthermore, the fuel cell of the present invention is used for distributed power generation. For example, a fuel cell used for a household fuel cell system having a power generation performance of about 1 kW or a fuel cell system for a store having a power generation performance of 7 kW or less is small in size and the support substrate itself is also thin. Since the stress generated on the side surface of the substrate tends to increase, the present invention can be suitably used.

本発明の燃料電池セルでは、固体電解質を、スカンジウムを固溶せしめて安定化した酸化ジルコニウムで形成したため、従来から用いられているYを含有するZrO(YSZ)よりも強度が高く、例えば、応力が強く発生しやすい支持基板の薄い側面に形成された場合であっても、固体電解質におけるクラック発生を防止でき、燃料電池セルの内外のガスを有効に遮断できるとともに、スカンジウムを固溶せしめて安定化した酸化ジルコニウムは、YSZよりも、700〜800℃の温度域での導電率が高いため、発電性能を向上できる。 In the fuel cell of the present invention, the solid electrolyte is formed of zirconium oxide stabilized by dissolving scandium, so that the strength is higher than that of ZrO 2 (YSZ) containing Y 2 O 3 which has been conventionally used. For example, even when it is formed on a thin side surface of a support substrate where stress is likely to be generated, cracks in the solid electrolyte can be prevented, gas inside and outside the fuel cell can be effectively blocked, and scandium can be solidified. Zirconium oxide that has been melted and stabilized has higher electrical conductivity in the temperature range of 700 to 800 ° C. than YSZ, and therefore can improve power generation performance.

本発明の燃料電池セルは、図1に示すように断面が板状で、全体的に見て柱状の多孔質な導電性の支持基板33aの一方側主面に、多孔質な燃料側電極33b、緻密な固体電解質33c、多孔質な導電性セラミックスからなる酸素側電極33dを順次積層し、酸素側電極33dと反対側の支持基板33aの他方側主面に接合層33e、ランタン−クロム系酸化物材料からなるインターコネクタ33f、P型半導体材料からなる集電膜33gを形成して構成されている。   The fuel cell of the present invention has a plate-like cross section as shown in FIG. 1, and a porous fuel side electrode 33b on one main surface of a columnar porous conductive support substrate 33a as a whole. In addition, a dense solid electrolyte 33c and an oxygen side electrode 33d made of porous conductive ceramics are sequentially laminated, and a bonding layer 33e, a lanthanum-chromium-based oxidation are formed on the other main surface of the support substrate 33a opposite to the oxygen side electrode 33d. An interconnector 33f made of a material and a current collecting film 33g made of a P-type semiconductor material are formed.

また、支持基板33aには複数の直線状のガス流路34が軸長方向に貫通して形成されている。   A plurality of linear gas passages 34 are formed in the support substrate 33a so as to penetrate in the axial direction.

即ち、燃料電池セル33は、断面形状が弧状で幅方向両端に設けられた端部mと、これらの端部mを連結する一対の平坦部aとから構成されており、一対の平坦部aは平坦であり、ほぼ平行に形成されている。燃料電池セル33の形状を支配する支持基板33aの形状も、一対の平坦状の主面と、これらの主面を連結する曲面状の側面を有している。燃料電池セル33の平坦部aのうち一方は、支持基板33aの他方主面上に接合層33e、インターコネクタ33f、集電膜33gを形成して構成され、他方の平坦部aは、支持基板33aの一方主面上に燃料側電極33b、固体電解質33c、酸素側電極33dを形成して構成されている。   That is, the fuel cell 33 includes an end m provided in both ends in the width direction in an arc shape and a pair of flat portions a connecting the end m, and the pair of flat portions a. Are flat and formed substantially in parallel. The shape of the support substrate 33a that governs the shape of the fuel battery cell 33 also has a pair of flat main surfaces and a curved side surface connecting these main surfaces. One of the flat portions a of the fuel cell 33 is configured by forming a bonding layer 33e, an interconnector 33f, and a current collecting film 33g on the other main surface of the support substrate 33a. A fuel side electrode 33b, a solid electrolyte 33c, and an oxygen side electrode 33d are formed on one main surface of 33a.

また、支持基板33aの長径寸法(端部m方向間の距離)は15〜35mm、短径寸法(平坦部a間の距離)が2〜5mmであることが望ましい。支持基板33aの側面は、外側に凸となる曲面状とされ、支持基板33aの側面は、曲率半径1〜3μmの曲面状とされている。   Moreover, it is desirable that the major axis dimension (distance between the ends m direction) of the support substrate 33a is 15 to 35 mm, and the minor axis dimension (distance between the flat portions a) is 2 to 5 mm. The side surface of the support substrate 33a has a curved shape that protrudes outward, and the side surface of the support substrate 33a has a curved shape with a curvature radius of 1 to 3 μm.

また、この支持基板33aは、Y、Lu、Yb、Tm、Er、Ho、Dy、Gd、Sm及びPrから選ばれた1種以上からなる希土類元素酸化物とNi及び/又はNiOとを主成分とすることが望ましい。   The support substrate 33a is mainly composed of one or more rare earth element oxides selected from Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Sm and Pr and Ni and / or NiO. It is desirable that

支持基板33aとインターコネクタ33fの間に形成される接合層33eは、Ni及び/またはNiOと希土類元素を含有するZrOを主成分とするものである。接合層33e中のNi化合物のNi換算量は全量中35〜80体積%が望ましく、さらに50〜70体積%が望ましい。Niを35体積%以上とすることで、Niによる導電パスが増加し、接合層33eの伝導度が向上し、電圧降下が小さくなる。また、Niを80体積%以下とすることで、支持基板33aとインターコネクタ33fの間の熱膨張係数差を小さくすることができ、両者の界面の亀裂の発生を抑制できる。 The bonding layer 33e formed between the support substrate 33a and the interconnector 33f is composed mainly of ZrO 2 containing Ni and / or NiO and a rare earth element. The Ni conversion amount of the Ni compound in the bonding layer 33e is preferably 35 to 80% by volume, more preferably 50 to 70% by volume, based on the total amount. By setting Ni to 35% by volume or more, the conductive path due to Ni increases, the conductivity of the bonding layer 33e improves, and the voltage drop decreases. Moreover, by making Ni 80 volume% or less, the thermal expansion coefficient difference between the support substrate 33a and the interconnector 33f can be made small, and generation | occurrence | production of the crack of both interface can be suppressed.

