JP2005158721A - Electrode material of nonaqueous secondary battery, its process of manufacture, and nonaqueous secondary battery using electrode material - Google Patents

Electrode material of nonaqueous secondary battery, its process of manufacture, and nonaqueous secondary battery using electrode material Download PDF

Info

Publication number
JP2005158721A
JP2005158721A JP2004316920A JP2004316920A JP2005158721A JP 2005158721 A JP2005158721 A JP 2005158721A JP 2004316920 A JP2004316920 A JP 2004316920A JP 2004316920 A JP2004316920 A JP 2004316920A JP 2005158721 A JP2005158721 A JP 2005158721A
Authority
JP
Japan
Prior art keywords
electrode material
secondary battery
carbon
aqueous secondary
composite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004316920A
Other languages
Japanese (ja)
Other versions
JP3992708B2 (en
Inventor
Masayuki Yamada
将之 山田
Ko Shirasawa
香 白澤
Tokuji Ueda
上田  篤司
Shigeo Aoyama
青山  茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004316920A priority Critical patent/JP3992708B2/en
Publication of JP2005158721A publication Critical patent/JP2005158721A/en
Application granted granted Critical
Publication of JP3992708B2 publication Critical patent/JP3992708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material excellent in heavy load discharge property, cycle property and the like, capable of achieving a nonaqueous secondary battery with a large capacity. <P>SOLUTION: The electrode material of the battery includes compound particles containing a plurality of particles containing a material capable of storing and releasing Li, and a coating layer containing a conductive carbon material covering the compound particles. The electrode material is featured by having at least one pore distribution peak within a range of not less than 0.001 μm and not more than 0.2 μm in a pore distribution curve of the electrode material measured by using a mercury injection type porosimeter. The electrode material may further include a material layer covering the coating layer and containing graphitization retardant carbon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非水二次電池の電極材料およびその製造方法、並びにそれを用いた非水二次電池に関する。   The present invention relates to an electrode material for a non-aqueous secondary battery, a method for producing the same, and a non-aqueous secondary battery using the same.

非水二次電池は高容量であることから、その発展に対して大きな期待が寄せられている。従来、非水二次電池の負極活物質には、LiまたはLi合金が用いられてきた。しかし、充電時に、デンドライト状のLiが析出するため内部短絡が起こり易いという問題があった。また、析出したデンドライト状のLiは高比表面積で活性が高く、安全性に欠けるという問題があった。さらに、デンドライト状のLiの表面と電解液中の有機溶媒とが反応してLi表面に電子導電性を欠いた界面皮膜が形成されるため電池の内部抵抗が高くなり、結果としてサイクル特性が劣化するという問題があった。   Since non-aqueous secondary batteries have a high capacity, there are great expectations for their development. Conventionally, Li or a Li alloy has been used as a negative electrode active material of a non-aqueous secondary battery. However, there is a problem that an internal short circuit easily occurs because dendritic Li precipitates during charging. In addition, the deposited dendritic Li has a problem that it has a high specific surface area, high activity, and lacks safety. In addition, the dendritic Li surface reacts with the organic solvent in the electrolyte to form an interfacial film lacking electronic conductivity on the Li surface, which increases the internal resistance of the battery, resulting in degradation of cycle characteristics. There was a problem to do.

現状では、LiやLi合金に代えて、Liイオンを挿入および脱離可能な、天然または人造の黒鉛系炭素材料を負極材料として用いることにより、非水二次電池のサイクル特性の劣化を抑制している。   At present, natural or artificial graphite-based carbon materials that can insert and desorb Li ions instead of Li and Li alloys are used as the negative electrode material, thereby suppressing deterioration of the cycle characteristics of the non-aqueous secondary battery. ing.

ところで、小型化および多機能化した携帯機器用の電池についてさらなる高容量化が望まれるにつれて、低結晶性炭素、Si(シリコン)、Sn(錫)等のように、より多くのLiを収容可能な材料が負極材料(以下「高容量負極材料」ともいう)として注目を集めている。LiSi(0≦t≦5)を負極活物質として用いた非水二次電池も開示されている(例えば、特許文献1参照)。 By the way, as the battery for portable devices having a smaller size and more functions is desired to have higher capacity, it can accommodate more Li like low crystalline carbon, Si (silicon), Sn (tin), etc. Such materials are attracting attention as negative electrode materials (hereinafter also referred to as “high-capacity negative electrode materials”). A non-aqueous secondary battery using Li t Si (0 ≦ t ≦ 5) as a negative electrode active material is also disclosed (for example, see Patent Document 1).

また、携帯機器等の先端機器用の電池については、高容量であることに加えて重負荷放電特性が優れていること(放電電流密度が大きいこと)も求められている。高容量負極材料について、重負荷放電特性を向上させる最も簡便な方法は、高容量負極材料を微粒子化すること、すなわち、高容量負極材料の反応面積を大きくすることが考えられている(例えば、非特許文献1参照)。   In addition to high capacity, batteries for advanced devices such as portable devices are also required to have excellent heavy load discharge characteristics (high discharge current density). For the high-capacity negative electrode material, the simplest method for improving the heavy load discharge characteristics is considered to make the high-capacity negative electrode material fine particles, that is, to increase the reaction area of the high-capacity negative electrode material (for example, Non-patent document 1).

特開平7-29602号公報JP 7-29602 A ジェイ.オー.ベッセンハード(J.O.Besenhard)、「ジャーナル・オブ・パワー・ソーシーズ(Journal of Power Sources)」、1997年、第68巻、p.87Jay. Oh. J. O. Besenhard, “Journal of Power Sources”, 1997, Vol. 68, p. 87

しかし、微粉化された負極材料をそのまま用いて塗料を作製する場合、負極材料の比表面積が大きいために、多量のバインダが必要であり、多量のバインダを用いても、その塗料を用いて作製される合剤層の集電体に対する接着性が悪く、その結果、サイクル特性等の特性に悪影響を及ぼしていた。   However, when producing a paint using the finely divided negative electrode material as it is, a large amount of binder is required because the specific surface area of the negative electrode material is large. Even if a large amount of binder is used, the paint is produced using the paint. The adhesion of the mixture layer to the current collector was poor, and as a result, the cycle characteristics and other properties were adversely affected.

本発明の非水二次電池の電極材料は、Liを吸蔵放出可能な材料を含む粒子を複数含む複合粒子と、前記複合粒子を覆い導電性を有する炭素材料を含む被覆層とを備えた非水二次電池の電極材料であって、前記電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線において、空孔分布ピークが、0.001μm以上0.2μm以下の範囲に少なくとも1つ存在することを特徴とする。   An electrode material for a non-aqueous secondary battery according to the present invention includes a composite particle including a plurality of particles including a material capable of occluding and releasing Li, and a coating layer including a carbon material that covers the composite particle and has conductivity. An electrode material of a water secondary battery, wherein a hole distribution peak is at least 1 in a range of 0.001 μm to 0.2 μm in a hole distribution curve measured using a mercury intrusion porosimeter of the electrode material. It is characterized by the existence of two.

本発明の非水二次電池の電極材料の製造方法は、(a)Liを吸蔵放出可能であって、BET式窒素吸着法により測定される比表面積が5m/g以上である材料を含む粒子を造粒することにより、複数の前記粒子を含む複合粒子を作製する工程と、(b)前記複合粒子と炭化水素系ガスとを気相中にて加熱して、前記炭化水素系ガスが熱分解して生じた炭素材料を前記複合粒子の表面に堆積させて、被覆層を形成する工程とを含むことを特徴とする。 The method for producing an electrode material for a non-aqueous secondary battery according to the present invention includes (a) a material capable of occluding and releasing Li and having a specific surface area measured by a BET nitrogen adsorption method of 5 m 2 / g or more. A step of producing composite particles containing a plurality of the particles by granulating the particles; and (b) heating the composite particles and the hydrocarbon-based gas in a gas phase, And depositing a carbon material generated by pyrolysis on the surface of the composite particle to form a coating layer.

本発明によれば、重負荷放電特性やサイクル特性等の特性が優れ、かつ高容量な非水二次電池の実現が可能な、非水二次電池の電極材料を提供できる。   According to the present invention, it is possible to provide an electrode material for a non-aqueous secondary battery that is excellent in characteristics such as heavy load discharge characteristics and cycle characteristics and that can realize a high-capacity non-aqueous secondary battery.

以下に、本発明の非水二次電池の電極材料の一例、その製造方法の一例、および本発明の非水二次電池の一例について説明する。   Below, an example of the electrode material of the non-aqueous secondary battery of this invention, an example of the manufacturing method, and an example of the non-aqueous secondary battery of this invention are demonstrated.

本実施の形態の非水二次電池の電極材料は、Liを吸蔵放出可能な材料を含む複合粒子と、複合粒子を覆い導電性を有する炭素材料を含む被覆層とを備えている。上記電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線においては、空孔分布ピークが、0.001μm以上0.2μm以下の範囲に少なくとも1つ存在している。   The electrode material of the non-aqueous secondary battery of this embodiment includes composite particles that include a material capable of occluding and releasing Li, and a coating layer that covers the composite particles and includes a conductive carbon material. In the hole distribution curve measured using the mercury intrusion porosimeter of the electrode material, at least one hole distribution peak exists in the range of 0.001 μm to 0.2 μm.

本実施の形態の非水二次電池の電極材料では、上記空孔分布ピークが、0.001μm以上0.2μm以下の範囲に少なくとも1つ存在しているので、塗料(負極合剤ペースト)の作製に用いるバインダが、上記電極材料の内部へ浸透しづらい。したがって、電極材料の製造において、複合粒子を構成する粒子として、Liに対する反応面積が大きく重負荷放電特性の優れた材料、例えば、BET式窒素吸着法により測定される比表面積(以下「BET比表面積」とも言う)が5m/g以上の粒子を用いても、上記電極材料とバインダとを含む塗料を集電体に塗布することにより形成される合剤層と、上記集電体との間に存在するバインダの量が増加するため、合剤層と集電体との接着性が向上する。したがって、本実施の形態の電極材料によれば、重負荷放電特性やサイクル特性等の特性が優れた非水二次電池の実現が可能である。 In the electrode material of the non-aqueous secondary battery of the present embodiment, since at least one of the above pore distribution peaks exists in the range of 0.001 μm to 0.2 μm, the paint (negative electrode mixture paste) The binder used for production does not easily penetrate into the electrode material. Therefore, in the production of the electrode material, as a particle constituting the composite particle, a material having a large reaction area with respect to Li and excellent in heavy load discharge characteristics, for example, a specific surface area measured by a BET nitrogen adsorption method (hereinafter referred to as “BET specific surface area” Between the mixture layer formed by applying a coating material containing the electrode material and the binder to the current collector and the current collector, even if particles of 5 m 2 / g or more are used. Since the amount of the binder present in the substrate increases, the adhesion between the mixture layer and the current collector is improved. Therefore, according to the electrode material of the present embodiment, it is possible to realize a non-aqueous secondary battery having excellent characteristics such as heavy load discharge characteristics and cycle characteristics.

空孔分布ピークが、0.001μm以上に存在することにより、電極材料に電解液が浸透しやすく、重負荷放電特性等の特性が向上し、0.2μm以下であることにより、負極合剤ペースト中のバインダが、上記電極材料の内部へ浸透しにくくなる。   When the pore distribution peak is present at 0.001 μm or more, the electrolyte solution easily penetrates into the electrode material, and the characteristics such as heavy load discharge characteristics are improved. When the pore distribution peak is 0.2 μm or less, the negative electrode mixture paste The binder inside does not easily penetrate into the electrode material.

また、本実施の形態の非水二次電池の電極材料では、複合粒子の表面が導電性の炭素材料を含む被覆層によって覆われているので、本実施の形態の非水二次電池の電極材料を用いて形成された電極における導電ネットワークは、例えば、上記複合粒子と、繊維状炭素等の炭素材料等とを単に混合して得た材料を用いて形成された電極の導電ネットワークよりも優れている。したがって、本実施の形態の電極材料によれば、高容量化された非水二次電池の実現が可能である。   Further, in the electrode material of the non-aqueous secondary battery of the present embodiment, the surface of the composite particle is covered with a coating layer containing a conductive carbon material, so the electrode of the non-aqueous secondary battery of the present embodiment The conductive network in an electrode formed using a material is superior to the conductive network of an electrode formed using a material obtained by simply mixing the composite particles and a carbon material such as fibrous carbon, for example. ing. Therefore, according to the electrode material of the present embodiment, it is possible to realize a high capacity non-aqueous secondary battery.

このように、本実施の形態の電極材料によれば、重負荷放電特性やサイクル特性等の特性が優れ、かつ高容量な非水二次電池の実現が可能である。   Thus, according to the electrode material of the present embodiment, it is possible to realize a non-aqueous secondary battery having excellent characteristics such as heavy load discharge characteristics and cycle characteristics and a high capacity.

Liを吸蔵放出可能な材料としては、結晶、低結晶およびアモルファスのいずれであってもよい。例えば、炭素材料、Liと合金化可能な元素を含む金属間化合物、Liと合金化可能な元素を含む固溶体または酸化物、Li含有遷移金属窒化物、およびLiと反応してLiOを生成する酸化物からなる群から選択される少なくとも1種の材料を含んでいることが好ましい。Liと合金化可能な元素としては、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Ge、Pb、Si、Sb、Bi等の金属元素が好ましい。 The material capable of occluding and releasing Li may be a crystal, a low crystal, or an amorphous material. For example, it reacts with carbon materials, intermetallic compounds containing elements that can be alloyed with Li, solid solutions or oxides that contain elements that can be alloyed with Li, Li-containing transition metal nitrides, and Li to produce Li 2 O. It is preferable that the material contains at least one material selected from the group consisting of oxides. As an element that can be alloyed with Li, metal elements such as Ag, Au, Zn, Cd, Al, Ga, In, Tl, Ge, Pb, Si, Sb, and Bi are preferable.

Liと合金化可能な元素を含む金属間化合物としては、例えば、Cu−Sn、Ni−Sn、Mg−Si、Co−Sb等が挙げられ、Liと合金化可能な元素を含む酸化物としては、例えば、SiOやSnO等が挙げられる。ただし、ここで挙げたSiOやSnOはSiあるいはSnとOの原子比率が1に近い状態であるものを指し、たとえばSiOについては、SiとSiOがナノレベルで複合化されたものも含む。また、若干の酸素不足や酸素過剰な状態も含み、詳細な記述で表すと、以下のような組成式になる。
組成式: SiO1−x(−0.2<x<0.2)、SnO1−x(−0.2<x<0.2)
Examples of the intermetallic compound containing an element that can be alloyed with Li include Cu—Sn, Ni—Sn, Mg—Si, and Co—Sb. Examples of the oxide containing an element that can be alloyed with Li include Examples thereof include SiO and SnO. However, SiO and SnO mentioned here refer to those in which the atomic ratio of Si or Sn and O is close to 1, for example, SiO includes a composite of Si and SiO 2 at a nano level. In addition, including the state of slight oxygen deficiency and oxygen excess, the following compositional formula is expressed in a detailed description.
Composition formula: SiO1 -x (-0.2 <x <0.2), SnO1 -x (-0.2 <x <0.2)

炭素材料としては、低結晶性炭素、カーボンナノチューブ、気相成長炭素繊維等が好ましい。これらの炭素材料について、波長514.5nmのアルゴンレーザーを用いて測定されるラマンスペクトル上の1550cm−1〜1650cm−1の振動数領域に存在するピーク強度をI1とし、1300cm−1〜1400cm−1の振動数領域に存在するピーク強度をIとしたとき、比(I/I)は、通常、0.1〜0.3である。 As the carbon material, low crystalline carbon, carbon nanotube, vapor-grown carbon fiber and the like are preferable. These carbon materials, the peak intensity existing in the frequency region of 1550 cm -1 1650 cm -1 on the Raman spectrum is measured using an argon laser with a wavelength of 514.5nm and I 1, 1300cm -1 ~1400cm - when the peak intensity existing in the first frequency region and I 2, the ratio (I 2 / I 1) is usually 0.1 to 0.3.

Li含有遷移金属窒化物としては、LiN構造を持つ、一般式Li(式中、Mは遷移金属元素で、j、k、mはj>0、k>0、m>0)で表される窒化物が好ましい。遷移金属元素としては、Co、Ni、Cu、Zn等が好ましい。代表的な組成としては、Li2.6Co0.4NやLi2.5Co0.4Ni0.1N等が挙げられる。 The Li-containing transition metal nitride has a Li 3 N structure and has the general formula Li j M k N m (where M is a transition metal element, j, k, m are j> 0, k> 0, m A nitride represented by> 0) is preferred. As the transition metal element, Co, Ni, Cu, Zn or the like is preferable. Typical compositions include Li 2.6 Co 0.4 N, Li 2.5 Co 0.4 Ni 0.1 N, and the like.

Liと合金化可能な元素を含む固溶体としては、SiにBやPをドープすることによりn型あるいはp型半導体となりSiよりも電気抵抗が大きく低下したものを用いてもよい。   As a solid solution containing an element that can be alloyed with Li, a solid solution that has an n-type or p-type semiconductor by doping B or P into Si and has a much lower electrical resistance than Si may be used.

Liと反応してLi2Oを生成する酸化物としては、MgO、SiO、SiO2、CaO、FeO、Fe、CoO、NiO、CuO、ZnO、Cu2O、Ga、GeO、GeO等の酸化物が好ましい。特に、CoOやNiOおよびSiO等の一酸化物が好ましい。SiOやGeO等の二酸化物は、導電性の低い材料が多く、さらにLiと2段階に反応するため(たとえば、SiO→SiO+LiO→Si+2LiO)、可逆性に悪影響が出る場合がある。 Examples of the oxide that reacts with Li to generate Li 2 O include MgO, SiO, SiO 2 , CaO, FeO, Fe 2 O 3 , CoO, NiO, CuO, ZnO, Cu 2 O, Ga 2 O 3 , GeO. An oxide such as GeO 2 is preferred. In particular, one oxide such as CoO, NiO and SiO is preferable. Dioxides such as SiO 2 and GeO 2 have many materials with low conductivity, and further react with Li in two stages (for example, SiO 2 → SiO + Li 2 O → Si + 2Li 2 O), so that reversibility is adversely affected. There is.

本実施の形態の非水二次電池の電極材料について、波長514.5nmのアルゴンレーザーを用いて測定されるラマンスペクトル上の1550cm−1〜1650cm−1の振動数領域に存在するピーク強度をIとし、1300cm−1〜1400cm−1の振動数領域に存在するピーク強度をIとしたとき、IとIとの比(I/I)は0.4〜1である。このラマン分光法による測定結果は、電極材料の表面、すなわち被覆層を構成する炭素材料の特性を示している。比(I/I)の値が大きいほど、結晶性が低いことを意味する。 The electrode material of the nonaqueous secondary battery of the present embodiment, the peak intensity existing in the frequency region of 1550 cm -1 1650 cm -1 on the Raman spectrum is measured using an argon laser with a wavelength of 514.5 nm I 1 and the peak intensity existing in the frequency region of 1300 cm −1 to 1400 cm −1 is I 2 , the ratio of I 2 to I 1 (I 2 / I 1 ) is 0.4 to 1 . The measurement result by this Raman spectroscopy has shown the characteristic of the surface of an electrode material, ie, the carbon material which comprises a coating layer. As the value of the ratio (I 2 / I 1) is large, it means that low crystallinity.

本実施の形態の非水二次電池の電極材料は、その内部にLiを吸蔵放出可能な材料よりも比抵抗値が小さい導電性材料を含んでいることが好ましい。複合粒子がその内部に上記導電性材料を含んでいると、より良好な導電ネットワークを形成でき、本実施の形態の電極材料を用いて作製された非水二次電池について、重負荷放電特性等の電池特性をさらに向上させることができる。   The electrode material of the non-aqueous secondary battery of the present embodiment preferably contains a conductive material having a specific resistance smaller than that of a material capable of occluding and releasing Li. When the composite particles contain the above conductive material inside, a better conductive network can be formed, and the non-aqueous secondary battery manufactured using the electrode material of the present embodiment has heavy load discharge characteristics, etc. The battery characteristics can be further improved.

導電性材料としては、繊維状またはコイル状の炭素材料、繊維状またはコイル状の金属、カーボンブラック(アセチレンブラック、ケッチェンブラックを含む)、人造黒鉛、易黒鉛化炭素および難黒鉛化炭素からなる群から選ばれる少なくとも1種が好ましい。繊維状またはコイル状の炭素材料や、繊維状またコイル状の金属は導電ネットワークを形成し易く、かつ表面積の大きい点において好ましい。カーボンブラック(アセチレンブラック、ケッチェンブラックを含む)、人造黒鉛、易黒鉛化炭素および難黒鉛化炭素は、高い電気伝導性、高い保液性を有しており、さらに、Liを吸蔵放出可能な材料を含む粒子が収縮しても、その粒子との接触を保持し易い性質を有している点において好ましい。特には、繊維状の炭素材料が好ましい。繊維状の炭素材料は、その形状が細い糸状であり柔軟性が高いため、Liを吸蔵放出可能な材料の膨張収縮に追従できるからである。さらに、嵩密度が大きいために、Liを吸蔵放出可能な材料を含む粒子と多くの接合点を持つことができるからである。繊維状の炭素としては、例えば、PAN系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、カーボンナノチューブ等、何れを用いてもよい。繊維状の炭素や繊維状の金属は、例えば、気相法にて複合粒子の表面に形成することもできる。Liを吸蔵放出可能な材料の比抵抗値が、通常、10〜10kΩcmである場合に、これらの導電性材料の比抵抗値は、通常、10−5〜10kΩcmである。 The conductive material includes a fibrous or coiled carbon material, a fibrous or coiled metal, carbon black (including acetylene black and ketjen black), artificial graphite, graphitizable carbon, and non-graphitizable carbon. At least one selected from the group is preferred. A fibrous or coiled carbon material or a fibrous or coiled metal is preferable in that it easily forms a conductive network and has a large surface area. Carbon black (including acetylene black and ketjen black), artificial graphite, graphitizable carbon and non-graphitizable carbon have high electrical conductivity and high liquid retention, and can absorb and release Li. Even if the particle | grains containing material shrink | contract, it is preferable at the point which has a property which is easy to hold | maintain the contact with the particle | grain. In particular, a fibrous carbon material is preferable. This is because the fibrous carbon material has a thin thread shape and high flexibility, and can follow expansion and contraction of a material capable of occluding and releasing Li. Further, since the bulk density is large, it can have many junctions with particles containing a material capable of occluding and releasing Li. As the fibrous carbon, for example, any of PAN-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, carbon nanotube, and the like may be used. Fibrous carbon or fibrous metal can also be formed on the surface of the composite particles by, for example, a gas phase method. When the specific resistance value of the material capable of occluding and releasing Li is usually 10 3 to 10 7 kΩcm, the specific resistance value of these conductive materials is usually 10 −5 to 10 kΩcm.

また、本実施の形態の非水二次電池の電極材料は、被覆層を覆い難黒鉛化炭素を含む材料層をさらに含んでいてもよい。   Moreover, the electrode material of the nonaqueous secondary battery according to the present embodiment may further include a material layer that covers the coating layer and contains non-graphitizable carbon.

次に、本実施の形態の非水二次電池の電極材料の製造方法について説明する。   Next, the manufacturing method of the electrode material of the nonaqueous secondary battery of this Embodiment is demonstrated.

まず、Liを吸蔵放出可能な材料を含む粒子が分散媒に分散された分散液を用意し、それを噴霧し乾燥して、複数の粒子を含む複合粒子を作製する。分散媒としては、例えば、エタノール等を用いることができる。分散液の噴霧は、通常、50〜300℃の雰囲気内で行うことが適当である。上記の方法以外にも、ボールミルやロッドミルなどを用いた機械的な方法による造粒方法においても、同様の複合粒子を作製することができる。   First, a dispersion liquid in which particles containing a material capable of occluding and releasing Li are dispersed in a dispersion medium is prepared, and sprayed and dried to produce composite particles containing a plurality of particles. For example, ethanol or the like can be used as the dispersion medium. It is appropriate to spray the dispersion in an atmosphere of 50 to 300 ° C. In addition to the above method, similar composite particles can be produced by a granulation method using a mechanical method using a ball mill, a rod mill, or the like.

本実施の形態の非水二次電池の電極材料の製造方法において、Liを吸蔵放出可能な材料を含む粒子が分散媒に分散された分散液を用意する際に、分散媒は、上記粒子に加えて上記粒子よりも比抵抗値の小さい導電性材料をさらに添加してもよい。上記粒子と、導電性材料とが分散媒に分散された分散液を噴霧し乾燥して、内部に導電性材料を含む前記複合粒子を作製すれば、より良好な導電ネットワークが構築された電極材料を作製できる。これについても、ボールミルやロッドミルなどを用いた機械的な方法による造粒方法において、同様の複合粒子を作製することができる。   In the method for manufacturing an electrode material for a non-aqueous secondary battery according to the present embodiment, when preparing a dispersion liquid in which particles containing a material capable of occluding and releasing Li are dispersed in a dispersion medium, the dispersion medium is applied to the particles. In addition, a conductive material having a specific resistance smaller than that of the particles may be further added. If the composite particles containing the conductive material are produced by spraying and drying a dispersion liquid in which the particles and the conductive material are dispersed in a dispersion medium, a better conductive network is constructed. Can be produced. Also for this, similar composite particles can be produced in a granulation method by a mechanical method using a ball mill or a rod mill.

複合粒子を構成する粒子のBET比表面積は5m/g以上であることを要する。BET比表面積は5m/g未満であると、Liとの反応面積が不十分であるため、重負荷放電特性の優れた非水二次電池を実現できないからである。尚、比表面積の上限について特に制限はないが、通常、1000m/g以下であることが好ましい。 The BET specific surface area of the particles constituting the composite particles needs to be 5 m 2 / g or more. This is because if the BET specific surface area is less than 5 m 2 / g, the reaction area with Li is insufficient, so that a non-aqueous secondary battery with excellent heavy load discharge characteristics cannot be realized. In addition, although there is no restriction | limiting in particular about the upper limit of a specific surface area, Usually, it is preferable that it is 1000 m < 2 > / g or less.

また、粒子のBET比表面積が5m/g以上、特に、10m/g以上、すなわち、粒子の形状が球形であると仮定して、平均粒径が0.5μm以下、特に、0.2μm以下であると、Liを吸蔵放出可能な材料が、Liと合金化可能な元素を含有する材料である場合、その材料の充放電に伴う微粉化が起こりにくい。これは、Li挿入に伴う粒子内の応力緩和が粒子表面で行われるため、比表面積の大きい微粒子の方が粒子内部にかかる応力が小さいからである。 Further, assuming that the particles have a BET specific surface area of 5 m 2 / g or more, particularly 10 m 2 / g or more, that is, assuming that the shape of the particles is spherical, the average particle size is 0.5 μm or less, particularly 0.2 μm. In the case of the following, when the material capable of occluding and releasing Li is a material containing an element that can be alloyed with Li, pulverization due to charging / discharging of the material hardly occurs. This is because the stress applied to the inside of the particle is smaller in the fine particle having a larger specific surface area because the stress relaxation in the particle accompanying the Li insertion is performed on the particle surface.

平均粒径が0.5μm以下の粒子は、Liを吸蔵放出可能な材料を湿式または乾式にて粉砕して得ることができる。なかでも、湿式にて粉砕することが好ましい。乾式ジェットミル等による乾式粉砕では、材料を均等性よく粉砕することが困難であり、得られた粒子も再凝集してしまう。湿式にて粉砕すれば、酸化物を均等性よく粉砕することができ、粉砕した粒子の再凝集も抑制できる。また、湿式にて粉砕すれば、作業の安全性も確保できる。複合粒子の内部に導電性材料を含む形態の電極材料の作製に際しては、Liを吸蔵放出可能な材料と導電性材料とを湿式にて粉砕すれば、Liを吸蔵放出可能な材料の粒子と導電性材料とを均一性よく混合でき、内部により良好な導電ネットワークが構築された複合粒子を作製できる。湿式粉砕の際に用いる溶媒としては、例えば、水、エタノール等のアルコール類、トルエン等を用いることができる。   Particles having an average particle size of 0.5 μm or less can be obtained by pulverizing a material capable of occluding and releasing Li in a wet or dry manner. Especially, it is preferable to grind | pulverize wet. In dry pulverization using a dry jet mill or the like, it is difficult to pulverize the material with good uniformity, and the obtained particles also reaggregate. If wet pulverization is performed, the oxide can be pulverized with good uniformity, and reaggregation of the pulverized particles can be suppressed. Moreover, if it grind | pulverizes with a wet process, the safety | security of work can also be ensured. When producing an electrode material having a conductive material inside the composite particles, if the material capable of occluding and releasing Li and the conductive material are pulverized in a wet manner, the particles of the material capable of occluding and releasing Li are electrically conductive. It is possible to produce composite particles in which a good conductive network is built in the inside of the conductive material with good uniformity. As the solvent used in the wet pulverization, for example, water, alcohols such as ethanol, toluene and the like can be used.

次に、複合粒子と炭化水素系ガスとを気相中にて加熱して、炭化水素系ガスが熱分解して生じた炭素材料を、複合粒子の表面上に堆積させる。このように、気相成長(CVD)法によれば、炭化水素系ガスが複合粒子の隅々にまで行き渡り、複合粒子の表面や、表面の空孔内に、導電性を有する炭素材料を含む薄くて均一な皮膜(被覆層)を形成でき、少量の炭素材料によって、複合粒子に対して均一性よく導電性を付与できる。   Next, the composite particles and the hydrocarbon-based gas are heated in a gas phase, and a carbon material generated by thermal decomposition of the hydrocarbon-based gas is deposited on the surface of the composite particles. As described above, according to the vapor deposition (CVD) method, the hydrocarbon-based gas spreads to every corner of the composite particle, and includes a carbon material having conductivity in the surface of the composite particle and in the pores of the surface. A thin and uniform film (coating layer) can be formed, and a small amount of carbon material can impart conductivity to the composite particles with good uniformity.

本実施の形態の電極材料の製造方法において、気相成長(CVD)法の処理温度(雰囲気温度)については、炭化水素系ガスの種類によっても異なるが、通常、600℃〜1000℃が適当であるが、700℃以上、さらには800℃以上であることが好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い炭素材料を含む被覆層を形成できるからである。但し、処理温度は、Liを吸蔵放出可能な材料の融点以下であることを要する。   In the manufacturing method of the electrode material of the present embodiment, the processing temperature (atmosphere temperature) of the vapor phase growth (CVD) method varies depending on the type of hydrocarbon-based gas, but usually 600 ° C. to 1000 ° C. is appropriate. However, it is preferably 700 ° C. or higher, more preferably 800 ° C. or higher. This is because the higher the treatment temperature, the less the remaining impurities, and the formation of a coating layer containing a highly conductive carbon material. However, the processing temperature needs to be lower than the melting point of the material capable of occluding and releasing Li.

炭化水素系ガスの液体ソースとしては、トルエン、ベンゼン、キシレン、メシチレン等を用いることができるが、特には、取り扱い易いトルエンが好ましい。これらを気化させることにより炭化水素系ガスを得ることができる。また、メタンガスなどを直接用いることもできる。   As the liquid source of the hydrocarbon-based gas, toluene, benzene, xylene, mesitylene and the like can be used, and in particular, toluene that is easy to handle is preferable. A hydrocarbon-based gas can be obtained by vaporizing these. Moreover, methane gas etc. can also be used directly.

本実施の形態の電極材料の製造方法では、気相成長(CVD)法にて複合粒子の表面を炭素材料で覆った後に、石油系ピッチ、石炭系のピッチ、熱硬化製樹脂、およびナフタレンスルホン酸塩とアルデヒド類との縮合物からなる群から選択される少なくとも1種の有機化合物を被覆層に付着させた後、上記有機化合物が付着した複合粒子を焼成してもよい。具体的には、炭素材料によって覆われた複合粒子と、上記有機化合物とが分散媒に分散された分散液を用意し、その分散液を噴霧し乾燥して、有機化合物によって被覆された複合粒子を形成し、その有機化合物によって被覆された複合粒子を焼成する。上記ピッチとしては、等方性ピッチを、熱硬化製樹脂としてはフェノール樹脂、フラン樹脂、フルフラール樹脂等を用いることができる。ナフタレンスルホン酸塩とアルデヒド類との縮合物としては、ナフタレンスルホン酸ホルムアルデヒド縮合物を用いることができる。   In the electrode material manufacturing method of the present embodiment, the surface of the composite particles is covered with a carbon material by a vapor deposition (CVD) method, and then petroleum-based pitch, coal-based pitch, thermosetting resin, and naphthalene sulfone are used. After at least one organic compound selected from the group consisting of condensates of acid salts and aldehydes is attached to the coating layer, the composite particles to which the organic compound is attached may be fired. Specifically, composite particles covered with a carbon material and a dispersion liquid in which the organic compound is dispersed in a dispersion medium are prepared, the dispersion liquid is sprayed and dried, and the composite particles are coated with the organic compound. And the composite particles coated with the organic compound are fired. An isotropic pitch can be used as the pitch, and a phenol resin, a furan resin, a furfural resin, or the like can be used as the thermosetting resin. As the condensate of naphthalene sulfonate and aldehydes, naphthalene sulfonic acid formaldehyde condensate can be used.

分散媒としては、例えば、水、エタノール等のアルコール類を用いることができる。分散液の噴霧は、通常、50〜300℃の雰囲気内で行うことが適当である。焼成温度は、通常、600〜1000℃が適当であるが、700℃以上、さらには800℃以上であることが好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い良質な炭素材料を含む被覆層を形成できるからである。但し、処理温度は、Liを吸蔵放出可能な材料の融点以下であることを要する。   As the dispersion medium, for example, alcohols such as water and ethanol can be used. It is appropriate to spray the dispersion in an atmosphere of 50 to 300 ° C. The firing temperature is usually 600 to 1000 ° C., but preferably 700 ° C. or higher, more preferably 800 ° C. or higher. This is because the higher the processing temperature, the less the remaining impurities, and the formation of a coating layer containing a high-quality carbon material with high conductivity. However, the processing temperature needs to be lower than the melting point of the material capable of occluding and releasing Li.

次に、本実施の形態の電極材料を用いた非水二次電池の一例について説明する。
本実施の形態の非水二次電池は、本実施の形態の電極材料を用いたこと以外は、従来から知られた一般的な非水二次電池と同様の構造をしており、形状等についても制限はない。例えば、コイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型、電気自動車等に用いる大型のもの等いずれであってもよい。
Next, an example of a non-aqueous secondary battery using the electrode material of the present embodiment will be described.
The non-aqueous secondary battery of the present embodiment has the same structure as a conventional non-aqueous secondary battery known in the art, except that the electrode material of the present embodiment is used, and the shape, etc. There are no restrictions on the. For example, any of a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, a square type, a large type used for an electric vehicle, etc. may be used.

本実施の形態の非水二次電池では、本実施の形態の電極材料を負極の材料として用いる。負極は、本実施の形態の電極材料と、バインダ(結着剤)等とを含む混合物に、適当な溶剤を加えて十分に混練して得た負極合剤ペーストを、集電体に塗布し、その負極合剤ペーストを所定の厚さおよび所定の電極密度に制御することにより形成できる。上記混合物には、さらに導電助剤を添加してもよい。   In the nonaqueous secondary battery of the present embodiment, the electrode material of the present embodiment is used as a negative electrode material. The negative electrode is obtained by applying a negative electrode mixture paste obtained by sufficiently kneading an appropriate solvent to a mixture containing the electrode material of the present embodiment and a binder (binder). The negative electrode mixture paste can be formed by controlling to a predetermined thickness and a predetermined electrode density. You may add a conductive support agent to the said mixture further.

導電助剤としては、非水二次電池において化学変化を起こさない電子伝導性材料であれば特に限定されない。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛等)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属粉(銅、ニッケル、アルミニウム、銀等)、金属繊維およびポリフェニレン誘導体(特開昭59−20971号公報に記載)等の材料を1種、または2種以上用いることができる。   The conductive auxiliary agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the nonaqueous secondary battery. Usually, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver, etc.), metal fiber and One or more materials such as polyphenylene derivatives (described in JP-A-59-20971) can be used.

バインダとしては、通常、でんぷん、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルクロリド、ポリビニルピロリドン、ポリテトラフルオロエチレン、ポリ弗化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシド等の多糖類、熱可塑性樹脂、その他のゴム状弾性を有するポリマー等や、これらの変成体のうち少なくとも1種または2種以上を用いることができる。   As the binder, starch, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene-dienter Polymer (EPDM), sulfonated EPDM, styrene butadiene rubber, butadiene rubber, polybutadiene, fluoro rubber, polyethylene oxide and other polysaccharides, thermoplastic resins, other polymers having rubbery elasticity, etc., and at least of these modified products 1 type (s) or 2 or more types can be used.

正極は、正極活物質と導電助剤とバインダとを含む混合物に、適当な溶剤を加えて十分に混練して得た正極合剤ペーストを、集電体に塗布し、所定の厚さおよび所定の電極密度に制御することにより形成できる。   For the positive electrode, a positive electrode mixture paste obtained by adding a suitable solvent to a mixture containing a positive electrode active material, a conductive additive and a binder and kneading the mixture sufficiently is applied to a current collector, and has a predetermined thickness and a predetermined thickness. It can be formed by controlling the electrode density.

正極活物質としては、特に制限はなく各種のものを使用できるが、特に、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo1−y、LiNi1−y、LiMnNiCo1−y−z、LiMn、LiMn2−y(Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、AlおよびCrからなる群から選ばれる少なくとも一種。0≦x≦1.1、0<y<1.0、2.0≦z≦2.2)等のLi含有遷移金属酸化物が好適である。 There are no particular limitations on the positive electrode active material, and various materials can be used. In particular, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O 2, Li x Ni 1-y M y O 2, Li x Mn y Ni z Co 1-y-z O 2, Li x Mn 2 O 4, Li x Mn 2-y M y O 4 (M is at least one selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, Al and Cr. 0 ≦ x ≦ 1.1, 0 <y <1.0, 2.0 ≦ Li-containing transition metal oxides such as z ≦ 2.2) are preferred.

バインダについては、負極1の形成に用いたバインダと同様のものを用いることができる。導電助剤についても、負極1の形成に用いた導電助剤と同様のものを用いることができる。   About the binder, the thing similar to the binder used for formation of the negative electrode 1 can be used. As the conductive auxiliary agent, the same conductive auxiliary agent used for forming the negative electrode 1 can be used.

セパレータ3としては、強度が十分で且つ電解液を多く保持できるものが良く、そのような観点から、厚さが10〜50μmで開口率が30〜70%のポリエチレン、ポリプロピレン、またはエチレン−プロピレン共重合体を含む微多孔フィルムや不織布等が好ましい。   As the separator 3, it is preferable that the separator 3 has sufficient strength and can hold a large amount of electrolyte solution. From such a viewpoint, polyethylene, polypropylene, or ethylene-propylene copolymer having a thickness of 10 to 50 μm and an aperture ratio of 30 to 70% is preferable. A microporous film or a nonwoven fabric containing a polymer is preferred.

電解液としては、下記の溶媒中に下記の無機イオン塩を溶解させることによって調製したものが使用できる。   As the electrolytic solution, one prepared by dissolving the following inorganic ion salt in the following solvent can be used.

溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート(MEC)、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトン等の非プロトン性有機溶媒を1種、または2種以上用いることができる。   Examples of the solvent include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate (MEC), γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl- Aprotic organic solvents such as 2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, diethyl ether, 1,3-propane sultone May be used alone, or two or more.

無機イオン塩としては、Li塩、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、低級脂肪族カルボン酸Li、LiAlCl、LiCl、LiBr、LiI、クロロボランLi、四フェニルホウ酸Li等を1種、または2種以上用いることができる。 As the inorganic ion salt, Li salt, for example, LiClO 4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, lower aliphatic carboxylic acids Li, LiAlCl 4 , LiCl, LiBr, LiI, chloroborane Li, Li tetraphenylborate, or the like can be used alone or in combination.

上記溶媒中に上記無機イオン塩が溶解された電解液のうち、なかでも、1,2−ジメトキシエタン、ジエチルカーボネートおよびメチルエチルカーボネートからなる群から選ばれる少なくとも1種と、エチレンカーボネートまたはプロピレンカーボネートとを含む溶媒に、LiClO、LiBF、LiPF、およびLiCFSOから選ばれる少なくとも1種の無機イオン塩を溶解した電解液が好ましい。電解液中の無機イオン塩の濃度は、0.2〜3.0mol/dmが適当である。 Among the electrolytic solutions in which the inorganic ion salt is dissolved in the solvent, among them, at least one selected from the group consisting of 1,2-dimethoxyethane, diethyl carbonate and methyl ethyl carbonate, ethylene carbonate or propylene carbonate, An electrolyte solution in which at least one inorganic ionic salt selected from LiClO 4 , LiBF 4 , LiPF 6 , and LiCF 3 SO 3 is dissolved in a solvent containing is preferable. The concentration of the inorganic ion salt in the electrolytic solution is suitably 0.2 to 3.0 mol / dm 3 .

以下、実施例により本発明をさらに詳しく説明する。ただし、本発明はこれらの実施例に限定されるものではない。尚、以下の実施例において、複合粒子の平均粒径は、マイクロトラック社製MICROTRAC HRA(Model:9320−X100)を用いてレーザー回折式粒度分布測定法により測定し、BET比表面積は、マイクロメリティクス社製BET法式比表面積計ASAP2000を用いて測定した。電極材料の空孔分布は、水銀圧入式ポロシメータ(島津製作所社製、AutoporeIV9500)を用いて測定した。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples. In the following examples, the average particle size of the composite particles was measured by a laser diffraction particle size distribution measurement method using MICROTRAC HRA (Model: 9320-X100) manufactured by Microtrack, and the BET specific surface area was It was measured using a BET method specific surface area meter ASAP2000 manufactured by Tics. The pore distribution of the electrode material was measured using a mercury intrusion porosimeter (manufactured by Shimadzu Corporation, Autopore IV9500).

(実施例1)
低結晶性炭素粉末(BET比表面積10m/g、平均粒径1.0μm)を原料とし、撹拌式の転動造粒機(ホソカワミクロン社製、アグロマスタ)を用いて複合粒子を作製した。その複合粒子の平均粒径は20μmであった。続いて、複合粒子10gを沸騰床床反応器中で約1000℃に加熱し、加熱された複合粒子にベンゼンと窒素ガスとからなる25℃の混合ガスを接触させ、1000℃で60分間CVD処理を行った。このようにして、上記混合ガスが熱分解して生じた炭素材料(以下「CVD炭素」ともいう)を複合粒子に堆積させて被覆層を形成し、電極材料を得た。
(Example 1)
Composite particles were produced using a low-crystalline carbon powder (BET specific surface area of 10 m 2 / g, average particle size of 1.0 μm) as a raw material and using a stirring-type rolling granulator (manufactured by Hosokawa Micron Corporation, Agromaster). The average particle size of the composite particles was 20 μm. Subsequently, 10 g of the composite particles are heated to about 1000 ° C. in a boiling bed reactor, a mixed gas of 25 ° C. composed of benzene and nitrogen gas is brought into contact with the heated composite particles, and CVD treatment is performed at 1000 ° C. for 60 minutes. Went. In this way, a carbon material (hereinafter also referred to as “CVD carbon”) generated by thermally decomposing the mixed gas was deposited on the composite particles to form a coating layer, thereby obtaining an electrode material.

被覆層形成前後の重量変化から電極材料の組成を算出したところ、低結晶性炭素粉末:CVD炭素=90:10(重量比)であった。電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線において、空孔分布ピークは0.05μmに存在していた。   When the composition of the electrode material was calculated from the change in weight before and after the coating layer was formed, it was low crystalline carbon powder: CVD carbon = 90: 10 (weight ratio). In the hole distribution curve measured using the mercury intrusion porosimeter of the electrode material, the hole distribution peak was present at 0.05 μm.

また、ラマン分光法により電極材料の表面の分析を行ったところ、ラマンスペクトル上の振動数1590cm−1に存在するピーク強度をIとし、1350cm−1に存在するピーク強度をIとしたとき、比(I/I)は0.6であった。尚、光源には、波長514.5nmのアルゴンレーザーを用いた。 Furthermore, was analyzed on the surface of the electrode material by Raman spectroscopy, the peak intensity existing in the frequency 1590 cm -1 on the Raman spectrum and I 1, when the peak intensity existing in the 1350 cm -1 was I 2 The ratio (I 2 / I 1 ) was 0.6. An argon laser having a wavelength of 514.5 nm was used as the light source.

次に、上記電極材料を用いて、コイン型の非水二次電池を作製した。まず、電極材料90重量%と、導電助剤としてケッチェンブラック(BET比表面積800m/g、平均粒径0.05μm)2重量%と、バインダとしてポリフッ化ビニリデン8重量%と、脱水N−メチルピロリドンとを混合して得たスラリーを、銅箔からなる集電体(図示せず)に塗布し、乾燥後圧延して、集電体の一方の面に厚み50μmの負極合剤層を形成した。その後、直径16mmに打ち抜き、真空で24時間乾燥させて、円盤状の負極1を得た。負極合剤層の銅箔に対する接着性は良好であり、裁断したり折り曲げても、負極合剤層は銅箔から剥がれることはなかった。一方、対極として、円盤状の金属Li(直径16mm、厚み0.5mm)を用意した。 Next, a coin-type non-aqueous secondary battery was manufactured using the electrode material. First, 90% by weight of electrode material, 2% by weight of ketjen black (BET specific surface area 800 m 2 / g, average particle size 0.05 μm) as a conductive auxiliary, 8% by weight of polyvinylidene fluoride as a binder, dehydrated N— The slurry obtained by mixing with methylpyrrolidone was applied to a current collector (not shown) made of copper foil, dried and rolled, and a negative electrode mixture layer having a thickness of 50 μm was formed on one surface of the current collector. Formed. Thereafter, it was punched to a diameter of 16 mm and dried in a vacuum for 24 hours to obtain a disc-shaped negative electrode 1. The adhesion of the negative electrode mixture layer to the copper foil was good, and the negative electrode mixture layer was not peeled off from the copper foil even when cut or bent. On the other hand, a disk-shaped metal Li (diameter 16 mm, thickness 0.5 mm) was prepared as a counter electrode.

次に、ステンレス製の収納容器に導電性接着剤を用いて上記負極を接着し、負極の上にセパレータと対極とをこの順で配置した後、電解液0.2mlを収納容器内に注入し、ガスケット付きの封口体にて収納容器内を密閉して、コイン型電池を得た。尚、セパレータには微孔性ポリプロピレンフィルムを、電解液にはプロピレンカーボネートとジメチルカーボネートとを1:1の体積比で混合した溶媒に、濃度が1mol/dmとなるようにLiPFを溶解した溶液を用いた。 Next, the negative electrode is adhered to a stainless steel storage container using a conductive adhesive, and a separator and a counter electrode are arranged in this order on the negative electrode, and then 0.2 ml of an electrolyte is injected into the storage container. The inside of the storage container was sealed with a sealing body with a gasket to obtain a coin-type battery. In addition, LiPF 6 was dissolved in a solvent in which a microporous polypropylene film was mixed as a separator and propylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1 in an electrolyte so that the concentration became 1 mol / dm 3 . The solution was used.

得られたコイン型電池の、初回の充放電効率([1サイクル目の放電容量/1サイクル目の充電容量]×100)は80%であり、2サイクル目の放電容量は電極材料1g当り800mAhであり、100サイクル目の容量維持率は75%であり、重負荷放電特性は90%であった。   The obtained coin-type battery had an initial charge / discharge efficiency ([discharge capacity at the first cycle / charge capacity at the first cycle] × 100) of 80%, and the discharge capacity at the second cycle was 800 mAh per gram of electrode material. The capacity retention rate at the 100th cycle was 75%, and the heavy load discharge characteristics were 90%.

尚、初回の充放電効率、2サイクル目の放電容量、および100サイクル目の容量維持率、重負荷放電特性を調べるにあたり、コイン型電池は、下記の方法に従って充放電した。充電は、電流密度を0.5mA/cmとして定電流で行い、充電電圧が50mVに達した後、電流密度が1/10となるまで定電圧で行った。放電は、電流密度を0.5mA/cmとして定電流で行い、放電終止電圧は1.5Vとした。これを1サイクルとして、100サイクル目の容量維持率は下記の数式1(数1)により算出した。
(数1)
容量維持率(%)=(100サイクル目の放電容量/2サイクル目の放電容量)×100
In order to examine the initial charge / discharge efficiency, the discharge capacity at the second cycle, the capacity retention rate at the 100th cycle, and the heavy load discharge characteristics, the coin-type battery was charged and discharged according to the following method. Charging was performed at a constant current with a current density of 0.5 mA / cm 2 , and was performed at a constant voltage until the current density reached 1/10 after the charging voltage reached 50 mV. The discharge was performed at a constant current with a current density of 0.5 mA / cm 2 , and the final discharge voltage was 1.5V. With this as one cycle, the capacity retention rate at the 100th cycle was calculated by the following formula 1 (Equation 1).
(Equation 1)
Capacity retention rate (%) = (discharge capacity at the 100th cycle / discharge capacity at the second cycle) × 100

重負荷放電特性は、上記の充放電方法に従って2サイクル目の放電容量(放電容量1とする)を求め、上記の充放電方法において、放電時の電流密度0.5mA/cmを5mA/cmでとした場合の2サイクル目の放電容量(放電容量2とする)を求め、下記の数式2(数2)により算出した。この値が大きいほど、大電流時の放電特性は良い。
(数2)
重負荷放電特性(%)=(放電容量1/放電容量2)×100
The heavy load discharge characteristics are obtained by determining the discharge capacity at the second cycle (referred to as discharge capacity 1) according to the above charge / discharge method. In the above charge / discharge method, the current density at discharge is 0.5 mA / cm 2 to 5 mA / cm 2. seeking second cycle discharge capacity in the case of a 2 (a discharge capacity 2) was calculated by equation 2 (equation 2) below. The larger this value, the better the discharge characteristics at high current.
(Equation 2)
Heavy load discharge characteristics (%) = (discharge capacity 1 / discharge capacity 2) × 100

(実施例2)
Si0.70.3金属固溶体粉末(BET比表面積16m/g、平均粒径0.2μm)と、繊維状炭素(BET比表面積35m/g、平均長さ2μm、平均直径0.08μm)と、ポリビニルピロリドン10gとを、エタノール1L中にて混合し、これらをさらに湿式のジェットミルにて混合してスラリーを得た。スラリーの作製に用いたSi0.70.3と繊維状炭素(CF)との総重量は100gとし、重量比は、Si0.70.3金属固溶体粉末:CF=70:30とした。次に、スラリーを用いてスプレードライ法(雰囲気温度2000℃)にて複合粒子を作製した。複合粒子の平均粒径は10μmであった。続いて、複合粒子10gを沸騰床反応器中で約1000℃に加熱し、加熱された複合粒子にベンゼンと窒素ガスとからなる25℃の混合ガスを接触させ、1000℃で60分間CVD処理を行った。このようにして、上記混合ガスが熱分解して生じた炭素材料を複合粒子に堆積させて被覆層を形成し、電極材料を得た。
(Example 2)
Si 0.7 B 0.3 metal solid solution powder (BET specific surface area 16 m 2 / g, average particle size 0.2 μm) and fibrous carbon (BET specific surface area 35 m 2 / g, average length 2 μm, average diameter 0. 08 μm) and 10 g of polyvinylpyrrolidone were mixed in 1 L of ethanol, and these were further mixed in a wet jet mill to obtain a slurry. The total weight of Si 0.7 B 0.3 and fibrous carbon (CF) used for the preparation of the slurry was 100 g, and the weight ratio was Si 0.7 B 0.3 metal solid solution powder: CF = 70: 30 It was. Next, composite particles were produced using a slurry by a spray drying method (atmospheric temperature 2000 ° C.). The average particle size of the composite particles was 10 μm. Subsequently, 10 g of the composite particles are heated to about 1000 ° C. in a boiling bed reactor, a mixed gas of 25 ° C. composed of benzene and nitrogen gas is brought into contact with the heated composite particles, and a CVD treatment is performed at 1000 ° C. for 60 minutes. went. In this way, a carbon material generated by thermal decomposition of the mixed gas was deposited on the composite particles to form a coating layer, and an electrode material was obtained.

被覆層形成前後の重量変化から電極材料の組成を算出したところ、Si0.70.3金属固溶体粉:CF:CVD炭素=63:27:10(重量比)であった。電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線において、空孔分布ピークが0.08μmに存在していた。 When the composition of the electrode material was calculated from the change in weight before and after the coating layer was formed, it was Si 0.7 B 0.3 metal solid solution powder: CF: CVD carbon = 63: 27: 10 (weight ratio). In the hole distribution curve measured using the mercury intrusion porosimeter of the electrode material, a hole distribution peak was present at 0.08 μm.

また、実施例1と同様にラマン分光法により電極材料の表面の分析を行ったところ、ラマンスペクトル上の振動数1590cm−1に存在するピーク強度をI1とし、1350cm−1に存在するピーク強度をIとしたとき、比(I/I)は0.58であった。 Furthermore, was analyzed on the surface of the electrode material by Raman spectroscopy as in Example 1, a peak intensity existing in the frequency 1590 cm -1 on the Raman spectrum and I 1, the peak exists in the 1350 cm -1 strength the when the I 2, the ratio (I 2 / I 1) was 0.58.

次に、得られた電極材料を用いて実施例1と同様にして負極を作製し、コイン型電池を作製した。負極合剤層の銅箔に対する接着性は良好であり、裁断したり折り曲げても、負極合剤層は銅箔から剥がれなかった。   Next, using the obtained electrode material, a negative electrode was produced in the same manner as in Example 1 to produce a coin-type battery. The adhesion of the negative electrode mixture layer to the copper foil was good, and the negative electrode mixture layer did not peel from the copper foil even when cut or bent.

コイン型電池について、初回の充放電効率は90%であり、2サイクル目の放電容量は電極材料1g当り950mAhであり、100サイクル目の容量維持率は90%であり、重負荷放電特性は90%であった。   For the coin-type battery, the initial charge / discharge efficiency is 90%, the discharge capacity at the second cycle is 950 mAh per gram of electrode material, the capacity retention rate at the 100th cycle is 90%, and the heavy load discharge characteristic is 90%. %Met.

尚、初回の充放電効率、2サイクル目の放電容量、および100サイクル目の容量維持率、重負荷放電特性を調べるにあたり、コイン型電池は下記の方法に従って充放電した。充電は、電流密度を0.5mA/cmとして定電流で行い、充電電圧が120mVに達した後、電流密度が1/10となるまで定電圧で充電を行った。放電は、電流密度を0.5mA/cmとして定電流で行い、放電終止電圧は1.5Vとした。これを1サイクルとして、初回の充放電効率、2サイクル目の放電容量、100サイクル目の容量維持率、重負荷放電特性は、実施例1と同様にして求めた。 In order to examine the initial charge and discharge efficiency, the discharge capacity at the second cycle, the capacity retention rate at the 100th cycle, and the heavy load discharge characteristics, the coin-type battery was charged and discharged according to the following method. Charging was performed at a constant current with a current density of 0.5 mA / cm 2 , and after the charging voltage reached 120 mV, charging was performed at a constant voltage until the current density reached 1/10. The discharge was performed at a constant current with a current density of 0.5 mA / cm 2 , and the final discharge voltage was 1.5V. With this as one cycle, the initial charge / discharge efficiency, the discharge capacity at the second cycle, the capacity retention rate at the 100th cycle, and the heavy load discharge characteristics were determined in the same manner as in Example 1.

(実施例3)
Si0.70.3金属固溶体粉末(BET比表面積28m/g、平均粒径0.15μm)と、ケッチェンブラック(BET比表面積800m/g、平均粒径0.05μm)と、ポリビニルピロリドン10gとを、エタノール1L中にて混合し、これらをさらに湿式のジェットミルにて混合してスラリーを得た。スラリーの作製に用いたSi0.70.3とケッチェンブラック(KB)との総重量は100gとし、重量比は、Si0.70.3:KB=70:30とした。次に、スラリーを用いてスプレードライ法(雰囲気温度200℃)にて複合粒子を作製した。複合粒子の平均粒径は5μmであった。続いて、複合粒子10gを沸騰床反応器中で約1000℃に加熱し、加熱された複合粒子にベンゼンと窒素ガスとからなる25℃の混合ガスを接触させ、1000℃で60分間CVD処理を行った。このようにして、上記混合ガスが熱分解して生じた炭素材料を複合粒子に堆積させて被覆層を形成し、電極材料を得た。
(Example 3)
Si 0.7 B 0.3 metal solid solution powder (BET specific surface area 28 m 2 / g, average particle size 0.15 μm), ketjen black (BET specific surface area 800 m 2 / g, average particle size 0.05 μm), 10 g of polyvinyl pyrrolidone was mixed in 1 L of ethanol, and these were further mixed by a wet jet mill to obtain a slurry. The total weight of Si 0.7 B 0.3 and ketjen black (KB) used for the preparation of the slurry was 100 g, and the weight ratio was Si 0.7 B 0.3 : KB = 70: 30. Next, composite particles were produced using a slurry by a spray drying method (atmospheric temperature 200 ° C.). The average particle size of the composite particles was 5 μm. Subsequently, 10 g of the composite particles are heated to about 1000 ° C. in a boiling bed reactor, a mixed gas of 25 ° C. composed of benzene and nitrogen gas is brought into contact with the heated composite particles, and a CVD treatment is performed at 1000 ° C. for 60 minutes. went. In this way, a carbon material generated by thermal decomposition of the mixed gas was deposited on the composite particles to form a coating layer, and an electrode material was obtained.

実施例1と同様にして、被覆層によって覆われた複合粒子について、ラマン分光法によりその表面の分析を行ったところ、ラマンスペクトル上の振動数1590cm−1に存在するピーク強度をIとし、1350cm−1に存在するピーク強度をIとしたとき、比(I/I)は0.62であった。 When the surface of the composite particles covered with the coating layer was analyzed by Raman spectroscopy in the same manner as in Example 1, the peak intensity existing at a frequency of 1590 cm −1 on the Raman spectrum was I 1 , When the peak intensity existing at 1350 cm −1 was I 2 , the ratio (I 2 / I 1 ) was 0.62.

続いて、被覆層によって覆われた複合粒子100gと、フェノール樹脂40gとをエタノール1L中に分散し、その分散液を噴霧し乾燥して(雰囲気温度200℃)、被覆層によって覆われた複合粒子の表面をフェノール樹脂にてコーティングした。その後、コーティングされた複合粒子を1000℃で焼成して、被覆層を覆い難黒鉛化炭素を含む材料層を形成し、電極材料を得た。   Subsequently, 100 g of composite particles covered with the coating layer and 40 g of phenol resin are dispersed in 1 L of ethanol, the dispersion is sprayed and dried (atmospheric temperature 200 ° C.), and the composite particles covered with the coating layer The surface of was coated with phenolic resin. Thereafter, the coated composite particles were baked at 1000 ° C. to form a material layer that covered the coating layer and contained non-graphitizable carbon, thereby obtaining an electrode material.

被覆層形成前後および難黒鉛化炭素を含む材料層前後の重量変化から、電極材料の組成を算出したところ、Si0.70.3金属固溶体粉:KB:CVD炭素:難黒鉛化炭素=50:20:15:15(重量比)であった。電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線において、空孔分布ピークが0.064μmに存在していた。 The composition of the electrode material was calculated from the weight change before and after the formation of the coating layer and before and after the material layer containing non-graphitizable carbon. Si 0.7 B 0.3 metal solid solution powder: KB: CVD carbon: non-graphitizable carbon = 50: 20: 15: 15 (weight ratio). In the hole distribution curve measured using the mercury intrusion porosimeter of the electrode material, a hole distribution peak was present at 0.064 μm.

次に、得られた電極材料を用いて実施例2と同様にして負極を作製し、コイン型電池を作製し、コイン型電池の初回の充放電効率、2サイクル目の放電容量、100サイクル目の容量維持率、重負荷放電特性を調べた。初回の充放電効率は80%であり、2サイクル目の放電容量は電極材料g当り800mAhであり、100サイクル目の容量維持率は90%であり、重負荷放電特性は95%であった。負極合剤層の銅箔に対する接着性は良好であり、裁断したり折り曲げても、負極合剤層は銅箔から剥がれなかった。   Next, using the obtained electrode material, a negative electrode was produced in the same manner as in Example 2, a coin-type battery was produced, the initial charge / discharge efficiency of the coin-type battery, the discharge capacity at the second cycle, the 100th cycle The capacity retention ratio and heavy load discharge characteristics of the were investigated. The initial charge / discharge efficiency was 80%, the discharge capacity at the second cycle was 800 mAh per g of electrode material, the capacity retention rate at the 100th cycle was 90%, and the heavy load discharge characteristic was 95%. The adhesion of the negative electrode mixture layer to the copper foil was good, and the negative electrode mixture layer did not peel from the copper foil even when cut or bent.

(実施例4)
Li2.5Co0.4Ni0.1N(BET比表面積14m/g、平均粒径0.2μm)と、SiO(BET比表面積10m/g、平均粒径0.3μm)と、ケッチェンブラック(BET比表面積800m/g、平均粒径0.05μm)とを、トルエン1L中にて混合し、これらをさらに湿式のジェットミルにて混合してスラリーを得た。スラリーの作製に用いたLi2.5Co0.4Ni0.1NとSiOとケッチェンブラック(KB)の総重量は100gとし、重量比は、Li2.5Co0.4Ni0.1N:SiO:KB=40:30:30とした。
Example 4
Li 2.5 Co 0.4 Ni 0.1 N (BET specific surface area 14 m 2 / g, average particle size 0.2 μm), SiO (BET specific surface area 10 m 2 / g, average particle size 0.3 μm), Ketjen black (BET specific surface area 800 m 2 / g, average particle size 0.05 μm) was mixed in 1 L of toluene, and these were further mixed in a wet jet mill to obtain a slurry. The total weight of Li 2.5 Co 0.4 Ni 0.1 N, SiO and ketjen black (KB) used for the preparation of the slurry was 100 g, and the weight ratio was Li 2.5 Co 0.4 Ni 0. 1 N: SiO: KB = 40: 30: 30.

次に、スラリーを用いスプレードライ法(雰囲気温度200℃)にて複合粒子を作製した。複合粒子の平均粒径は10μmであった。続いて、複合粒子10gを沸騰床反応器中で約700℃に加熱し、加熱された複合粒子にメシチレンと窒素ガスとからなる25℃の混合ガスを接触させ、700℃で60分間CVD処理を行った。このようにして、上記混合ガスが熱分解して生じた炭素材料を複合粒子に堆積させて被覆層を形成し、電極材料を得た。   Next, composite particles were produced using a slurry by a spray drying method (atmospheric temperature 200 ° C.). The average particle size of the composite particles was 10 μm. Subsequently, 10 g of the composite particles are heated to about 700 ° C. in a boiling bed reactor, a mixed gas of 25 ° C. composed of mesitylene and nitrogen gas is brought into contact with the heated composite particles, and a CVD process is performed at 700 ° C. for 60 minutes. went. In this way, a carbon material generated by thermal decomposition of the mixed gas was deposited on the composite particles to form a coating layer, and an electrode material was obtained.

被覆層形成前後の重量変化から、電極材料の組成を算出したところ、Li2.5Co0.4Ni0.1N:SiO:KB:CVD炭素=32:24:24:20(重量比)であった。電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線において、空孔分布ピークが0.085μmに存在していた。 When the composition of the electrode material was calculated from the change in weight before and after the formation of the coating layer, Li 2.5 Co 0.4 Ni 0.1 N: SiO: KB: CVD carbon = 32: 24: 24: 20 (weight ratio) Met. In the hole distribution curve measured using the mercury intrusion porosimeter of the electrode material, a hole distribution peak was present at 0.085 μm.

また、実施例1と同様にして、ラマン分光法により電極材料の表面の分析を行ったところ、ラマンスペクトル上の振動数1590cm-1に存在するピーク強度をIとし、1350cm−1に存在するピーク強度をIとしたとき、比(I/I)は0.55であった。 In the same manner as in Example 1, was subjected to analysis of the surface of the electrode material by Raman spectroscopy, the peak intensity existing in the frequency 1590 cm -1 on the Raman spectrum and I 1, present in the 1350 cm -1 when the peak intensity was I 2, the ratio (I 2 / I 1) was 0.55.

次に、バインダをポリフッ化ビニリデンから、スチレンブタジエンゴム(SBR)をトルエンに溶解した溶液(SBRの濃度50wt%)へ変更したこと以外は実施例2と同様にして負極を作製し、コイン型電池を作製し、コイン型電池の充放電効率、2サイクル目の放電容量、100サイクル目の容量維持率、重負荷放電特性を調べた。初回の充放電効率は99%であり、2サイクル目の放電容量は電極材料1g当り700mAhであり、100サイクル目の容量維持率は70%であり、重負荷放電特性は85%であった。負極合剤層の銅箔に対する接着性は良好であり、裁断したり折り曲げても、負極合剤層は銅箔から剥がれなかった。   Next, a negative electrode was produced in the same manner as in Example 2 except that the binder was changed from polyvinylidene fluoride to a solution in which styrene butadiene rubber (SBR) was dissolved in toluene (SBR concentration: 50 wt%). The charge / discharge efficiency of the coin-type battery, the discharge capacity at the second cycle, the capacity retention rate at the 100th cycle, and the heavy load discharge characteristics were examined. The initial charge / discharge efficiency was 99%, the discharge capacity at the second cycle was 700 mAh per gram of electrode material, the capacity retention rate at the 100th cycle was 70%, and the heavy load discharge characteristic was 85%. The adhesion of the negative electrode mixture layer to the copper foil was good, and the negative electrode mixture layer did not peel from the copper foil even when cut or bent.

(実施例5)
CoO(BET比表面積35m/g、平均粒径0.02μm)と、ケッチェンブラック(BET比表面積800m/g、平均粒径0.05μm)とを、エタノール1L中にて混合し、これらをさらに湿式のジェットミルにて混合してスラリーを得た。スラリーの作製に用いたCoOとケッチェンブラック(KB)との総重量は100gとし、重量比は、をCoO:KB=70:30とした。次に、スラリーを用いスプレードライ法(雰囲気温度200℃)にて複合粒子を作製した。複合粒子の平均粒径は10μmであった。続いて、複合粒子10gを沸騰床反応器中で約900に加熱し、加熱された複合粒子トルエンと窒素ガスとからなる25℃の混合ガスを接触させ、900℃で60分間CVD処理を行った。このようにして、上記混合ガスが熱分解して生じた炭素材料を複合粒子に堆積させて被覆層を形成し、電極材料を得た。
(Example 5)
CoO (BET specific surface area 35 m 2 / g, average particle size 0.02 μm) and ketjen black (BET specific surface area 800 m 2 / g, average particle size 0.05 μm) were mixed in 1 L of ethanol, and these Were further mixed by a wet jet mill to obtain a slurry. The total weight of CoO and Ketjen Black (KB) used for the preparation of the slurry was 100 g, and the weight ratio was CoO: KB = 70: 30. Next, composite particles were produced using a slurry by a spray drying method (atmospheric temperature 200 ° C.). The average particle size of the composite particles was 10 μm. Subsequently, 10 g of the composite particles were heated to about 900 in a boiling bed reactor, a mixed gas of 25 ° C. composed of heated composite particle toluene and nitrogen gas was contacted, and a CVD process was performed at 900 ° C. for 60 minutes. . In this way, a carbon material generated by thermal decomposition of the mixed gas was deposited on the composite particles to form a coating layer, and an electrode material was obtained.

被覆層形成前後の重量変化から、電極材料の組成を算出したところ、CoO:KB:CVD炭素=56:24:20(重量比)であった。電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線において、空孔分布ピークが0.04μmに存在していた。   The composition of the electrode material was calculated from the change in weight before and after the coating layer was formed. CoO: KB: CVD carbon = 56: 24: 20 (weight ratio). In the hole distribution curve measured using the mercury intrusion porosimeter of the electrode material, a hole distribution peak was present at 0.04 μm.

また、実施例1と同様に、ラマン分光法により電極材料の表面の分析を行ったところ、ラマンスペクトル上の振動数1590cm−1に存在するピーク強度をIとし、1350cm−1に存在するピーク強度をIとしたとき、比(I/I)は0.62であった。 Further, in the same manner as in Example 1, was subjected to analysis of the surface of the electrode material by Raman spectroscopy, the peak intensity existing in the frequency 1590 cm -1 on the Raman spectrum and I 1, peaks at 1350 cm -1 When the intensity was I 2 , the ratio (I 2 / I 1 ) was 0.62.

次に、得られた電極材料を用いて、実施例2と同様にして負極を作製し、コイン型電池を作製し、コイン型電池の充放電効率、2サイクル目の放電容量、100サイクル目の容量維持率、重負荷放電特性を調べた。初回の充放電効率は75%であり、2サイクル目の放電容量は電極材料1g当り450mAhであり、100サイクル目の容量維持率は70%であり、重負荷放電特性は80%であった。   Next, using the obtained electrode material, a negative electrode was produced in the same manner as in Example 2, a coin-type battery was produced, the charge / discharge efficiency of the coin-type battery, the discharge capacity at the second cycle, the 100th cycle The capacity retention rate and heavy load discharge characteristics were investigated. The initial charge / discharge efficiency was 75%, the discharge capacity at the second cycle was 450 mAh per gram of electrode material, the capacity retention rate at the 100th cycle was 70%, and the heavy load discharge characteristics were 80%.

(実施例6)
LiTi12(BET比表面積20m/g、平均粒径0.2μm)100gをエタノール1L中にて撹拌し、これらをさらに湿式のジェットミルにて混合してスラリーを得た。次に、スラリーを用いスプレードライ法(雰囲気温度200℃)にて複合粒子を作製した。複合粒子の平均粒径は8μmであった。続いて、複合粒子10gを沸騰床反応器中で約900℃に加熱し、加熱された複合粒子にトルエンと窒素ガスとからなる25℃の混合ガスを接触させ、900℃で60分間CVD処理を行った。このようにして、上記混合ガスが熱分解して生じた炭素材料を複合粒子に堆積させて被覆層を形成し、電極材料を得た。
(Example 6)
100 g of Li 4 Ti 5 O 12 (BET specific surface area 20 m 2 / g, average particle size 0.2 μm) was stirred in 1 L of ethanol, and these were further mixed in a wet jet mill to obtain a slurry. Next, composite particles were produced using a slurry by a spray drying method (atmospheric temperature 200 ° C.). The average particle size of the composite particles was 8 μm. Subsequently, 10 g of the composite particles are heated to about 900 ° C. in a boiling bed reactor, a mixed gas of 25 ° C. composed of toluene and nitrogen gas is brought into contact with the heated composite particles, and a CVD treatment is performed at 900 ° C. for 60 minutes. went. In this way, a carbon material generated by thermal decomposition of the mixed gas was deposited on the composite particles to form a coating layer, and an electrode material was obtained.

被覆層形成前後の重量変化から、電極材料の組成を算出したところ、LiTi12:CVD炭素=99:1(重量比)であった。電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線において、空孔分布ピークが0.09μmに存在していた。 When the composition of the electrode material was calculated from the change in weight before and after the formation of the coating layer, it was Li 4 Ti 5 O 12 : CVD carbon = 99: 1 (weight ratio). In the hole distribution curve measured using a mercury intrusion porosimeter of the electrode material, a hole distribution peak was present at 0.09 μm.

また、実施例1と同様にして、ラマン分光法により電極材料の表面の分析を行ったところ、ラマンスペクトル上の振動数1590cm−1に存在するピーク強度をIとし、1350cm−1に存在するピーク強度をIとしたとき、比(I/I)は0.6であった。 In the same manner as in Example 1, was subjected to analysis of the surface of the electrode material by Raman spectroscopy, the peak intensity existing in the frequency 1590 cm -1 on the Raman spectrum and I 1, present in the 1350 cm -1 when the peak intensity was I 2, the ratio (I 2 / I 1) was 0.6.

次に、得られた電極材料を用いて、実施例2と同様にして負極を作製し、コイン型電池を作製し、コイン型電池の充放電効率、2サイクル目の放電容量、100サイクル目の容量維持率、重負荷放電特性を調べた。初回の充放電効率は95%であり、2サイクル目の放電容量は電極材料1g当り180mAhであり、100サイクル目の容量維持率は99%であり、重負荷放電特性は95%であった。また、負極合剤層の銅箔に対する接着性は良好であり、裁断したり折り曲げても、負極合剤層は銅箔から剥がれなかった。   Next, using the obtained electrode material, a negative electrode was produced in the same manner as in Example 2, a coin-type battery was produced, the charge / discharge efficiency of the coin-type battery, the discharge capacity at the second cycle, the 100th cycle The capacity retention rate and heavy load discharge characteristics were investigated. The initial charge / discharge efficiency was 95%, the discharge capacity at the second cycle was 180 mAh per gram of electrode material, the capacity retention rate at the 100th cycle was 99%, and the heavy load discharge characteristic was 95%. Moreover, the adhesiveness with respect to the copper foil of a negative mix layer was favorable, and even if it cut and bent, the negative mix layer did not peel from copper foil.

(実施例7)
SiO(BET比表面積8m/g、平均粒径0.5μm)200gと繊維状炭素(BET比表面積35m/g、平均長さ2μm、平均直径0.08μm)60gおよびバインダのポリエチレン樹脂粒子30gを4Lのステンレス製容器に入れ、さらにステンレス製のボールを入れて振動ミルにて3時間混合、粉砕、造粒を行った。その結果、平均粒径20μmの複合粒子を作製できた。続いて、複合粒子10gを沸騰床反応器中で約900℃に加熱し、加熱された複合粒子にトルエンと窒素ガスとからなる25℃の混合ガスを接触させ、900℃で60分間CVD処理を行った。このようにして、上記混合ガスが熱分解して生じた炭素材料を複合粒子に堆積させて被覆層を形成し、電極材料を得た。
(Example 7)
200 g of SiO (BET specific surface area 8 m 2 / g, average particle diameter 0.5 μm), fibrous carbon (BET specific surface area 35 m 2 / g, average length 2 μm, average diameter 0.08 μm) 60 g and binder polyethylene resin particles 30 g Was placed in a 4 L stainless steel container, and a stainless steel ball was placed in the container and mixed, pulverized, and granulated with a vibration mill for 3 hours. As a result, composite particles having an average particle diameter of 20 μm could be produced. Subsequently, 10 g of the composite particles are heated to about 900 ° C. in a boiling bed reactor, a mixed gas of 25 ° C. composed of toluene and nitrogen gas is brought into contact with the heated composite particles, and a CVD treatment is performed at 900 ° C. for 60 minutes. went. In this way, a carbon material generated by thermal decomposition of the mixed gas was deposited on the composite particles to form a coating layer, and an electrode material was obtained.

被覆層形成前後の重量変化から、電極材料の組成を算出したところ、SiO:繊維状炭素:CVD炭素=60:25:15(重量比)であった。電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線において、空孔分布ピークが0.09μmに存在していた。   The composition of the electrode material was calculated from the weight change before and after the coating layer was formed, and was SiO: fibrous carbon: CVD carbon = 60: 25: 15 (weight ratio). In the hole distribution curve measured using a mercury intrusion porosimeter of the electrode material, a hole distribution peak was present at 0.09 μm.

また、実施例1と同様にして、ラマン分光法により電極材料の表面の分析を行ったところ、ラマンスペクトル上の振動数1590cm−1に存在するピーク強度をIとし、1350cm−1に存在するピーク強度をIとしたとき、比(I/I)は0.57であった。 In the same manner as in Example 1, was subjected to analysis of the surface of the electrode material by Raman spectroscopy, the peak intensity existing in the frequency 1590 cm -1 on the Raman spectrum and I 1, present in the 1350 cm -1 when the peak intensity was I 2, the ratio (I 2 / I 1) was 0.57.

次に、得られた電極材料を用いて、実施例2と同様にして負極を作製し、コイン型電池を作製し、コイン型電池の充放電効率、2サイクル目の放電容量、100サイクル目の容量維持率、重負荷放電特性を調べた。初回の充放電効率は77%であり、2サイクル目の放電容量は電極材料1g当り1200mAhであり、100サイクル目の容量維持率は80%であり、重負荷放電特性は88%であった。また、負極合剤層の銅箔に対する接着性は良好であり、裁断したり折り曲げても、負極合剤層は銅箔から剥がれなかった。   Next, using the obtained electrode material, a negative electrode was produced in the same manner as in Example 2, a coin-type battery was produced, the charge / discharge efficiency of the coin-type battery, the discharge capacity at the second cycle, the 100th cycle The capacity retention rate and heavy load discharge characteristics were investigated. The initial charge / discharge efficiency was 77%, the discharge capacity at the second cycle was 1200 mAh per gram of electrode material, the capacity retention rate at the 100th cycle was 80%, and the heavy load discharge characteristic was 88%. Moreover, the adhesiveness with respect to the copper foil of a negative mix layer was favorable, and even if it cut and bent, the negative mix layer did not peel from copper foil.

実施例の電極材料の一例として、図1に、実施例3の電極材料の走査型電子顕微鏡(SEM)写真を、図2に、実施例3の電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線を示す。図2の空孔分布曲線において、0.06μm付近(0.06406μm)をピークとする曲線が存在している。これは、電極材料に存在する空孔サイズの分布を示している。尚、2μm付近(2.23075μm)をピークとする曲線が存在しているが、これは、電極材料に存在する空孔の分布を示していのではなく、電極材料間の空隙サイズの分布を示すものである。
(比較例1)
Si0.70.3金属固溶体粉末(BET比表面積16m/g、平均粒径0.2μm)と、導電助剤として繊維状炭素(BET比表面積35m/g、平均長さ2μm、平均直径0.08μm)とを、乳鉢にて混合して電極材料を得た。Si0.70.3金属固溶体粉末と繊維状炭素(CF)との重量比は、Si0.70.3金属固溶体粉末:CF=70:30とした。電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線において、空孔分布ピークは0.25μmに存在していた。電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線の0.001μm以上0.2μm以下の範囲には、空孔分布ピークは見られなかった。
As an example of the electrode material of the example, FIG. 1 is a scanning electron microscope (SEM) photograph of the electrode material of Example 3, and FIG. 2 is a measurement using a mercury intrusion porosimeter of the electrode material of Example 3. The vacancy distribution curve is shown. In the hole distribution curve of FIG. 2, there is a curve having a peak near 0.06 μm (0.06406 μm). This shows the distribution of pore sizes present in the electrode material. Note that there is a curve having a peak near 2 μm (2.23075 μm), but this does not indicate the distribution of pores present in the electrode material, but indicates the distribution of the void size between the electrode materials. Is.
(Comparative Example 1)
Si 0.7 B 0.3 metal solid solution powder (BET specific surface area 16 m 2 / g, average particle size 0.2 μm) and fibrous carbon (BET specific surface area 35 m 2 / g, average length 2 μm) as a conductive aid An average diameter of 0.08 μm) was mixed in a mortar to obtain an electrode material. The weight ratio between the Si 0.7 B 0.3 metal solid solution powder and the fibrous carbon (CF) was Si 0.7 B 0.3 metal solid solution powder: CF = 70: 30. In the hole distribution curve measured using the mercury intrusion porosimeter of the electrode material, the hole distribution peak was present at 0.25 μm. No vacancy distribution peak was observed in the range of 0.001 μm or more and 0.2 μm or less of the vacancy distribution curve measured using the mercury intrusion porosimeter of the electrode material.

次に、実施例2と同様にして負極を作製し、コイン型電池を作製し、コイン型電池の充放電効率、2サイクル目の放電容量、100サイクル目の容量維持率、重負荷放電特性を調べた。初回の充放電効率は40%であり、2サイクル目の放電容量は電極材料1g当り500mAhであり、100サイクル目の容量維持率は10%以下であった。負極を裁断したり折り曲げると、負極合剤層の半分程度が銅箔から剥がれ落ち、負極合剤層の銅箔に対する接着性は悪かった。これは、Si0.70.3金属固溶体粉末とCFとが単に混合されているに過ぎず、電極材料のバインダに対する比表面積が大きいため、負極合剤層と銅箔との間に十分な量のバインダが存在していないからであると思われる。 Next, a negative electrode was produced in the same manner as in Example 2, a coin-type battery was produced, and the charge / discharge efficiency of the coin-type battery, the discharge capacity at the second cycle, the capacity retention rate at the 100th cycle, and the heavy load discharge characteristics were determined. Examined. The initial charge / discharge efficiency was 40%, the discharge capacity at the second cycle was 500 mAh per gram of electrode material, and the capacity retention rate at the 100th cycle was 10% or less. When the negative electrode was cut or bent, about half of the negative electrode mixture layer was peeled off from the copper foil, and the adhesion of the negative electrode mixture layer to the copper foil was poor. This is because Si 0.7 B 0.3 metal solid solution powder and CF are merely mixed, and since the specific surface area of the electrode material to the binder is large, it is sufficient between the negative electrode mixture layer and the copper foil. This is probably because there is not a sufficient amount of binder.

(比較例2)
Si0.70.3金属固溶体粉末(BET比表面積1.5m/g、平均粒径2μm)と、繊維状炭素(BET比表面積13m/g、平均長さ5μm、平均直径0.15μm)とを、エタノール1L中にて混合し、さらに湿式のジェットミルにて混合してスラリーを得た。スラリーの作製に用いたSi0.70.3と繊維状炭素(CF)との総重量は100gとし、重量比は、Si0.70.3金属固溶体粉末:CF=70:30とした。次に、スラリーを用いてスプレードライ法にて複合粒子を作製した。複合粒子の平均粒径は25μmであった。続いて、複合粒子10gを沸騰床反応器中で約1000℃に加熱し、加熱された複合粒子にベンゼンと窒素ガスとからなる25℃の混合ガスを接触させ、1000℃で60分間CVD処理を行った。このようにして、上記混合ガスが熱分解して生じた炭素材料を複合粒子に堆積させて被覆層を形成し、電極材料を得た。
(Comparative Example 2)
Si 0.7 B 0.3 metal solid solution powder (BET specific surface area 1.5 m 2 / g, average particle size 2 μm) and fibrous carbon (BET specific surface area 13 m 2 / g, average length 5 μm, average diameter 0.15 μm) The mixture was mixed in 1 L of ethanol, and further mixed by a wet jet mill to obtain a slurry. The total weight of Si 0.7 B 0.3 and fibrous carbon (CF) used for the preparation of the slurry was 100 g, and the weight ratio was Si 0.7 B 0.3 metal solid solution powder: CF = 70: 30 It was. Next, composite particles were prepared using a slurry by a spray drying method. The average particle size of the composite particles was 25 μm. Subsequently, 10 g of the composite particles are heated to about 1000 ° C. in a boiling bed reactor, a mixed gas of 25 ° C. composed of benzene and nitrogen gas is brought into contact with the heated composite particles, and a CVD treatment is performed at 1000 ° C. for 60 minutes. went. In this way, a carbon material generated by thermal decomposition of the mixed gas was deposited on the composite particles to form a coating layer, and an electrode material was obtained.

実施例1と同様にして、被覆層によって覆われた複合粒子について、ラマン分光法によりその表面の分析を行ったところ、ラマンスペクトル上の振動数1590cm−1に存在するピーク強度をIとし、1350cm−1に存在するピーク強度をIとしたとき、比(I/I)は0.6であった。 When the surface of the composite particles covered with the coating layer was analyzed by Raman spectroscopy in the same manner as in Example 1, the peak intensity existing at a frequency of 1590 cm −1 on the Raman spectrum was I 1 , When the peak intensity existing at 1350 cm −1 was I 2 , the ratio (I 2 / I 1 ) was 0.6.

続いて、実施例3と同様にして、被覆層によって覆われた複合粒子の表面をフェノール樹脂にてコーティングし、その後それを1000℃にて焼成して、被覆層を覆い難黒鉛化炭素を含む材料層を形成して、電極材料を得た。   Subsequently, in the same manner as in Example 3, the surface of the composite particles covered with the coating layer was coated with a phenol resin, and then fired at 1000 ° C. to cover the coating layer and contain non-graphitizable carbon. A material layer was formed to obtain an electrode material.

被覆層形成前後および難黒鉛化炭素を含む材料層前後の重量変化から、電極材料の組成を算出したところ、Si0.70.3金属固溶体粉末:CF:CVD炭素:難黒鉛化炭素=50:20:15:15(重量比)であった。図3に示すように、電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線の0.001μm以上0.2μm以下の範囲には、空孔分布ピークは見られず、空孔分布曲線において、0、35μm付近がその周囲よりも高くなっていた。 The composition of the electrode material was calculated from the weight change before and after the coating layer formation and before and after the material layer containing non-graphitizable carbon. Si 0.7 B 0.3 metal solid solution powder: CF: CVD carbon: non-graphitizable carbon = 50: 20: 15: 15 (weight ratio). As shown in FIG. 3, no vacancy distribution peak is observed in the range of 0.001 μm or more and 0.2 μm or less of the vacancy distribution curve measured using the mercury intrusion porosimeter of the electrode material. In the curve, the vicinity of 0, 35 μm was higher than the surrounding area.

次に、電極材料を用いて実施例2と同様にして負極を作製し、コイン型電池を作製し、コイン型電池の初回の充放電効率、2サイクル目の放電容量、100サイクル目の容量維持率、重負荷放電特性を調べた。初回の充放電効率は85%であり、2サイクル目の放電容量は電極材料g当り800mAhであり、100サイクル目の容量維持率は70%であり、重負荷放電特性は45%であった。負極合剤層の銅箔に対する接着性は良好であり、裁断したり折り曲げても、負極合剤層は銅箔から剥がれなかった。   Next, a negative electrode was produced using an electrode material in the same manner as in Example 2, a coin-type battery was produced, the initial charge / discharge efficiency of the coin-type battery, the discharge capacity at the second cycle, and the capacity maintenance at the 100th cycle The rate and heavy load discharge characteristics were investigated. The initial charge / discharge efficiency was 85%, the discharge capacity at the second cycle was 800 mAh per g of electrode material, the capacity retention rate at the 100th cycle was 70%, and the heavy load discharge characteristic was 45%. The adhesion of the negative electrode mixture layer to the copper foil was good, and the negative electrode mixture layer did not peel from the copper foil even when cut or bent.

以上の結果を表1に示す。表1に示すように、実施例1〜7のコイン型電池では、比較例1のコイン型電池よりも、初回の充放電効率、100サイクル目の容量維持率、重負荷放電特性等の電池特性が優れていることが確認できた。この結果は、実施例1〜7の電極材料では、被覆層を形成することにより、空孔分布ピークが0.001μm〜0.2μmに少なくとも1つ存在するように制御されているので、バインダが電極材料の内部へ浸透しづらく、合剤層と銅箔との間に存在するバインダの量が増加したことに起因しているものと思われる。   The results are shown in Table 1. As shown in Table 1, in the coin-type batteries of Examples 1 to 7, battery characteristics such as initial charge / discharge efficiency, capacity maintenance rate at the 100th cycle, heavy load discharge characteristics, etc., compared to the coin-type battery of Comparative Example 1 Was confirmed to be excellent. As a result, in the electrode materials of Examples 1 to 7, by forming the coating layer, the pore distribution peak is controlled to exist at 0.001 μm to 0.2 μm. It seems that it is difficult to permeate the inside of the electrode material, which is caused by an increase in the amount of the binder existing between the mixture layer and the copper foil.

Figure 2005158721
Figure 2005158721

実施例2の負極と比較例1の負極とを比較すると、放電容量について、実施例2の方が比較例1よりもかなり大きい。これは、実施例2の電極材料が、複合粒子の表面が気相成長(CVD)法にて形成された被覆層によって覆われているので、複合粒子と繊維状炭素とを単に混合して得た比較例2の電極材料よりも導電ネットワークが優れているからであると思われる。   When the negative electrode of Example 2 and the negative electrode of Comparative Example 1 are compared, Example 2 is considerably larger than Comparative Example 1 in terms of discharge capacity. This is because the electrode material of Example 2 is obtained by simply mixing the composite particles and fibrous carbon because the surface of the composite particles is covered with a coating layer formed by a vapor deposition (CVD) method. This is probably because the conductive network is superior to the electrode material of Comparative Example 2.

比較例2のコイン型電池は実施例1〜7のコイン型電池よりも、重負荷放電特性等が著しく悪い。これは、複合粒子を構成する粒子のBET比表面積が5m/g未満であり、Liとの反応面積が小さいからであると思われる。 The coin-type battery of Comparative Example 2 is significantly worse in heavy load discharge characteristics and the like than the coin-type batteries of Examples 1-7. This seems to be because the BET specific surface area of the particles constituting the composite particles is less than 5 m 2 / g and the reaction area with Li is small.

以上のとおり、本発明の電極材料およびその製造方法によれば、重負荷放電特性やサイクル特性等の特性が優れ、かつ高容量な非水二次電池の実現が可能であるため、本発明の電極材料は、非水二次電池の材料として適している。本発明の非水二次電池は、非水二次電池として有用である。   As described above, according to the electrode material and the manufacturing method thereof of the present invention, it is possible to realize a non-aqueous secondary battery having excellent characteristics such as heavy load discharge characteristics and cycle characteristics and a high capacity. The electrode material is suitable as a material for a non-aqueous secondary battery. The nonaqueous secondary battery of the present invention is useful as a nonaqueous secondary battery.

実施例3の電極材料の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of the electrode material of Example 3. 実施例3の電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線である。It is a void | hole distribution curve measured using the mercury intrusion type porosimeter of the electrode material of Example 3. FIG. 比較例2の電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線である。It is a void | hole distribution curve measured using the mercury intrusion type porosimeter of the electrode material of the comparative example 2.

Claims (12)

Liを吸蔵放出可能な材料を含む粒子を複数含む複合粒子と、前記複合粒子を覆い導電性を有する炭素材料を含む被覆層とを備えた非水二次電池の電極材料であって、
前記電極材料の水銀圧入式ポロシメータを用いて測定される空孔分布曲線において、空孔分布ピークが、0.001μm以上0.2μm以下の範囲に少なくとも1つ存在することを特徴とする非水二次電池の電極材料。
An electrode material for a non-aqueous secondary battery comprising a composite particle comprising a plurality of particles containing a material capable of occluding and releasing Li, and a coating layer comprising a conductive carbon material covering the composite particle,
In the pore distribution curve of the electrode material measured using a mercury intrusion porosimeter, at least one pore distribution peak exists in a range of 0.001 μm to 0.2 μm. Secondary battery electrode material.
前記電極材料について、波長514.5nmのアルゴンレーザーを用いて測定されるラマンスペクトル上の1550cm−1〜1650cm−1の振動数領域に存在するピーク強度をIとし、1300cm−1〜1400cm−1の振動数領域に存在するピーク強度をIとしたとき、比(I/I)が0.4〜1である請求項1に記載の非水二次電池の電極材料。 For the electrode material, the peak intensity existing in the frequency region of 1550 cm -1 1650 cm -1 on the Raman spectrum is measured using an argon laser with a wavelength of 514.5nm and I 1, 1300cm -1 ~1400cm -1 2. The electrode material for a non-aqueous secondary battery according to claim 1 , wherein the ratio (I 2 / I 1 ) is 0.4 to 1 where I 2 is a peak intensity existing in the frequency region. 前記Liを吸蔵放出可能な材料が、炭素材料、Liと合金化可能な元素を含む金属間化合物、Liと合金化可能な元素を含む固溶体、Liと合金化可能な元素を含む酸化物、Li含有遷移金属窒化物、およびLiと反応してLiOを生成する酸化物からなる群から選択される少なくとも1種の材料である請求項1に記載の非水二次電池の電極材料。 The material capable of occluding and releasing Li is a carbon material, an intermetallic compound containing an element that can be alloyed with Li, a solid solution containing an element that can be alloyed with Li, an oxide containing an element that can be alloyed with Li, Li 2. The electrode material for a non-aqueous secondary battery according to claim 1, which is at least one material selected from the group consisting of a transition metal nitride contained and an oxide that reacts with Li to produce Li 2 O. 3. 前記複合粒子が、その内部に導電性材料をさらに含む請求項1に記載の非水二次電池の電極材料。   The electrode material for a non-aqueous secondary battery according to claim 1, wherein the composite particles further include a conductive material therein. 前記導電性材料が、繊維状またはコイル状の炭素材料、繊維状またはコイル状の金属、カーボンブラック、黒鉛、易黒鉛化炭素、および難黒鉛化炭素からなる群から選ばれる少なくとも一種である請求項4に記載の非水二次電池の電極材料。   The conductive material is at least one selected from the group consisting of a fibrous or coiled carbon material, a fibrous or coiled metal, carbon black, graphite, graphitizable carbon, and non-graphitizable carbon. 4. An electrode material for a non-aqueous secondary battery according to 4. 前記被覆層を覆い難黒鉛化炭素を含む材料層をさらに含む請求項1に記載の非水二次電池の電極材料。   The electrode material for a non-aqueous secondary battery according to claim 1, further comprising a material layer covering the coating layer and containing non-graphitizable carbon. (a)Liを吸蔵放出可能であって、BET式窒素吸着法により測定される比表面積が5m/g以上である材料を含む粒子を造粒することにより、複数の前記粒子を含む複合粒子を作製する工程と、
(b)前記複合粒子と炭化水素系ガスとを気相中にて加熱して、前記炭化水素系ガスが熱分解して生じた炭素材料を前記複合粒子の表面に堆積させて、被覆層を形成する工程とを含むことを特徴とする非水二次電池の電極材料の製造方法。
(A) Composite particles containing a plurality of particles by granulating particles containing a material capable of occluding and releasing Li and having a specific surface area measured by a BET nitrogen adsorption method of 5 m 2 / g or more A step of producing
(B) heating the composite particles and the hydrocarbon-based gas in a gas phase, and depositing a carbon material generated by thermal decomposition of the hydrocarbon-based gas on the surface of the composite particles; A method for producing an electrode material for a non-aqueous secondary battery.
前記工程(b)の後に、石油系ピッチ、石炭系ピッチ、熱硬化製樹脂、およびナフタレンスルホン酸塩とアルデヒド類との縮合物からなる群から選ばれる少なくとも1種の有機化合物を前記被覆層に付着させた後、前記有機化合物が付着した前記複合粒子を焼成する工程をさらに含む請求項7に記載の非水二次電池の電極材料の製造方法。   After the step (b), at least one organic compound selected from the group consisting of petroleum pitch, coal pitch, thermosetting resin, and a condensate of naphthalene sulfonate and aldehyde is added to the coating layer. The method for producing an electrode material for a non-aqueous secondary battery according to claim 7, further comprising a step of firing the composite particles to which the organic compound is adhered after the adhesion. 前記工程(a)において、前記粒子と導電性材料とを同時に造粒して、内部に導電性材料を含む前記複合粒子を作製する請求項7に記載の非水二次電池の電極材料の製造方法。   In the said process (a), the said particle | grain and electroconductive material are granulated simultaneously, The said composite particle | grains which contain an electroconductive material inside are produced, The manufacture of the electrode material of the non-aqueous secondary battery of Claim 7 Method. 前記導電性材料が、繊維状またはコイル状の炭素材料、繊維状またはコイル状の金属、カーボンブラック、黒鉛、易黒鉛化炭素、および難黒鉛化炭素からなる群から選ばれる少なくとも一種である請求項9に記載の非水二次電池の電極材料の製造方法。   The conductive material is at least one selected from the group consisting of a fibrous or coiled carbon material, a fibrous or coiled metal, carbon black, graphite, graphitizable carbon, and non-graphitizable carbon. The manufacturing method of the electrode material of the non-aqueous secondary battery of 9. 前記Liを吸蔵放出可能な材料が、炭素材料、Liと合金化可能な元素を含む金属間化合物、Liと合金化可能な元素を含む固溶体、Liと合金化可能な元素を含む酸化物、Li含有遷移金属窒化物、およびLiと反応してLiOを生成する酸化物からなる群から選択される少なくとも1種の材料である請求項7に記載の非水二次電池の電極材料の製造方法。 The material capable of occluding and releasing Li is a carbon material, an intermetallic compound containing an element that can be alloyed with Li, a solid solution containing an element that can be alloyed with Li, an oxide containing an element that can be alloyed with Li, Li The production of an electrode material for a non-aqueous secondary battery according to claim 7, which is at least one material selected from the group consisting of a transition metal nitride contained and an oxide that reacts with Li to produce Li 2 O. Method. 請求項1〜6のいずれかの項に記載の非水二次電池の電極材料を、負極に用いたことを特徴とする非水二次電池。
A nonaqueous secondary battery, wherein the electrode material of the nonaqueous secondary battery according to claim 1 is used for a negative electrode.
JP2004316920A 2003-10-31 2004-10-29 Non-aqueous secondary battery electrode material, method for producing the same, and non-aqueous secondary battery using the same Active JP3992708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004316920A JP3992708B2 (en) 2003-10-31 2004-10-29 Non-aqueous secondary battery electrode material, method for producing the same, and non-aqueous secondary battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003373519 2003-10-31
JP2004316920A JP3992708B2 (en) 2003-10-31 2004-10-29 Non-aqueous secondary battery electrode material, method for producing the same, and non-aqueous secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2005158721A true JP2005158721A (en) 2005-06-16
JP3992708B2 JP3992708B2 (en) 2007-10-17

Family

ID=34741318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004316920A Active JP3992708B2 (en) 2003-10-31 2004-10-29 Non-aqueous secondary battery electrode material, method for producing the same, and non-aqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3992708B2 (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149946A (en) * 2003-11-17 2005-06-09 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2007035472A (en) * 2005-07-28 2007-02-08 Matsushita Electric Ind Co Ltd Lithium secondary battery, negative electrode material and negative electrode for lithium secondary battery, and manufacturing method thereof
JP2007042579A (en) * 2005-06-29 2007-02-15 Matsushita Electric Ind Co Ltd Composite particle for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same
JP2007128765A (en) * 2005-11-04 2007-05-24 Sony Corp Battery
JP2007207466A (en) * 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2007094240A1 (en) * 2006-02-17 2007-08-23 Matsushita Electric Industrial Co., Ltd. Electroconductive composite particles, process for producing the electroconductive composite particles, and electrode plate and lithium ion rechargeable battery using the electroconductive composite particles
JP2007287670A (en) * 2006-04-17 2007-11-01 Samsung Sdi Co Ltd Anode active substance and its manufacturing method
JP2007317415A (en) * 2006-05-24 2007-12-06 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using it
JP2008112652A (en) * 2006-10-31 2008-05-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2008123892A (en) * 2006-11-14 2008-05-29 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008186803A (en) * 2007-01-04 2008-08-14 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
JP2008258143A (en) * 2007-04-03 2008-10-23 Toyota Motor Engineering & Manufacturing North America Inc Tin in active support matrix
JP2008305573A (en) * 2007-06-05 2008-12-18 Sony Corp Anode and battery
WO2009054149A1 (en) * 2007-10-24 2009-04-30 Panasonic Corporation Electrode for electrochemical device and electrochemical device using the same
JP2009123695A (en) * 2007-10-24 2009-06-04 Panasonic Corp Electrode for electrochemical device, and electrochemical device using the electrode
WO2009081704A1 (en) * 2007-12-25 2009-07-02 Kao Corporation Composite material for positive electrode of lithium battery
JP2009152188A (en) * 2007-11-30 2009-07-09 Sony Corp Cathode active material, cathode and nonaqueous electrolyte secondary battery
JP2009158396A (en) * 2007-12-27 2009-07-16 Toshiba Corp Nonaqueous electrolyte battery
JP2009176720A (en) * 2007-12-25 2009-08-06 Kao Corp Manufacturing method of composite material for positive electrode of lithium battery
JP2009176721A (en) * 2007-12-25 2009-08-06 Kao Corp Composite material for positive electrode of lithium battery
JP2009238656A (en) * 2008-03-28 2009-10-15 Gs Yuasa Corporation Active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery having the same
US7662515B2 (en) * 2005-07-07 2010-02-16 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP2010097751A (en) * 2008-10-15 2010-04-30 Hitachi Maxell Ltd Nonaqueous secondary battery
US7811703B2 (en) * 2006-03-30 2010-10-12 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP2010244950A (en) * 2009-04-09 2010-10-28 Nec Energy Devices Ltd Film outer package type nonaqueous electrolyte secondary battery
JP2010262754A (en) * 2009-04-30 2010-11-18 Furukawa Electric Co Ltd:The Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for negative electrode production for lithium ion secondary battery, and method of manufacturing negative electrode for lithium ion secondary battery
JP2011129344A (en) * 2009-12-17 2011-06-30 Toyota Motor Corp Lithium ion secondary battery
KR101080956B1 (en) 2009-04-13 2011-11-08 국립대학법인 울산과학기술대학교 산학협력단 Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP2012028264A (en) * 2010-07-27 2012-02-09 Toyota Motor Corp Negative electrode active material, method of producing the same, and secondary battery using negative electrode active material
JP2012527067A (en) * 2009-05-11 2012-11-01 ズード−ケミー アーゲー Composite material containing lithium metal mixed oxide
US8343667B2 (en) * 2007-03-28 2013-01-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP2013077513A (en) * 2011-09-30 2013-04-25 Semiconductor Energy Lab Co Ltd Power storage device
US8562869B2 (en) 2006-12-19 2013-10-22 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
JP2013246989A (en) * 2012-05-25 2013-12-09 Nec Corp Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery including the same, and lithium ion secondary battery
WO2014034635A1 (en) * 2012-08-28 2014-03-06 電気化学工業株式会社 Electrode material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
JP2014063753A (en) * 2013-12-03 2014-04-10 Toshiba Corp Nonaqueous electrolyte battery
US8709653B2 (en) 2004-03-08 2014-04-29 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US8715859B2 (en) * 2010-03-04 2014-05-06 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery including a positive electrode comprising layered lithium composite oxides, battery pack, and vehicle
KR20140105460A (en) * 2011-12-20 2014-09-01 소니 주식회사 Active material for secondary batteries, secondary battery, and electronic device
JP2015026433A (en) * 2013-07-24 2015-02-05 日本ゼオン株式会社 Method for forming electrode layer for secondary battery
JP2015511374A (en) * 2012-12-21 2015-04-16 エルジー・ケム・リミテッド Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR20150086280A (en) * 2012-10-22 2015-07-27 하이드로-퀘벡 Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
JPWO2013146300A1 (en) * 2012-03-30 2015-12-10 戸田工業株式会社 Negative electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US9240596B2 (en) 2008-07-28 2016-01-19 Hydro-Quebec Composite electrode material
WO2016047326A1 (en) * 2014-09-26 2016-03-31 株式会社村田製作所 Cathode for lithium ion secondary battery and lithium ion secondary battery using same
JP2016514356A (en) * 2013-03-12 2016-05-19 エネヴェート・コーポレーション Electrode, electrochemical cell, and method for forming electrode and electrochemical cell
US9431652B2 (en) 2012-12-21 2016-08-30 Lg Chem, Ltd. Anode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the anode active material
CN106384819A (en) * 2016-11-07 2017-02-08 珠海格力电器股份有限公司 Carbon-coated lithium titanate material and preparation method thereof as well as lithium-ion battery
CN106450217A (en) * 2016-11-07 2017-02-22 珠海格力电器股份有限公司 Modification method of lithium nickelate, cobaltate and manganate ternary material
JPWO2015129266A1 (en) * 2014-02-25 2017-03-30 新日鐵住金株式会社 Composite particles, negative electrode and battery
US20170244096A1 (en) * 2014-05-07 2017-08-24 Eliiy Power Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017152114A (en) * 2016-02-23 2017-08-31 太平洋セメント株式会社 Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte secondary battery
KR101798061B1 (en) * 2009-06-25 2017-11-16 삼성전자주식회사 Negative active material, negative electrode comprising same, method of preparing negative electrode, and lithium battery
US9997765B2 (en) 2010-12-22 2018-06-12 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
JP2019145477A (en) * 2018-02-23 2019-08-29 国立研究開発法人産業技術総合研究所 Laminate and manufacturing method thereof
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same

Cited By (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4530647B2 (en) * 2003-11-17 2010-08-25 日本コークス工業株式会社 Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2005149946A (en) * 2003-11-17 2005-06-09 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
US8709653B2 (en) 2004-03-08 2014-04-29 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US9012082B2 (en) 2004-03-08 2015-04-21 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
JP2007042579A (en) * 2005-06-29 2007-02-15 Matsushita Electric Ind Co Ltd Composite particle for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same
US7829224B2 (en) 2005-07-07 2010-11-09 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US8557443B2 (en) 2005-07-07 2013-10-15 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US7972730B2 (en) 2005-07-07 2011-07-05 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US8734995B2 (en) 2005-07-07 2014-05-27 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US8133619B2 (en) 2005-07-07 2012-03-13 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US7662515B2 (en) * 2005-07-07 2010-02-16 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US9515311B2 (en) 2005-07-07 2016-12-06 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US8313861B2 (en) 2005-07-07 2012-11-20 Kabushiki Kaisha Toshia Nonaqueous electrolyte battery, battery pack and vehicle
JP2007035472A (en) * 2005-07-28 2007-02-08 Matsushita Electric Ind Co Ltd Lithium secondary battery, negative electrode material and negative electrode for lithium secondary battery, and manufacturing method thereof
JP2007128765A (en) * 2005-11-04 2007-05-24 Sony Corp Battery
JP2007207466A (en) * 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2007094240A1 (en) * 2006-02-17 2007-08-23 Matsushita Electric Industrial Co., Ltd. Electroconductive composite particles, process for producing the electroconductive composite particles, and electrode plate and lithium ion rechargeable battery using the electroconductive composite particles
US7811703B2 (en) * 2006-03-30 2010-10-12 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP2007287670A (en) * 2006-04-17 2007-11-01 Samsung Sdi Co Ltd Anode active substance and its manufacturing method
US8906557B2 (en) 2006-04-17 2014-12-09 Samsung Sdi Co., Ltd. Anode active material and method of preparing the same
JP2007317415A (en) * 2006-05-24 2007-12-06 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using it
JP2008112652A (en) * 2006-10-31 2008-05-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2008123892A (en) * 2006-11-14 2008-05-29 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
US8562869B2 (en) 2006-12-19 2013-10-22 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
US9728809B2 (en) 2007-01-04 2017-08-08 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP2008186803A (en) * 2007-01-04 2008-08-14 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
US8785052B2 (en) 2007-03-28 2014-07-22 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US8343667B2 (en) * 2007-03-28 2013-01-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US9786909B2 (en) 2007-03-28 2017-10-10 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US8568927B2 (en) 2007-03-28 2013-10-29 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP2008258143A (en) * 2007-04-03 2008-10-23 Toyota Motor Engineering & Manufacturing North America Inc Tin in active support matrix
JP2008305573A (en) * 2007-06-05 2008-12-18 Sony Corp Anode and battery
WO2009054149A1 (en) * 2007-10-24 2009-04-30 Panasonic Corporation Electrode for electrochemical device and electrochemical device using the same
JP2009123695A (en) * 2007-10-24 2009-06-04 Panasonic Corp Electrode for electrochemical device, and electrochemical device using the electrode
JP4605287B2 (en) * 2007-11-30 2011-01-05 ソニー株式会社 Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP2009152188A (en) * 2007-11-30 2009-07-09 Sony Corp Cathode active material, cathode and nonaqueous electrolyte secondary battery
US8426064B2 (en) 2007-12-25 2013-04-23 Kao Corporation Composite material for positive electrode of lithium battery
WO2009081704A1 (en) * 2007-12-25 2009-07-02 Kao Corporation Composite material for positive electrode of lithium battery
JP2009176721A (en) * 2007-12-25 2009-08-06 Kao Corp Composite material for positive electrode of lithium battery
JP2009176720A (en) * 2007-12-25 2009-08-06 Kao Corp Manufacturing method of composite material for positive electrode of lithium battery
US8431273B2 (en) 2007-12-27 2013-04-30 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery
JP2009158396A (en) * 2007-12-27 2009-07-16 Toshiba Corp Nonaqueous electrolyte battery
JP2009238656A (en) * 2008-03-28 2009-10-15 Gs Yuasa Corporation Active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery having the same
US9240596B2 (en) 2008-07-28 2016-01-19 Hydro-Quebec Composite electrode material
JP2010097751A (en) * 2008-10-15 2010-04-30 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2010244950A (en) * 2009-04-09 2010-10-28 Nec Energy Devices Ltd Film outer package type nonaqueous electrolyte secondary battery
US8669008B2 (en) 2009-04-13 2014-03-11 Lg Chem, Ltd. Negative-electrode active material for rechargeable lithium battery
KR101080956B1 (en) 2009-04-13 2011-11-08 국립대학법인 울산과학기술대학교 산학협력단 Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
US9413000B2 (en) 2009-04-13 2016-08-09 Lg Chem, Ltd. Negative-electrode active material for rechargeable lithium battery
JP2010262754A (en) * 2009-04-30 2010-11-18 Furukawa Electric Co Ltd:The Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for negative electrode production for lithium ion secondary battery, and method of manufacturing negative electrode for lithium ion secondary battery
JP2012527067A (en) * 2009-05-11 2012-11-01 ズード−ケミー アーゲー Composite material containing lithium metal mixed oxide
KR101798061B1 (en) * 2009-06-25 2017-11-16 삼성전자주식회사 Negative active material, negative electrode comprising same, method of preparing negative electrode, and lithium battery
JP2011129344A (en) * 2009-12-17 2011-06-30 Toyota Motor Corp Lithium ion secondary battery
US8765304B2 (en) 2010-03-04 2014-07-01 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery, battery pack, and vehicle
US8715859B2 (en) * 2010-03-04 2014-05-06 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery including a positive electrode comprising layered lithium composite oxides, battery pack, and vehicle
JP2012028264A (en) * 2010-07-27 2012-02-09 Toyota Motor Corp Negative electrode active material, method of producing the same, and secondary battery using negative electrode active material
US11784298B2 (en) 2010-12-22 2023-10-10 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10516155B2 (en) 2010-12-22 2019-12-24 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US9997765B2 (en) 2010-12-22 2018-06-12 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10431808B2 (en) 2010-12-22 2019-10-01 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10985361B2 (en) 2010-12-22 2021-04-20 Enevate Corporation Electrodes configured to reduce occurrences of short circuits and/or lithium plating in batteries
US11177467B2 (en) 2010-12-22 2021-11-16 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US11837710B2 (en) 2010-12-22 2023-12-05 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US9461300B2 (en) 2011-09-30 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP2013077513A (en) * 2011-09-30 2013-04-25 Semiconductor Energy Lab Co Ltd Power storage device
KR20140105460A (en) * 2011-12-20 2014-09-01 소니 주식회사 Active material for secondary batteries, secondary battery, and electronic device
KR101950544B1 (en) * 2011-12-20 2019-02-20 가부시키가이샤 무라타 세이사쿠쇼 Active material for secondary batteries, secondary battery, and electronic device
JPWO2013146300A1 (en) * 2012-03-30 2015-12-10 戸田工業株式会社 Negative electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2013246989A (en) * 2012-05-25 2013-12-09 Nec Corp Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery including the same, and lithium ion secondary battery
KR102121868B1 (en) * 2012-08-28 2020-06-11 덴카 주식회사 Electrode material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
WO2014034635A1 (en) * 2012-08-28 2014-03-06 電気化学工業株式会社 Electrode material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
CN104603992A (en) * 2012-08-28 2015-05-06 电气化学工业株式会社 Electrode material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
JPWO2014034635A1 (en) * 2012-08-28 2016-08-08 デンカ株式会社 ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM ION SECONDARY BATTERY
KR20150052004A (en) * 2012-08-28 2015-05-13 덴키 가가쿠 고교 가부시기가이샤 Electrode material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
US11545668B2 (en) 2012-10-22 2023-01-03 Hydro-Quebec Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
KR102382433B1 (en) * 2012-10-22 2022-04-05 하이드로-퀘벡 Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
JP2015532514A (en) * 2012-10-22 2015-11-09 ハイドロ−ケベック Method of manufacturing electrode material for lithium-ion secondary battery and lithium-ion battery using the electrode material
KR20150086280A (en) * 2012-10-22 2015-07-27 하이드로-퀘벡 Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
JP2015511374A (en) * 2012-12-21 2015-04-16 エルジー・ケム・リミテッド Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
US9431652B2 (en) 2012-12-21 2016-08-30 Lg Chem, Ltd. Anode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the anode active material
JP2016514356A (en) * 2013-03-12 2016-05-19 エネヴェート・コーポレーション Electrode, electrochemical cell, and method for forming electrode and electrochemical cell
JP2015026433A (en) * 2013-07-24 2015-02-05 日本ゼオン株式会社 Method for forming electrode layer for secondary battery
JP2014063753A (en) * 2013-12-03 2014-04-10 Toshiba Corp Nonaqueous electrolyte battery
US10270087B2 (en) 2014-02-25 2019-04-23 Nippon Steel & Sumitomo Metal Corporation Composite particle, negative electrode and battery
JPWO2015129266A1 (en) * 2014-02-25 2017-03-30 新日鐵住金株式会社 Composite particles, negative electrode and battery
US20170244096A1 (en) * 2014-05-07 2017-08-24 Eliiy Power Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2016047326A1 (en) * 2014-09-26 2017-04-27 株式会社村田製作所 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
US10177370B2 (en) 2014-09-26 2019-01-08 Murata Manufacturing Co., Ltd. Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2016047326A1 (en) * 2014-09-26 2016-03-31 株式会社村田製作所 Cathode for lithium ion secondary battery and lithium ion secondary battery using same
JP2017152114A (en) * 2016-02-23 2017-08-31 太平洋セメント株式会社 Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte secondary battery
CN106384819A (en) * 2016-11-07 2017-02-08 珠海格力电器股份有限公司 Carbon-coated lithium titanate material and preparation method thereof as well as lithium-ion battery
CN106450217A (en) * 2016-11-07 2017-02-22 珠海格力电器股份有限公司 Modification method of lithium nickelate, cobaltate and manganate ternary material
CN106450217B (en) * 2016-11-07 2020-08-04 珠海格力电器股份有限公司 Method for modifying nickel cobalt lithium manganate ternary material
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11901500B2 (en) 2017-12-07 2024-02-13 Enevate Corporation Sandwich electrodes
US11916228B2 (en) 2017-12-07 2024-02-27 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
JP7071732B2 (en) 2018-02-23 2022-05-19 国立研究開発法人産業技術総合研究所 Laminated body and its manufacturing method
CN111788720A (en) * 2018-02-23 2020-10-16 国立研究开发法人产业技术综合研究所 Laminate and method for producing same
JP2019145477A (en) * 2018-02-23 2019-08-29 国立研究開発法人産業技術総合研究所 Laminate and manufacturing method thereof
US11916227B2 (en) 2018-02-23 2024-02-27 National Institute Of Advanced Industrial Science And Technology Multilayer body and method for producing same

Also Published As

Publication number Publication date
JP3992708B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JP3992708B2 (en) Non-aqueous secondary battery electrode material, method for producing the same, and non-aqueous secondary battery using the same
JP5165258B2 (en) Nonaqueous electrolyte secondary battery
JP4854289B2 (en) Non-aqueous electrolyte secondary battery
US8158282B2 (en) Method of producing prelithiated anodes for secondary lithium ion batteries
JP5615926B2 (en) Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP5464653B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP4650603B2 (en) Anode material for secondary battery, method for producing the same, and secondary battery using the same
JP4761239B2 (en) Non-aqueous secondary battery electrode material, method for producing the same, and non-aqueous secondary battery using the same
KR101309150B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101666871B1 (en) Positive electrode active material and method of manufacturing the same, and rechargeable lithium battery including the positive electrode active material
KR101561274B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
KR101622352B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2017076597A (en) Negative electrode active material for secondary battery and preparation method thereof
JP2011113863A (en) Nonaqueous secondary battery
KR20130035911A (en) Positive electrode material, lithium ion secondary battery using thereof, and manufacturing method of positive electrode material
KR101919524B1 (en) Negative electrode active material for rechargeable lithium battery, method of preparing of the same and rechargeable lithium battery including the same
KR20160085089A (en) Secondary Battery
US11362321B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery
KR20180074607A (en) An anode active material and an anode for an electrochemical device comprising the same
CN110892562A (en) Negative electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery obtained by using same
JP2023015403A (en) Non-aqueous electrolyte secondary battery
JP6493408B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101578974B1 (en) Positive-electrode active material, manufacturing method of the same, and nonaqueous electrolyte rechargeable battery having the same
KR101942654B1 (en) Metal/carbon crystal particle composite, method for producing the same, and energy storage device having the same
WO2023135970A1 (en) Negative electrode active material and negative electrode

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3992708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250