JP2005158941A - 半導体レーザ素子及びその製造方法 - Google Patents

半導体レーザ素子及びその製造方法 Download PDF

Info

Publication number
JP2005158941A
JP2005158941A JP2003393994A JP2003393994A JP2005158941A JP 2005158941 A JP2005158941 A JP 2005158941A JP 2003393994 A JP2003393994 A JP 2003393994A JP 2003393994 A JP2003393994 A JP 2003393994A JP 2005158941 A JP2005158941 A JP 2005158941A
Authority
JP
Japan
Prior art keywords
layer
ridge
conductivity type
type
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003393994A
Other languages
English (en)
Inventor
Noboru Oshima
昇 大島
Masayuki Ota
将之 太田
Takahiro Hashimoto
隆宏 橋本
Hiroyuki Tsujii
宏行 辻井
Akifumi Kinei
聡文 喜根井
Yoshinori Obitsu
義徳 大櫃
Shinji Kaneiwa
進治 兼岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003393994A priority Critical patent/JP2005158941A/ja
Priority to CNB2004100952839A priority patent/CN100346543C/zh
Priority to US10/995,780 priority patent/US7065116B2/en
Publication of JP2005158941A publication Critical patent/JP2005158941A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】キャップ層からなる庇の幅を小さくすることで、厚膜電極形成後に発生するリッジ側面の空洞部を減らすことを課題とする。
【解決手段】少なくとも、第1導電型のクラッド層、活性層及び第1の第2導電型クラッド層と、第1の第2導電型クラッド層上に、該層側から順次積層された第2の第2導電型クラッド層及び第2導電型キャップ層からなるリッジと、リッジの頭頂部以外のリッジ側面に形成された誘電体膜と、リッジを覆う電極金属層とからなり、第2導電型キャップ層の底面の幅と第2の第2導電型クラッド層の上面の幅がほぼ等しいことを特徴とする半導体レーザ素子により上記課題を解決する。
【選択図】図2

Description

本発明は、半導体レーザ素子及びその製造方法に関する。更に詳しくは、本発明は、CD−R/RW、DVD−R/RW等に使用する高出力半導体レーザ素子及びその製造方法に関する。
図4〜9は、従来のGaAs/GaAlAs系赤外レーザ素子の製造方法を説明するための概略斜視図である。
まず、図4に示すように、N型GaAs基板(ウェハ)1上にバッファ層2、第1のN型GaAlAsクラッド層3、第2のN型GaAlAsクラッド層4、活性層5、第1のP型GaAlAsクラッド層6、GaAsエッチングストップ層7、第2のP型GaAlAsクラッド層8、P型GaAsキャップ層9の順で各層をMOCVDのような気相法により成長させる。なお、図では個々の半導体レーザ素子について示しているが、実際にはウェハ単位で製造が行われる。
次に、図5に示すように、P型GaAsキャップ層9上にリッジ(電流通路)形成のためのマスク10を設ける。マスクの材料としては、用いるエッチング方法に耐性のあるものが使用される。なお、ドライエッチングによる場合にはリッジを形成するマスクとしては、例えばSiO2膜のようなドライエッチングに耐性のある膜からなるマスクが用いられる。