また、電位降下が小さくなるという点から接合層33eの厚みは20μm以下が望ましく、さらに、10μm以下が望ましい。   In addition, the thickness of the bonding layer 33e is preferably 20 μm or less, and more preferably 10 μm or less from the viewpoint that the potential drop is reduced.

中希土類元素や重希土類元素の酸化物の熱膨張係数は、固体電解質33cのYを含有するZrOの熱膨張係数より小さく、Niとのサーメット材としての支持基板33aの熱膨張係数を固体電解質33cの熱膨張係数に近づけることができ、固体電解質33cのクラックや、固体電解質33cの燃料側電極33bからの剥離を抑制できる。熱膨張係数が小さい重希土類元素酸化物を用いることで、支持基板33a中のNiを多くでき、支持基板33aの電気伝導度を上げることができるという点からも重希土類元素酸化物を用いることが望ましい。 The thermal expansion coefficient of the medium rare earth element or heavy rare earth element oxide is smaller than the thermal expansion coefficient of ZrO 2 containing Y 2 O 3 of the solid electrolyte 33c, and the thermal expansion coefficient of the support substrate 33a as a cermet material with Ni. Can be brought close to the thermal expansion coefficient of the solid electrolyte 33c, and cracking of the solid electrolyte 33c and separation of the solid electrolyte 33c from the fuel-side electrode 33b can be suppressed. By using a heavy rare earth element oxide having a small thermal expansion coefficient, it is possible to increase the amount of Ni in the support substrate 33a and to increase the electric conductivity of the support substrate 33a. desirable.

なお、軽希土類元素のLa、Ce、Pr、Ndの酸化物は、希土類元素酸化物の熱膨張係数の総和が固体電解質33cの熱膨張係数未満である範囲であれば、中希土類元素、重希土類元素に加えて含有されていても何ら問題はない。   The light rare earth elements La, Ce, Pr, and Nd oxides may be medium rare earth elements, heavy rare earth elements as long as the sum of the thermal expansion coefficients of the rare earth element oxides is less than the thermal expansion coefficient of the solid electrolyte 33c. There is no problem even if it is contained in addition to the elements.

また、精製途中の安価な複数の希土類元素を含む複合希土類元素酸化物を用いることにより原料コストを大幅に下げることができる。その場合も、複合希土類元素酸化物の熱膨張係数は固体電解質33cの熱膨張係数未満であることが望ましい。   Moreover, the raw material cost can be significantly reduced by using a complex rare earth element oxide containing a plurality of inexpensive rare earth elements in the course of purification. Also in that case, it is desirable that the thermal expansion coefficient of the complex rare earth element oxide is less than the thermal expansion coefficient of the solid electrolyte 33c.

また、インターコネクタ33f表面にP型半導体、例えば、遷移金属ペロブスカイト型酸化物からなる集電膜33gを設けることが望ましい。インターコネクタ33f表面に直接金属の集電部材を配して集電すると非オーム接触により、電位降下が大きくなる。オーム接触をし、電位降下を少なくするためには、インターコネクタ33fにP型半導体からなる集電膜33gを接続する必要があり、P型半導体である遷移金属ペロブスカイト型酸化物を用いることが望ましい。遷移金属ペロブスカイト型酸化物としては、ランタン−マンガン系酸化物、ランタン−鉄系酸化物、ランタン−コバルト系酸化物、又は、それらの複合酸化物の少なくとも一種からなることが望ましい。特に、集電膜33gは酸素側電極材料からなることが望ましい。   Further, it is desirable to provide a current collecting film 33g made of a P-type semiconductor, for example, a transition metal perovskite oxide, on the surface of the interconnector 33f. When a metal current collecting member is disposed directly on the surface of the interconnector 33f to collect current, the potential drop increases due to non-ohmic contact. In order to make ohmic contact and reduce the potential drop, it is necessary to connect the current collector film 33g made of a P-type semiconductor to the interconnector 33f, and it is desirable to use a transition metal perovskite oxide that is a P-type semiconductor. . The transition metal perovskite oxide is preferably made of at least one of a lanthanum-manganese oxide, a lanthanum-iron oxide, a lanthanum-cobalt oxide, or a composite oxide thereof. In particular, the current collecting film 33g is preferably made of an oxygen-side electrode material.

支持基板33aの主面に設けられた燃料側電極33bは、Niと希土類元素が固溶したZrOとから構成される。この燃料側電極33bの厚みは1〜30μmであることが望ましい。燃料側電極33bの厚みを1μm以上とすることで、燃料側電極33bとしての3層界面が十分に形成される。また、燃料側電極33bの厚みを30μm以下とすることで固体電解質33cとの熱膨張差による界面剥離を防止できる。 The fuel side electrode 33b provided on the main surface of the support substrate 33a is composed of Ni and ZrO 2 in which a rare earth element is dissolved. The thickness of the fuel side electrode 33b is desirably 1 to 30 μm. By setting the thickness of the fuel side electrode 33b to 1 μm or more, a three-layer interface as the fuel side electrode 33b is sufficiently formed. Further, by setting the thickness of the fuel side electrode 33b to 30 μm or less, it is possible to prevent interface peeling due to a difference in thermal expansion from the solid electrolyte 33c.

