JP2005163079A - Thin film forming apparatus - Google Patents

Thin film forming apparatus Download PDF

Info

Publication number
JP2005163079A
JP2005163079A JP2003401637A JP2003401637A JP2005163079A JP 2005163079 A JP2005163079 A JP 2005163079A JP 2003401637 A JP2003401637 A JP 2003401637A JP 2003401637 A JP2003401637 A JP 2003401637A JP 2005163079 A JP2005163079 A JP 2005163079A
Authority
JP
Japan
Prior art keywords
substrate
plate
thin film
raw material
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003401637A
Other languages
Japanese (ja)
Inventor
Hideo Okada
英生 岡田
Takao Imanaka
崇雄 今中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003401637A priority Critical patent/JP2005163079A/en
Priority to DE602004007089T priority patent/DE602004007089T2/en
Priority to US10/988,218 priority patent/US7540922B2/en
Priority to EP04026917A priority patent/EP1536036B1/en
Publication of JP2005163079A publication Critical patent/JP2005163079A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a thin film excellent in the uniformity of film thickness on a planar substrate surface in a thin film forming apparatus using a spray thermal decomposition method. <P>SOLUTION: At the time when the surface 3a of a previously heated planar substrate 3 is sprayed with the droplets 2 of a raw material solution comprising a thin film raw material and an organic solvent from a raw material solution spraying means 4 to form a thin film on the surface 3a, the planar substrate 3 is heated by a substrate heating means 6 so as to have a temperature distribution corresponding to the amount of the droplets of the raw material solution to be sprayed per unit area in the surface 3a of the planar substrate 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、薄膜形成装置に関する。   The present invention relates to a thin film forming apparatus.

ガラス基板などの板状基板の表面に薄膜を形成する技術として、従来からスプレー熱分解法が知られている(たとえば、非特許文献1参照)。スプレー熱分解法では、まず、薄膜原料を有機溶剤に溶解して原料溶液を調製する。この原料溶液を圧縮ガスと混合し、加熱された板状基板に向けて噴射すると、原料溶液の霧状の液滴が板状基板の表面に供給される。原料溶液の液滴は板状基板の表面で加熱され、液相である有機溶剤が蒸発、気化することによって、固相である薄膜原料が析出し、析出した薄膜原料が板状基板の表面に付着して成長し、薄膜が形成される。スプレー熱分解法は、常圧化学気相成長法(CVD)などの他の化学的薄膜形成法に比べて、基板の加熱温度を低くしても成膜が可能であり、成膜速度が速く、装置の構造が簡単でメンテナンスの頻度が少ないといった利点を有する。   As a technique for forming a thin film on the surface of a plate substrate such as a glass substrate, a spray pyrolysis method has been conventionally known (for example, see Non-Patent Document 1). In the spray pyrolysis method, first, a raw material solution is prepared by dissolving a thin film raw material in an organic solvent. When this raw material solution is mixed with the compressed gas and sprayed toward the heated plate-like substrate, the mist-like droplets of the raw material solution are supplied to the surface of the plate-like substrate. The droplets of the raw material solution are heated on the surface of the plate-like substrate, and the organic solvent that is the liquid phase is evaporated and vaporized, whereby the thin-film raw material that is the solid phase is deposited, and the deposited thin-film material is deposited on the surface of the plate-like substrate. It grows by adhering to form a thin film. The spray pyrolysis method enables film formation even when the substrate heating temperature is lowered compared to other chemical thin film formation methods such as atmospheric pressure chemical vapor deposition (CVD), and the film formation rate is high. The device has a simple structure and low maintenance frequency.

また、スプレー熱分解法に基づく薄膜形成装置が種々提案されている(たとえば、特許文献1、特許文献2参照)。図8は、従来の薄膜形成装置100の構成を模式的に示す透視側面図である。薄膜形成装置100は、薄膜原料と有機溶剤とを含む原料溶液を板状基板101に向けて噴射し、原料溶液の液滴102を噴霧するための噴霧手段103と、原料溶液の噴霧量を制御するための噴霧制御手段104と、板状基板101を加熱するための加熱手段105と、加熱により原料溶液から蒸発する有機溶剤の蒸気などを外部に排気する排気手段106とを含んで構成される。さらに噴霧手段103は、原料溶液を貯留するための原料溶液貯留手段107と、原料溶液に混合されるキャリアガスを貯留するガス貯留手段108と、原料溶液とキャリアガスとを混合して板状基板101の表面に噴霧するスプレーノズル109とを含んで構成される。キャリアガスには、圧縮空気などが使用される。噴霧制御手段104は、スプレーノズル109のオンオフを制御するソレノイドバルブ110と、ソレノイドバルブ110によるスプレーノズル109の開閉を制御するバルブ制御手段111とを含んで構成される。加熱手段105は、板状基板101を加熱するためのヒータ112と、板状基板101およびヒータ112を保持するためのステージ113とを含んで構成される。板状基板101およびヒータ112を保持したステージ113は、図示しないベルトコンベアなどの搬送手段によって、スプレーノズル109の直下に搬送される。   Various thin film forming apparatuses based on the spray pyrolysis method have been proposed (see, for example, Patent Document 1 and Patent Document 2). FIG. 8 is a perspective side view schematically showing a configuration of a conventional thin film forming apparatus 100. The thin film forming apparatus 100 controls a spraying means 103 for spraying raw material solution droplets 102 by spraying a raw material solution containing a thin film raw material and an organic solvent toward the plate-like substrate 101, and a spray amount of the raw material solution. A spray control means 104 for heating, a heating means 105 for heating the plate-like substrate 101, and an exhaust means 106 for exhausting an organic solvent vapor evaporating from the raw material solution to the outside by heating. . Further, the spraying means 103 is a plate-like substrate obtained by mixing the raw material solution storage means 107 for storing the raw material solution, the gas storage means 108 for storing the carrier gas mixed in the raw material solution, and the raw material solution and the carrier gas. And a spray nozzle 109 for spraying on the surface of 101. Compressed air or the like is used as the carrier gas. The spray control means 104 includes a solenoid valve 110 that controls on / off of the spray nozzle 109 and a valve control means 111 that controls opening and closing of the spray nozzle 109 by the solenoid valve 110. The heating unit 105 includes a heater 112 for heating the plate-like substrate 101 and a stage 113 for holding the plate-like substrate 101 and the heater 112. The stage 113 holding the plate-like substrate 101 and the heater 112 is conveyed directly below the spray nozzle 109 by a conveying means such as a belt conveyor (not shown).

薄膜形成装置100によれば、まず、原料溶液貯留手段107から原料溶液が、またガス貯留手段108から圧縮気体が、それぞれスプレーノズル109に供給される。スプレーノズル109において原料溶液と圧縮気体とが混合され、ステージ113によって保持された板状基板101の表面101aに噴射され、原料溶液の液滴102が噴霧供給される。板状基板101はヒータ112によって所望の温度に加熱されているので、噴霧された原料溶液の液滴102から有機溶剤が蒸発、気化し、薄膜形成原料が析出し、板状基板101の表面101aに薄膜が形成される。有機溶剤の蒸気は排気手段106によって外部に排気される。この噴霧操作を複数回繰り返すことによって、所望の膜厚を有する薄膜を形成することができる。   According to the thin film forming apparatus 100, first, the raw material solution is supplied from the raw material solution storage unit 107 and the compressed gas is supplied from the gas storage unit 108 to the spray nozzle 109. The raw material solution and the compressed gas are mixed in the spray nozzle 109, sprayed onto the surface 101 a of the plate-like substrate 101 held by the stage 113, and the raw material solution droplets 102 are supplied by spraying. Since the plate-like substrate 101 is heated to a desired temperature by the heater 112, the organic solvent evaporates and vaporizes from the sprayed droplets 102 of the raw material solution, the thin film forming raw material is deposited, and the surface 101a of the plate-like substrate 101 is deposited. A thin film is formed. The organic solvent vapor is exhausted to the outside by the exhaust means 106. By repeating this spraying operation a plurality of times, a thin film having a desired film thickness can be formed.

このように、スプレー熱分解法に基づく薄膜形成装置100においては、スプレーノズル109は、外部から搬送され所定の位置に保持される板状基板101の中央部の略真上に配置される。   As described above, in the thin film forming apparatus 100 based on the spray pyrolysis method, the spray nozzle 109 is disposed substantially directly above the central portion of the plate-like substrate 101 that is conveyed from the outside and held at a predetermined position.

