JP2005160154A - ハイブリッド車両の蓄電装置 - Google Patents
ハイブリッド車両の蓄電装置 Download PDFInfo
- Publication number
- JP2005160154A JP2005160154A JP2003391991A JP2003391991A JP2005160154A JP 2005160154 A JP2005160154 A JP 2005160154A JP 2003391991 A JP2003391991 A JP 2003391991A JP 2003391991 A JP2003391991 A JP 2003391991A JP 2005160154 A JP2005160154 A JP 2005160154A
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- capacitor
- main circuit
- voltage
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
【課題】電気二重層コンデンサと二次電池の両方の特性を生かした蓄電装置を提供する。
【解決手段】 電気二重層コンデンサ16の正側の端子と二次電池13の正側の端子との間には双方向昇降圧コンバータ17が接続されている。この双方向昇降圧コンバータ17は、制御部11の動作指令に基づいて二次電池13の電圧を昇圧(または降圧)して主回路電圧Vdcとして電気二重層コンデンサ16と負荷12に出力し、また、電気二重層コンデンサ16の電圧を昇圧(または降圧)して二次電池13に出力する。
【選択図】 図1
【解決手段】 電気二重層コンデンサ16の正側の端子と二次電池13の正側の端子との間には双方向昇降圧コンバータ17が接続されている。この双方向昇降圧コンバータ17は、制御部11の動作指令に基づいて二次電池13の電圧を昇圧(または降圧)して主回路電圧Vdcとして電気二重層コンデンサ16と負荷12に出力し、また、電気二重層コンデンサ16の電圧を昇圧(または降圧)して二次電池13に出力する。
【選択図】 図1
Description
本発明は、ハイブリッド車両の蓄電装置に関する。
電気自動車、あるいはハイブリッド車の蓄電池として、ニッケル水素、リチウムイオン、鉛などの二次電池、あるいは大容量コンデンサである電気二重層コンデンサが用いられている。
二次電池は、蓄積できるエネルギー密度(重量当たりの蓄積エネルギー量)は高いが、短時間で大きな電気エネルギーを出力する出力密度(重量当たりの瞬時出力エネルギー量)が低いという特性を持っている。他方、電気二重層コンデンサは、出力密度は高いが、エネルギー密度は低いという特性を持っている。
二次電池は、蓄積できるエネルギー密度(重量当たりの蓄積エネルギー量)は高いが、短時間で大きな電気エネルギーを出力する出力密度(重量当たりの瞬時出力エネルギー量)が低いという特性を持っている。他方、電気二重層コンデンサは、出力密度は高いが、エネルギー密度は低いという特性を持っている。
電気二重層キャパシタセルを複数個直列に接続して使用する場合、各キャパシタセルを充電する際に、各キャパシタセルの放電電圧が均一にならないために、全てのキャパシタセルを同じように充電すると、セルの許容電圧を超えてしまうことがあるという問題点がある。
このような問題を解決するために、特許文献1に記載の発明では、複数のキャパシタセルをそれぞれ個別にDC−DCコンバータで充電することで、各キャパシタセルが過電圧になるのを防止することが記載されている。
また、特許文献2には、発電手段と、バッテリと、キャパシタと、キャパシタに蓄積された電力をバッテリに充電する充電手段とを有するハイブリッド車の電源回路について記載されている。
特開2001−177914号公報(図1)
特許第3180304号公報(図1)
また、特許文献2には、発電手段と、バッテリと、キャパシタと、キャパシタに蓄積された電力をバッテリに充電する充電手段とを有するハイブリッド車の電源回路について記載されている。
特許文献2に記載された発明は、キャパシタに蓄積された電力をバッテリに充電させているだけであり、キャパシタと蓄電池との間で相互に充放電を行うものではない。
また、キャパシタと蓄電池を並列に接続した場合、キャパシタの電圧は、主回路の電圧、あるいは蓄電池の電圧と等しくなるので、キャパシタの保持電圧が高くなる。キャパシタとして使用される電気二重層コンデンサ等の寿命は保持電圧に依存するので、保持電圧が高いほど寿命が短くなるという問題点があった。
また、キャパシタと蓄電池を並列に接続した場合、キャパシタの電圧は、主回路の電圧、あるいは蓄電池の電圧と等しくなるので、キャパシタの保持電圧が高くなる。キャパシタとして使用される電気二重層コンデンサ等の寿命は保持電圧に依存するので、保持電圧が高いほど寿命が短くなるという問題点があった。
本発明の課題は、キャパシタと二次電池の両方の特性を生かした蓄電装置を提供することである。また、他の課題は、キャパシタと二次電池とを用いた蓄電装置において、キャパシタの寿命を延ばすことである。
本発明のハイブリッド車両の蓄電装置は、発電装置と走行用のモータとを有するハイブリッド車両の蓄電装置であって、主回路に接続されるキャパシタと、二次電池と、前記キャパシタと前記二次電池の蓄積される電力を相互に移動させることのできる双方向昇降圧手段とを備える。