固体電解質33cの厚みは、5〜100μmであることが望ましい。固体電解質33cの厚みを5μm以上とすることで、ガス透過を防止できる。また、固体電解質33cの厚みを100μm以下にすることで、抵抗成分の増加を抑制できる。特に、燃料電池セル33の発電能力を向上させるため、支持基板33aの一方主面に形成された固体電解質33cの厚みは20μm以下であることが望ましい。一方、固体電解質33cの厚みが薄くなるほど、クラックが発生しやすくなるため、本発明を好適に用いることができる。   The thickness of the solid electrolyte 33c is desirably 5 to 100 μm. Gas permeation can be prevented by setting the thickness of the solid electrolyte 33c to 5 μm or more. Moreover, the increase in a resistance component can be suppressed by making the thickness of the solid electrolyte 33c into 100 micrometers or less. In particular, in order to improve the power generation capability of the fuel cell 33, it is desirable that the thickness of the solid electrolyte 33c formed on one main surface of the support substrate 33a is 20 μm or less. On the other hand, the thinner the solid electrolyte 33c is, the easier it is for cracks to occur, so that the present invention can be suitably used.

本発明において、強度を高くし、かつ700〜800℃の温度域でも発電性能を高くするために、固体電解質を、スカンジウムを固溶せしめて安定化した酸化ジルコニウムから形成されている。スカンジウムは、3〜15モル%の量で酸化ジルコニウムに固溶されることが望ましい。固溶量が3モル%より少ないと、イオン伝導度が低くなり、発電性能が低下する。固溶量が15モル%より多くても、イオン伝導度が低くなり、発電性能が低下する。特に、固溶量が8〜12モル%であると、イオン伝導度が高くなり、発電性能が向上する。Sc以外に、さらにイオン伝導度を高くするという点から酸化セリウムを0.5〜2モル%含有することが望ましい。   In the present invention, in order to increase the strength and increase the power generation performance even in the temperature range of 700 to 800 ° C., the solid electrolyte is formed from zirconium oxide stabilized by dissolving scandium. Scandium is preferably dissolved in zirconium oxide in an amount of 3 to 15 mol%. When the amount of the solid solution is less than 3 mol%, the ionic conductivity is lowered and the power generation performance is lowered. Even if the amount of the solid solution is more than 15 mol%, the ionic conductivity is lowered and the power generation performance is lowered. In particular, when the solid solution amount is 8 to 12 mol%, the ionic conductivity is increased, and the power generation performance is improved. In addition to Sc, it is desirable to contain 0.5 to 2 mol% of cerium oxide from the viewpoint of further increasing the ionic conductivity.

この固体電解質層33を形成する安定化ジルコニアセラミックスは、ガス透過を防止するという点から、相対密度(アルキメデス法による)が93%以上、特に95%以上の緻密質であることが望ましい。   The stabilized zirconia ceramics forming the solid electrolyte layer 33 is desirably dense with a relative density (according to Archimedes method) of 93% or more, particularly 95% or more, from the viewpoint of preventing gas permeation.

また、酸素側電極33dは、遷移金属ペロブスカイト型酸化物のランタン−マンガン系酸化物、ランタン−鉄系酸化物、ランタン−コバルト系酸化物、または、それらの複合酸化物の少なくとも一種の多孔質の導電性セラミックスから構成されている。酸素側電極33dは、800℃程度の中温域での電気伝導性が高いという点から(La,Sr)(Fe,Co)O系が望ましい。酸素側電極33dの厚みは、集電性という点から30〜100μmであることが望ましい。 The oxygen side electrode 33d is made of a lanthanum-manganese oxide, lanthanum-iron oxide, lanthanum-cobalt oxide of a transition metal perovskite oxide, or at least one porous oxide of a composite oxide thereof. It is composed of conductive ceramics. The oxygen side electrode 33d is preferably a (La, Sr) (Fe, Co) O 3 system in terms of high electrical conductivity in the middle temperature range of about 800 ° C. The thickness of the oxygen side electrode 33d is preferably 30 to 100 μm from the viewpoint of current collection.

インターコネクタ33fは、支持基板33aの内外の燃料ガス、酸素含有ガスの漏出を防止するため緻密体とされており、また、インターコネクタ33fの内外面は、燃料ガス、酸素含有ガスと接触するため、耐還元性、耐酸化性を有している。   The interconnector 33f is a dense body for preventing leakage of fuel gas and oxygen-containing gas inside and outside the support substrate 33a, and the inner and outer surfaces of the interconnector 33f are in contact with the fuel gas and oxygen-containing gas. It has reduction resistance and oxidation resistance.

このインターコネクタ33fの厚みは、30〜200μmであることが望ましい。インターコネクタ33fの厚みを30μm以上とすることで、ガス透過を完全に防止でき、200μm以下とすることで、抵抗成分の増加を抑制できる。   The thickness of the interconnector 33f is desirably 30 to 200 μm. By setting the thickness of the interconnector 33f to 30 μm or more, gas permeation can be completely prevented, and by setting it to 200 μm or less, an increase in resistance component can be suppressed.

このインターコネクタ33fの端部と固体電解質33cの端部との間には、シール性を向上すべく例えば、NiとZrO、あるいはYからなる接合層を介在させても良い。 For example, a bonding layer made of Ni and ZrO 2 or Y 2 O 3 may be interposed between the end of the interconnector 33f and the end of the solid electrolyte 33c in order to improve the sealing performance.