次に、図6に示すように、ドライエッチング、ウェットエッチング等の手法により、P型GaAsキャップ層9の全てと、第2のP型GaAlAsクラッド層8をGaAsエッチングストップ層7の近傍までエッチングして、おおまかなリッジを形成する(このエッチングを、第1のエッチングとする)。なお、このリッジはレーザ発振を行うための電流通路となるものである。
続いて図7に示すように、第2のP型GaAlAsクラッド層8のみエッチング可能で、GaAsはエッチングしないエッチング液であるHFにて第2のP型GaAlAsクラッド層8を更にエッチングする(このエッチングを、第2のエッチングとする)。このエッチングにより、所望のレーザ特性が得られるような幅にリッジを仕上げる。この場合当然のことながら、HFによるエッチングはGaAsエッチングストップ層7で阻止されるため、リッジの幅はHFのエッチング時間に依存する。
次に、図8(a)〜(g)に示す一連の工程にてP側電極を形成する。以下、図8(a)〜(g)を説明する。
まず、リッジ両サイド表面に電流が流れるのを防ぐために、最初に絶縁性を有するおよそ1000Å〜2000Åの厚さの誘電体膜(SiNもしくはSiO2等)11をリッジ全体を含めたウェハ表面に成膜する(図8(a))。
次に、レジスト12にてキャップ層の頭頂部以外の部分を保護する(図8(b))。
次いで、リッジ内部にのみ電流が流れるようにするために、P型GaAsキャップ層9上部の誘電体膜11のみをエッチングにより除去する(図8(c))。このとき、図8(c)に示すようにP型GaAsキャップ層9両サイドの誘電体膜11の一部はオーバーエッチングされる。
更に、P型GaAsキャップ層9と金の厚膜電極とをオーミック接合するためのAuZnの第1の電極金属層13を形成する(図8(d))。
この後、レジスト12を除去し(図8(e))、Mo/Auからなる第2の電極金属層(バリア/ダイボンド電極)14を形成する(図8(f))。このとき、図8(f)に示すようにP型GaAsキャップ層9両サイドは、誘電体膜11上にのみ、第2の電極金属層14が形成される。これは、誘電体膜11と、P型GaAsキャップ層9両サイドとの段差近傍では第2の電極金属層14が形成されにくいためである。
次に、メッキにてリッジを含めたウェハ表面に2〜3μm程度の厚さの金の厚膜電極16を形成する(図8(g))。
この後、更にウェハのN基板側(裏面側)を研削し、所望の厚みに仕上げた後、N基板側にN側電極を形成することで、図9に示すごときレーザ素子が複数形成されたレーザウェハ18が完成する。
次に、図9に示すように、レーザウェハ18を所定の共振器長毎の幅のバー19に分割する。この後、両光出射端面に所定の反射率を有する保護膜を成膜し、バー19を個別のレーザ素子(チップ)に分割する(図示せず)。
なお、上記と同様の方法にて得られる半導体レーザ素子が、特開2002−86902号公報(特許文献1)にも例示されている。
特開2002−86902号公報
従来の技術では、上述した図8(f)に示すとおり、P型GaAsキャップ層9が庇9’を有する。この庇9’の下部分15は、第2の電極金属層14の形成時の陰となることで、第2の電極金属層14が、下部分15では他の部分より極端に薄いか、もしくは形成されなくなってしまう。この場合、第2の電極金属層14が薄いかもしくは無い領域上では、メッキによる厚膜電極16が形成されにくいため、図8(g)に示す空洞部17が発生する。
この空洞部は空気層であり、レーザ発振時に発生する熱がこの空洞部により放熱されにくくなり、レーザ素子としての温度特性及び信頼性が悪くなってしまう。
かくして本発明によれば、少なくとも、第1導電型のクラッド層、活性層及び第1の第2導電型クラッド層と、第1の第2導電型クラッド層上に、該層側から順次積層された第2の第2導電型クラッド層及び第2導電型キャップ層からなるリッジと、リッジの頭頂部以外のリッジ側面に形成された誘電体膜と、リッジを覆う電極金属層とからなり、第2導電型キャップ層の底面の幅と第2の第2導電型クラッド層の上面の幅がほぼ等しいことを特徴とする半導体レーザ素子が提供される。
更に、本発明によれば、第1導電型のクラッド層上に、活性層、第1の第2導電型クラッド層、第2の第2導電型クラッド層及び第2導電型キャップ層を順次成長させる工程、第2導電型キャップ層と第2の第2導電型クラッド層をエッチングして、第2導電型キャップ層の庇を有するリッジを形成する工程、第2導電型キャップ層よりなる庇を更にエッ