この発明によれば、必要に応じてキャパシタに蓄積された電力を二次電池に供給し、また二次電池に蓄積された電力をキャパシタに供給することができるので、瞬時的に大きな電力を供給できるキャパシタと、供給できる電力の総量が大きい二次電池の両方の特徴を生かした蓄電装置を実現できる。また、キャパシタを使用することで、瞬時的に大きな電力を供給するために二次電池の容量を必要以上に大きくする必要がなくなるので、二次電池を小型にして蓄電装置を小型化できる。
なお、キャパシタは、例えば、図1の電気二重層コンデンサ16に対応し、二次電池は、図1の蓄電池、リチウム電池等の二次電池13に対応し、双方向昇降圧手段は、図1の双方向昇降コンバータ17に対応する。
上記の発明において、車両が休止状態か否かを検出する状態検出手段と、前記状態検出手段により休止状態であることが検出されたとき、前記双方向昇降圧手段を制御して前記キャパシタの保持電圧が所定値以下となるように該キャパシタに蓄積された電力を前記二次電池に移動させる制御手段とを備える。
上記の発明において、車両が休止状態か否かを検出する状態検出手段と、前記状態検出手段により休止状態であることが検出されたとき、前記双方向昇降圧手段を制御して前記キャパシタの保持電圧が所定値以下となるように該キャパシタに蓄積された電力を前記二次電池に移動させる制御手段とを備える。
このように構成することで、車両が休止状態のとき、キャパシタの保持電圧を低く設定できるのでキャパシタの寿命を延ばすことができる。
なお、状態検出手段及び制御手段は、例えば、図1の制御部11に対応する。
上記の発明において、前記制御手段は、前記状態検出手段により、車両が休止状態から始動状態に変化したことが検出されたとき、前記双方向昇降圧手段を制御して前記二次電池に蓄積されている電力の一部を前記キャパシタに移動させてキャパシタの電圧を上昇させる。
なお、状態検出手段及び制御手段は、例えば、図1の制御部11に対応する。
上記の発明において、前記制御手段は、前記状態検出手段により、車両が休止状態から始動状態に変化したことが検出されたとき、前記双方向昇降圧手段を制御して前記二次電池に蓄積されている電力の一部を前記キャパシタに移動させてキャパシタの電圧を上昇させる。
このように構成することで、休止状態から始動状態に変化したとき、二次電池からキャパシタに電力を移動させ、キャパシタから主回路に必要な電力を供給することができる。また、休止状態のときは、キャパシタの保持電圧を低く設定できるので、キャパシタの寿命をさらに延ばすことができる。
上記の発明において、主回路の電圧を検出する主回路電圧検出手段と、前記主回路電圧検出手段により検出された主回路電圧が所定値以上のとき、前記双方向昇降圧手段を制御して前記キャパシタの電圧が所定値を下回るように前記キャパシタに蓄積された電力を前記二次電池に移動させる制御手段とを備える。
このように構成することで、主回路の電圧が上昇した場合でも、キャパシタの電圧を所定値を下回るように制御することができるので、キャパシタの電圧が高くなり寿命が短くなるのを防止できる。
なお、上記の主回路電圧検出手段及び制御手段は、例えば、図3の電池管理部21に対応する。
なお、上記の主回路電圧検出手段及び制御手段は、例えば、図3の電池管理部21に対応する。
上記の発明において、前記状態検出手段は、運転者により操作されるスイッチであり、前記制御手段は、前記スイッチがオフ状態となったとき、車両が運転状態から休止状態に変化したものと判断し、前記双方向昇降圧手段を制御して、前記キャパシタの保持電圧が所定値以下になるように該キャパシタに蓄積されている電力を前記二次電池に移動させる。
このように構成することで、運手者がスイッチを操作して車両を休止状態にしたとき、キャパシタから二次電池に電力を移動させ、二次電池の保持電圧を低くすることができる。これにより、キャパシタの寿命を長くすることができる。
本発明によれば、キャパシタと二次電池に蓄積された電力を双方向昇降圧手段により相互に移動させることで、キャパシタの出力エネルギー密度が高いという特徴と、二次電池13のエネルギー密度が大きいという特徴の両方を備えた蓄電装置を実現できる。また、キャパシタの電圧が一定値以上となったときに、キャパシタに蓄積されている電力を二次電池に移動させ、キャパシタの電圧が一定値を下回るようにすることで、キャパシタの寿命を延ばすことができる。さらに、車両が休止状態のとき、キャパシタに蓄積された電力を二次電池に移動させることで、休止時のキャパシタの保持電圧を低く抑え、キャパシタの寿命を延ばすことができる。また、双方向昇降圧手段により二次電池及びキャパシタに流れる充放電電流を制御できるので大電流での充放電を防止できる。
以下、本発明の実施の形態を図面を参照しながら説明する。図1は、実施の形態のハイブリッド車両の動力源と蓄電装置を示す図である。
図1において、制御部11には、負荷(走行モータなど)12で消費される電力を示す負荷電力情報と、二次電池13の充電状態(SOC:state of charge)を示す二次電池SOCとが入力している。制御部11は、それらの情報と運転者からの走行速度等の指示に基づいて、エンジン(ガソリンエンジン)14と発電機15に回転数指令と発電量指令を与える。エンジン14と発電機15を組み合わせたものを発電装置と呼ぶ。発電装置は、例えば、燃料電池などである。