ところで、平坦な板状物の中央部に向けてノズルから溶液を噴霧すると、ノズルの構造的な特徴によって、溶液の単位面積当りの噴霧量は、板状物の中央部では多く、端部では少なくなる。   By the way, when the solution is sprayed from the nozzle toward the center part of the flat plate-like object, the spray amount per unit area of the solution is large in the center part of the plate-like object and at the end part due to the structural characteristics of the nozzle. Less.

したがって、従来の薄膜形成装置100を用いて、板状基板101の表面101aに薄膜を形成すると、スプレーノズル109の位置および構造的な特徴から、板状基板101の中央部には、表面101aに対して垂直方向に盛り上がった薄膜が形成され、板状基板101の端部には、中央部の薄膜よりも膜厚が小さい薄膜が形成される。薄膜形成装置100を用いて、板状基板101の表面101aの全面に膜厚の均一な薄膜を形成することは非常に困難である。薄膜形成装置100は、特に、均一な薄膜を形成することが要求される反射防止膜の形成などには適しない。   Therefore, when a thin film is formed on the surface 101 a of the plate-like substrate 101 using the conventional thin film forming apparatus 100, the central portion of the plate-like substrate 101 has a surface 101 a due to the position and structural characteristics of the spray nozzle 109. On the other hand, a thin film swelled in the vertical direction is formed, and a thin film having a thickness smaller than that of the central thin film is formed at the end of the plate-like substrate 101. It is very difficult to form a thin film having a uniform thickness over the entire surface 101a of the plate-like substrate 101 using the thin film forming apparatus 100. The thin film forming apparatus 100 is not particularly suitable for forming an antireflection film that requires a uniform thin film.

板状基板101の中央部を中心にして薄膜を形成した後、板状基板101を、その端部がスプレーノズル109の直下になる位置に移動させ、再度原料溶液の噴霧を行い、薄膜の膜厚を調整する方法も考えられる。しかしながら、そのような方法は、工程数の増加、原料コストの増加を生み、しかも得られる薄膜の均一性は充分満足の行くものではない。   After the thin film is formed around the center of the plate-like substrate 101, the plate-like substrate 101 is moved to a position where its end is directly below the spray nozzle 109, and the raw material solution is sprayed again to form a thin film film. A method of adjusting the thickness is also conceivable. However, such a method causes an increase in the number of steps and an increase in raw material cost, and the uniformity of the obtained thin film is not sufficiently satisfactory.

特開平10−130097号公報Japanese Patent Laid-Open No. 10-130097 特開2001−26885号公報JP 2001-26885 A 機能材料 2000年3月号 Vol.20 No.3(p.5−7)Functional Materials March 2000 Vol. 20 No. 3 (p.5-7)

本発明の目的は、板状基板の全面に、膜厚の均一な薄膜を形成することができる薄膜形成装置を提供することである。   An object of the present invention is to provide a thin film forming apparatus capable of forming a thin film having a uniform film thickness on the entire surface of a plate-like substrate.

本発明は、薄膜原料および有機溶剤を含む原料溶液とキャリアガスとの混合物を噴射し、板状基板の表面に原料溶液の液適を噴霧する原料溶液噴霧手段と、原料溶液の液滴の噴霧量を制御する噴霧制御手段と、板状基板を加熱する基板加熱手段と、主にキャリアガスおよび有機溶剤の蒸発により生成するガスを外部に排気する排気手段とを含む薄膜形成装置において、
基板加熱手段が、
板状基板を加熱する加熱手段と、
板状基板の温度分布を検出する温度検出手段と、
温度検出手段の検出結果に基づいて、板状基板における単位面積あたりの原料溶液の噴霧量に応じて予め定められた温度分布を板状基板が持つように加熱手段の動作を制御する加熱制御手段と、
少なくとも板状基板および加熱手段を保持する保持手段とを含んで構成されることを特徴とする薄膜形成装置である。
The present invention includes a raw material solution spraying means for spraying a mixture of a raw material solution containing a thin film raw material and an organic solvent and a carrier gas, and spraying the liquidity of the raw material solution onto the surface of the plate-like substrate, and spraying of droplets of the raw material solution In a thin film forming apparatus including spray control means for controlling the amount, substrate heating means for heating the plate-like substrate, and exhaust means for exhausting gas generated mainly by evaporation of the carrier gas and the organic solvent to the outside,
The substrate heating means
Heating means for heating the plate-like substrate;
Temperature detecting means for detecting the temperature distribution of the plate substrate;
A heating control means for controlling the operation of the heating means based on the detection result of the temperature detection means so that the plate-like substrate has a predetermined temperature distribution according to the spray amount of the raw material solution per unit area on the plate-like substrate. When,
A thin film forming apparatus comprising at least a plate-like substrate and holding means for holding heating means.

また本発明の薄膜形成装置は、
基板加熱手段が、
板状基板を加熱する加熱手段と、
加熱手段によって発生する熱を板状基板に伝導する熱伝導手段と、
板状基板の温度分布を検出する温度検出手段と、
温度検出手段の検出結果に基づいて、板状基板における単位面積あたりの原料溶液の噴霧量に応じて予め定められた温度分布を持つように加熱手段の動作を制御する加熱制御手段と、
少なくとも板状基板、加熱手段および熱伝導手段を保持する保持手段とを含んで構成されることを特徴とする。
The thin film forming apparatus of the present invention is
The substrate heating means
Heating means for heating the plate-like substrate;
Heat conduction means for conducting heat generated by the heating means to the plate-like substrate;
Temperature detecting means for detecting the temperature distribution of the plate substrate;
Based on the detection result of the temperature detection means, a heating control means for controlling the operation of the heating means so as to have a predetermined temperature distribution according to the spray amount of the raw material solution per unit area in the plate-like substrate,
It is characterized by comprising at least a plate-like substrate, a heating means and a holding means for holding a heat conduction means.

さらに本発明の薄膜形成装置は、
加熱手段が、板状基板表面における原料溶液の単位面積あたりの噴霧量に略反比例する温度分布をもつように板状基板を加熱することを特徴とする。
Furthermore, the thin film forming apparatus of the present invention is
The heating means heats the plate-like substrate so as to have a temperature distribution substantially inversely proportional to the spray amount per unit area of the raw material solution on the plate-like substrate surface.

さらに本発明の薄膜形成装置は、
加熱手段が、平面図上で略円環形状を有する熱源を含んで構成されることを特徴とする。
Furthermore, the thin film forming apparatus of the present invention is
The heating means includes a heat source having a substantially annular shape on a plan view.

さらに本発明の薄膜形成装置は、
略円環形状の熱源が、同心円上に複数配置されることを特徴とする。
Furthermore, the thin film forming apparatus of the present invention is
A plurality of substantially annular heat sources are arranged on concentric circles.

本発明によれば、薄膜原料および有機溶剤を含む原料溶液とキャリアガスとの混合物を噴射し、板状基板の表面に原料溶液の液適を噴霧する原料溶液噴霧手段と、原料溶液の液滴の噴霧量を制御する噴霧制御手段と、板状基板を加熱する基板加熱手段と、主にキャリアガスおよび有機溶剤の蒸発により生成するガスを外部に排気する排気手段とを含む薄膜形成装置において、基板加熱手段が、板状基板を加熱する加熱手段と、板状基板の温度分布を検出する温度検出手段と、温度検出手段による検出結果に基づいて、板状基板における単位面積あたりの原料溶液の噴霧量に応じて予め定められた温度分布を板状基板が持つように加熱手段の動作を制御する加熱制御手段と、少なくとも板状基板および加熱手段を保持する保持手段とを含む薄膜形成装置が提供される。   According to the present invention, a raw material solution spraying means for spraying a mixture of a raw material solution containing a thin film raw material and an organic solvent and a carrier gas and spraying the liquidity of the raw material solution onto the surface of the plate substrate, and a droplet of the raw material solution In a thin film forming apparatus comprising: a spray control means for controlling the amount of spraying; a substrate heating means for heating the plate-like substrate; and an exhaust means for exhausting gas generated mainly by evaporation of the carrier gas and the organic solvent to the outside. The substrate heating means is a heating means for heating the plate-like substrate, a temperature detection means for detecting the temperature distribution of the plate-like substrate, and the raw material solution per unit area in the plate-like substrate based on the detection result by the temperature detection means. A thin film including heating control means for controlling the operation of the heating means so that the plate-like substrate has a predetermined temperature distribution according to the spray amount, and holding means for holding at least the plate-like substrate and the heating means Forming apparatus is provided.