チングして、第2導電型キャップ層の底面の幅と第2の第2導電型クラッド層の上面の幅をほぼ等しくする工程、リッジの頭頂部以外のリッジ側面に誘電体膜を形成する工程、電極金属層でリッジを被覆する工程とを少なくとも含むことを特徴とする半導体レーザ素子の製造方法が提供される。
本発明によれば、従来よりもキャップ層からなる庇の幅を小さくすることができるため、厚膜電極形成後に発生していたリッジ側面の空洞部を減らすことができる。これにより、レーザ発振時に発生する熱が放熱されやすくなり、レーザ特性及び信頼性が向上したレーザ素子を得ることができる。
本明細書において、第1導電型はN又はP型を意味する。一方、第2導電型は、第1導電型がN型の場合、P型を、P型の場合、N型を意味する。以下では、第1導電型をN型として説明しているが、P型でもよいことは言うまでもない。
まず、本発明の半導体レーザ素子は、第1のP型クラッド層、第2のP型クラッド層及びP型キャップ層からなる。これら各層を構成する材料としては、特に限定されず公知の材料をいずれも使用することができる。例えば、第1及び第2のP型クラッド層とP型キャップ層とを構成する材料の組み合わせとして、GaAlAs/GaAs、InGaAsP/GaAs、AlGaInP/GaP等が挙げられる。
更に、半導体レーザ素子を構成する各層にN型を付与する不純物としては、Se、Te、Si、Ge、C等が挙げられ、P型を付与する不純物としては、Zn、C等が挙げられる。なお、Cは、条件によりP型及びN型のいずれの不純物としても使用することができる。各層の膜厚及び不純物濃度は、層同士の整合性、所望する半導体レーザの機能等に応じて適宜決定される。
本発明の半導体レーザは、上記のP型クラッド層及びP型キャップ層以外にも、P型クラッド層下に活性層、P型キャップ層上にP型キャップ層中に活性層へ流れる電流を制御するための電流ブロック層、活性層とP型クラッド層の間に光ガイド層、活性層下にN型クラッド層、N型クラッド層下にバッファ層、第1と第2のP型クラッド層間にエッチングストップ層を有していてもよい。これら各層を構成する材料は、第1及び第2のP型クラッド層とP型キャップ層に使用される材料に応じて、適宜選択できる。
更に、上記各層は、通常基板上に形成される。基板には、公知の基板をいずれも使用することができ、例えば、GaAs基板、Si基板、ガラス基板、サファイア基板等が挙げられる。基板は、N型又はP型の導電型を有していてもよい。
なお、基板上に形成される上記各層は、MOCVD法、MBE法、LPE法、蒸着法、スパッタ法等の公知の方法により形成することができる。
また、本発明では、第1のP型クラッド層上に積層された第2のP型クラッド層及びP型キャップ層がリッジを形成している。リッジは、共振器長に垂直な方向に所定の幅を有し、かつ共振器長方向に延在している。また、P型キャップ層の底面の幅と第2のPクラッド層の上面の幅がほぼ等しい。ここで、ほぼ等しいとは、完全に等しい場合に加えて、リッジの側面と以下に記載する厚膜電極との間で、P型キャップ層による庇下に形成される空洞を、レーザ素子の信頼性に影響しない程度まで小さくしうる程度に両層の幅が近接している場合も含まれる。具体的には、P型キャップ層の底面の幅に対する前記第2のPクラッド層の上面の幅の差が、+0.4μm〜−0.4μmの範囲であることが好ましい
。より好ましくは、+0.2μm〜−0.2μmの範囲である。
リッジの形成方法は、P型キャップ層上にリッジ形成用のマスクを形成し、該マスクを用いてP型キャップ層及び第2のP型クラッドを順次エッチングし、次いでP型キャップ層を優先的にエッチングする方法が挙げられる。後者のエッチングにより、P型キャップ層による庇を小さくすることができる。エッチング方法は、ウェット法でもドライ法でもよい。また、エッチングに使用されるエッチャントは、P型キャップ層及び第2のP型クラッド層の材料に応じて適宜選択することができる。
リッジの頭頂部以外のリッジ側面には、誘電体膜が形成されている。この誘電体膜は、特に限定されないが、SiN、SiO2等のような絶縁性の膜が好ましい。誘電体膜の厚さは、通常0.15〜0.25μmである。また、誘電体膜の形成方法は、例えば、CVD法、スパッタ法等が挙げられる。
リッジは、電極金属層で覆われている。この電極金属層には、公知の材料からなる層を使用でき、例えば、Al、Cu等の金属層、Mo/Au、Cr/Au等の積層体が挙げられる。なお、リッジの形状により異なるが、上記誘電体膜や電極金属層で覆われていない領域がリッジ表面に存在していてもよい。
また、リッジの頭頂部には、P型キャップ層と電極金属層とをオーミック接続するための金属層が積層されていてもよい。金属層の例としては、AuZn等が挙げられる。電極金属層及び金属層の形成方法は、例えば、蒸着法、CVD法、スパッタ法等が挙げられる。
更に、電極金属層で覆われたリッジを含めた全面に厚膜電極が通常形成される。この厚膜電極は、2〜3μm程度の厚さを有し、Au等からなる。
上記本発明の半導体レーザ素子は、リッジ側面に存在する空洞部の容積を、従来に比べて、約90%以上低減することができる。そのため、空洞部に由来する温度特性や信頼性の低下を抑制できるという効果を奏する。
なお、半導体レーザ素子は、通常、ウェハ18上で複数個同時に形成され、上記各構成要素を形成した後、図9に示すように共振器長毎の幅のバー19に分割される。この後、両光出射端面に所定の反射率を有する保護膜を成膜し、次いでバー19は個別のレーザ素子(チップ)に分割される。
以下実施例により本発明を更に詳細に説明するが、本発明は、以下の実施例により限定されるものではない。
実施例1
図1は、本発明の半導体レーザ素子を説明するための概略斜視図である。
図1の半導体レーザ素子の製造方法を図4〜7により説明する。
まず、図4に示すように、N型GaAs基板(ウェハ)1上にバッファ層2、第1のN型GaAlAsクラッド層3、第2のN型GaAlAsクラッド層4、活性層5、第1のP型GaAlAsクラッド層6、GaAsエッチングストップ層7、第2のP型GaAlAsクラッド層8、P型GaAsキャップ層9の順で各層をMOCVDのような気相法により成長させる。なお、図では個々の半導体レーザ素子について示しているが、実際にはウェハ単位で製造が行われる。
次に、図5に示すように、P型GaAsキャップ層9上にリッジ(電流通路)形成のためのマスク10を設ける。マスクの材料としては、用いるエッチング方法に耐性のあるものが使用される。なお、ドライエッチングによる場合にはリッジを形成するマスクとしては、例えばSiO2膜のようなドライエッチングに耐性のある膜からなるマスクが用いられる。
次に、図6に示すように、ドライエッチング、ウェットエッチング等の手法により、P型GaAsキャップ層9の全てと、第2のP型GaAlAsクラッド層8をGaAsエッチングストップ層7の近傍までエッチングして、おおまかなリッジを形成する(このエッチングを、第1のエッチングとする)。なお、このリッジはレーザ発振を行うための電流通路となるものである。
続いて図7に示すように、第2のP型GaAlAsクラッド層8のみエッチング可能で、GaAsはエッチングしないエッチング液であるHFにて第2のP型GaAlAsクラッド層8を更にエッチングする(このエッチングを、第2のエッチングとする)。このエッチングにより、所望のレーザ特性が得られるような幅にリッジを仕上げる。この場合当然のことながら、HFによるエッチングはGaAsエッチングストップ層7で阻止されるため、リッジの幅はHFのエッチング時間に依存する。
第2のエッチングを完了した後、引き続きGaAsのみをエッチング可能なアンモニア系エッチング液にて更にP型GaAsキャップ層9のエッチングを行うことで、図1の半導体レーザ素子が得られる。
上記エッチングは、P型GaAsキャップ層9の庇のみが除去される時間行われる。具体的には、P型GaAsキャップ層9の下部の幅Wcが、P型GaAsキャップ層直下の第2のP型GaAlAsクラッド層8の上部の幅Wrと同じか、もしくは若干大きいところまで、エッチングを行う。より具体的には、
−0.4μm≦(Wr−Wc)≦0.4μm
の関係が成り立つことが望ましい。特にWr−Wc=0μmであれば本発明の効果は最大となり、この場合リッジの庇部が無くなることで、図2(a)に示すようにリッジのほぼ全体にMo/Auの第2の電極金属層を形成することができる。そのため、この後形成する金メッキによる厚膜電極20がリッジを含め含めたウェハ全体にほぼ隙間(空洞)なく形成される。
なお、P型GaAsキャップ層9の庇のエッチングにより、図7に示したGaAsエッチングストップ層7は消滅する。しかし、GaAsエッチングストップ層7の直下には第1のP型GaAlAsクラッド層6が位置しており、この第1のP型GaAlAsクラッド層6はエッチングされない。そのため、レーザ素子の発振には影響はない。
また、図2(a)に示すようにP型GaAsキャップ層9の両サイドの一部には、誘電体膜11及びMo/Auの第2の電極金属層14の無い部分がある。この部分では金メッキによる厚膜電極20を形成する時に、メッキ液でのエッチングにより、P型GaAsキャップ層9の一部にエッチング部90が形成される。これにより、リッジと第1の電極金属層13の接触部99の面積が若干狭くなるが、
−0.4μm≦(Wr−Wc)≦0.4μm
の関係が成り立つ範囲内では、素子の抵抗あるいは動作電圧の上昇は無視できる程度である。
なお、
0μm<(Wr−Wc)≦0.4μm
の場合、図2(b)に示すように、若干のリッジの庇9’’(この場合、片方の庇の長さはおよそ0.2μm以下)が残ってしまう。しかし、この庇の長さは、従来の庇の長さ(ほぼ片方0.4μm)に比べてほぼ半分以下となり、庇の影となる部分が小さくなる。そのため、図2(b)に示すようにほぼ庇9’’の直下までMo/Auの第2の電極金属層14を形成することができる。したがって、金メッキによる厚膜電極20を形成した後に発生する空洞部17’は、従来の技術で発生するものに比べてはるかに微小であり、放熱効果は従来に比べ十分確保される。
なお、この場合も図2(a)と同様にP型GaAsキャップ層9の一部にエッチング部90が形成されるが、図2(a)に示す場合より、リッジと第1の電極金属層13の接触部99の面積は十分確保されるために、素子の抵抗あるいは動作電圧の上昇等の問題は発生しない。
また、
0.4μm>(Wr−Wc)
となった場合には、庇は無く、金メッキによる厚膜電極20を形成した後に発生する空洞部17’は発生しなくなる。しかし、リッジと第1の電極金像層13の接触部99の面積が大きく減少してしまうため、素子の抵抗あるいは動作電圧が上昇してしまうという観点から好ましくない。
したがって、以上前述したとおり、P型GaAsキャップ層9の下部の幅Wcと、P型GaAsキャップ層直下の第2のP型GaAlAsクラッド層8の上部の幅Wrの関係は、
−0.4μm≦(Wr−Wc)≦0.4μm
であることが望ましい。特に好ましい上記関係は、
−0.2μm≦(Wr−Wc)≦0.2μm
である。
なお、P側電極の形成方法は以下のようにして行う。
まず、リッジ両サイド表面に電流が流れるのを防ぐために、最初に絶縁性を有するおよそ1000Å〜2000Åの厚さの誘電体膜(SiNもしくはSiO2等)11をリッジ全体を含めたウェハ表面に成膜する。
次に、レジストにてP型GaAsキャップ層9の頭頂部以外の部分を保護する。
次いで、リッジ内部にのみ電流が流れるようにするために、P型GaAsキャップ層9上部の誘電体膜11のみをエッチングにより除去する。このとき、P型GaAsキャップ層9両サイドの誘電体膜11の一部はオーバーエッチングされる。
更に、P型GaAsキャップ層9と金の厚膜電極とをオーミック接合するためのAuZnの第1の電極金属層13を形成する。
この後、レジストを除去し、Mo/Auの第2の電極金属層(バリア/ダイボンド電極)14を形成する。
次に、メッキにてリッジを含めたウェハ表面に2〜3μm程度の厚さの金の厚膜電極20を形成する。
実施例2
図3は、実施例2の半導体レーザ素子を説明するための概略斜視図である。
実施例2は、リッジ形成のための第1のエッチング及び第2のエッチングを、ともにウ
ェットエッチングにより行う場合の例である。
実施例2では、リッジ形成のためのマスクがレジストマスクであり、第1のエッチングが、硫酸系のエッチング液によるウェットエッチングであること以外は実施例1と同様にして半導体レーザ素子を製造している。
実施例2では、第1のエッチングがウェットエッチングであるために、図3に示すようにP型GaAsキャップ層9は若干傾斜を有する形状に仕上がる。実施例2においても、実施例1同様に、P型GaAsキャップ層の下部の幅Wcと、P型GaAsキャップ層直下の第2のP型GaAlAsクラッド層の上部の幅Wrの関係は、
−0.4μm≦(Wr−Wc)≦0.4μm
であることが、望ましい。
本発明の半導体レーザ素子を説明するための概略斜視図である。 実施例1の半導体レーザ素子の要部拡大図である。 実施例2の半導体レーザ素子の要部拡大図である。 半導体レーザ素子の製造方法を説明するための概略斜視図である。 半導体レーザ素子の製造方法を説明するための概略斜視図である。 半導体レーザ素子の製造方法を説明するための概略斜視図である。 半導体レーザ素子の製造方法を説明するための概略斜視図である。 従来の半導体レーザ素子のP側電極の製造方法を説明するための概略斜視図である。 半導体レーザ素子の製造方法を説明するための概略斜視図である。
符号の説明
1 N型GaAs基板
2 バッファ層
3 第1のN型GaAlAsクラッド層
4 第2のN型GaAlAsクラッド層
5 活性層
6 第1のP型GaAlAsクラッド層
7 GaAsエッチングストップ層
8 第2のP型GaAlAsクラッド層
9 P型GaAsキャップ層
9’、9’’ 庇
10 マスク
11 誘電体膜
12 レジスト
13 第1の電極金属層
14 第2の電極金属層
15 庇の下部分
16、20 厚膜電極
17、17’ 空洞部
18 レーザウェハ
19 バー
90 エッチング部
99 リッジと第1の電極金属層の接触部
Wc P型GaAsキャップ層の下部の幅
Wr 第2のP型GaAlAsクラッド層の上部の幅

Claims (7)

  1. 少なくとも、第1導電型のクラッド層、活性層及び第1の第2導電型クラッド層と、第1の第2導電型クラッド層上に、該層側から順次積層された第2の第2導電型クラッド層及び第2導電型キャップ層からなるリッジと、リッジの頭頂部以外のリッジ側面に形成された誘電体膜と、リッジを覆う電極金属層とからなり、第2導電型キャップ層の底面の幅と第2の第2導電型クラッド層の上面の幅がほぼ等しいことを特徴とする半導体レーザ素子。
  2. 前記第2導電型キャップ層の底面の幅に対する前記第2の第2導電型クラッド層の上面の幅の差が、+0.4μm〜−0.4μmの範囲である請求項1に記載の半導体レーザ素子。
  3. 前記電極金属層を備えたリッジ全体を覆うように金の厚膜電極が更に形成されている請求項1又は2に記載の半導体レーザ素子。
  4. 前記第2の第2導電型クラッド層がP型GaAlAs層からなり、前記第2導電型キャップ層がP型GaAs層からなる請求項1〜3のいずれか1つに記載の半導体レーザ素子。
  5. 第1導電型のクラッド層上に、活性層、第1の第2導電型クラッド層、第2の第2導電型クラッド層及び第2導電型キャップ層を順次成長させる工程、第2導電型キャップ層と第2の第2導電型クラッド層をエッチングして、第2導電型キャップ層の庇を有するリッジを形成する工程、第2導電型キャップ層よりなる庇を更にエッチングして、第2導電型キャップ層の底面の幅と第2の第2導電型クラッド層の上面の幅をほぼ等しくする工程、リッジの頭頂部以外のリッジ側面に誘電体膜を形成する工程、電極金属層でリッジを被覆する工程とを少なくとも含むことを特徴とする半導体レーザ素子の製造方法。
  6. 前記第2の第2導電型クラッド層がP型GaAlAs層からなり、前記第2導電型キャップ層がP型GaAs層からなり、前記庇のエッチングが、GaAlAsはエッチングされないが、GaAsはエッチング可能なエッチング液を用いて行われる請求項5に記載の半導体レーザ素子の製造方法。
  7. 前記エッチング液が、アンモニア系のエッチング液である請求項6に記載の半導体レーザ素子の製造方法。
JP2003393994A 2003-11-25 2003-11-25 半導体レーザ素子及びその製造方法 Pending JP2005158941A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003393994A JP2005158941A (ja) 2003-11-25 2003-11-25 半導体レーザ素子及びその製造方法
CNB2004100952839A CN100346543C (zh) 2003-11-25 2004-11-22 半导体激光元件及其制造方法
US10/995,780 US7065116B2 (en) 2003-11-25 2004-11-22 Semiconductor laser element and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003393994A JP2005158941A (ja) 2003-11-25 2003-11-25 半導体レーザ素子及びその製造方法

Publications (1)

Publication Number Publication Date
JP2005158941A true JP2005158941A (ja) 2005-06-16

Family

ID=34720198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003393994A Pending JP2005158941A (ja) 2003-11-25 2003-11-25 半導体レーザ素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP2005158941A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440482B2 (en) 2005-11-01 2008-10-21 Nichia Corporation Nitride semiconductor laser element and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440482B2 (en) 2005-11-01 2008-10-21 Nichia Corporation Nitride semiconductor laser element and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6258414B2 (ja) 端面発光エッチングファセットレーザ
JP4839478B2 (ja) 垂直共振器型発光ダイオード及びその製造方法
JP4762729B2 (ja) 半導体レーザ素子の実装構造
US20070274360A1 (en) Semiconductor laser element and semiconductor laser device
CN110140264A (zh) 半导体激光二极管
US7851810B2 (en) Method of manufacturing semiconductor light emitting device
JP2010186791A (ja) 半導体発光素子及びその製造方法
JP2015046467A (ja) 半導体装置
JP2004140052A (ja) 電極構造およびその製造方法
JP2002171021A (ja) 半導体レーザ、半導体レーザの製造方法および半導体レーザの実装方法
JP2009283605A (ja) 半導体レーザ
US7065116B2 (en) Semiconductor laser element and manufacturing method for the same
JP2007329231A (ja) 半導体発光素子の製造方法
JP5273459B2 (ja) 半導体レーザの製造方法
JP2008078340A (ja) 半導体レーザ素子及びその製造方法
JP2001244560A (ja) 半導体発光装置の製造方法及び半導体発光装置
JP2005158941A (ja) 半導体レーザ素子及びその製造方法
JP4090337B2 (ja) 半導体レーザ素子および半導体レーザ素子の製造方法
JP4056717B2 (ja) 半導体レーザおよびその製造方法
JP2006295056A (ja) 半導体レーザ素子およびその製造方法
JP2005166718A (ja) 半導体レーザ素子及びその製造方法
JP2010123726A (ja) 半導体レーザおよびその製造方法
JP2005217255A (ja) 半導体レーザおよびその製造方法
JP5310441B2 (ja) 半導体レーザの製造方法
JP5556922B2 (ja) 半導体レーザの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027