図1において、制御部11には、負荷(走行モータなど)12で消費される電力を示す負荷電力情報と、二次電池13の充電状態(SOC:state of charge)を示す二次電池SOCとが入力している。制御部11は、それらの情報と運転者からの走行速度等の指示に基づいて、エンジン(ガソリンエンジン)14と発電機15に回転数指令と発電量指令を与える。エンジン14と発電機15を組み合わせたものを発電装置と呼ぶ。発電装置は、例えば、燃料電池などである。
発電機15は、エンジン14から与えられる回転力と、制御部11から与えられる発電量指令に基づいて発電し、あるいは電力を消費し、発生した電圧を主回路電圧Vdcとして電気二重層コンデンサ16と負荷12に供給する。
電気二重層コンデンサ16の正側の端子と二次電池13の正側の端子との間には双方向昇降圧コンバータ17が接続されている。この双方向昇降圧コンバータ17は、制御部11の動作指令に基づいて二次電池13の電圧を昇圧(または降圧)して主回路電圧Vdcとして電気二重層コンデンサ16と負荷12に出力し、また、電気二重層コンデンサ16の電圧を昇圧(または降圧)して二次電池13に出力する。
電気二重層コンデンサ16の正側の端子と二次電池13の正側の端子との間には双方向昇降圧コンバータ17が接続されている。この双方向昇降圧コンバータ17は、制御部11の動作指令に基づいて二次電池13の電圧を昇圧(または降圧)して主回路電圧Vdcとして電気二重層コンデンサ16と負荷12に出力し、また、電気二重層コンデンサ16の電圧を昇圧(または降圧)して二次電池13に出力する。
発電機15,電気二重層コンデンサ16,二次電池13及び負荷12の負側の端子は共通電位に接地されている。
次に、上記の回路の動作を、図2を参照して説明する。図2の横軸は時間を示しており、縦軸は、始動時から加速、定速走行及び減速時の主回路電圧Vdc、負荷電力及び車速を示している。
次に、上記の回路の動作を、図2を参照して説明する。図2の横軸は時間を示しており、縦軸は、始動時から加速、定速走行及び減速時の主回路電圧Vdc、負荷電力及び車速を示している。
ハイブリッド車両を始動させるためにキーSWがオンされ、アクセルが操作されると、エンジン14の回転数が上昇する。始動直後は、発電機15の回転数が低く、発電機15の出力電力が低いので、負荷12が必要とする電力の内の一部は電気二重層コンデンサ16から供給される(図2の期間T1)。
電気二重層コンデンサ16と発電機15から供給される電力が負荷12が必要とする電力より少ないと、主回路電圧Vdcが次第に低下し下限値V_min以下となる。主回路電圧Vdcが下限値V_min以下となると、制御部11から双方向昇降圧コンバータ17に二次電池13の電圧を昇圧(または降圧)して主回路電圧Vdcとして供給する指示が与えられる。その結果、二次電池13に蓄積されている電力が負荷12に供給される。そして、発電機15の発電電力と、電気二重層コンデンサ16の放電電力と、二次電池13の放電電力とを合計した電力が負荷12に供給される(図2の期間T2)。
運転者により指示された走行速度に達し定速走行になり、二次電池13の放電電力と発電機15の放電電力の合計値が負荷電力より大きくなると、主回路電圧Vdcが次第に上昇する。そして、主回路電圧Vdcが下限値V_minに達するまで、二次電池13から負荷12に電力が供給される(図2の期間T3)。
そして、主回路電圧Vdcが下限値V_minに達すると、制御部11から双方向昇降圧コンバータ17に電圧変換動作の中止を指示する動作指令が与えられ、二次電池13から負荷12への電力の供給が終了する。定速走行時は、発電機15の発電電力と負荷12が必要とする電力が釣り合うようにエンジン14の運転が制御される(図2の期間T4)。
次に、運転者により減速が指示され、ハイブリッド車両の速度が減少すると、そのときの発電機15の発電電力と負荷12の必要電力との差の電力で電気二重層コンデンサ16が充電される(図2の期間T5)。
次に、図3は、制御部11の構成を示す図である。制御部11は、電池管理部21と発電制御部22と加算器23とからなる。
次に、図3は、制御部11の構成を示す図である。制御部11は、電池管理部21と発電制御部22と加算器23とからなる。
電池管理部21は、二次電池13の充電状態を示す二次電池SOCと二次電池電圧Vbatを検出して、コンバータ動作指令I_battを双方向昇降圧コンバータ17に与える。また、電池管理部21は、二次電池SOC、二次電池電圧V_batt、主回路電圧Vdc等に基づいて二次電池13の充放電電力P_battを計算して加算器23に出力する。
加算器23は、負荷電力と充放電電力P_battとを加算した結果を要求発電電力P_reqとして発電制御部22に出力する。
発電制御部22は、主回路電圧Vdcと要求発電電力P_reqとに基づいて回転数指令と発電量指令をエンジン14及び発電機15に出力する。
発電制御部22は、主回路電圧Vdcと要求発電電力P_reqとに基づいて回転数指令と発電量指令をエンジン14及び発電機15に出力する。
次に、上記の発電制御部22と電池管理部21の動作を、図4〜図6のフローチャートを参照して説明する。
図4は、発電制御部22の動作を示すフローチャートである。ハイブリッド車両を始動させるためのキーSWがオンされたか否かを判別する(図4,S11)。