このような本発明の薄膜形成装置を用いれば、原料溶液の噴霧手段がスプレーノズルであっても、スプレーノズルの構造的な特徴に影響されることなく、板状基板表面の全面に、膜厚の均一な薄膜を形成できる。したがって、本発明の薄膜形成装置は、薄膜全般、特に反射防止膜などの形成に好適に使用できる。   By using such a thin film forming apparatus of the present invention, even if the spraying means of the raw material solution is a spray nozzle, the film thickness can be increased over the entire surface of the plate-like substrate without being affected by the structural characteristics of the spray nozzle. A uniform thin film can be formed. Therefore, the thin film forming apparatus of the present invention can be suitably used for forming a thin film in general, particularly an antireflection film.

本発明者の研究によれば、スプレー熱分解法において、加熱された板状基板表面における薄膜形成速度は、板状基板表面の温度に依存することが判明した。すなわち、板状基板表面の温度と薄膜形成速度は正比例し、温度が高くなると、薄膜形成速度は速くなり、形成される薄膜の量も多くなる。従来の薄膜形成装置において、ヒータなどの加熱手段は、板状基板を保持するステージの表面の中央部に一定方向に組み込まれて固定される。この上に板状基板を載置すると、板状基板の加熱手段に近い中央部ほど温度が高くなり、板状基板の端部では、相対的に加熱手段から遠ざかり、放熱が起こり易いことなどによって、中央部よりも温度が低くなる。したがって、従来の薄膜形成装置では、板状基板の全面をほぼ同じ温度に制御することは非常に困難であり、これに加えて原料溶液の噴霧量が噴霧手段の構造的な特徴から局所的に異なることによって、板状基板に形成される薄膜は、中央部が板状基板の表面に対する垂直方向に盛り上がり、端部の膜厚が薄い山型になる。これに対し本発明では、板状基板を、原料溶液の噴霧量に対応するような温度分布を持つように板状基板を加熱することによって、板状基板全面に膜厚の均一な薄膜を形成することができる。   According to the research of the present inventors, it has been found that in the spray pyrolysis method, the thin film formation rate on the heated plate-like substrate surface depends on the temperature of the plate-like substrate surface. That is, the temperature of the plate-like substrate surface and the thin film formation speed are directly proportional, and as the temperature increases, the thin film formation speed increases and the amount of thin film formed increases. In a conventional thin film forming apparatus, a heating means such as a heater is incorporated and fixed in a certain direction at the center of the surface of a stage holding a plate-like substrate. When the plate-like substrate is placed on this, the temperature is higher at the central portion near the heating means of the plate-like substrate, and at the edge of the plate-like substrate, the temperature is relatively far away from the heating means, and heat radiation is likely to occur. , The temperature is lower than the central part. Therefore, in the conventional thin film forming apparatus, it is very difficult to control the entire surface of the plate-like substrate at substantially the same temperature. In addition to this, the spray amount of the raw material solution is locally determined from the structural characteristics of the spray means. Due to the difference, the thin film formed on the plate-like substrate has a mountain shape in which the central portion rises in a direction perpendicular to the surface of the plate-like substrate and the film thickness at the end portion is thin. In contrast, in the present invention, a thin film having a uniform thickness is formed on the entire surface of the plate substrate by heating the plate substrate so that the temperature distribution corresponding to the spray amount of the raw material solution is provided. can do.

また本発明によれば、前述の基板加熱手段において、板状基板と加熱手段との間に、熱伝導手段を設け、板状基板を加熱手段によって直接加熱するのではなく、熱伝導手段を介して加熱することによって、板状基板全面の温度制御をさらに容易に実現することができる。したがって、膜厚が均一な薄膜を一層容易に形成することができる。   Further, according to the present invention, in the above-described substrate heating means, a heat conduction means is provided between the plate-like substrate and the heating means, and the plate-like substrate is not directly heated by the heating means but via the heat conduction means. By heating in this manner, temperature control over the entire surface of the plate-like substrate can be realized more easily. Therefore, a thin film with a uniform film thickness can be formed more easily.

また本発明によれば、板状基板表面における原料溶液の単位面積あたりの噴霧量に応じた温度分布を持つように、板状基板を加熱するにあたり、噴霧量に略反比例するように加熱することによって、膜厚の均一性がさらに向上した薄膜を形成することができる。より具体的には、たとえば、板状基板の噴霧量の多い中央部の温度が、噴霧量が少ない板状基板端部の温度よりも相対的に低くなるように、板状基板を加熱すればよい。   Further, according to the present invention, when heating the plate substrate so as to have a temperature distribution corresponding to the spray amount per unit area of the raw material solution on the plate substrate surface, heating is performed so as to be approximately inversely proportional to the spray amount. Thus, a thin film with further improved film thickness uniformity can be formed. More specifically, for example, if the plate substrate is heated such that the temperature of the central portion where the spray amount of the plate substrate is large is relatively lower than the temperature of the end portion of the plate substrate where the spray amount is small. Good.

また本発明によれば、前述の加熱手段において、略円環形状の熱源を用いることによって、原料溶液の噴霧量が相対的に少ない板状基板端部の温度を、噴霧量が相対的に多い板状基板中央部の温度よりも高くする温度制御を精度良くかつ容易に実施することができる。さらに、円環形状の熱源は構造的にも複雑なものではなく、簡単な構造なので、低いコストで実現することができ、工業的にも有利である。   Further, according to the present invention, in the heating means described above, by using a substantially annular heat source, the temperature of the end of the plate-like substrate where the spray amount of the raw material solution is relatively small, the spray amount is relatively large. Temperature control to be higher than the temperature at the central portion of the plate-like substrate can be performed accurately and easily. Furthermore, the annular heat source is not structurally complicated and has a simple structure, so that it can be realized at a low cost and is industrially advantageous.

また本発明によれば、前述の加熱手段において、略円環形状の熱源を、同心円上に複数配置することによって、板状基板の温度制御を一層精密に実施できるので、形成される薄膜の膜厚を一層均一にすることができる。   Further, according to the present invention, in the above-mentioned heating means, by arranging a plurality of substantially annular heat sources on concentric circles, the temperature of the plate-like substrate can be more precisely controlled, so that the thin film formed The thickness can be made more uniform.

図1は、本発明の実施の第1形態である薄膜形成装置1の構成を模式的に示す透視側面図である。図2は、図1に示す薄膜形成装置1およびそれに付属して設けられる基板搬送手段の外観を概略的に示す斜視図である。   FIG. 1 is a perspective side view schematically showing a configuration of a thin film forming apparatus 1 according to a first embodiment of the present invention. FIG. 2 is a perspective view schematically showing the external appearance of the thin film forming apparatus 1 shown in FIG. 1 and the substrate transport means provided attached thereto.

薄膜形成装置1は、薄膜原料および有機溶剤を含む原料溶液とキャリアガスとの混合物を噴射し、板状基板3の表面3aに原料溶液の液滴2を噴霧する原料溶液噴霧手段4と、原料溶液の液滴2の噴霧量を制御するための噴霧制御手段5と、板状基板3を加熱するための基板加熱手段6と、キャリアガス、加熱により原料溶液から蒸発する有機溶剤の蒸気などを外部に排気する排気手段7とを含んで構成される。   The thin film forming apparatus 1 includes a raw material solution spraying means 4 that sprays a mixture of a raw material solution containing a thin film raw material and an organic solvent and a carrier gas, and sprays droplets 2 of the raw material solution onto the surface 3a of the plate-like substrate 3, and a raw material Spray control means 5 for controlling the spray amount of the droplet 2 of the solution, substrate heating means 6 for heating the plate-like substrate 3, carrier gas, vapor of organic solvent evaporated from the raw material solution by heating, etc. And an exhaust means 7 for exhausting to the outside.

原料溶液噴霧手段4は、原料溶液を貯留する原料溶液貯留手段8と、キャリアガスを貯留するキャリアガス貯留手段9と、原料溶液とキャリアガスとを混合し、得られる混合物を板状基板3に向けて噴射し、原料溶液の液滴2を板状基板3の表面3aに噴霧する噴霧手段10とを含んで構成される。   The raw material solution spraying means 4 mixes the raw material solution storage means 8 for storing the raw material solution, the carrier gas storage means 9 for storing the carrier gas, the raw material solution and the carrier gas, and the resulting mixture to the plate-like substrate 3. And spraying means 10 for spraying the raw material solution droplets 2 onto the surface 3 a of the plate-like substrate 3.