本発明の燃料電池セル33では、緻密な固体電解質33cは、支持基板33aの一方側主面のみならず、支持基板33aの側面を介して他方側主面のインターコネクタ端面まで形成されており、即ち両側の端部mを形成するように他方側主面にまで延設され、インターコネクタ33eと接合している。なお、端部mは、発電に伴う加熱や冷却に伴い発生する熱応力を緩和するため、外側に凸となる曲面状となっていることが望ましい。   In the fuel cell 33 of the present invention, the dense solid electrolyte 33c is formed not only on one side main surface of the support substrate 33a but also on the other side main surface via the side surface of the support substrate 33a. That is, it extends to the other principal surface so as to form both end portions m, and is joined to the interconnector 33e. In addition, in order to relieve the thermal stress which generate | occur | produces with the heating and cooling accompanying electric power generation, it is desirable for the edge part m to become the curved surface shape which becomes convex outside.

支持基板33aの一方側主面に設けられた緻密体である固体電解質33cの厚みよりも、支持基板33aの側面に設けられた固体電解質33cの厚みが厚いこことが望ましい。このような燃料電池セル33では、応力の集中しやすい導電性支持体33aの側面に設けられた固体電解質33cの厚みを厚くすることで、緻密体の強度を増加させることができ、これにより、支持基板33aの側面に設けられた固体電解質33cにおけるクラック発生を防止できる。   It is desirable that the thickness of the solid electrolyte 33c provided on the side surface of the support substrate 33a is thicker than the thickness of the solid electrolyte 33c which is a dense body provided on the one side main surface of the support substrate 33a. In such a fuel cell 33, by increasing the thickness of the solid electrolyte 33c provided on the side surface of the conductive support 33a where stress is easily concentrated, the strength of the dense body can be increased. Generation of cracks in the solid electrolyte 33c provided on the side surface of the support substrate 33a can be prevented.

以上のような燃料電池セル33の製法について説明する。先ず、La、Ce、Pr、Ndの元素を除く希土類元素酸化物粉末とNi及び/又はNiO粉末を混合し、この混合粉末に、有機バインダーと、溶媒とを混合した導電性支持基板材料を押し出し成形して、板状の支持基板成形体を作製し、これを乾燥、脱脂する。   The manufacturing method of the fuel cell 33 as described above will be described. First, rare earth element oxide powder excluding La, Ce, Pr, and Nd elements and Ni and / or NiO powder are mixed, and a conductive support substrate material in which an organic binder and a solvent are mixed is extruded into this mixed powder. It shape | molds and produces a plate-shaped support substrate molded object, This is dried and degreased.

また、希土類元素が固溶したZrO粉末と有機バインダーと溶媒を混合した固体電解質材料を用いてシート状の固体電解質成形体を作製する。 Moreover, a sheet-like solid electrolyte molded body is produced using a solid electrolyte material in which a rare earth element-dissolved ZrO 2 powder, an organic binder, and a solvent are mixed.

次に、Ni及び/又はNiO粉末と、希土類元素が固溶したZrO粉末と、有機バインダーと、溶媒とを混合し、作製した燃料側電極33bとなるスラリーを、前記固体電解質成形体の一方側に塗布し、固体電解質成形体の一方側の面に燃料側電極塗布膜を形成する。 Next, Ni and / or NiO powder, ZrO 2 powder in which a rare earth element is dissolved, an organic binder, and a solvent are mixed, and a slurry to be a fuel-side electrode 33b is prepared as one of the solid electrolyte molded bodies. The fuel electrode coating film is formed on one surface of the solid electrolyte compact.

次に、支持基板成形体に、前記シート状の固体電解質成形体と燃料側電極成形体の積層体を、該燃料側電極成形体が支持基板成形体に当接するように積層巻き付けする。   Next, the sheet-shaped solid electrolyte molded body and the fuel-side electrode molded body are laminated and wound around the support substrate molded body so that the fuel-side electrode molded body comes into contact with the support substrate molded body.

次に、ランタン−クロム系酸化物粉末と、有機バインダーと、溶媒とを混合したインターコネクタ材料を用いてシート状のインターコネクタ成形体を作製する。   Next, a sheet-like interconnector molded body is produced using an interconnector material in which a lanthanum-chromium oxide powder, an organic binder, and a solvent are mixed.

また、Ni及び/又はNiO粉末と、希土類元素が固溶したZrO粉と、有機バインダーと、溶媒を混合したスラリーを用いてシート状の接合層成形体を作製する。 Further, a sheet-like joining layer molded body is prepared using a slurry in which Ni and / or NiO powder, ZrO 2 powder in which a rare earth element is dissolved, an organic binder, and a solvent are mixed.

次に、インターコネクタ成形体と接合層成形体とを積層し、この積層体の接合層成形体側が、露出した支持基板成形体側に当接するように積層する。   Next, the interconnector molded body and the bonding layer molded body are laminated, and the laminated body is laminated so that the bonding layer molded body side is in contact with the exposed support substrate molded body side.

これにより、支持基板成形体の一方側主面に、燃料側電極成形体、固体電解質成形体を順次積層するとともに、他方主面に接合層成形体、インターコネクタ成形体が積層された積層成形体を作製する。なお、各成形体はドクターブレードによるシート成形や印刷、スラリーディップ、スプレーによる吹き付けなどにより作製することができ、または、これらの組み合わせにより作製してもよい。   Thus, a laminated molded body in which a fuel-side electrode molded body and a solid electrolyte molded body are sequentially laminated on one main surface of the support substrate molded body, and a bonding layer molded body and an interconnector molded body are laminated on the other main surface. Is made. In addition, each molded object can be produced by sheet | seat shaping | molding by a doctor blade, printing, slurry dip, spraying by spraying, etc., or may be produced by a combination thereof.