図4は、発電制御部22の動作を示すフローチャートである。ハイブリッド車両を始動させるためのキーSWがオンされたか否かを判別する(図4,S11)。
キーSWがオフ状態のときには(S11の判別結果がOFF)、ステップS12に進み、回転数指令R_cmdとして「0」を、発電量指令P_cmdとして「0」を出力し、エンジン14を停止状態に保つ。
キーSWがオン状態のときには(S11の判別結果がON)、ステップS13に進み、主回路電圧VdcがVover(Vover>V_max)以上か否か、つまり主回路電圧Vdcが過電圧状態か否かを判別する。
キーSWがオン状態のときには(S11の判別結果がON)、ステップS13に進み、主回路電圧VdcがVover(Vover>V_max)以上か否か、つまり主回路電圧Vdcが過電圧状態か否かを判別する。
主回路電圧Vdcが過電圧状態と判別されたときには(S13、YES)、ステップS14に進み、要求発電電力P_reqが「0」より大きいか否かを判別する。
要求発電電力P_reqが「0」より大きいときには(S14,YES)、ステップS15に進み、回転数指令R_cmdとしてアイドル回転数Idolを出力し、発電量指令P_cmdとして「0」を出力する。
要求発電電力P_reqが「0」より大きいときには(S14,YES)、ステップS15に進み、回転数指令R_cmdとしてアイドル回転数Idolを出力し、発電量指令P_cmdとして「0」を出力する。
すなわち、主回路電圧Vdcが過電圧状態で、かつ負荷12で電力が消費されているときには、発電機15による発電を停止させて負荷12による電力消費により主回路電圧Vdcを下げる。
ステップS14において、要求発電電力P_reqが「0」と判別されたときには(S14,NO)、ステップS16に進み、回転数指令R_cmdとしてアイドル回転数Idolを出力し、発電量指令P_cmdとして要求発電電力P_reqを出力する。
ステップS14において、要求発電電力P_reqが「0」と判別されたときには(S14,NO)、ステップS16に進み、回転数指令R_cmdとしてアイドル回転数Idolを出力し、発電量指令P_cmdとして要求発電電力P_reqを出力する。
すなわち、主回路電圧Vdcが過電圧状態で、かつ負荷12で電力が消費されていないときには、発電機15をモータとして動作させ、エンジンブレーキをかけて電力を消費させる。これにより、主回路電圧Vdcを下げる。
ステップS13において、主回路電圧Vdcが過電圧状態ではないと判別されたときには(S13,NO)、ステップS17に進み、主回路電圧Vdcが下限値V_minより高いか否かを判別する。
ステップS13において、主回路電圧Vdcが過電圧状態ではないと判別されたときには(S13,NO)、ステップS17に進み、主回路電圧Vdcが下限値V_minより高いか否かを判別する。
主回路電圧Vdcが下限値V_min以下のときには(S17,NO)、ステップS18に進み、回転数指令R_cmdとして最大回転P_maxをエンジン14に与え、発電量指令P_cmdとして最大発電量P_maxを発電機15に与える。
すなわち、主回路電圧Vdcが下限値V_min以下のときには、エンジン14を最大回転数で回転させ、発電機15から最大発電量が得られるようにする。
すなわち、主回路電圧Vdcが下限値V_min以下のときには、エンジン14を最大回転数で回転させ、発電機15から最大発電量が得られるようにする。
ステップS17において、主回路電圧Vdcが下限値V_minより高いと判別されたときには(S17,YES)、ステップS19に進み、負荷電力と充放電電力を合計した要求発電電力P_req発電力に基づいて必要なエンジン回転数を計算する。
そして、回転数指令R_cmdとして、目的とする発電量を得るための回転数R_regをエンジン14に与え、発電量指令P_cmdとして要求発電電力P_reqを発電機15に与える。
そして、回転数指令R_cmdとして、目的とする発電量を得るための回転数R_regをエンジン14に与え、発電量指令P_cmdとして要求発電電力P_reqを発電機15に与える。
すなわち、主回路電圧Vdcが上限値V_max以下で、かつ下限値V_minより高いときには、通常発電状態となり、エンジン14の回転数と発電機15の発電量を制御して、負荷12に必要な電力を供給する。
次に、図5は、電池管理部21の動作を示すフローチャートである。図5(A)は、キーSWがオンされた後に実行される電気二重層コンデンサ16の充電モードの処理のフローチャートであり、図5(B)は、電気二重層コンデンサ16の電力の回収モードの処理のフローチャートである。
次に、図5は、電池管理部21の動作を示すフローチャートである。図5(A)は、キーSWがオンされた後に実行される電気二重層コンデンサ16の充電モードの処理のフローチャートであり、図5(B)は、電気二重層コンデンサ16の電力の回収モードの処理のフローチャートである。
最初に、電気二重層コンデンサ16の充電モードの処理について図5(A)のフローチャートを参照して説明する。
電池管理部21は、主回路電圧Vdcが所定値U_V未満か否かを判別する(図5(A)、S31)。主回路電圧VdcがU_V未満のときには、次のステップS32において、双方向昇降圧コンバータ17にコンバータ動作指令I_battとしてI_batt=I_dschgを与え、二次電池13を放電させて電気二重層コンデンサ16を充電する。