原料溶液貯留手段8に貯留される原料溶液に含まれる薄膜原料としては特に制限されず、公知の薄膜原料を用いることができ、たとえばチタン薄膜を形成する場合には、テトラ−iso−プロポキシドチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−iso−ブトキシチタンなどのチタンアルコキシド類を用いることができる。原料溶液貯留手段8には、この分野で常用されるものを使用でき、たとえば、原料溶液に対して不活性であり、原料溶液に不純物などを溶解させることがない材料からなる容器が挙げられる。   The thin film raw material contained in the raw material solution stored in the raw material solution storage means 8 is not particularly limited, and a known thin film raw material can be used. For example, when forming a titanium thin film, tetra-iso-propoxide titanium Further, titanium alkoxides such as tetra-n-propoxy titanium, tetra-n-butoxy titanium, and tetra-iso-butoxy titanium can be used. As the raw material solution storage means 8, those commonly used in this field can be used. For example, a container made of a material that is inert to the raw material solution and does not dissolve impurities in the raw material solution can be used.

キャリアガス貯留手段9には、キャリアガスが圧縮されて高圧ガスになることから、耐圧性でかつキャリアガスに不純物などを与えることのない材料からなる一般的な耐圧容器が用いられる。キャリアガスには、空気、窒素ガス、ヘリウムガス、アルゴンガスなどを使用できるけれども、窒素ガス、ヘリウムガス、アルゴンガスなどの薄膜原料、板状基板などに対して不活性な気体が好ましく、窒素ガスが特に好ましい。キャリアガスの流量は、原料溶液に含まれる薄膜原料および有機溶剤の種類、キャリアガスそのものの種類、噴射手段10の構造・形状などに応じて広い範囲から適宜選択できるけれども、形成される薄膜の膜厚の均一性を一層向上させることなどを考慮すると、原料溶液の液滴2の直径が数十〜100μm程度になるような流量を選択すればよい。   Since the carrier gas is compressed into a high-pressure gas, a general pressure-resistant container made of a material that has pressure resistance and does not give impurities to the carrier gas is used for the carrier gas storage means 9. As the carrier gas, air, nitrogen gas, helium gas, argon gas, etc. can be used. However, nitrogen gas, helium gas, argon gas and other thin-film raw materials, and gas inert to the plate substrate are preferable. Is particularly preferred. The flow rate of the carrier gas can be appropriately selected from a wide range according to the type of the thin film raw material and organic solvent contained in the raw material solution, the type of the carrier gas itself, the structure and shape of the injection means 10, etc. In consideration of further improving the thickness uniformity, the flow rate may be selected so that the diameter of the droplet 2 of the raw material solution is about several tens to 100 μm.

噴射手段10には、たとえば、スプレーノズルなどの各種ノズルが用いられる。スプレーノズルは市販品を使用することができ、たとえば、商品名STA−6R(扶桑精機株式会社製)などが挙げられる。原料溶液とキャリアガスとの混合物の噴射は、必要に応じて、複数回実施することができる。このとき、噴霧と次の噴霧との間隔は、噴霧によって板状基板3の表面3aの温度が低下すること、原料溶液の液滴2が板状基板3の表面3aで加熱され、キャリアガス、液滴2中の有機溶剤が蒸発して生成するガスなどによって以後の薄膜形成が影響を受けるのを防ぐために、これらのガスを排気手段7によって外部に排気することなどを考慮して、充分な間隔を開けるのが好ましい。   Various nozzles, such as a spray nozzle, are used for the injection means 10, for example. A commercial item can be used for a spray nozzle, for example, brand name STA-6R (made by Fuso Seiki Co., Ltd.) etc. are mentioned. The injection of the mixture of the raw material solution and the carrier gas can be performed a plurality of times as necessary. At this time, the interval between the spray and the next spray is such that the temperature of the surface 3a of the plate-like substrate 3 is lowered by the spray, the droplet 2 of the raw material solution is heated on the surface 3a of the plate-like substrate 3, and the carrier gas, In order to prevent the subsequent thin film formation from being affected by the gas generated by the evaporation of the organic solvent in the droplet 2, it is sufficient to consider exhausting these gases to the outside by the exhaust means 7. It is preferable to leave a gap.

原料溶液噴霧手段4においては、予め薄膜原料を適当な有機溶剤に溶解して得られる原料溶液を原料溶液貯留手段8に貯留し、また高圧縮されたキャリアガスをキャリアガス貯留手段9に貯留し、各貯留手段8,9から原料溶液およびキャリアガスを噴霧手段10に供給する。噴霧手段10に供給される原料溶液およびキャリアガスはそこで混合され、得られる混合物は噴霧手段10から板状基板3の表面3aに向けて噴射される。これによって、原料溶液の液滴2が板状基板3の表面3aに噴霧される。原料溶液の液滴2は、板状基板3の表面3aで分解反応を起こして有機溶剤が蒸発し、ガス化することにより、液相から固相に変化し、板状基板3の表面3a上に薄膜が形成される。   In the raw material solution spraying means 4, a raw material solution obtained by previously dissolving a thin film raw material in an appropriate organic solvent is stored in the raw material solution storage means 8, and a highly compressed carrier gas is stored in the carrier gas storage means 9. The raw material solution and the carrier gas are supplied to the spraying means 10 from the storage means 8 and 9. The raw material solution and carrier gas supplied to the spraying means 10 are mixed there, and the resulting mixture is sprayed from the spraying means 10 toward the surface 3 a of the plate-like substrate 3. Thereby, the droplet 2 of the raw material solution is sprayed on the surface 3 a of the plate-like substrate 3. The droplet 2 of the raw material solution undergoes a decomposition reaction on the surface 3 a of the plate-like substrate 3, and the organic solvent evaporates and gasifies to change from a liquid phase to a solid phase, and on the surface 3 a of the plate-like substrate 3. A thin film is formed.

噴霧制御手段5は、噴霧手段10を開閉し、噴霧手段10による原料溶液とキャリアガスとの混合物の噴射のオンオフを制御するソレノイドバルブ11と、ソレノイドバルブ11の動作を制御することによって、原料溶液とキャリアガスとの混合物の噴射を制御するバルブ制御装置12とを含んで構成される。噴霧制御手段5では、後述する基板搬送手段27によって板状基板3が装置1内に搬送され、所定の位置に載置されると、バルブ制御装置12がソレノイドバルブ11に指令を出し、ソレノイドバルブ11が噴霧手段10を開放し、原料溶液とキャリアガスとの混合物が板状基板3の表面3aに向けて噴射される。そして、板状基板3の表面3aに、所望の膜厚の薄膜が形成された後、バルブ制御装置12がソレノイドバルブ11に指令を出し、ソレノイドバルブ11が噴霧手段10を閉塞し、原料溶液とキャリアガスとの混合物の噴射が停止する。   The spray control means 5 opens and closes the spray means 10 and controls the solenoid valve 11 for controlling on / off of the injection of the mixture of the raw material solution and the carrier gas by the spray means 10 and the operation of the solenoid valve 11 to thereby control the raw material solution. And a valve control device 12 for controlling injection of a mixture of the carrier gas and the carrier gas. In the spray control means 5, when the plate-like substrate 3 is transported into the apparatus 1 by the substrate transport means 27 described later and placed at a predetermined position, the valve control device 12 issues a command to the solenoid valve 11, and the solenoid valve 11 opens the spraying means 10, and a mixture of the raw material solution and the carrier gas is sprayed toward the surface 3 a of the plate-like substrate 3. Then, after a thin film having a desired film thickness is formed on the surface 3a of the plate-like substrate 3, the valve control device 12 issues a command to the solenoid valve 11, and the solenoid valve 11 closes the spraying means 10, and the raw material solution and Injection of the mixture with the carrier gas stops.

基板加熱手段6は、板状基板3を加熱する加熱手段13と、加熱手段13によって発生する熱を板状基板3に伝導する熱伝導手段14と、板状基板3の表面3aの温度分布を検出する温度検出手段15と、温度検出手段15の検出結果に基づいて、板状基板3における単位面積あたりの原料溶液の噴霧量に応じて予め定められた温度分布を板状基板3が持つように加熱手段13の動作を制御する温度制御手段16と、少なくとも板状基板3および加熱手段13を保持する保持手段17とを含んで構成される。   The substrate heating means 6 includes a heating means 13 for heating the plate-like substrate 3, a heat conduction means 14 for conducting heat generated by the heating means 13 to the plate-like substrate 3, and a temperature distribution on the surface 3 a of the plate-like substrate 3. Based on the temperature detection means 15 to be detected and the detection result of the temperature detection means 15, the plate-like substrate 3 has a predetermined temperature distribution according to the spray amount of the raw material solution per unit area on the plate-like substrate 3. The temperature control means 16 for controlling the operation of the heating means 13 and the holding means 17 for holding at least the plate-like substrate 3 and the heating means 13 are configured.