次に、積層成形体を脱脂処理し、酸素含有雰囲気中で1300〜1600℃で同時焼成する。   Next, the multilayer molded body is degreased and cofired at 1300 to 1600 ° C. in an oxygen-containing atmosphere.

次に、P型半導体である遷移金属ペロブスカイト型酸化物粉末と、溶媒を混合し、ペーストを作製し、前記積層体をこのペースト中に浸漬し、固体電解質33b、インターコネクタ33fの表面に酸素側電極成形体、集電膜成形体をそれぞれディッピングにより形成するか、または、直接スプレー塗布し、1000〜1300℃で焼き付けることにより、本発明の燃料電池セル33を作製できる。   Next, a transition metal perovskite oxide powder, which is a P-type semiconductor, and a solvent are mixed to prepare a paste, and the laminate is immersed in this paste, and the oxygen side is placed on the surfaces of the solid electrolyte 33b and the interconnector 33f. The fuel cell 33 of the present invention can be manufactured by forming the electrode molded body and the current collector film molded body by dipping or spraying directly and baking at 1000 to 1300 ° C.

尚、燃料電池セル33は、酸素含有雰囲気での焼成により、支持基板33a、燃料側電極33b、接合層33e中のNi成分が、NiOとなっているため、その後、支持基板33a側から還元性の燃料ガスを流し、NiOを800〜1000℃で還元処理する。また、この還元処理は発電時に行ってもよい。   In addition, since the Ni component in the support substrate 33a, the fuel side electrode 33b, and the bonding layer 33e is NiO by firing in the oxygen-containing atmosphere, the fuel battery cell 33 is subsequently reduced from the support substrate 33a side. Then, NiO is reduced at 800 to 1000 ° C. Further, this reduction process may be performed during power generation.

セルスタックは、図2に示すように、複数の燃料電池セル33を所定間隔をおいて配置し、一方の燃料電池セル33と他方の燃料電池セル33との間に、金属フェルト及び/又は金属板からなる集電部材43を介在させ、一方の燃料電池セル33の支持基板33aを、該支持基板33aに設けられた接合層33e、インターコネクタ33f、集電膜33g、集電部材43を介して他方の燃料電池セル33の酸素側電極33dに電気的に接続して構成されている。   As shown in FIG. 2, the cell stack has a plurality of fuel cells 33 arranged at a predetermined interval, and a metal felt and / or a metal between one fuel cell 33 and the other fuel cell 33. A current collecting member 43 made of a plate is interposed, and a support substrate 33a of one fuel battery cell 33 is connected via a bonding layer 33e, an interconnector 33f, a current collecting film 33g, and a current collecting member 43 provided on the support substrate 33a. The other fuel cell 33 is electrically connected to the oxygen side electrode 33d.

集電部材43は、耐熱性、耐酸化性、電気伝導性という点から、Pt、Ag、Ni基合金、Fe−Cr鋼合金の少なくとも一種からなることが望ましい。尚、符号42は、燃料電池セルを直列に接続するための導電部材である。   The current collecting member 43 is preferably made of at least one of Pt, Ag, Ni-base alloy, and Fe—Cr steel alloy from the viewpoint of heat resistance, oxidation resistance, and electrical conductivity. Reference numeral 42 denotes a conductive member for connecting the fuel cells in series.

本発明の燃料電池は、図2のセルスタックを、収納容器内に収納して構成されている。この収納容器には、外部から水素等の燃料ガス及び空気等の酸素含有ガスを燃料電池セル33に導入する導入管が設けられており、燃料電池セル33が所定温度に加熱されることにより発電し、使用された燃料ガス、酸素含有ガスは燃焼し、燃焼ガスが収納容器外に排出される。   The fuel cell of the present invention is configured by storing the cell stack of FIG. 2 in a storage container. This storage container is provided with an introduction pipe for introducing a fuel gas such as hydrogen and an oxygen-containing gas such as air into the fuel cell 33 from the outside, and the fuel cell 33 is heated to a predetermined temperature to generate power. The used fuel gas and oxygen-containing gas are combusted and the combustion gas is discharged out of the storage container.

尚、本発明は上記形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。例えば、内側電極を酸素側電極から形成してもよい。また、酸素側電極33dと固体電解質33cとの間に、反応防止層を形成してもよい。また、支持基板33aと燃料側電極33bを同じ組成で形成してもよく、例えば、NiとYを固溶したZrOを用いてもよい。即ち、支持基板33aが燃料側電極33bを兼ねる場合であってもよい。 In addition, this invention is not limited to the said form, A various change is possible in the range which does not change the summary of invention. For example, the inner electrode may be formed from an oxygen side electrode. Further, a reaction preventing layer may be formed between the oxygen side electrode 33d and the solid electrolyte 33c. Further, the support substrate 33a and the fuel side electrode 33b may be formed with the same composition. For example, ZrO 2 in which Ni and Y 2 O 3 are dissolved may be used. That is, the support substrate 33a may also serve as the fuel side electrode 33b.

また、酸素側電極33d、集電膜33gの成形法も種々の方法を用いてもよいことは勿論である。   Of course, various methods may be used for forming the oxygen side electrode 33d and the current collecting film 33g.