電池管理部21は、主回路電圧Vdcが所定値U_V未満か否かを判別する(図5(A)、S31)。主回路電圧VdcがU_V未満のときには、次のステップS32において、双方向昇降圧コンバータ17にコンバータ動作指令I_battとしてI_batt=I_dschgを与え、二次電池13を放電させて電気二重層コンデンサ16を充電する。
このとき電池管理部21から双方向昇降圧コンバータ17に出力されるコンバータ動作指令I_battは、二次電池13の放電電流がI_dschgとなるように双方向昇降圧コンバータ17の動作を制御する指令である。従って、電気二重層コンデンサ16は、二次電池13の電圧V_battと放電電流I_dschgの積で決まる充電電力P_battで充電される。
以上の処理により、キーSWがオンされたことが検出されたとき、双方向昇降圧コンバータ17により二次電池13から電気二重層コンデンサ16への充電が行われ、電気二重層コンデンサ16の電圧が所定値U_V以上になるように充電される。
次に、通常モード時の動作を、図6のフローチャートを参照して説明する。
次に、通常モード時の動作を、図6のフローチャートを参照して説明する。
電池管理部21は、主回路電圧Vdcが上限値V_maxより高いか否かを判別する(図6,S41)。主回路電圧Vdcが上限値V_maxより高いときには(S41,YES)、ステップS42に進み、二次電池SOCが、上限値SOC_max未満か否かを判別する。
二次電池SOCが上限値SOC_max未満のときには(S42,YES)、ステップS43に進み、双方向昇降圧コンバータ17にコンバータ動作指令I_battとしてI_batt=I_chgを与え、二次電池13を充電電流I_chgで充電させる。これにより、そのときの二次電池13の電圧V_battと、充電電流I_chgの積で決まる充電電力P_battが、主回路側の発電機15から双方向昇降圧コンバータ17を介して二次電池13に供給される。
二次電池SOCが上限値SOC_max未満のときには(S42,YES)、ステップS43に進み、双方向昇降圧コンバータ17にコンバータ動作指令I_battとしてI_batt=I_chgを与え、二次電池13を充電電流I_chgで充電させる。これにより、そのときの二次電池13の電圧V_battと、充電電流I_chgの積で決まる充電電力P_battが、主回路側の発電機15から双方向昇降圧コンバータ17を介して二次電池13に供給される。
また、ステップS42において、二次電池SOCが上限値SOC_max以上と判別されたときには(S42,NO)、ステップS44に進み、双方向昇降圧コンバータ17にコンバータ動作指令I_battとしてI_batt=0を与え、双方向昇降圧コンバータ17の動作を停止させる。この場合、二次電池13の充電は行われない。
上述した処理により、主回路電圧Vdcが上限値V_maxより高く、かつ二次電池SOCが上限値SOC_maxより低いときには、主回路側から供給される電力が双方向昇降圧コンバータ17により二次電池13に供給されて二次電池13が充電される。そして、二次電池13の電圧が上限値SOC_maxに達すると、双方向昇降圧コンバータ17の動作が停止する。
ステップS41において、主回路電圧Vdcが上限値V_max以下と判別されたときには(S41,NO)、ステップS45に進み、主回路電圧Vdcが下限値V_minより低いか否かを判別する。
主回路電圧Vdcが下限値V_minより低いときには(S45,YES)、次のステップS46に進み、二次電池SOCが下限値SOC_minより大きいか否かを判別する。
主回路電圧Vdcが下限値V_minより低いときには(S45,YES)、次のステップS46に進み、二次電池SOCが下限値SOC_minより大きいか否かを判別する。
二次電池SOCが下限値SOC_minより大きいときには、ステップS47に進み、双方向昇降圧コンバータ17にコンバータ動作指令I_battとしてI_batt=I_dschgを与え、二次電池13を放電電流I_dschgで放電させる。これにより、そのときの二次電池13の電圧V_battと、放電電流I_dschgの積で決まる電力P_battが、二次電池13から双方向昇降圧コンバータ17を介して主回路側へ供給される。
また、ステップS46において、二次電池S0Cが下限値SOC_min以下と判別されたときには(S46,NO)、ステップS48に進み、双方向昇降圧コンバータ17にコンバータ動作指令I_battとしてI_batt=0を与え、双方向昇降圧コンバータ17の動作を停止させる。
上述した処理により、主回路電圧Vdcが下限値V_minより低く、かつ二次電池SOCが下限値SOC_minより大きいときには、二次電池13に蓄積された電力を双方向昇降圧コンバータ17を介して主回路側に供給し、主回路電圧Vdcを上げることができる。
ステップS45において、主回路電圧Vdcが下限値V_min以上と判別されたときには(S45,NO)、ステップS49に進み、二次電池SOCが標準値SOC_cent未満か否かを判別する。
ステップS45において、主回路電圧Vdcが下限値V_min以上と判別されたときには(S45,NO)、ステップS49に進み、二次電池SOCが標準値SOC_cent未満か否かを判別する。