図3(a)および図3(b)は、加熱手段13、熱伝導手段14および保持手段17の構成を概略的に示す透視平面図および透視側面図である。   FIG. 3A and FIG. 3B are a perspective plan view and a perspective side view schematically showing the configuration of the heating means 13, the heat conduction means 14, and the holding means 17, respectively.

加熱手段13は、保持手段17の表面17aに形成された凹所に配置される。加熱手段13は、略円環形状に形成され、同心円状に設けられた複数の加熱部材13a,13b,13c,13dを含んで構成され、凹所底面に敷設される。加熱部材13a,13b,13c,13dは、それぞれ独立して温度制御手段16に接続されており、板状基板3の表面3aの温度分布を検出する温度検出手段15の検出結果に基づいて、温度制御手段により別個に温度管理される。これによって、板状基板3の表面3aに、同心円状の温度分布を持たせることができる。加熱部材13a,13b,13c,13dには、たとえば、ニクロム線などの抵抗体からなるヒータが用いられる。   The heating means 13 is disposed in a recess formed in the surface 17 a of the holding means 17. The heating means 13 is formed in a substantially annular shape and includes a plurality of heating members 13a, 13b, 13c, 13d provided concentrically, and is laid on the bottom surface of the recess. The heating members 13a, 13b, 13c, and 13d are independently connected to the temperature control means 16, and based on the detection result of the temperature detection means 15 that detects the temperature distribution of the surface 3a of the plate-like substrate 3, the temperature is controlled. The temperature is separately managed by the control means. As a result, the surface 3a of the plate-like substrate 3 can have a concentric temperature distribution. For the heating members 13a, 13b, 13c, and 13d, for example, a heater made of a resistor such as a nichrome wire is used.

熱伝導手段14は、保持手段17の表面17aに形成された凹所において、加熱手段13の上層に設けられ、板状基板3に接する面14aには、板状基板を吸着保持するための複数の吸着孔18,19,20,21,22が形成され、これらは熱伝導手段14の内部で吸引管24に接続され、吸引管24は、熱伝導手段14と保持手段17とが接する部分において、保持手段17の側に設けられたパイプ23に接続され、さらにパイプ23は図示しない真空吸引装置に接続される。板状基板3は、吸引孔18,19,20,21,22によって熱伝導手段14に吸着保持されるので、搬送中および薄膜の形成中に板状基板3が熱伝導手段14の表面14aから脱落するのが防止され、熱伝導手段14から板状基板3への熱の授受を確実に行うことができる。熱伝導手段14としては、吸着孔18,19,20,21,22および吸引管24の形成が容易で、加熱手段13から発生する熱を図示しない板状基板に効率良く伝導することができ、かつ板状基板への不純物の拡散を高い割合で排除できる材料からなるものが好ましく、たとえば、カーボン製のサセプタなどが挙げられる。   The heat conducting means 14 is provided in the upper layer of the heating means 13 in a recess formed on the surface 17a of the holding means 17, and a plurality of surfaces 14a for contacting and holding the plate-like substrate 3 are sucked and held on the surface 14a. Suction holes 18, 19, 20, 21, and 22 are formed, and these are connected to the suction pipe 24 inside the heat conduction means 14, and the suction pipe 24 is in a portion where the heat conduction means 14 and the holding means 17 are in contact with each other. Are connected to a pipe 23 provided on the holding means 17 side, and the pipe 23 is further connected to a vacuum suction device (not shown). Since the plate-like substrate 3 is sucked and held by the heat conducting means 14 through the suction holes 18, 19, 20, 21, and 22, the plate-like substrate 3 is removed from the surface 14a of the heat conducting means 14 during conveyance and formation of the thin film. It is prevented from falling off, and heat can be reliably transferred from the heat conducting means 14 to the plate-like substrate 3. As the heat conduction means 14, the suction holes 18, 19, 20, 21, 22 and the suction pipe 24 can be easily formed, and the heat generated from the heating means 13 can be efficiently conducted to a plate-like substrate (not shown), In addition, those made of a material capable of eliminating the diffusion of impurities into the plate-like substrate at a high rate are preferable, and examples thereof include a carbon susceptor.

温度検出手段15は、熱伝導手段14および保持手段17の表層に配置され、板状基板3の表面3aの温度分布を検知するセンサ25と、センサ25からの信号を検出結果として温度制御手段16に伝達する検出器26とを含んで構成される。センサ25によって検知された板状基板3の表面3aの温度分布情報は、検出器26を介して温度制御手段16に伝達される。   The temperature detecting means 15 is arranged on the surface layer of the heat conducting means 14 and the holding means 17, and detects the temperature distribution on the surface 3 a of the plate substrate 3, and the temperature control means 16 using the signal from the sensor 25 as a detection result. And a detector 26 that transmits the signal. The temperature distribution information on the surface 3 a of the plate-like substrate 3 detected by the sensor 25 is transmitted to the temperature control means 16 via the detector 26.

温度制御手段16は、温度検出手段15と、加熱部材13a,13b,13c,13dとに電気的に接続される。温度制御手段16は、温度検出手段15から板状基板3の温度分布情報を受け、その情報に基づいて、加熱部材13a,13b,13c,13dを別個に制御し、板状基板3の温度分布を、板状基板3における単位面積あたりの原料溶液の噴霧量に応じて予め定められた温度分布に調整することができる。加熱部材13a,13b,13c,13dがヒータであれば、温度制御手段16が、温度検出手段15の測定結果に基づいて、各ヒータに流れる電流値を調整し、ヒータ毎に加熱温度が制御される。その結果、板状基板表面3aの温度分布のばらつきが所定の範囲内に制御され、形成される薄膜の膜厚が略均一になるように調整される。   The temperature control means 16 is electrically connected to the temperature detection means 15 and the heating members 13a, 13b, 13c, and 13d. The temperature control means 16 receives the temperature distribution information of the plate-like substrate 3 from the temperature detection means 15, and controls the heating members 13a, 13b, 13c, 13d separately based on the information, and the temperature distribution of the plate-like substrate 3 Can be adjusted to a predetermined temperature distribution according to the spray amount of the raw material solution per unit area on the plate-like substrate 3. If the heating members 13a, 13b, 13c, and 13d are heaters, the temperature control means 16 adjusts the current value flowing through each heater based on the measurement result of the temperature detection means 15, and the heating temperature is controlled for each heater. The As a result, the variation in temperature distribution on the plate-like substrate surface 3a is controlled within a predetermined range, and the thickness of the formed thin film is adjusted to be substantially uniform.

保持手段17は、その表面17aに形成された凹所内に、加熱手段13および熱伝導手段14を保持するものであり、熱伝導手段14に接する凹所の一側面にはパイプ23が設けられる。パイプ23は、一端が熱伝導手段14内に形成された吸引管24に接続され、他端が図示しない真空吸引装置に接続される。   The holding means 17 holds the heating means 13 and the heat conduction means 14 in a recess formed in the surface 17a, and a pipe 23 is provided on one side surface of the recess in contact with the heat conduction means 14. One end of the pipe 23 is connected to a suction pipe 24 formed in the heat conducting means 14, and the other end is connected to a vacuum suction device (not shown).

このような構成を有する基板加熱手段6によれば、熱伝導手段14の表面14aに載置された板状基板3は、熱伝導手段14の表面に形成された吸着孔18,19,20,21,22によって吸着保持され、加熱部材13、熱伝導手段14、温度検出手段15および温度制御手段16によって、その表面の温度分布が、板状基板3における単位面積あたりの原料溶液の噴霧量に応じて予め定められた温度分布に調整される。   According to the substrate heating means 6 having such a configuration, the plate-like substrate 3 placed on the surface 14 a of the heat conducting means 14 is attached to the suction holes 18, 19, 20, 21 and 22, and the temperature distribution of the surface thereof is changed to the spray amount of the raw material solution per unit area on the plate-like substrate 3 by the heating member 13, the heat conduction means 14, the temperature detection means 15 and the temperature control means 16. Accordingly, the temperature distribution is adjusted to a predetermined temperature distribution.

排気手段7は、板状基板3に向けて噴射されるキャリアガスおよび原料溶液の液滴2が板状基板3の表面3aで加熱され、その中に含まれる有機溶剤が蒸発して生成するガスを外部に排気するために設けられる。排気手段7には、一般的な排気装置を用いることができる。排気手段7は常に動作させておいてもよいけれども、排気により発生する気流が、原料溶液の液滴2の噴霧量に影響を及ぼすことがあるので、噴霧動作中には停止するのが好ましい。   The exhaust means 7 is a gas generated by the carrier gas and raw material solution droplets 2 sprayed toward the plate-like substrate 3 being heated on the surface 3a of the plate-like substrate 3, and the organic solvent contained therein evaporating. Is provided to exhaust the air to the outside. A general exhaust device can be used as the exhaust means 7. Although the exhaust means 7 may always be operated, the air flow generated by the exhaust may affect the spray amount of the raw material solution droplets 2 and is preferably stopped during the spray operation.

また、図2に示すように、薄膜形成装置1に付随して、板状基板3を薄膜形成装置1内に搬送するための基板搬送手段27が設けられる。板状基板3は、基板加熱手段6に載置された状態で、基板搬送手段27の上に載置される。基板搬送手段27には、たとえば、ベルトコンベアが用いられる。板状基板3は、基板搬送手段27によって矢符28の方向に移動して薄膜形成装置1内に搬送され、薄膜が形成された後、再び基板搬送手段27によって外部へ排出される。   Further, as shown in FIG. 2, substrate transport means 27 for transporting the plate-like substrate 3 into the thin film forming apparatus 1 is provided along with the thin film forming apparatus 1. The plate-like substrate 3 is placed on the substrate carrying means 27 while being placed on the substrate heating means 6. For the substrate transfer means 27, for example, a belt conveyor is used. The plate-like substrate 3 is moved in the direction of the arrow 28 by the substrate transfer means 27 and transferred into the thin film forming apparatus 1, and after the thin film is formed, it is discharged again by the substrate transfer means 27.

図4は、噴射手段10としてスプレーノズルを用いた場合の、板状基板3の表面3aの各部における単位面積あたりの原料溶液液滴2の噴霧量を示すグラフである。図2から明らかなように、噴射手段10の略直下に位置する板状基板3の中央部における噴霧量はb1であり、中央部から端部に近づくにつれて噴霧量は徐々に少なくなり、板状基板3の端部ではb2になる。原料溶液の液滴2の噴霧量は、原料溶液に含まれる薄膜原料の種類および濃度、有機溶剤の種類、キャリアガスの流量、噴霧手段10の構造、噴霧手段10から板状基板3の表面3aまでの距離などの各種条件に応じて変化するけれども、板状基板3の中央部における噴霧量は、常に、端部の噴霧量よりも多くなる。したがって、噴霧量に影響を及ぼす各条件の値を決定した後、噴霧を行い、板状基板3の表面3aにおける各部分の噴霧量を測定し、噴霧量を予め決定しておくことが必要になる。   FIG. 4 is a graph showing the spray amount of the raw material solution droplet 2 per unit area in each part of the surface 3a of the plate-like substrate 3 when a spray nozzle is used as the spraying means 10. As is apparent from FIG. 2, the spray amount at the central portion of the plate-like substrate 3 located almost immediately below the ejection means 10 is b1, and the spray amount gradually decreases from the central portion toward the end portion, and the plate shape. At the end of the substrate 3, it becomes b2. The spray amount of the raw material solution droplets 2 is the kind and concentration of the thin film raw material contained in the raw material solution, the kind of organic solvent, the flow rate of the carrier gas, the structure of the spraying means 10, and the surface 3 a of the plate-like substrate 3 from the spraying means 10. However, the amount of spray at the center of the plate-like substrate 3 is always larger than the amount of spray at the end. Therefore, after determining the value of each condition affecting the spray amount, it is necessary to perform spraying, measure the spray amount of each part on the surface 3a of the plate-like substrate 3, and determine the spray amount in advance. Become.

図5は、板状基板3の表面3aの温度と、板状基板3の表面3aにおける薄膜形成速度との関係を示すグラフである。図5から明らかなように、板状基板3の表面3aの温度がt1の時、薄膜形成速度はa1であり、また板状基板3の表面3aの温度がt2の時、薄膜形成速度はa2である。そして、t1>t2およびa1>a2である。すなわち、板状基板の表面温度と、形成される薄膜の膜厚は略正比例の関係にある。したがって、板状基板3の表面3aの温度分布を、板状基板3の単位面積あたりの予め定められた原料溶液の液滴の噴霧量に反比例するように調整することによって、膜厚が一層均一な薄膜を形成できる。なお、図5においては、各基板温度で形成される薄膜の膜厚を薄膜形成速度の指標とし、相対的な薄膜形成速度を示すものである。また、t1,t2,a1およびa2の値は、原料溶液における薄膜原料の種類および濃度、有機溶剤の種類、原料溶液の液滴の噴霧量、板状基板の温度などの各種条件によって変化するので、これらの条件を一定の値に設定した後、実際に噴霧を行って、事前に求めればよい。   FIG. 5 is a graph showing the relationship between the temperature of the surface 3 a of the plate substrate 3 and the thin film formation speed on the surface 3 a of the plate substrate 3. As apparent from FIG. 5, when the temperature of the surface 3a of the plate-like substrate 3 is t1, the thin film formation rate is a1, and when the temperature of the surface 3a of the plate-like substrate 3 is t2, the thin film formation rate is a2. It is. And t1> t2 and a1> a2. That is, the surface temperature of the plate-like substrate and the thickness of the thin film to be formed are in a substantially direct relationship. Therefore, by adjusting the temperature distribution of the surface 3a of the plate-like substrate 3 so as to be inversely proportional to the predetermined amount of droplets of the raw material solution per unit area of the plate-like substrate 3, the film thickness becomes more uniform. A thin film can be formed. In FIG. 5, the film thickness of the thin film formed at each substrate temperature is used as an index of the thin film formation speed, and the relative thin film formation speed is shown. In addition, the values of t1, t2, a1, and a2 vary depending on various conditions such as the type and concentration of the thin film raw material in the raw material solution, the type of organic solvent, the spray amount of droplets of the raw material solution, and the temperature of the plate substrate. After these conditions are set to a certain value, spraying is actually performed and obtained in advance.

図6は、基板加熱手段6によって板状基板3を加熱した時の、板状基板3の表面3aの温度分布を示すグラフである。図6のグラフにおいて、縦軸は基板表面温度を示し、横軸は、その中央に基板中央部を配し、基板中央部から両端部への距離を相対的に示す。基板中央部の略真上には、図示しないスプレーノズルが設けられ、原料溶液とキャリアガスとの混合物が噴射される。図6から、基板加熱手段6によって加熱された板状基板3は、その中央部の表面温度がTであり、中央部から両端部に近づくにつれて表面温度が緩やかに上昇し、両端部ではT+ΔTまで表面温度が上昇することが判る。   FIG. 6 is a graph showing the temperature distribution on the surface 3 a of the plate-like substrate 3 when the plate-like substrate 3 is heated by the substrate heating means 6. In the graph of FIG. 6, the vertical axis represents the substrate surface temperature, and the horizontal axis represents the distance from the substrate central portion to both ends relative to the central portion of the substrate. A spray nozzle (not shown) is provided substantially directly above the center of the substrate, and a mixture of the raw material solution and the carrier gas is injected. From FIG. 6, the surface temperature of the plate-like substrate 3 heated by the substrate heating means 6 is T, and the surface temperature gradually increases as it approaches the both ends from the center, and reaches T + ΔT at both ends. It can be seen that the surface temperature increases.

図6に示されるΔTは、図4において示される板状基板3の中央部の噴霧量(b1)および端部の噴霧量(b2)、ならびに図5において示される板状基板3の表面3aの温度と形成される薄膜の膜厚(表面温度t1の時膜厚a1、表面温度t2の時膜厚a2)に基づき、次の数式によって決定することができる。
ΔT=〔(a1/r)−a1〕×〔(T2−T1)/(a2−a1)〕
〔式中、r=b1/b2である。〕
ΔT shown in FIG. 6 represents the spray amount (b1) and the spray amount (b2) at the center of the plate-like substrate 3 shown in FIG. 4, and the surface 3a of the plate-like substrate 3 shown in FIG. Based on the temperature and the thickness of the thin film to be formed (film thickness a1 at the surface temperature t1, film thickness a2 at the surface temperature t2), it can be determined by the following equation.
ΔT = [(a1 / r) −a1] × [(T2−T1) / (a2−a1)]
[Where r = b1 / b2. ]

したがって、上記数式に基づいてΔTを決定し、板状基板3の中央部の表面温度がT、板状基板3の端部の表面温度がT+ΔTになるように、基板加熱手段6によって加熱を行えば、均一な膜厚の薄膜を形成することができる。板状基板3の中央部と端部との間の加熱は、適宜補完すればよく、たとえば直線補完を行えばよい。   Therefore, ΔT is determined based on the above formula, and heating is performed by the substrate heating means 6 so that the surface temperature of the central portion of the plate-like substrate 3 is T and the surface temperature of the end portion of the plate-like substrate 3 is T + ΔT. For example, a thin film having a uniform thickness can be formed. The heating between the center portion and the end portion of the plate-like substrate 3 may be complemented as appropriate, for example, linear interpolation may be performed.

なお、上記においては、板状基板3の中央部および端部における最適表面温度を決定しているけれども、より均一な膜厚の薄膜を得るために、中央部と端部との間の中間部分でも同様の手法で最適表面温度を算出し、加熱を制御してもよい。   In the above description, although the optimum surface temperature is determined at the central portion and the end portion of the plate-like substrate 3, an intermediate portion between the central portion and the end portion is obtained in order to obtain a thin film having a more uniform film thickness. However, the optimum surface temperature may be calculated by a similar method to control heating.

以下に、図1および図2に基づいて、薄膜形成装置1による板状基板3の表面3aへの薄膜形成の動作を説明する。まず、薄膜形成装置1において、原料溶液噴霧手段4による原料溶液の液滴2の噴霧量を決定し、板状基板3の表面3aにおける表面温度と形成される薄膜の膜厚との関係を求め、板状基板3の表面3aに、膜厚の均一な薄膜を形成するのに最適な表面温度分布を設定する。次に、基板搬送手段25によって、基板加熱手段6に載置された板状基板3を薄膜形成装置1内に搬送し、板状基板3の中央部が原料溶液噴霧手段4の直下に来るように板状基板3の位置を調整し、真空吸引により板状基板3を基板加熱手段6上に固定し、予め定められた表面温度分布になるように加熱する。この加熱された板状基板3に、原料溶液噴霧手段4から原料溶液の液滴を噴霧し、板状基板3の表面3aに薄膜を形成する。薄膜が形成された板状基板3は、基板搬送手段25によって外部へ排出される。   Below, based on FIG. 1 and FIG. 2, the operation | movement of the thin film formation to the surface 3a of the plate-shaped board | substrate 3 by the thin film forming apparatus 1 is demonstrated. First, in the thin film forming apparatus 1, the amount of the raw material solution droplet 2 sprayed by the raw material solution spraying means 4 is determined, and the relationship between the surface temperature of the surface 3a of the plate-like substrate 3 and the film thickness of the thin film to be formed is obtained. A surface temperature distribution optimum for forming a thin film having a uniform film thickness is set on the surface 3 a of the plate-like substrate 3. Next, the plate-like substrate 3 placed on the substrate heating means 6 is carried into the thin film forming apparatus 1 by the substrate carrying means 25 so that the central portion of the plate-like substrate 3 comes directly under the raw material solution spraying means 4. The position of the plate-like substrate 3 is adjusted, the plate-like substrate 3 is fixed on the substrate heating means 6 by vacuum suction, and heated so as to have a predetermined surface temperature distribution. A droplet of the raw material solution is sprayed from the raw material solution spraying means 4 onto the heated plate-like substrate 3 to form a thin film on the surface 3 a of the plate-like substrate 3. The plate-like substrate 3 on which the thin film is formed is discharged to the outside by the substrate transfer means 25.

本実施の形態では、図5に示すように、基板加熱手段6において、板状基板3を加熱するための熱を発生する加熱手段13は、略円環形状に形成され、同心円状に設けられた複数の加熱部材13a,13b,13c,13dを含んで構成されるけれども、それに限定されることなく、1個の略円環形状の加熱部材から構成されてもよい。図7(a)および(b)は、本発明の薄膜形成装置における別形態の基板加熱手段29の構成を概略的に示す透視平面図および透視側面図である。基板加熱手段29は、加熱手段30以外は基板加熱手段6と同一の構成を有するので、同一の参照符号を付し、説明を省略する。また、熱伝導手段14に形成される吸着孔および吸着管、温度検出手段15、温度制御手段16ならびに保持手段17に設けられるパイプについては図示を省略する。基板加熱手段29は、加熱手段30が、1個の略円環形状の加熱部材から構成されることを特徴とする。加熱手段30は、熱伝導手段14の上に載置される板状基板3の外周部の下方に配置され、板状基板3の端部を主に加熱する。これによって、板状基板3の表面3aにおいては、中央部の温度が低く、端部の温度が高い温度分布が実現される。このような基板加熱手段29は、たとえば、反射防止膜ほどの精密な膜厚の均一性が要求されない薄膜の形成に好適に使用できる。基板加熱手段29は、基板加熱手段6よりもさらに構造が簡略化されるので、工業的に有利である。   In the present embodiment, as shown in FIG. 5, in the substrate heating means 6, the heating means 13 that generates heat for heating the plate-like substrate 3 is formed in a substantially annular shape and provided concentrically. Although it is configured to include a plurality of heating members 13a, 13b, 13c, and 13d, it is not limited thereto, and may be configured from one substantially annular heating member. 7A and 7B are a perspective plan view and a perspective side view schematically showing the configuration of another form of substrate heating means 29 in the thin film forming apparatus of the present invention. Since the substrate heating means 29 has the same configuration as the substrate heating means 6 except for the heating means 30, the same reference numerals are assigned and description thereof is omitted. Further, illustration of the suction holes and suction pipes formed in the heat conduction means 14, the temperature detection means 15, the temperature control means 16 and the pipes provided in the holding means 17 is omitted. The substrate heating means 29 is characterized in that the heating means 30 is composed of one substantially annular heating member. The heating means 30 is disposed below the outer peripheral portion of the plate-like substrate 3 placed on the heat conducting means 14 and mainly heats the end portion of the plate-like substrate 3. As a result, on the surface 3a of the plate-like substrate 3, a temperature distribution is realized in which the temperature at the center is low and the temperature at the end is high. Such a substrate heating means 29 can be suitably used for forming a thin film that does not require a precise film thickness uniformity as that of an antireflection film, for example. The substrate heating means 29 is industrially advantageous because the structure is further simplified than the substrate heating means 6.

本実施の形態では、薄膜形成装置1に付随して設けられる基板搬送手段25にはベルトコンベアが用いられるけれども、他の公知の移動方式を用いてもよく、たとえば、ウォーキングビーム方式などが挙げられる。   In the present embodiment, a belt conveyor is used for the substrate transfer means 25 provided in association with the thin film forming apparatus 1, but other known moving methods may be used, such as a walking beam method. .

本発明の薄膜形成装置を用いれば、たとえば、酸化チタン膜、酸化スズ膜、硫化スズ、酸化インジウム膜、ITO膜などの薄膜を容易に形成することができる。   By using the thin film forming apparatus of the present invention, it is possible to easily form thin films such as a titanium oxide film, a tin oxide film, a tin sulfide, an indium oxide film, and an ITO film.

本発明の実施の第1形態である薄膜形成装置の構成を模式的に示す透視側面図である。It is a see-through | perspective side view which shows typically the structure of the thin film forming apparatus which is the 1st Embodiment of this invention. 図1に示す薄膜形成装置およびそれに付属して設けられる基板搬送手段の外観を概略的に示す斜視図である。It is a perspective view which shows roughly the external appearance of the thin film forming apparatus shown in FIG. 1, and the board | substrate conveyance means provided with it. 図1に示す薄膜形成装置における加熱手段、熱伝導手段および保持手段の構成を概略的に示す透視平面図および透視側面図である。FIG. 2 is a perspective plan view and a perspective side view schematically showing configurations of a heating means, a heat conduction means, and a holding means in the thin film forming apparatus shown in FIG. 1. 板状基板表面の各部における単位面積あたりの原料溶液の噴霧量を示すグラフである。It is a graph which shows the spraying quantity of the raw material solution per unit area in each part of the plate-shaped substrate surface. 板状基板における表面温度と薄膜形成速度との関係を示すグラフである。It is a graph which shows the relationship between the surface temperature in a plate-shaped board | substrate, and a thin film formation speed. 図1に示す薄膜形成装置において板状基板を加熱した時の、板状基板表面の温度分布を示すグラフである。It is a graph which shows the temperature distribution of the plate-shaped substrate surface when a plate-shaped substrate is heated in the thin film forming apparatus shown in FIG. 本発明の薄膜形成装置における別形態の基板加熱手段の構成を概略的に示す透視平面図および透視側面図である。It is the perspective top view and perspective side view which show schematically the structure of the board | substrate heating means of another form in the thin film forming apparatus of this invention. 従来の薄膜形成装置の構成を模式的に示す透視側面図である。It is a see-through | perspective side view which shows the structure of the conventional thin film forming apparatus typically.

符号の説明Explanation of symbols

1 薄膜形成装置
2 原料溶液の液適
3 板状基板
3a 板状基板の表面
4 原料溶液噴霧手段
5 噴霧制御手段
6,29 基板加熱手段
7 排気手段
8 原料溶液貯留手段
9 キャリアガス貯留手段
10 噴霧手段
11 ソレノイドバルブ11
12 バルブ制御装置
13,30 加熱手段
13a,13b,13c,13d 加熱部材
14 熱伝導手段
14a 熱伝導手段表面
15 温度検出手段
16 温度制御手段
17 保持手段
17a 保持手段表面
18,19,20,21,22 吸着孔
23 パイプ
24 吸引管
25 センサ
26 検出器
27 基板搬送手段
28 矢符
DESCRIPTION OF SYMBOLS 1 Thin film forming apparatus 2 Liquid suitable for raw material solution 3 Plate substrate 3a Surface of plate substrate 4 Raw material solution spraying means 5 Spray control means 6, 29 Substrate heating means 7 Exhaust means 8 Raw material solution storage means 9 Carrier gas storage means 10 Spray Means 11 Solenoid valve 11
12 valve control device 13, 30 heating means 13a, 13b, 13c, 13d heating member 14 heat conduction means 14a heat conduction means surface 15 temperature detection means 16 temperature control means 17 holding means 17a holding means surface 18, 19, 20, 21, 22 Suction hole 23 Pipe 24 Suction tube 25 Sensor 26 Detector 27 Substrate transport means 28 Arrow

Claims (5)

薄膜原料および有機溶剤を含む原料溶液とキャリアガスとの混合物を噴射し、板状基板の表面に原料溶液の液滴を噴霧する原料溶液噴霧手段と、原料溶液の液滴の噴霧量を制御する噴霧制御手段と、板状基板を加熱する基板加熱手段と、主にキャリアガスおよび有機溶剤の蒸発により生成するガスを外部に排気する排気手段とを含む薄膜形成装置において、
基板加熱手段は、
板状基板を加熱する加熱手段と、
板状基板の温度分布を検出する温度検出手段と、
温度検出手段の検出結果に基づいて、板状基板における単位面積あたりの原料溶液の噴霧量に応じて予め定められた温度分布を板状基板が持つように加熱手段の動作を制御する加熱制御手段と、
少なくとも板状基板および加熱手段を保持する保持手段とを含んで構成されることを特徴とする薄膜形成装置。
A raw material solution spraying means for spraying a mixture of a raw material solution containing a thin film raw material and an organic solvent and a carrier gas to spray droplets of the raw material solution onto the surface of the plate-like substrate, and a spray amount of the droplets of the raw material solution are controlled. In a thin film forming apparatus including spray control means, substrate heating means for heating a plate-like substrate, and exhaust means for exhausting gas generated mainly by evaporation of carrier gas and organic solvent to the outside,
The substrate heating means
Heating means for heating the plate-like substrate;
Temperature detecting means for detecting the temperature distribution of the plate substrate;
A heating control means for controlling the operation of the heating means based on the detection result of the temperature detection means so that the plate-like substrate has a predetermined temperature distribution according to the spray amount of the raw material solution per unit area on the plate-like substrate. When,
A thin film forming apparatus comprising at least a plate-like substrate and holding means for holding heating means.
基板加熱手段は、
板状基板を加熱する加熱手段と、
加熱手段によって発生する熱を板状基板に伝導する熱伝導手段と、
板状基板の温度分布を検出する温度検出手段と、
温度検出手段の検出結果に基づいて、板状基板における単位面積あたりの原料溶液の噴霧量に応じて予め定められた温度分布を持つように加熱手段の動作を制御する加熱制御手段と、
少なくとも板状基板、加熱手段および熱伝導手段を保持する保持手段とを含んで構成されることを特徴とする請求項1記載の薄膜形成装置。
The substrate heating means
Heating means for heating the plate-like substrate;
Heat conduction means for conducting heat generated by the heating means to the plate-like substrate;
Temperature detecting means for detecting the temperature distribution of the plate substrate;
Based on the detection result of the temperature detection means, a heating control means for controlling the operation of the heating means so as to have a predetermined temperature distribution according to the spray amount of the raw material solution per unit area in the plate-like substrate,
The thin film forming apparatus according to claim 1, comprising at least a plate-like substrate, a heating unit, and a holding unit that holds the heat conduction unit.
加熱手段は、
板状基板表面における原料溶液の単位面積あたりの噴霧量に略反比例する温度分布をもつように板状基板を加熱することを特徴とする請求項1または2記載の薄膜形成装置。
The heating means
The thin film forming apparatus according to claim 1 or 2, wherein the plate substrate is heated so as to have a temperature distribution that is substantially inversely proportional to the spray amount per unit area of the raw material solution on the surface of the plate substrate.
加熱手段は、
平面図上で略円環形状を有する熱源を含んで構成されることを特徴とする請求項1〜3のうちのいずれかに記載の薄膜形成装置。
The heating means
The thin film forming apparatus according to claim 1, comprising a heat source having a substantially annular shape on a plan view.
略円環形状の熱源は、
同心円上に複数配置されることを特徴とする請求項4の記載の薄膜形成装置。
The heat source with a generally annular shape is
The thin film forming apparatus according to claim 4, wherein a plurality of concentric circles are arranged.
JP2003401637A 2003-11-14 2003-12-01 Thin film forming apparatus Pending JP2005163079A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003401637A JP2005163079A (en) 2003-12-01 2003-12-01 Thin film forming apparatus
DE602004007089T DE602004007089T2 (en) 2003-11-14 2004-11-12 Apparatus for producing thin films
US10/988,218 US7540922B2 (en) 2003-11-14 2004-11-12 Thin film forming apparatus
EP04026917A EP1536036B1 (en) 2003-11-14 2004-11-12 Thin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003401637A JP2005163079A (en) 2003-12-01 2003-12-01 Thin film forming apparatus

Publications (1)

Publication Number Publication Date
JP2005163079A true JP2005163079A (en) 2005-06-23

Family

ID=34725503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003401637A Pending JP2005163079A (en) 2003-11-14 2003-12-01 Thin film forming apparatus

Country Status (1)

Country Link
JP (1) JP2005163079A (en)

Similar Documents

Publication Publication Date Title
US5945162A (en) Method and device for introducing precursors into chamber for chemical vapor deposition
KR101123706B1 (en) Apparatus for controlling deposition apparatus and method for controlling deposition apparatus
US6821341B2 (en) Precursor for use in preparing layers on substrates
JP3110990B2 (en) Method of depositing aluminum oxide and related equipment
KR101075131B1 (en) Evaporating apparatus, apparatus for controlling evaporating apparatus, method for controlling evaporating apparatus, method for using evaporating apparatus and method for manufacturing blowing port
US5835678A (en) Liquid vaporizer system and method
US7927659B2 (en) System and method for depositing a material on a substrate
US10066287B2 (en) Direct liquid deposition
KR100659762B1 (en) Vapor deposition source and evaporating apparatus and method for deposition using the same
US20170016859A1 (en) Device and method for determining the concentration of a vapor by means of an oscillating body sensor
FR2879218A1 (en) DEVICE FOR SPRAYING A MATERIAL AND APPLYING VAPORIZED MATERIAL TO A STRUCTURE
JP3893177B2 (en) Vaporizer, CVD apparatus, and thin film manufacturing method
JP3962349B2 (en) Vapor phase organic material vapor deposition method and vapor phase organic material vapor deposition apparatus using the same
JP6269990B2 (en) Laminate and method for producing the same
JP2011068916A (en) Film deposition method and film deposition apparatus
KR20060018746A (en) Apparatus for depositing organic material
JP2005163079A (en) Thin film forming apparatus
KR100358727B1 (en) Apparatus and method for depositing organic matter of vapor phase
KR20140055721A (en) Evaporation source and apparatus for deposition having the same
KR101037121B1 (en) Vapor deposition system and vapor deposition method
JP2002030419A (en) System and method for film deposition
JPH06206796A (en) Generator of raw material gas for cvd
KR101347259B1 (en) Evaporating apparatus of organic matter
KR0159632B1 (en) Method and apparatus of chemical vapor deposition for powder-type vapourization source
KR100669194B1 (en) Device for depositing organic electro-luminescent element