先ず、平均粒径0.5μmのNiO粉末と、平均粒径0.9μmのY粉末を焼成―還元後における体積比率が、Niが48体積%、Yが52体積%になるように混合し、有機バインダーと溶媒にて作製した杯土を押出し成型法にて成形し、乾燥、脱脂して支持基板成形体を作製した。 First, NiO powder having an average particle size of 0.5 μm and Y 2 O 3 powder having an average particle size of 0.9 μm were calcined and reduced, so that the volume ratio was 48% by volume for Ni and 52% by volume for Y 2 O 3. Then, a clay prepared with an organic binder and a solvent was molded by extrusion molding, dried and degreased to prepare a support substrate molded body.

次に平均粒径0.5μmのNi粉末とYが固溶したZrO粉と有機バインダーと溶媒を混合したスラリーを作製し、前記支持基板成形体に、スクリーン印刷法にて塗布、乾燥して、燃料側電極用のコーティング層を形成した。 Next, a slurry prepared by mixing a Ni powder having an average particle size of 0.5 μm, a ZrO 2 powder in which Y 2 O 3 is dissolved, an organic binder, and a solvent is prepared, and applied to the support substrate molded body by a screen printing method. It dried and the coating layer for fuel side electrodes was formed.

次に、表1に示す量のスカンジウムが固溶したZrOと、比較例として8mol%のYが固溶したZrO粉末をそれぞれ有機バインダーと溶媒とを混合して得られたスラリーを、ドクターブレード法にて固体電解質層用シートをそれぞれ作製し、支持基板成形体上の燃料側電極用のコーティング層に貼り付け、乾燥した。即ち、固体電解質層用シート及び燃料側電極用のコーティング層を、支持基板成形体の一方側主面から側面を介して他方側主面に至るまで延設した。 Next, a slurry obtained by mixing ZrO 2 in which the amount of scandium in the amount shown in Table 1 was dissolved and ZrO 2 powder in which 8 mol% of Y 2 O 3 was dissolved as a comparative example, with an organic binder and a solvent, respectively. The solid electrolyte layer sheets were respectively prepared by a doctor blade method, attached to the coating layer for the fuel side electrode on the support substrate molded body, and dried. That is, the solid electrolyte layer sheet and the fuel-side electrode coating layer were extended from one side main surface of the support substrate molded body to the other side main surface via the side surface.

次に、支持基板成形体、および燃料側電極のコーティング層、固体電解質成形体を積層した積層成形体を1000℃にて仮焼処理した。   Next, the laminated molded body obtained by laminating the support substrate molded body, the fuel electrode coating layer, and the solid electrolyte molded body was calcined at 1000 ° C.

次にCeOを85モル%、Smを15モル%含む複合酸化物(以下SDC15)にアクリル系バインダーとトルエンを添加し、混合して作製した元素拡散防止層のスラリーを、得られた仮焼体の固体電解質成形体の表面にスクリーン印刷法にて塗布した。 Next, an element diffusion prevention layer slurry prepared by adding and mixing an acrylic binder and toluene to a composite oxide containing 85 mol% CeO 2 and 15 mol% Sm 2 O 3 (hereinafter referred to as SDC15) is obtained. It was applied to the surface of the solid electrolyte molded body of the calcined body by a screen printing method.

また、LaCrO系酸化物と、有機バインダーと溶媒を混合したスラリーを作製し、これを、露出した支持基板成形体の他方側主面上に積層し、酸素含有雰囲気中において1485℃で同時焼成した。 Further, a slurry in which a LaCrO 3 oxide, an organic binder and a solvent are mixed is prepared, and this is laminated on the other main surface of the exposed support substrate molded body, and co-fired at 1485 ° C. in an oxygen-containing atmosphere. did.

次に、平均粒径0.8μmのLa0.6Sr0.4Co0.8Fe0.2粉末と、凝集度13〜16に調製したSDC15を混合し、得られたスラリーを積層体の元素拡散防止層の表面に印刷塗布を行い、130℃にて乾燥して酸素側電極成形体を作製するとともに、上記La0.6Sr0.4Co0.8Fe0.2粉体とイソプロピルアルコールとを混合して得られたスラリーをインターコネクタ上に印刷塗布し、集電膜成形体を形成し、1050℃で焼き付け、酸素極層及び集電膜を形成し、図1に示すような燃料電池セルを作製した。 Next, La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3 powder having an average particle diameter of 0.8 μm and SDC 15 prepared to a degree of aggregation of 13 to 16 are mixed, and the obtained slurry is laminated. The surface of the body element diffusion prevention layer is printed and dried at 130 ° C. to produce an oxygen-side electrode molded body, and the La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3 is prepared. A slurry obtained by mixing powder and isopropyl alcohol is printed and applied onto an interconnector to form a current collector film, and baked at 1050 ° C. to form an oxygen electrode layer and a current collector film. A fuel battery cell as shown in FIG.

尚、作製した燃料電池セルの寸法は25mm×200mmで、支持基板の厚さは2〜5mm、開気孔率35%、燃料側電極の厚さは10μm、開気孔率24%、酸素側電極の厚さは50μm、開気孔率40%、固体電解質層の厚さは10〜50μm、相対密度は97%、元素拡散防止層の厚みは5μmであった。   The size of the produced fuel cell is 25 mm × 200 mm, the thickness of the support substrate is 2 to 5 mm, the open porosity is 35%, the thickness of the fuel side electrode is 10 μm, the open porosity is 24%, and the oxygen side electrode The thickness was 50 μm, the open porosity was 40%, the thickness of the solid electrolyte layer was 10 to 50 μm, the relative density was 97%, and the thickness of the element diffusion preventing layer was 5 μm.