ステップS49において、二次電池SOCがSOC_cent未満と判別されたときには(S49,YES)、ステップS50に進み、双方向昇降圧コンバータ17にコンバータ動作指令I_battとしてI_batt=I_chgを与え、二次電池13を充電電流I_chgで充電する。これにより、そのときの二次電池13の電圧V_battと充電電流I_chgとの積で決まる電力P_battが、双方向昇降圧コンバータ17により主回路側から二次電池13へ供給される。
他方、ステップS49において、二次電池SOCがSOC_cent以上と判別されたときには(S49,NO)、ステップS51に進み、双方向昇降圧コンバータ17にコンバータ動作指令I_battとしてI_batt=0を与え、双方向昇降圧コンバータ17の動作を停止させる。
上記の処理により、主回路電圧Vdcが標準範囲内にあるときには、主回路側の発電機15の発電電力により二次電池13が充電される。
次に、キーSWをオフにして運転状態から休止状態に切り換えたときの電力回収モードの処理を、図5(B)のフローチャートを参照して説明する。
次に、キーSWをオフにして運転状態から休止状態に切り換えたときの電力回収モードの処理を、図5(B)のフローチャートを参照して説明する。
電池管理部21は、主回路電圧Vdcが電気二重層コンデンサ16の保持電圧V_holdより高いか否かを判別する(図5,S61)。
主回路電圧Vdcが保持電圧V_holdより高い時には(S61,YES)、ステップS62に進み、二次電池SOCが、二次電池SOCの上限値SOC_max未満か否かを判別する。
主回路電圧Vdcが保持電圧V_holdより高い時には(S61,YES)、ステップS62に進み、二次電池SOCが、二次電池SOCの上限値SOC_max未満か否かを判別する。
二次電池SOCが上限値SOC_max未満のときには(S62,YES)、双方向昇降圧コンバータ17にコンバータ動作指令I_battとしてI_batt=I_chgを与え、電気二重層コンデンサ16に蓄積されている電力を二次電池13に移動させる。これにより、そのときの二次電池13の電圧V_battと充電電流I_chgとの積で決まる電力P_battで二次電池13が充電される。
次に、ステップS61に戻り、主回路電圧Vdcが保持電圧V_holdより高いか否かを再度判別する。上述したステップS61〜63の処理を、主回路電圧Vdcが保持電圧V_hold以下となるまで繰り返す。
上述した電力回収モードの処理により、キーSWがオフされ、ハイブリッド車両が運転状態から休止状態に切り換わると、電気二重層コンデンサ16に蓄積された電力が、双方向昇降圧コンバータ17により二次電池13に移動される。これにより、ハイブリッド車両が休止状態のとき、電気二重層コンデンサ16の電圧を保持電圧V_hold以下に保つことができるので、電気二重層コンデンサ16の寿命を延長させることができる。
上述した電力回収モードの処理により、キーSWがオフされ、ハイブリッド車両が運転状態から休止状態に切り換わると、電気二重層コンデンサ16に蓄積された電力が、双方向昇降圧コンバータ17により二次電池13に移動される。これにより、ハイブリッド車両が休止状態のとき、電気二重層コンデンサ16の電圧を保持電圧V_hold以下に保つことができるので、電気二重層コンデンサ16の寿命を延長させることができる。
なお、保持電圧V_holdを主回路電圧Vdcの下限値V_minより小さいな電圧に設定しておき、ハイブリッド車両の始動時に、二次電池13に蓄積されている電力を電気二重層コンデンサ16に移動させるようにしても良い。このようにすることで、電気二重層コンデンサ16の保持電圧V_holdを、始動時に必要な主回路の電圧より低く設定できるので、電気二重層コンデンサ16の寿命を更に延ばすことができる。
上述した実施の形態によれば、主回路電圧Vdcが所定値を超えて過電圧となったときには、主回路側の発電機15で発生する電気エネルギーで二次電池13を充電することができる。これにより、主回路電圧Vdcと同電位となる電気二重層コンデンサ16の電圧を制限して電気二重層コンデンサ16の寿命を延ばすことができる。さらに、キーSWをオンからオフにして車両を休止状態にしたときに、電気二重層コンデンサ16に蓄えられた電力を双方向昇降圧コンバータ17により二次電池13に移動させることにより、ハイブリッド車両が休止状態のときの電気二重層コンデンサ16の電圧を低く抑えることができる。これにより、電気二重層コンデンサ16の寿命をより延ばすことができる。
本発明は、電気二重層コンデンサ16に限らず、高い出力エネルギーを得ることのできる容量素子であれば、どのような容量素子にも適用できる。
また、乗用車等の一般の車両に限らずフォークリフト等の車両にも適用できる。フォークリフトにおいては、発進、停止等の頻度が高いので、回生エネルギーを蓄電装置に蓄電してエネルギーをより有効に利用できる。
また、乗用車等の一般の車両に限らずフォークリフト等の車両にも適用できる。フォークリフトにおいては、発進、停止等の頻度が高いので、回生エネルギーを蓄電装置に蓄電してエネルギーをより有効に利用できる。
11 制御部
12 負荷
13 二次電池
14 エンジン
15 発電機
16 電気二重層コンデンサ
17 双方向昇降圧コンバータ
21 電池管理部
22 発電制御部
23 加算器
12 負荷
13 二次電池
14 エンジン
15 発電機
16 電気二重層コンデンサ
17 双方向昇降圧コンバータ
21 電池管理部
22 発電制御部