次に、この燃料電池セルの内部に、水素ガスを流し、850℃で、支持基板及び燃料側電極の還元処理を施した。   Next, hydrogen gas was allowed to flow inside the fuel cell, and the support substrate and the fuel side electrode were subjected to reduction treatment at 850 ° C.

得られた燃料電池セルの燃料ガス流路に燃料ガスを流通させ、セルの外側に酸素含有ガスを流通させ、燃料電池セルを電気炉を用いて750℃まで加熱し、発電試験を行った。このときの発電特性を確認した。   A fuel gas was circulated through the fuel gas passage of the obtained fuel cell, an oxygen-containing gas was circulated outside the cell, and the fuel cell was heated to 750 ° C. using an electric furnace, and a power generation test was performed. The power generation characteristics at this time were confirmed.

また、表1に記載した固体電解質原料を用い、これらの原料に固形分として2.5%のPVAを添加した粉末を作製し、1000kgf/cmのプレス圧で6mm×46mm×5mmの大きさの成形体を作製した。この成形体を1485℃で2時間、大気中で焼成した。得られたテストピースを用いて、750℃での大気中での電気伝導度を4端子法によって測定した。さらに4点曲げによって固体電解質材料の強度を評価した(JIS−R1601)。さらに同時焼成後のセルの固体電解質表面に発生する残留応力と、セルを4%水素−96%窒素混合ガスによって、850℃で16時間還元処理したセルの固体電解質表面に発生する残留応力をX線回折のジルコニアのピークシフトから求めることによって残留応力を計算し、還元処理前後の変化量を求めた。これらの結果を表1に記載した。

Figure 2005166527
Moreover, using the solid electrolyte raw materials described in Table 1, powders obtained by adding 2.5% PVA as solids to these raw materials were produced, and the size was 6 mm × 46 mm × 5 mm with a pressing pressure of 1000 kgf / cm 2. A molded body was prepared. The molded body was fired at 1485 ° C. for 2 hours in the air. Using the obtained test piece, the electric conductivity in the atmosphere at 750 ° C. was measured by a four-terminal method. Furthermore, the strength of the solid electrolyte material was evaluated by 4-point bending (JIS-R1601). Furthermore, the residual stress generated on the solid electrolyte surface of the cell after co-firing and the residual stress generated on the solid electrolyte surface of the cell reduced at 850 ° C. for 16 hours with a mixed gas of 4% hydrogen and 96% nitrogen X Residual stress was calculated by calculating from the peak shift of zirconia in line diffraction, and the amount of change before and after the reduction treatment was determined. These results are shown in Table 1.
Figure 2005166527

この表から、本発明の試料では、固体電解質の電気抵抗が小さくなることによって、発電特性が大きく向上することが分かった。また、Scを含有する本発明の試料では、8YSZを固体電解質材料とした試料No.9に比較して強度が大きくなり、また750℃における電気伝導度も大きく、さらに還元時に固体電解質に発生する残留応力も小さくなり、安定であることが分かった。 From this table, it was found that in the sample of the present invention, the power generation characteristics are greatly improved by decreasing the electric resistance of the solid electrolyte. In the sample of the present invention containing Sc 2 O 3 , sample No. 8 using 8YSZ as the solid electrolyte material was used. It was found that the strength was higher than 9 and the electric conductivity at 750 ° C. was large, and the residual stress generated in the solid electrolyte during reduction was small and stable.

本発明の燃料電池セルを示す断面斜視図である。It is a cross-sectional perspective view which shows the fuel battery cell of this invention. 本発明のセルスタックを示す横断面図である。It is a cross-sectional view showing a cell stack of the present invention. 従来の燃料電池セルを示す横断面図である。It is a cross-sectional view showing a conventional fuel cell.

符号の説明Explanation of symbols

33・・・燃料電池セル
33a・・・導電性支持体
33b・・・燃料側電極(内側電極)
33c・・・固体電解質
33d・・・酸素側電極(外側電極)
33f・・・インターコネクタ
34・・・ガス流路
33 ... Fuel cell 33a ... Conductive support 33b ... Fuel side electrode (inner electrode)
33c: Solid electrolyte 33d: Oxygen side electrode (outer electrode)
33f ... interconnector 34 ... gas flow path

Claims (7)

ガス流路を有する多孔質支持基板の一方側主面に少なくとも緻密な固体電解質、多孔質な外側電極を順次設け、他方側主面に緻密なインターコネクタを設けてなる燃料電池セルであって、前記支持基板の一方側主面に形成された固体電解質を、前記支持基板の側面を介して前記支持基板の他方側主面に形成されたインターコネクタ端面まで延設するとともに、前記固体電解質が、スカンジウムを固溶せしめた酸化ジルコニウムからなることを特徴とする燃料電池セル。 A fuel cell comprising a porous support substrate having a gas flow path and at least a dense solid electrolyte and a porous outer electrode sequentially provided on one main surface and a dense interconnector on the other main surface, The solid electrolyte formed on one side main surface of the support substrate is extended to the interconnector end surface formed on the other side main surface of the support substrate through the side surface of the support substrate, and the solid electrolyte is A fuel cell comprising a zirconium oxide in which scandium is dissolved. 支持基板の主面間の厚みが2〜5μmであることを特徴とする請求項1記載の燃料電池セル。 The fuel cell according to claim 1, wherein a thickness between main surfaces of the support substrate is 2 to 5 μm. 支持基板の側面は、外側に凸となる曲面状であることを特徴とする請求項1又は2記載の燃料電池セル。 The fuel cell according to claim 1, wherein the side surface of the support substrate has a curved surface that protrudes outward. 支持基板の側面は、曲率半径1〜3μmの曲面状であることを特徴とする請求項3記載の燃料電池セル。 4. The fuel cell according to claim 3, wherein the side surface of the support substrate is a curved surface having a curvature radius of 1 to 3 [mu] m. 希土類元素酸化物とNi及び/又はNiOとを主成分とする支持基板の一方側主面に、燃料側電極、固体電解質、酸素側電極を順次形成してなることを特徴とする請求項1乃至4のうちいずれかに記載の燃料電池セル。 2. A fuel-side electrode, a solid electrolyte, and an oxygen-side electrode are sequentially formed on one main surface of a support substrate mainly composed of a rare earth element oxide and Ni and / or NiO. The fuel battery cell according to any one of 4. 請求項1乃至5のうちいずれかに記載の燃料電池セルを収納容器内に複数収納してなることを特徴とする燃料電池。 A fuel cell comprising a plurality of the fuel cells according to claim 1 in a storage container. 分散型発電用として用いられることを特徴とする請求項6記載の燃料電池。 The fuel cell according to claim 6, wherein the fuel cell is used for distributed power generation.
JP2003405709A 2003-12-04 2003-12-04 Fuel cell and fuel cell Expired - Fee Related JP4412984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003405709A JP4412984B2 (en) 2003-12-04 2003-12-04 Fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003405709A JP4412984B2 (en) 2003-12-04 2003-12-04 Fuel cell and fuel cell