23 加算器
Claims (5)
- 発電装置と走行用のモータとを有する車両の蓄電装置であって、
主回路に接続されるキャパシタと、
二次電池と、
前記キャパシタと前記二次電池の蓄積される電力を相互に移動させることのできる双方向昇降圧手段とを備えるハイブリッド車両の蓄電装置。 - 車両が休止状態か否かを検出する状態検出手段と、
前記状態検出手段により休止状態であることが検出されたとき、前記双方向昇降圧手段を制御して前記キャパシタの保持電圧が所定値以下となるように該キャパシタに蓄積された電力を前記二次電池に移動させる制御手段とを備える請求項1記載のハイブリッド車両の蓄電装置。 - 前記制御手段は、前記状態検出手段により、車両が休止状態から始動状態に変化したことが検出されたとき、前記双方向昇降圧手段を制御して前記二次電池に蓄積されている電力の一部を前記キャパシタに移動させ該キャパシタの電圧を上昇させる請求項2記載のハイブリッド車両の蓄電装置。
- 主回路の電圧を検出する主回路電圧検出手段と、
前記主回路電圧検出手段により検出された主回路電圧が所定値以上のとき、前記双方向昇降圧手段を制御して前記キャパシタの電圧が所定値を下回るように前記キャパシタに蓄積された電力を前記二次電池に移動させる制御手段とを備える請求項1または2記載のハイブリッド車両の蓄電装置。 - 前記状態検出手段は、運転者により操作されるスイッチであり、
前記制御手段は、前記スイッチがオフ状態となったとき、車両が休止状態となったものと判断し、前記双方向昇降圧手段を制御して、前記キャパシタの保持電圧が所定値以下になるように該キャパシタに蓄積されている電力を前記二次電池に移動させる請求項2または3記載のハイブリッド車両の蓄電装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003391991A JP2005160154A (ja) | 2003-11-21 | 2003-11-21 | ハイブリッド車両の蓄電装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003391991A JP2005160154A (ja) | 2003-11-21 | 2003-11-21 | ハイブリッド車両の蓄電装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005160154A true JP2005160154A (ja) | 2005-06-16 |
Family
ID=34718841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003391991A Pending JP2005160154A (ja) | 2003-11-21 | 2003-11-21 | ハイブリッド車両の蓄電装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005160154A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007126037A1 (ja) * | 2006-04-24 | 2007-11-08 | Toyota Jidosha Kabushiki Kaisha | 内燃機関の停止制御装置および停止制御方法 |
JP2009130961A (ja) * | 2007-11-20 | 2009-06-11 | Denso Corp | 車両用電源装置 |
JP2012085450A (ja) * | 2010-10-12 | 2012-04-26 | Sumitomo Electric Ind Ltd | 二次電池充放電装置及び電力貯蔵システム |
WO2014073106A1 (ja) * | 2012-11-12 | 2014-05-15 | ボルボ ラストバグナー アクチエボラグ | 充放電システム |
WO2014073107A1 (ja) * | 2012-11-12 | 2014-05-15 | ボルボ ラストバグナー アクチエボラグ | 充放電システム |
WO2014148563A1 (ja) * | 2013-03-22 | 2014-09-25 | トヨタ自動車株式会社 | 電源制御装置 |
CN105073486A (zh) * | 2013-03-22 | 2015-11-18 | 丰田自动车株式会社 | 电源控制装置 |
US10843568B2 (en) | 2015-02-04 | 2020-11-24 | Hanwha Defense Co., Ltd. | Electric vehicle |
-
2003
- 2003-11-21 JP JP2003391991A patent/JP2005160154A/ja active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007126037A1 (ja) * | 2006-04-24 | 2007-11-08 | Toyota Jidosha Kabushiki Kaisha | 内燃機関の停止制御装置および停止制御方法 |
US7822535B2 (en) | 2006-04-24 | 2010-10-26 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine stop controller and stop control method |
JP2009130961A (ja) * | 2007-11-20 | 2009-06-11 | Denso Corp | 車両用電源装置 |
JP4687704B2 (ja) * | 2007-11-20 | 2011-05-25 | 株式会社デンソー | 車両用電源装置 |
JP2012085450A (ja) * | 2010-10-12 | 2012-04-26 | Sumitomo Electric Ind Ltd | 二次電池充放電装置及び電力貯蔵システム |
JPWO2014073106A1 (ja) * | 2012-11-12 | 2016-09-08 | ボルボトラックコーポレーション | 充放電システム |
WO2014073107A1 (ja) * | 2012-11-12 | 2014-05-15 | ボルボ ラストバグナー アクチエボラグ | 充放電システム |
WO2014073106A1 (ja) * | 2012-11-12 | 2014-05-15 | ボルボ ラストバグナー アクチエボラグ | 充放電システム |
US10252623B2 (en) | 2012-11-12 | 2019-04-09 | Volvo Truck Corporation | Charge/discharge system |
WO2014148563A1 (ja) * | 2013-03-22 | 2014-09-25 | トヨタ自動車株式会社 | 電源制御装置 |
JP2014187757A (ja) * | 2013-03-22 | 2014-10-02 | Toyota Motor Corp | 電源制御装置 |
CN105050854A (zh) * | 2013-03-22 | 2015-11-11 | 丰田自动车株式会社 | 电源控制装置 |
CN105073486A (zh) * | 2013-03-22 | 2015-11-18 | 丰田自动车株式会社 | 电源控制装置 |
US20160039306A1 (en) * | 2013-03-22 | 2016-02-11 | Toyota Jidosha Kabushiki Kaisha | Electrical source control apparatus |
US9669727B2 (en) | 2013-03-22 | 2017-06-06 | Toyota Jidosha Kabushiki Kaisha | Electrical source control apparatus |
US10843568B2 (en) | 2015-02-04 | 2020-11-24 | Hanwha Defense Co., Ltd. | Electric vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5577775B2 (ja) | 電動車両用電源装置 | |
JP5370956B2 (ja) | 燃料電池電源装置 | |
CN101978542B (zh) | 电源控制电路 | |
JP6621264B2 (ja) | 燃料電池システムの制御方法及び燃料電池自動車 | |
EP2918442B1 (en) | Charge/discharge system | |
JP4774430B2 (ja) | 電気自動車及び蓄電装置の制御方法 | |
JP5005809B2 (ja) | 燃料電池−バッテリーハイブリッド電気自動車の動力変換制御方法及び制御装置 | |
US10315522B2 (en) | Charge/discharge system | |
JP4737533B2 (ja) | 車両用制御装置 | |
US9834100B2 (en) | Charge/discharge system | |
CN103052527A (zh) | 车辆用电源装置 | |
JP2014187757A (ja) | 電源制御装置 | |
JP2010279124A (ja) | 移動体 | |
JP2005160154A (ja) | ハイブリッド車両の蓄電装置 | |
JP4192658B2 (ja) | 車両の制御装置および制御方法 | |
JP6926547B2 (ja) | 電動車両の電源装置 | |
JP6520745B2 (ja) | 燃料電池システム | |
JP2005322454A (ja) | 充電システム | |
KR100579298B1 (ko) | 환경 차량의 보조 배터리 충전 제어방법 | |
JP2008079436A (ja) | 電源制御装置 | |
JP2004146118A (ja) | 燃料電池システム | |
JP4556989B2 (ja) | 燃料電池電源装置 | |
JP2010133333A (ja) | 荷役機械の制御装置及び荷役機械の制御方法 | |
JP2008016256A (ja) | 車両用制御装置 | |
CN104272511A (zh) | 燃料电池系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080729 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081125 |