Publications (2)

Publication Number Publication Date
JP2005166527A true JP2005166527A (en) 2005-06-23
JP4412984B2 JP4412984B2 (en) 2010-02-10

Family

ID=34728298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003405709A Expired - Fee Related JP4412984B2 (en) 2003-12-04 2003-12-04 Fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP4412984B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305723A (en) * 2007-06-08 2008-12-18 Univ Of Tokyo Adhesive material composition, bonding method using the adhesive material composition, solid oxide fuel cell, and solid oxide steam electrolytic device
JP2011222488A (en) * 2010-03-26 2011-11-04 Ngk Insulators Ltd Fuel battery cell
US8206867B2 (en) 2006-07-05 2012-06-26 Hitachi, Ltd. Fuel cell
WO2013031961A1 (en) * 2011-08-31 2013-03-07 京セラ株式会社 Solid oxide fuel cell, cell stack device, fuel cell module, and fuel cell device
WO2017033822A1 (en) * 2015-08-22 2017-03-02 京セラ株式会社 Cell, cell stack device, module, and module accommodation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206867B2 (en) 2006-07-05 2012-06-26 Hitachi, Ltd. Fuel cell
JP2008305723A (en) * 2007-06-08 2008-12-18 Univ Of Tokyo Adhesive material composition, bonding method using the adhesive material composition, solid oxide fuel cell, and solid oxide steam electrolytic device
JP2011222488A (en) * 2010-03-26 2011-11-04 Ngk Insulators Ltd Fuel battery cell
WO2013031961A1 (en) * 2011-08-31 2013-03-07 京セラ株式会社 Solid oxide fuel cell, cell stack device, fuel cell module, and fuel cell device
JP5665999B2 (en) * 2011-08-31 2015-02-04 京セラ株式会社 Solid oxide fuel cell, cell stack device, fuel cell module and fuel cell device
JPWO2013031961A1 (en) * 2011-08-31 2015-03-23 京セラ株式会社 Solid oxide fuel cell, cell stack device, fuel cell module and fuel cell device
WO2017033822A1 (en) * 2015-08-22 2017-03-02 京セラ株式会社 Cell, cell stack device, module, and module accommodation device
JP6151876B1 (en) * 2015-08-22 2017-06-21 京セラ株式会社 Cell, cell stack device, module, and module storage device
CN107925097A (en) * 2015-08-22 2018-04-17 京瓷株式会社 Monomer, monomer stack device, module and module storage device
CN107925097B (en) * 2015-08-22 2021-06-01 京瓷株式会社 Monomer, monomer pile device, module and module storage device

Also Published As

Publication number Publication date
JP4412984B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP5804894B2 (en) Fuel cell
JP2010080151A (en) Cell stack and fuel battery module as well as fuel cell device equipped with the same
JP2008226654A (en) Cell of fuel cell, cell stack of fuel cell, and fuel cell
JP5095877B1 (en) Fuel cell
JP2008078126A (en) Fuel battery cell, fuel battery cell stack and fuel battery
JP4853979B2 (en) Fuel cell
JP4544872B2 (en) Fuel cell and fuel cell
JP5247051B2 (en) Fuel cell and fuel cell stack, and fuel cell
JP5079991B2 (en) Fuel cell and fuel cell
JP2004265734A (en) Fuel battery cell
JP5455271B1 (en) Fuel cell
JP4350403B2 (en) Solid oxide fuel cell
JP4412984B2 (en) Fuel cell and fuel cell
JP5095878B1 (en) Fuel cell
JP4002521B2 (en) Fuel cell and fuel cell
JP5289010B2 (en) Solid oxide fuel cell, fuel cell stack device, fuel cell module and fuel cell device
JP5455270B1 (en) Fuel cell
JP5455268B1 (en) Fuel cell
JP5455267B1 (en) Fuel cell
JP4480377B2 (en) Fuel cell and fuel cell
JP4881479B2 (en) Fuel cell
JP4925574B2 (en) Fuel cell and fuel cell
CN111244498A (en) Fuel cell and fuel cell stack
JP2005216619A (en) Fuel battery cell and fuel battery
WO2020261935A1 (en) Fuel electrode-solid electrolyte layer composite body, fuel electrode-solid electrolyte layer composite member, fuel cell and method for producing fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4412984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees