JP2009176721A - Composite material for positive electrode of lithium battery - Google Patents

Composite material for positive electrode of lithium battery Download PDF

Info

Publication number
JP2009176721A
JP2009176721A JP2008308870A JP2008308870A JP2009176721A JP 2009176721 A JP2009176721 A JP 2009176721A JP 2008308870 A JP2008308870 A JP 2008308870A JP 2008308870 A JP2008308870 A JP 2008308870A JP 2009176721 A JP2009176721 A JP 2009176721A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium battery
composite
preferably
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008308870A
Other languages
Japanese (ja)
Other versions
JP5377946B2 (en
Inventor
Hiroaki Kitayama
Tamaki Miura
Kazuo Oki
Takami Saito
Minoru Sawai
Kyoichi Watanabe
環 三浦
博昭 北山
恭一 渡邉
実 澤井
一雄 隠岐
崇実 齋藤
Original Assignee
Kao Corp
Nissan Motor Co Ltd
日産自動車株式会社
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007332650 priority Critical
Priority to JP2007332650 priority
Application filed by Kao Corp, Nissan Motor Co Ltd, 日産自動車株式会社, 花王株式会社 filed Critical Kao Corp
Priority to JP2008308870A priority patent/JP5377946B2/en
Publication of JP2009176721A publication Critical patent/JP2009176721A/en
Application granted granted Critical
Publication of JP5377946B2 publication Critical patent/JP5377946B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material for positive electrode of a lithium battery which has high conductivity and sufficiently secured lithium diffusion passages and has excelling high speed discharge characteristics. <P>SOLUTION: The composite material for positive electrode of a lithium battery is composed of composite particles containing cathode active particles and a fibrous carbon material. The composite particles has a composition in which the cathode active particles are supported by the fibrous carbon material. In the composite material for a cathode, since the cathode active particles are supported by the fibrous carbon material, the conductivity is high and a lithium diffusion passage can be fully secured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、正極活物質粒子と繊維状炭素とを含む複合粒子から構成されるリチウム電池正極用複合材料、並びにこれを用いた正極および電池に関する。 The present invention is a lithium battery positive electrode composite material composed of a composite particle containing a positive electrode active material particles and fibrous carbons, and to the positive electrode and a battery using the same.

近年、石油資源の高騰、国際的な地球環境保護運動の高まりを背景として、電気自動車、ハイブリッド自動車、燃料電池車の導入を促進すべく研究が行われている。 In recent years, high oil resources, against the background of growing international global environmental protection movement, research is being carried out in order to promote electric vehicles, hybrid vehicles, the introduction of fuel cell vehicles. これらの駆動システムには、補助用電源としてバッテリーが不可欠であり、しかも自動車の急発進急加速に追随できる高出力な電池が望まれている。 These drive systems, batteries are essential, yet is high output batteries capable of following the sudden starting sudden acceleration of the automobile is desired as an auxiliary power source. また、車への重量負荷、燃費向上の観点から、エネルギー密度の高い電池が望まれる。 The weight load on the car, from the viewpoint of fuel efficiency, high energy density batteries are desired. このような背景から、二次電池の中で最もエネルギー密度が高く、かつ高出力を発現できるリチウムイオン二次電池が有望視されている。 Against this background, the most high energy density, and a lithium ion secondary battery capable of expressing high output in the secondary battery is promising.

一般にリチウムイオン二次電池は、リチウムイオン含有酸化物を含む正極と、炭素物質を含む負極とで電極が構成されている。 Generally the lithium ion secondary battery includes a positive electrode containing a lithium ion-containing oxide, the electrode with a negative electrode containing a carbon material is constructed. 正極では、リチウムイオン含有酸化物(正極活物質)自体の導電性が低いことから、導電性を向上させるために、カーボンブラックやカーボンファイバー等の導電材が添加されている。 The positive electrode, the lithium ion-containing oxides from the low conductivity (positive electrode active material) itself, in order to improve the conductivity, a conductive material such as carbon black or carbon fiber is added. カーボンファイバーにおいては、近年、気相法による繊維径がナノオーダーのVGCF(登録商標)やカーボンナノチューブが開発され、電池用途への応用が検討されている。 In the carbon fiber, in recent years, fiber diameter by a gas phase method is nano-order VGCF (registered trademark) or a carbon nanotube have been developed, Application to battery applications has been studied.

例えば特許文献1では、正極活物質、カーボンナノチューブ、グラファイトおよびバインダーを混合してペースト状にしたものを塗布し、電池電極を作製した例が開示されている。 For example, Patent Document 1, the positive electrode active material, carbon nanotubes, by mixing graphite and a binder is applied to those in paste form, an example of manufacturing a battery electrode is disclosed.

また、特許文献2には、粒径5〜30μmの球状正極活物質とカーボンナノファイバーを遠心ボールミルで機械的に強いせん断力を加えながら混合し、カーボンナノファイバーを分断して活物質表面に付着させる手法が試みられている。 Further, Patent Document 2, the spherical positive electrode active material and the carbon nanofibers having a particle size of 5~30μm and mixed while applying mechanical strong shearing force by a centrifugal ball mill, attached to the active material surface by dividing the carbon nanofiber approach to have been attempted.

更に、特許文献3には、遷移金属化合物とリチウム化合物とを混合・焼成して得られた正極活物質と、炭素粉等の導電助剤とを噴霧乾燥して複合化するリチウム電池正極用複合材料の製造方法が開示されている。 Further, Patent Document 3, a cathode active material obtained by mixing and calcining a transition metal compound and a lithium compound, a composite for a lithium battery positive electrode to composite by spray drying a conductive additive such as carbon powder method for producing a material is disclosed.

特開平11−283629号公報 JP 11-283629 discloses 特開2006−164859号公報 JP 2006-164859 JP 特開2003−173777号公報 JP 2003-173777 JP

しかしながら、カーボンナノチューブのような繊維状炭素は、繊維状炭素同士が絡み合って糸玉状になっているため、特許文献1に記載されたような混合方法では、繊維状炭素をほぐして均一に正極活物質と混合することは非常に困難であり、カーボンナノチューブのポテンシャルを十分に引き出すことができない。 However, fibrous carbon such as carbon nanotube, because the intertwined fibrous carbon together have become yarn ball shape, in the mixing method described in Patent Document 1, uniformly loosen the fibrous carbon positive electrode it is very difficult to mix the active material, it is impossible to bring out the potential of the carbon nanotubes sufficiently.

また、特許文献2に開示されているように、遠心ボールミルで機械的に強いせん断力を加えながら混合する方法では、カーボンナノファイバーが分断してしまうため、カーボンナノファイバーの特徴である高いアスペクト比による長距離の導電パスが阻害されてしまうという問題がある。 Also, as disclosed in Patent Document 2, a method of mixing while applying mechanical strong shearing force by a centrifugal ball mill, since the carbon nanofibers thus divided, high aspect ratio, which is a feature of the carbon nanofiber there is a problem that long-distance conductive path is hindered by.

更に、特許文献3に記載の正極用複合材料の製造方法においても、噴霧乾燥に用いるスラリーを調製する際に繊維状炭素を正極活物質と均一に混合することが困難であるため、この製造方法における導電助剤として、炭素粉に代えて繊維状炭素を用いることは困難であった。 Further, in the manufacturing method of a composite material for positive electrode described in Patent Document 3, since the fibrous carbon is difficult to uniformly mix and the positive electrode active material in preparing the slurry used in the spray drying process the manufacturing as a conductive additive in, the use of the fibrous carbon in place of the carbon powder is difficult.

そこで、本発明の目的は、高速放電特性に優れたリチウム電池を与える、Liの拡散経路が十分確保され、導電性が高い、リチウム電池正極用複合材料、並びにこれを用いた正極および電池を提供することにある。 An object of the present invention provides excellent lithium battery high-rate discharge characteristics, the diffusion path of Li is sufficiently secured, highly conductive composite material for a lithium battery positive electrode, as well as provide a positive electrode and a battery using the same It is to.

本発明者らは、溶媒中に正極活物質粒子と繊維状炭素とが十分に分散したスラリーを用いて噴霧造粒することで、前記正極活物質粒子が前記繊維状炭素により保持されている造粒物が得られ、この造粒物が高速放電特性に優れた正極用複合材料となることを見出し、本発明を完成するに至った。 Concrete present inventors have found that spray granulation using a slurry of the positive electrode active material particles and the fibrous carbons is sufficiently dispersed in a solvent, wherein the positive electrode active material particles are held by the fibrous carbon grains was obtained, it found that the granules become composite material for positive electrodes having excellent high-rate discharge characteristics, and have completed the present invention.

即ち、本発明のリチウム電池正極用複合材料は、正極活物質粒子と繊維状炭素とを含む複合粒子から構成されるリチウム電池正極用複合材料であって、前記複合粒子は、前記正極活物質粒子が前記繊維状炭素により保持されている形態を有するリチウム電池正極用複合材料である。 That is, the lithium battery positive electrode composite material of the present invention is a composite material for a configured lithium battery positive electrode of a composite particle comprising a fibrous carbon positive electrode active material particles, the composite particles, the positive electrode active material particles There is a composite material for a lithium battery positive electrode having a form as it is held by the fibrous carbon.

更に、本発明は、上記のようなリチウム電池正極用複合材料を用いた正極および電池に関する。 Furthermore, the present invention relates to a positive electrode and a battery using a lithium battery positive electrode composite material as described above.

本発明のリチウム電池正極用複合材料は、正極活物質粒子が繊維状炭素により保持されているため、Liの拡散経路が十分確保され、導電性が高い。 Composite material for a lithium battery positive electrode of the present invention, since the positive electrode active material particles are retained by the fibrous carbon, the diffusion path of Li is sufficiently secured, high conductivity. よって、本発明によれば、高速放電特性に優れたリチウム電池正極用複合材料、正極および電池を提供できると考えられる。 Therefore, according to the present invention, the composite material for excellent lithium battery positive electrode high-rate discharge characteristics, is believed possible to provide a positive electrode and a battery.

本発明のリチウム電池正極用複合材料(以下、単に「正極用複合材料」という場合がある)は、正極活物質粒子と繊維状炭素とを含む複合粒子から構成されるリチウム電池正極用複合材料であって、前記正極活物質粒子が前記繊維状炭素により保持されているリチウム電池正極用複合材料である。 Lithium batteries composite material for positive electrodes of the present invention (hereinafter, simply referred to as "composite material for positive electrodes") is a composite material for configured lithium battery positive electrode of a composite particle comprising a fibrous carbon positive electrode active material particles there are, the positive electrode active material particle is a composite material for a lithium battery positive electrode being held by the fibrous carbon. ここで、「正極活物質粒子が繊維状炭素により保持されている」とは、複合粒子に含まれる正極活物質粒子が繊維状炭素により保持されて、複合粒子の形状が維持される状態を指し、後述する方法により確認することができる。 Here, the "positive electrode active material particles are supported by the fibrous carbon", the positive electrode active material particles contained in the composite particles are held by the fibrous carbons, it refers to a state in which the shape of the composite particles is maintained it can be confirmed by a method described later.

本発明の正極用複合材料は、正極活物質粒子が繊維状炭素により保持されていることから、全ての正極活物質粒子に導電ネットワークが構築されており、非常に導電性が高い正極用複合材料を提供できると考えられる。 Composite material for positive electrode of the present invention, since the positive electrode active material particles are supported by the fibrous carbons, any positive electrode active material particles and conductive network is constructed in a composite material for a very high conductivity cathode It is considered to be able to provide. また、繊維状炭素の絡み合いによって微細な空間ができ易いため、この隙間を介してリチウムイオンがスムーズに拡散できることから、高速放電に優れた正極用複合材料を提供できると考えられる。 Moreover, liable can fine space by the entanglement of the fibrous carbon, a lithium ion through the gap because it can spread smoothly, it is considered possible to provide a composite material for positive electrodes having excellent high-rate discharge. さらに、繊維状炭素からなるネットが正極活物質を包み込んでいる場合は、このネットが柔軟性に富んでいるため、電極を作製する際のプレスにより球形構造が押しつぶされて崩壊しづらい安定な構造を有している。 Further, if the net made of the fibrous carbon is wrapped a positive electrode active material, because this net is rich in flexibility, and stable hard collapse is spherical structure crushed by a press of making the electrode structure have. このようなことから、本発明の正極用複合材料は、従来のものよりも電池の内部抵抗を小さくできるため、高速放電特性に優れたリチウム電池を提供することができると考えられる。 For this reason, a composite material for positive electrode of the present invention, it is possible to reduce the internal resistance of the battery than the conventional, it is considered possible to provide an excellent lithium battery high-rate discharge characteristics.

つまり、本発明のリチウム電池正極用複合材料の複合粒子は、繊維状炭素の少なくとも一部が正極活物質粒子間隙に存在する形態を有することが好ましく、繊維状炭素の一部が正極活物質粒子間隙に存在するとともに、繊維状炭素が正極活物質粒子を網目状に包み込んだ形態を有することがより好ましい。 That is, the composite particles of the lithium battery positive electrode composite material of the present invention preferably has a form in which at least a portion of the fibrous carbon is present in the positive electrode active material particle gap, part of the fibrous carbon positive electrode active material particles together present in the gap, the fibrous carbon and more preferably has a enveloped form a positive electrode active material particles in a mesh shape. このような形態は、後述する実施例で示すように、走査型電子顕微鏡観察により確認することができる。 Such embodiment, as shown in the examples described below, can be confirmed by scanning electron microscopy.

正極活物質粒子の材料としては、従来公知の何れの材料も使用でき、例えば、LiMn などのLi・Mn系複合酸化物、LiCoO などのLi・Co系複合酸化物、LiNiO などのLi・Ni系複合酸化物、LiFeO などのLi・Fe系複合酸化物などが挙げられ、Li CoO ,Li NiO ,MnO ,LiMnO ,Li Mn ,Li Mn 2−y ,α−V ,TiS 等が挙げられる。 As the material of the positive electrode active material particles, can also be used conventionally known any material, for example, Li · Mn-based composite oxide such as LiMn 2 O 4, Li · Co-based composite oxides such as LiCoO 2, etc. LiNiO 2 of Li · Ni-based composite oxide, is like Li · Fe-based composite oxides such as LiFeO 2, Li x CoO 2, Li x NiO 2, MnO 2, LiMnO 2, Li x Mn 2 O 4, Li x Mn 2-y O 4, α -V 2 O 5, TiS 2 and the like. なかでも、熱的安定性、及び容量、出力特性に優れるという観点から、LiMn などのマンガン酸リチウム,LiCoO などのコバルト酸リチウム,LiNiO などのニッケル酸リチウムが好ましく、LiMn などのマンガン酸リチウムがより好ましい。 Among them, thermal stability, and capacity, from the viewpoint of excellent output characteristics, lithium manganate such as LiMn 2 O 4, lithium cobaltate, such as LiCoO 2, lithium nickel oxide such as LiNiO 2 Preferably, LiMn 2 O lithium manganate such as 4 are more preferable.

正極活物質粒子の平均凝集粒径としては、正極活物質の安全性や安定性、サイクル特性の観点から、好ましくは0.1μm以上、より好ましくは0.3μm以上、さらに好ましくは、0.5μm以上、また、反応性、高速放電性の観点から10μm以下が好ましく、より好ましくは5μm以下、さらに好ましくは2μm以下である。 The average agglomerated particle size of the positive electrode active material particles, safety and stability of the cathode active material, from the viewpoint of cycle characteristics, preferably 0.1μm or more, more preferably 0.3μm or more, more preferably, 0.5 [mu] m or more, reactivity, preferably 10μm or less from the viewpoint of high-speed discharge, more preferably 5μm or less, more preferably 2μm or less. これらの観点を総合すると、0.1〜10μmが好ましく、0.3〜5μmがより好ましく、0.5〜2μmが更に好ましい。 Collectively considering the viewpoints, preferably 0.1 to 10 [mu] m, more preferably 0.3 to 5 m, more preferably 0.5 to 2 [mu] m.

本発明では、各繊維状炭素が絡み合いながら、正極活物質が繊維状炭素により保持されていることが好ましい。 In the present invention, while entangled each fibrous carbon, it is preferable that the positive electrode active material is retained by the fibrous carbons. このような観点から、繊維状炭素は、繊維径が細く、かつ繊維長が長いことが好ましい。 From this point of view, the fibrous carbon has a fiber diameter is thin, and it is preferable fiber length is long. 更に導電性の観点から、繊維状炭素の繊維長(L)に対する繊維径(W)のアスペクト比(L/W)は、好ましくは50以上、より好ましくは100以上、更に好ましくは200以上であり、繊維状炭素の分散性の観点から、好ましくは20000以下、より好ましくは5000以下、さらに好ましくは1000以下である。 Further from the viewpoint of conductivity, an aspect ratio of fiber diameter of the fibrous carbon fiber length for (L) (W) (L / W) is preferably 50 or more, more preferably 100 or more, more preferably be 200 or more , from the viewpoint of the dispersibility of the fibrous carbon is preferably 20000 or less, more preferably 5000 or less, more preferably 1000 or less. これらの観点を総合すると、50〜20000が好ましく、100〜5000がより好ましく、200〜1000が更に好ましい。 Collectively considering the viewpoints, preferably from 50 to 20,000, more preferably from 100 to 5,000, more preferably 200 to 1,000.

同様の観点から、繊維状炭素は絡まりやすい構造のものが好ましく、繊維状炭素の繊維長は、好ましくは50nm以上、より好ましくは500nm以上、更に好ましくは1μm以上である。 From the same viewpoint, it is preferable that the fibrous carbon easy entanglement structure, the fiber length of the fibrous carbon is preferably 50nm or more, more preferably 500nm or more, more preferably 1μm or more. また、本発明の正極用複合材料を用いて作製された、正極電極表面の平滑性の観点から、繊維状炭素の繊維長は、好ましくは50μm以下、より好ましくは30μm以下、さらに好ましくは10μm以下である。 Further, it produced using the composite material for positive electrode of the present invention, from the viewpoint of smoothness of the positive electrode surface, the fiber length of the fibrous carbon is preferably 50μm or less, more preferably 30μm or less, more preferably 10μm or less it is. これらの観点を総合すると、50nm〜50μmが好ましく、500nm〜30μmがより好ましく、1μm〜10μmが更に好ましい。 Collectively considering the viewpoints, preferably 50Nm~50myuemu, more preferably 500Nm~30myuemu, more preferably 1 m to 10 m. また、繊維状炭素の繊維長と正極活物質粒子の平均凝集粒径(活物質粒径)の比(繊維状炭素の繊維長/活物質粒径)は、正極活物質を繊維状炭素に保持する観点から、好ましくは1以上、より好ましくは2以上、さらに好ましくは3以上である。 The ratio (fiber length of the fibrous carbon / active material particle diameter) having an average aggregate particle size of fiber length and the positive electrode active material particles of the fibrous carbon (active material particle diameter), holds the positive electrode active material carbon fiber from the viewpoint of, preferably 1 or more, more preferably 2 or more, more preferably 3 or more. また、同様の観点から、繊維状炭素の繊維長と活物質粒径の比は、好ましくは500以下、より好ましくは100以下、さらに好ましくは20以下である。 From the same viewpoint, the ratio of fiber length and the active material particle diameter of the fibrous carbon is preferably 500 or less, more preferably 100 or less, more preferably 20 or less. これらの観点を総合すると、繊維状炭素の繊維長と活物質粒径の比は、1〜500が好ましく、2〜100がより好ましく、3〜20がさらに好ましい。 Collectively considering the viewpoints, the ratio of fiber length and the active material particle diameter of the fibrous carbon is preferably 1 to 500, more preferably from 2 to 100, more preferably from 3 to 20.

同様の観点から、繊維状炭素は絡まりやすい構造のものが好ましいことと、正極活物質表面とより多く接触して導電経路を確立させる観点とから、繊維状炭素の繊維径は、1〜1000nmが好ましく、1〜500nmがより好ましく、1〜100nmが更に好ましく、1〜50nmが更により好ましい。 From the same viewpoint, and it is preferable for the fibrous carbon easy entanglement structure, and a view to establishing more contact with conductive path between the positive electrode active material surface, fiber diameter of the fibrous carbon is 1~1000nm more preferably from 1 to 500 nm, more preferably 1 to 100 nm, still more preferably 1 to 50 nm.

繊維状炭素としては、前述の好適なアスペクト比、繊維長及び繊維径を形成し易く、正極活物質粒子が繊維状炭素により保持された造粒物が噴霧造粒(後述する)により得られ易い観点から、ポリアクリロニトリル(PAN)に代表される高分子を原料とした繊維状炭素、ピッチを原料としたピッチ系繊維状炭素も使用可能であるが、カーボンナノチューブ(グラファイトの1枚面つまりグラフェンシートを巻いて筒状にした形状物(微粒子工学大系第I巻P651、株式会社フジ・テクノシステム))であって、炭化水素ガスを原料とする気相成長系の繊維状炭素(例えば、VGCF:登録商標)、アーク放電法、レーザー蒸発法、化学気相成長法などで得られる、いわゆる狭義のカーボンナノチューブ(以下、狭義のカーボンナノチューブを単 Examples of the fibrous carbon, a suitable aspect ratio of the above, it is easy to form a fiber length and fiber diameter, easily obtained granules active material particles are supported by the fibrous carbons by spray granulation (described later) from the viewpoint, the fibrous carbon polymer was used as a raw material represented by polyacrylonitrile (PAN), but can be used also pitch-based carbon fiber as a raw material pitch, one plane or graphene carbon nanotubes (graphite sheet a wound cylindrical in shape thereof (fine Engineering Compendium Vol. I P651, Fuji Techno system)), fibrous carbon vapor deposition system for hydrocarbon gas as a raw material (for example, VGCF : registered trademark), an arc discharge method, laser evaporation method, resulting in chemical vapor deposition, the so-called narrow sense of the carbon nanotube (hereinafter, the carbon nanotubes in the narrow sense single カーボンナノチューブという)などが好適に用いられる。 Such as carbon nanotubes) is preferably used. より多くの導電経路を構築させる観点から、繊維径の細い繊維状炭素が好ましく、VGCFやカーボンナノチューブが好適に用いられ、中でもカーボンナノチューブを用いることが好ましい。 From the viewpoint of constructing more conductive paths, thin fibrous carbon is preferably a fiber diameter, VGCF, carbon nanotubes are preferably used, it is preferred to use among them carbon nanotubes. カーボンナノチューブは、例えば、HeやAr、CH 、H などの雰囲気ガスのもとで、黒鉛電極をアーク放電で蒸発させるアーク放電法、NiやCo、Y、Feなどの金属触媒を含む黒鉛電極をアーク放電で蒸発させるアーク放電法、Ni−Co、Pd−Rdなどの金属触媒を混ぜた黒鉛にYAGレーザーを当て蒸発させ、Arの気流で1200℃程度に加熱された電気炉に送り出すレーザー蒸発法、触媒にペンタカルボニル鉄(Fe(CO) )を用い、一酸化炭素を高圧で熱分解するHiPCO法等で得ることができる。 Carbon nanotubes, for example, He or Ar, CH 4, under an atmosphere gas such as H 2, an arc discharge method for evaporating a graphite electrode by arc discharge, graphite containing Ni and Co, Y, a metal catalyst such as Fe laser for feeding the electrode arc discharge method for evaporating an arc discharge, Ni-Co, Pd-Rd evaporated applying a YAG laser to graphite mixed with a metal catalyst such as, an electric furnace heated to about 1200 ° C. in a stream of Ar evaporation, using a catalyst of iron pentacarbonyl (Fe (CO) 5), can be obtained by thermally decomposing HiPCO method carbon monoxide at high pressure. カーボンナノチューブのアスペクト比については、例えば、炭化水素(ベンゼン等)と水素ガス等の雰囲気ガスの濃度比が小さいほど、生成するカーボンナノチューブの直径が細くなり、アスペクト比が大きくなる。 The aspect ratio of the carbon nanotubes, for example, as the concentration ratio of hydrocarbon (benzene or the like) and an atmosphere gas such as a hydrogen gas is small, the diameter of the carbon nanotube is thin to produce, the aspect ratio increases. また、反応時間が短いほど、生成するカーボンナノチューブの直径が細くなり、やはりアスペクト比が大きくなる。 Also, the shorter the reaction time, the diameter of the carbon nanotube is thin to produce, also the aspect ratio increases.

本発明では、繊維状炭素の他に導電性を補助する炭素材料を配合しても良い。 In the present invention, it may be blended carbon material to aid in addition to conductive fibrous carbon. そのような炭素材料としては、グラファイトやカーボンブラックが挙げられ、これらのうちカーボンブラックを使用することが好ましい。 Such carbon materials include graphite or carbon black, it is preferable to use carbon black of these.

カーボンブラックとしては、サーマルブラック法、アセチレンブラック法等の分解法、チャンネルブラック法、ガスファーネスブラック法、オイルファーネスブラック法、松煙法、ランプブラック法等の不完全燃焼法のいずれの製法で製造されたものも使用できるが、導電性の観点からファーネスブラック、アセチレンブラックが好ましく用いられる。 As the carbon black, thermal black method, decomposition method such as acetylene black method, channel black method, a gas furnace black, oil furnace black method, Matsukemuriho, prepared by any method of incomplete combustion method lamp black method but has been also used as a conductive viewpoint from furnace black, acetylene black is preferably used. これらは単独で用いても良いし、2種以上を混合しても良い。 These may be used alone, or may be a mixture of two or more thereof.

カーボンブラックのDBP吸収量は、繊維状炭素の導電性を好適に補助する観点から、40〜300cm /100gが好ましく、80〜200cm /100gがより好ましい。 DBP absorption of carbon black, from the viewpoint of suitably assist the conductivity of the fibrous carbon is preferably 40~300cm 3 / 100g, 80~200cm 3 / 100g and more preferably.

繊維状炭素以外の炭素材料を添加する場合、このような炭素材料は、繊維状炭素の分散液の中に添加し、繊維状炭素とともに正極活物質粒子と複合するのに使用しても良い。 When adding a carbon material other than the fibrous carbons, such carbon material is added into the dispersion of the fibrous carbon may be used to complex with the positive electrode active material particles with the fibrous carbon. また、繊維状炭素と正極活物質の分散液から噴霧造粒により得られた粒子と炭素材料を混合して、造粒物間の導電性を向上させる目的に利用しても良い。 Further, by mixing the particles and the carbon material obtained by the spray granulation from the dispersion of the fibrous carbon and the positive electrode active material, it may be used for the purpose of improving the conductivity of between granulated product.

繊維状炭素以外の炭素材料の配合量は、導電性を補助しつつ造粒物の形状を保持する観点から、正極活物質100重量部に対して、好ましくは0〜20重量部、より好ましくは0〜10重量部、更に好ましくは0〜5重量部である。 The amount of the carbon material other than the fibrous carbons, conductive from the viewpoint of holding the shape of the granulated product with the auxiliary, the positive electrode active material 100 parts by weight, preferably 0 to 20 parts by weight, more preferably 0-10 parts by weight, more preferably from 0 to 5 parts by weight.

炭素材料の総配合量、即ち、繊維状炭素と繊維状炭素以外の炭素材料の総配合量は、正極用複合材料の体積抵抗低減の観点から、正極活物質100重量部に対して、好ましくは0.02重量部以上、より好ましくは0.1重量部以上、更に好ましくは0.5重量部以上である。 The total amount of the carbon material, i.e., the total amount of the carbon material other than the fibrous carbon and the fibrous carbon is in terms of volume resistance reduction of the composite material for positive electrodes, the positive electrode active material 100 parts by weight, preferably 0.02 parts by weight or more, more preferably 0.1 parts by weight or more, still more preferably 0.5 parts by weight or more. また、正極用複合材料のエネルギー密度を高める観点から、好ましくは30重量部以下、より好ましくは20重量部以下、更に好ましくは10重量部以下である。 Further, from the viewpoint of enhancing the energy density of the composite material for positive electrodes, preferably not more than 30 parts by weight, more preferably 20 parts by weight or less, even more preferably not more than 10 parts by weight. これらの観点を総合すると、0.02〜30重量部が好ましく、0.1〜20重量部がより好ましく、0.5〜10重量部が更に好ましい。 Collectively considering the viewpoints, preferably 0.02 to 30 parts by weight, more preferably 0.1 to 20 parts by weight, 0.5 to 10 parts by weight is more preferable.

本発明の正極用複合材料の体積抵抗は、正極において十分な導電性を付与する観点から、0〜3Ω・cmが好ましく、0〜2Ω・cmがより好ましく、0〜1.5Ω・cmが更に好ましい。 The volume of the composite material for positive electrodes resistor of the present invention, from the viewpoint of imparting sufficient conductivity in the positive electrode, preferably 0~3Ω · cm, more preferably 0~2Ω · cm, still is 0~1.5Ω · cm preferable.

また、本発明の正極用複合材料は、繊維状炭素の絡みあった部分の隙間や正極活物質間の隙間により微細孔が形成され易い。 The composite material for positive electrode of the present invention is likely micropores are formed by the gaps between the gap and the positive electrode active material of the portion entangled fibrous carbons. 微細孔が形成される場合、Liの移動がスムーズに行われる観点から、0.01〜1μmの細孔容量の合計が、0.3ml/g以上が好ましく、0.4ml/g以上がより好ましい。 If the micropores are formed, in view of the movement of Li can be smoothly, a total pore volume of 0.01~1μm is preferably not less than 0.3 ml / g, more 0.4 ml / g and more preferably . また、バインダー添加量を少なくさせる観点から、0.01〜1μmの細孔容量の合計が0.8ml/g以下が好ましく、0.6ml/g以下がより好ましい。 Further, from the viewpoint of reducing the binder amount, total is preferably from 0.8 ml / g pore volume of 0.01 to 1 [mu] m, more preferably at most 0.6 ml / g.

本発明の正極用複合材料は、溶媒中に正極活物質粒子と繊維状炭素とが分散した状態で含まれるスラリーから噴霧造粒により得られることが好ましい。 Composite material for positive electrode of the present invention is preferably in the solvent and a positive electrode active material particles and fibrous carbons obtained by spray granulation from the slurry contained in a dispersed state. 正極活物質が繊維状炭素により保持されている複合粒子を容易に形成できるからである。 It is because it easily form composite particles where the positive electrode active material is held by the fibrous carbons. 以下、本発明の正極用複合材料の好適な製造方法について説明する。 Hereinafter, a description will be given of a preferred method of producing a composite material for positive electrode of the present invention.

本発明の正極用複合材料は、主として2つの工程、好ましくは3つの工程により作製することができる。 Composite material for positive electrode of the present invention is mainly two steps can preferably be produced by three steps.

まず[工程1]として、溶媒中に正極活物質粒子と繊維状炭素とが分散した状態で含まれるスラリーを得る。 First, as [Step 1], to obtain a slurry in the solvent and a positive electrode active material particles and fibrous carbons contained in a dispersed state. ここに、正極活物質粒子と繊維状炭素とが分散した状態とは、スラリーをサンプリングして所定濃度に希釈し、遅滞なく粒度分布測定装置で平均粒径を測定した際に、当該平均粒径が正極活物質の平均凝集粒径の130%以内になるような分散状態を指す(具体的な測定方法は後述する)。 Here, the state in which the positive electrode active material particles and fibrous carbons are dispersed, the slurry was sampled and diluted to a predetermined concentration, when measuring the average particle size in a particle size distribution measuring device without delay, the average particle size There refers to dispersed state such that within 130% of an average aggregated particle diameter of the positive electrode active material (specific measuring method will be described later). つまり、初期の凝集状態からこのような分散状態に移行することによって、測定される平均粒径が正極活物質の平均凝集粒径に近づき(繊維状炭素の分散状態もこの測定値に反映される)、この現象から上記の分散状態を把握することができる。 That is, by the transition from the initial state of aggregation in such a dispersed state, the average particle size measured is reflected in the measured value is also dispersed state with an average aggregate particle size approaches (fibrous carbon of the positive electrode active material ), it is possible to grasp the dispersed state of the this phenomenon.

このように正極活物質粒子と繊維状炭素とが分散した状態にする方法としては、繊維状炭素を溶媒中、分散剤を用いて分散させた後、正極活物質、場合によっては繊維状炭素以外の炭素材料を添加して、超音波を照射する方法が例示できる。 As a method for such a state where the positive electrode active material particles and fibrous carbons are dispersed in solvents fibrous carbon were dispersed using a dispersing agent, the positive electrode active material other than the fibrous carbons optionally carbon material is added and a method of irradiating the ultrasonic waves can be exemplified.

次いで、[工程2]として、工程1で得たスラリーを用いて噴霧造粒し、正極活物質粒子と繊維状炭素とを含有する造粒物を得る。 Then, obtained as [Step 2] was sprayed granulated using a slurry obtained in Step 1, the granules containing the positive electrode active material particles and fibrous carbons. 好ましくは、スラリーを噴霧し球形状の液滴を生成させた後、熱で溶媒を蒸発させて乾燥し、球形状の造粒粉体を形成する、いわゆる噴霧造粒を行うものである。 Preferably, after generating the droplets of sprayed spherical The slurry was dried and the solvent is evaporated by heat to form spherical granulated powder, and performs so-called spray granulation.

更に工程2において又は工程2の後に、任意の工程である[工程3]として、造粒物から分散剤を除去して複合粒子を得ることが好ましい。 After a further or step 2 In step 2, an optional step as [Step 3], it is preferable to obtain the composite particles by removing the dispersing agent from the granules.

繊維状炭素の選択については、次の観点が考慮される。 The selection of the fibrous carbon, the following aspects are taken into account. 即ち、本方法では各繊維が絡み合って糸玉状に凝集している繊維状炭素を、溶媒中で上述した分散状態にまで分散せしめ(好ましくは分散剤を用いて分散せしめ)、これに正極活物質を混合することで繊維状炭素と正極活物質粒子が均一に混合したスラリーを形成し、それを噴霧乾燥し、前記正極活物質と前記繊維状炭素とを有する球状の複合粒子を構築させるのが好ましい。 That is, the fibrous carbon are aggregated yarn ball shape intertwined each fiber in this process, dispersed until the dispersion state described above in a solvent (preferably dispersed allowed using a dispersing agent), a cathode active in this forming a slurry fibrous carbon and a positive electrode active material particles are uniformly mixed by mixing material, it was spray-dried, to thereby construct the composite spherical particles having a positive electrode active material and the fibrous carbon It is preferred. 本方法によれば、噴霧造粒を行う際に、正極活物質に分散した繊維状炭素が絡まることにより、近傍の正極活物質が繊維状炭素により保持される。 According to this method, when performing spray granulation, by entanglement fibrous carbon dispersed in the positive electrode active material, the positive electrode active material in the vicinity it is maintained by the fibrous carbons. この際、包み込んだ状態で保持されて球状粒子が形成されることが好ましい。 In this case, it is preferable that has been spherical particles held in a state where wrapped is formed. このような観点から、繊維状炭素としては、上述したVGCFやカーボンナノチューブが好適に用いられ、中でもカーボンナノチューブを用いることが好ましい。 From this point of view, as the fibrous carbon, above VGCF and the carbon nanotube are suitably used, it is preferably used among them carbon nanotubes.

スラリー中の繊維状炭素の添加量は、正極材料の体積抵抗の低減の観点から、正極活物質100重量部に対して、好ましくは0.01重量部以上、より好ましくは、0.1重量部以上、更に好ましくは0.5重量部以上である。 The addition amount of the fibrous carbon in the slurry, from the viewpoint of reducing the volume resistance of the positive electrode material, the positive electrode active against materials 100 parts by weight, preferably 0.01 parts by weight or more, more preferably, 0.1 part by weight or more, and still more preferably 0.5 parts by weight or more. また、正極活物質表面への被覆性の観点から、好ましくは15重量部以下、より好ましくは10重量部以下、更に好ましくは5重量部以下である。 From the viewpoint of the coating property to the surface of the positive electrode active material, preferably not more than 15 parts by weight, more preferably 10 parts by weight or less, more preferably not more than 5 parts by weight. これらの観点を総合すると、0.01〜15重量部が好ましく、0.1〜10重量部がより好ましく、0.5〜5重量部が更に好ましい。 Collectively considering the viewpoints, preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight.

また、上記3つの工程により得られた粒子間の導電パスを好適に構築するために、繊維状炭素以外の炭素材料を混合する工程を加えても良い。 Further, in order to construct suitably a conductive path between the obtained particles by the three steps may be added step of mixing a carbon material other than the fibrous carbons.

工程1で分散に用いる溶媒としては、N−メチル−2−ピロリドン(NMP、沸点202℃)、ジメチルホルムアミド(DMF、沸点153℃)、ジメチルアセトアミド(沸点165℃)、水(沸点100℃)、メチルエチルケトン(沸点79.5℃)、テトラヒドロフラン(沸点66℃)、アセトン(沸点56.3℃)、エタノール(沸点78.3℃)、酢酸エチル(沸点76.8℃)などが好適に用いられる。 The solvent used in the dispersion in step 1, N-methyl-2-pyrrolidone (NMP, boiling point 202 ° C.), dimethylformamide (DMF, boiling point 153 ° C.), dimethylacetamide (boiling point 165 ° C.), water (boiling point 100 ° C.), methyl ethyl ketone (boiling point 79.5 ° C.), tetrahydrofuran (boiling point 66 ° C.), acetone (boiling point 56.3 ° C.), ethanol (boiling point 78.3 ° C.), such as ethyl acetate (boiling point 76.8 ° C.) is preferably used. コスト面および繊維状炭素の分散のさせやすさの観点から水を用いることが好ましい。 It is preferable to use water from the viewpoint of cost and easiness to dispersibility of the fibrous carbon.

工程1における溶媒の使用量は、繊維状炭素を十分に分散させ、かつ、工程2である噴霧造粒を行うのに十分な粘度とする観点から、正極活物質100重量部に対して、60重量部以上が好ましく、100重量部以上がより好ましく、200重量部以上が更に好ましい。 The amount of the solvent used in the step 1 is sufficiently disperse the fibrous carbons, and, in view of the sufficient viscosity to effect spray granulation is a step 2, with respect to the positive electrode active material 100 parts by weight, 60 It is preferably not less than parts by weight, more preferably at least 100 parts by weight, more preferably not less than 200 parts by weight. また、生産性の観点から、3000重量部以下が好ましく、2000重量部以下がより好ましく、1500重量部以下が更に好ましい。 Further, from the viewpoint of productivity, preferably less 3000 parts by weight, more preferably less 2000 parts by weight, more preferably less 1500 parts by weight.

工程1では、分散剤を使用することも可能であり、その場合に使用する分散剤としては、アニオン性、ノニオン性もしくはカチオン性界面活性剤、または高分子分散剤を用いることが出来る。 In step 1, it is also possible to use a dispersing agent, a dispersing agent to be used in that case, anionic, nonionic or cationic surfactant, or polymer dispersant can be used. 繊維状炭素は、直径が1000nm以下の微細炭素繊維であるが、炭素六角網面のネットワークが円筒状に延びた構造を呈している。 Fibrous carbon is a diameter of less fine carbon fiber 1000 nm, and has a structure in which the network is extended to a cylindrical carbon hexagonal net plane. このような構造と親和性の良好な分散剤の特徴として、炭素六角網面とサイズおよび形状が似ている芳香族の官能基を有しているものや、脂環化合物を官能基ユニットとして有する分散剤が特に繊維状炭素に吸着しやすい性質を有しているため好ましい。 As a feature of this structure and the affinity of the good dispersant has one or having an aromatic functional group which is similar in a hexagonal carbon layer and the size and shape, an alicyclic compound as a functional group unit preferable because the dispersing agent is in particular a suction property of easily fibrous carbon. つまり、使用する分散剤としては、芳香族環及び/又は脂肪族環を含む官能基を有することが好ましい。 That is, as the dispersing agent to be used preferably has an aromatic ring and / or functional groups containing an aliphatic ring.

高分子分散剤としては種々の化合物を使用することができるが、分子内に複数のカルボキシル基を有するポリカルボン酸系高分子分散剤、分子内に複数のアミノ基を有するポリアミン系高分子分散剤、分子内に複数のアミド基を有する高分子分散剤や分子内に複数の多環式芳香族化合物を含有する高分子分散剤が好ましい。 As the polymer dispersant may be used various compounds, polycarboxylic acid-based polymer dispersing agent having a plurality of carboxyl groups in the molecule, polyamine polymer dispersing agent having a plurality of amino groups in the molecule , polymer dispersing agent containing a plurality of polycyclic aromatic compounds in the polymer dispersing agent or a molecule having a plurality of amide groups in a molecule.

ポリカルボン酸系高分子分散剤としてはポリ(メタ)アクリル酸とその誘導体が挙げられる。 The polycarboxylic acid-based polymer dispersing agents include derivatives thereof and poly (meth) acrylic acid. その誘導体の具体例としては、(メタ)アクリル酸と(メタ)アクリル酸エステルとの共重合体、(メタ)アクリル酸と無水マレイン酸との共重合体、更にはそのアミド化物やエステル化物、(メタ)アクリル酸とマレイン酸との共重合体、および(メタ)アクリル酸ユニットを持つくし型ポリマー等を挙げることができる。 Examples of derivatives thereof, copolymer of (meth) acrylic acid and (meth) acrylic acid ester, copolymer of (meth) acrylic acid and maleic acid, and further the amide compound or ester, a copolymer of (meth) acrylic acid and maleic acid, and (meth) can be given comb polymers having acrylic acid unit. なお、本明細書において、(メタ)アクリル酸は、アクリル酸又はメタクリル酸を指す。 In the present specification, (meth) acrylic acid refers to acrylic acid or methacrylic acid.

ポリアミン系高分子分散剤としてはポリアルキレンアミンおよびその誘導体、ポリアリルアミンおよびその誘導体、ポリジアリルアミンおよびその誘導体、ポリN,N−ジメチルアミノエチルメタクリレートおよびその誘導体、更には上記ポリアミンにポリエステルをグラフトさせたくし型ポリマー等を挙げることができる。 Polyalkylene amines and their derivatives as polyamine-based polymer dispersing agent, polyallylamine and derivatives thereof, polydiallylamine and a derivative thereof, poly N, N-dimethylaminoethyl methacrylate and its derivatives, comb further obtained by grafting a polyester to the polyamine mention may be made of a type polymer.

分子内に複数のアミド基を有する高分子分散剤としては、縮合反応によって得られるポリアミドおよびその誘導体やポリビニルピロリドンおよびその誘導体やポリN,N−ジメチルアクリルアミドおよびその誘導体、更にはこれらポリアミドにポリエステルやポリアルキレングリコールをグラフトさせたくし型ポリマー等を挙げることができる。 Examples of the polymer dispersing agent having a plurality of amide groups in the molecule, polyamides and their derivatives and polyvinylpyrrolidone and its derivatives, poly N obtained by condensation reaction, N- dimethyl acrylamide and derivatives thereof, more polyesters Ya These polyamides polyalkylene glycol may be mentioned comb polymers obtained by grafting a.

多環式芳香族化合物を含有する高分子分散剤としては、ピレンやキナクリドン骨格を有するビニルモノマーと各種モノマーとの共重合体を挙げることが出来る。 Examples of the polymer dispersing agent containing a polycyclic aromatic compound include a copolymer of a vinyl monomer and various monomers having a pyrene or quinacridone skeleton.

これらの分散剤は単独で、あるいは二種以上の分散剤を混合して用いることができる。 These dispersants may be used alone or as a mixture of two or more dispersants. 分散剤を用いる場合の好適な添加量は、スラリーの分散を好適に行いながらスラリー粘度を下げる観点から、スラリーに対して0.05〜20重量%であり、より好ましくは0.05〜10重量%である。 Preferred addition amount of the case of using a dispersing agent, from the viewpoint of reducing the suitably slurry viscosity while dispersing the slurry is from 0.05 to 20% by weight relative to the slurry, more preferably 0.05 to 10 it is%.

また、分散剤が本発明の正極用複合材料に残留していると、それ自体が抵抗成分となり、電池の高速放電性能を阻害する場合がある。 Also, when the dispersing agent is left in the composite material for positive electrode of the present invention, it itself becomes a resistance component, it may inhibit the high-rate discharge performance of the battery. 従って、後ほど詳細に説明する工程3のように、分散剤を除去するのが好ましい。 Therefore, as in Step 3 described in detail later, it is preferred to remove the dispersing agent. 除去法は、分散剤を洗浄により除去する手法と熱処理により分解する手法が主として用いられるが、そのような観点から、洗浄しやすい分散剤として、界面活性剤を用いることが好ましい。 Removal methods, techniques decomposed by heat treatment and method for removing by washing a dispersing agent but is mainly used, from this viewpoint, the cleaning and easy dispersing agent, it is preferable to use a surfactant. また、熱処理により完全に分解し、カウンターイオンを残留させず気化してしまう性質のものが好ましい観点から、ノニオン性の界面活性剤が更に好ましい。 Also, completely decomposed by heat treatment, from the viewpoint is preferred properties which would vaporized without leaving counter ions, a nonionic surfactant is more preferable.

工程1における分散剤の配合量は、繊維状炭素を分散させる観点から、繊維状炭素100重量部に対して、好ましくは1重量部以上、より好ましくは5重量部以上、10重量部以上が更に好ましい。 The amount of dispersing agent in step 1, from the viewpoint of dispersing the fibrous carbon, relative to the fibrous carbon 100 parts by weight, preferably 1 part by weight or more, more preferably 5 parts by weight or more, further more than 10 parts by weight preferable. また、工程3である分散剤除去工程での負荷を軽減させる観点から、好ましくは200重量部以下、より好ましくは150重量部以下、100重量部以下が更に好ましい。 From the viewpoint of reducing the load in the step 3 in which the dispersing agent removing step, preferably 200 parts by weight or less, more preferably 150 parts by weight or less, more preferably 100 parts by weight or less. これらの観点を総合すると、1〜200重量部が好ましく、5〜150重量部がより好ましく、10〜100重量部が更に好ましい。 Collectively considering the viewpoints, preferably 1 to 200 parts by weight, more preferably 5 to 150 parts by weight, more preferably 10 to 100 parts by weight.

繊維状炭素をスラリー化する際、分散に先立って解凝集(予備分散)を行うことが好ましい。 When slurried fibrous carbon, it is preferable to perform the deagglomeration (preliminary dispersion) prior to dispersion. 即ち、カーボンナノファイバー等の繊維状炭素は、一般的に糸玉状に凝集しているが、これを分散剤で分散する前に、ある程度機械的に解砕し、解凝集させることが好ましい。 That is, the fibrous carbons such as carbon nanofibers, although generally aggregated yarn ball shape, prior to dispersing with a dispersing agent so, somewhat mechanically disintegrated, it is preferable to deagglomerate. このような事前の解凝集には、乾式粉砕機を用いることが好ましく、具体的には、ロータースピードミル、ハンマーミル等の衝撃式粉砕機、乾式転動ボールミル、乾式振動ボールミル、乾式遊星ミル、媒体撹拌ミル等の乾式媒体粉砕機、ジェットミル等の気流式粉砕機、などを用いる方法が挙げられる。 Such prior deagglomeration, it is preferable to use a dry grinding machine, specifically, a rotor speed mill, an impact type pulverizer such as a hammer mill, dry tumbling ball mill, a dry vibration mill, a dry planetary mill, medium stirring dry medium pulverizer such as mill, a gas stream pulverizing machine such as a jet mill, and a method of using such. なかでも、適度な粉砕を行う観点から、ロータースピードミル、ハンマーミル等の衝撃式粉砕機を用いる方法が好ましい。 Among them, from the viewpoint of performing appropriate milling, rotor speed mill, a method using an impact type pulverizer such as a hammer mill is preferred.

工程1では、分散剤を使って溶媒中で繊維状炭素を分散させることが好ましいが、その際、分散を促進するために、分散剤をスラリーに加えながら、もしくは加える前又は後、好ましくは後に、分散機を用いて強制的に分散することがより好ましい。 In step 1, it is preferable to disperse the fibrous carbons in using a dispersant in a solvent, in which, in order to facilitate dispersion, while adding a dispersant to the slurry or added before or after, preferably after the more preferably, the forcibly dispersed using a disperser. 分散機としては、例えば超音波型分散機、攪拌型分散機、高速回転せん断型分散機、ミル型分散機、高圧噴射型分散機などが挙げられるが、強制分散させる工程に使用する場合、超音波型分散機、高圧噴射型分散機が好適に用いられる。 As the dispersing machine, for example, an ultrasonic dispersing machine, agitation type dispersing machine, a high-speed rotation shearing type dispersing machine, when mill-type dispersing machine, there may be mentioned high-pressure injection type disperser, for use in the step of forcibly dispersing, super wave dispersing machine, a high-pressure injection type disperser are suitably used.

工程1により、繊維状炭素は溶媒中に分散するが、その際の繊維状炭素の平均凝集粒径としては、繊維状炭素を単繊維までほぐす観点から、0.1〜40μmが好ましく、0.1〜10μmがより好ましく、0.1〜5μmが更に好ましい。 The step 1, but the fibrous carbon is dispersed in a solvent, the average aggregate particle size of the fibrous carbon in that case, from the viewpoint of loosening the fibrous carbons to single fibers, 0.1 to 40 are preferred, 0. 1~10μm, and still more preferably 0.1 to 5 [mu] m.

工程1で得られるスラリーの固形分濃度(正極活物質+繊維状炭素+その他の炭素材料+分散剤)としては、次工程の噴霧造粒の生産性を高める観点から、1重量%以上が好ましく、2重量%以上がより好ましく、5重量%以上が更に好ましい。 The solids concentration of the slurry obtained in Step 1 (positive electrode active material + the fibrous carbons + the other carbon material + the dispersing agent), in view of enhancing the spray granulation productivity next step, is preferably at least 1 wt% , more preferably at least 2 wt%, more preferably more than 5 wt%. また、工程2で得られる造粒物の粒径を好ましい範囲にする観点から、60重量%以下が好ましく、50重量%以下がより好ましく、40重量%以下が更に好ましい。 Further, the particle diameter of the granulated product obtained in the step 2 from the viewpoint of the preferable range, preferably 60 wt% or less, more preferably 50 wt% or less, more preferably 40 wt% or less. これらの観点を総合すると、1〜60重量%が好ましく、2〜50重量%がより好ましく、5〜40重量%が更に好ましい。 Collectively considering the viewpoints, preferably 1 to 60 wt%, more preferably from 2 to 50 wt%, more preferably 5 to 40 wt%. また、工程1で得られるスラリーの粘度は、工程2で得られる造粒物の粒径を好ましい範囲に制御する観点から、5000mPa・s以下が好ましく、1000mPa・s以下がより好ましく、100mPa・s以下が更に好ましい。 The viscosity of the slurry obtained in the step 1, from the viewpoint of controlling the particle size of the granulated product obtained in Step 2 to a preferred range, is preferably from 5000 mPa · s, more preferably not more than 1000 mPa · s, 100 mPa · s the following is more preferable.

工程2では、工程1で得られたスラリーを用いて噴霧造粒するが、噴霧造粒の方法としては、スラリーをノズル、アトマイザー等により液滴化し、これをごく短時間に乾燥する、いわゆる噴霧乾燥法のほか、前記液滴を短時間に凍結した後、減圧下等で乾燥する噴霧凍結乾燥法や、噴霧乾燥と焼成を組み合わせた噴霧熱分解法等の方法を用いることができる。 In step 2, but spray granulation using a slurry obtained in step 1, as a method for spray granulation, the slurry nozzle, and the liquid droplets by an atomizer, drying it in a very short time, so-called spray other drying methods, after freezing the droplets in a short time, it is possible to use spray-freeze drying method under reduced pressure to give the like, a method of spray pyrolysis method which combines spray-drying and baking. このうち、噴霧乾燥法が好ましい。 Of these, spray drying is preferred.

工程2において、噴霧により得られた液滴の乾燥温度は、繊維状炭素や他の炭素材料が、燃焼されない温度で乾燥することが好ましく、具体的には、400℃以下が好ましく、300℃以下がより好ましい。 In step 2, the drying temperature of the droplets obtained by spraying, fibrous carbon and other carbon materials, it is preferable to dry in not burning temperature, specifically, preferably 400 ° C. or less, 300 ° C. or less It is more preferable.

工程2における造粒物の平均凝集粒径は、Liの挿入・脱離能を向上させ、かつ塗膜の平滑性を維持する観点から、20μm以下が好ましく、15μm以下がより好ましく、10μm以下が更に好ましい。 The average agglomerated particle size of the granulated material in step 2, to improve the insertion and Hanareno of Li, and from the viewpoint of maintaining the smoothness of the coating film is preferably 20μm or less, more preferably 15μm or less, is 10μm or less A further preferred. また、電池の正極として、塗膜を作製する際に、バインダーの量を減らす観点から、1μm以上が好ましく、3μm以上がより好ましく、5μm以上が更に好ましい。 Also, as the positive electrode of the battery, when producing a coating film, from the viewpoint of reducing the amount of the binder is preferably at least 1 [mu] m, more preferably at least 3 [mu] m, still more preferably at least 5 [mu] m. これらの観点を総合すると、1〜20μmが好ましく、3〜15μmがより好ましく、5〜10μmが更に好ましい。 Collectively considering the viewpoints, preferably 1 to 20 [mu] m, more preferably 3 to 15 [mu] m, more preferably 5 to 10 [mu] m.

工程3は、工程2により得られた粒子内に、繊維状炭素を分散するために加えた分散剤が含まれる場合に有効である。 Step 3, the resulting in particles by step 2, it is effective if included the dispersant added to disperse the fibrous carbon. 分散剤が残留していると、分散剤が抵抗成分となってしまい、電池の高速放電特性を阻害するだけでなく、電池中で分解することによる、ガスの発生や、充放電のサイクル特性の低下要因になる。 When the dispersant is left, dispersant becomes a resistance component not only inhibits high-rate discharge characteristics of the battery due to degradation in the cell, the gas generation of, the cycle characteristics of charge and discharge It will decrease factor. したがって、残留した分散剤を除去する必要があり、これの処理が工程3である。 Therefore, it is necessary to remove residual dispersion agent, which process is a step 3.

具体的な手法としては2つの手法が挙げられ、(1)分散剤を溶解できる溶媒で洗浄して除去する方法と、(2)分散剤を熱処理により分解気化させて除去する方法である。 Specific examples of methods include two methods, which is (1) a method of removing by washing with a solvent capable of dissolving the dispersing agent, a method of removing by decomposing vaporized by heat treatment (2) dispersing agent. (1)の方法はほとんどの分散剤に適用できる面で好ましく、(2)の方法は、(1)の方法よりも低コストで生産性の高い手法である面で好ましい。 Preferably in terms methods that can be applied to most of the dispersant (1) The method of (2) is preferred from the viewpoint that a high technique productivity at a lower cost than the method (1).

工程3において、熱処理を行って分散剤を除去する場合(上記(2)の手法)、分散剤を効率よく分解させる観点から、加熱温度は、100℃以上が好ましく、150℃以上がより好ましい。 In Step 3, when removing the dispersing agent by heat treatment (the above (Method 2)), a dispersing agent from the viewpoint of efficiently decomposed, the heating temperature is preferably above 100 ° C., more preferably at least 0.99 ° C.. また、繊維状炭素を分解させない観点から、400℃以下が好ましく、300℃以下がより好ましい。 From the viewpoint of not degrade the fibrous carbon is preferably 400 ° C. or less, more preferably 300 ° C. or less.

以上の工程1〜3によって得られた正極用複合材料の形状は、球形状であるが、必ずしも真球状のもののみが得られるわけではなく、粒子表面に多少凸凹があるもの、球全体が多少歪んだもの、一部がへこんだものや、欠けたもの、球状粒子がいくつか合体して凝集したものなど、噴霧造粒で得られうる粒子形態のものが得られうる。 The shape of the composite material for positive electrodes obtained by the above processes 1 to 3 is a spherical shape, not necessarily only those spherical obtain, thing with some irregularities on the particle surface, somewhat entire sphere distorted, partially or those dented, those missing, such as the spherical particles are aggregated to coalesce some may what is obtained in particulate form obtainable by spray granulation. また、繊維状炭素として、繊維径の大きいカーボンファイバーを含有する場合、カーボンファイバーが、球形状の粒子表面から突き出た形態を示すものも得られうる。 Further, as the fibrous carbon, if it contains a large carbon fiber having a fiber diameter, carbon fibers, it can also be obtained which shows the protruding form the spherical particle surface.

工程3を経て得られた複合粒子の平均凝集粒径は、電池の正極として、塗膜を作製する際に、バインダーの量を減らす観点から、1μm以上が好ましく、3μm以上がより好ましく、5μm以上が更に好ましい。 The average agglomerated particle size of the composite particles obtained through Step 3, as the positive electrode of the battery, when producing a coating film, from the viewpoint of reducing the amount of the binder is preferably at least 1 [mu] m, more preferably at least 3 [mu] m, 5 [mu] m or more There further preferred. また、本複合粒子を用いて得られる正極電極の表面性の観点から、好ましくは20μm以下、より好ましくは15μm以下、10μm以下が更に好ましい。 From the viewpoint of the surface property of the positive electrode obtained using the composite particles, preferably 20μm or less, more preferably 15μm or less, more preferably 10μm or less. これらの観点を総合すると、1〜20μmが好ましく、3〜15μmがより好ましく、5〜10μmが更に好ましい。 Collectively considering the viewpoints, preferably 1 to 20 [mu] m, more preferably 3 to 15 [mu] m, more preferably 5 to 10 [mu] m.

本発明のリチウム電池正極は、上述した正極用複合材料及びバインダーを含有してなる。 Lithium battery cathode of the present invention contains the composite material for positive electrodes and the binder described above. また、本発明のリチウム電池は、上述した正極用複合材料及びバインダーを含有してなる正極を備える。 Further, the lithium battery of the present invention comprises a positive electrode comprising a composite material for positive electrodes and the binder described above. 即ち、本発明のリチウム電池正極およびリチウム電池は、上述した正極用複合材料を正極材料として用いる限り、他の構成要件に関しては、何ら制限されるものではない。 That is, the lithium battery cathode and a lithium battery of the present invention, as long as the use of composite material for positive electrodes described above as the positive electrode material, with respect to the other constituent elements, in no way limited. 例えば、上記バインダーとしては、ポリフッ化ビニリデン、ポリアミドイミド、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリメタクリル酸メチルなどの従来のバインダーが何れも使用できる。 For example, as the binder, polyvinylidene fluoride, polyamideimide, polytetrafluoroethylene, polyethylene, polypropylene, and a conventional binder such as polymethyl methacrylate either can be used.

本発明の正極用複合材料を用いた電池の用途は、特に限定されないが、例えばノートパソコン、電子ブックプレーヤー、DVDプレーヤー、携帯オーディオプレーヤー、ビデオムービー、携帯テレビ、携帯電話などの電子機器に使用できるほか、コードレス掃除機やコードレス電動工具、電気自動車、ハイブリッドカーなどのバッテリー、燃料電池車の補助電源などの民生用機器に使用できる。 Cell applications using the composite material for positive electrodes of the present invention include, but are not limited to, for example a laptop, electronic book players, DVD players, portable audio players, video movies, mobile TV, can be used in electronic devices such as mobile phones in addition, it can be used cordless vacuum cleaners and cordless power tools, electric vehicles, battery, such as hybrid cars, in consumer devices such as auxiliary power supply of fuel cell vehicles. このうち特に高出力が求められる自動車用バッテリーとして好適に用いられる。 Among suitably used particularly as car batteries requiring high output.

以下、本発明を具体的に示す実施例等について説明する。 Hereinafter, a description will be given of an embodiment such as to illustrate the present invention. なお、実施例等における評価項目は下記のようにして測定を行った。 Assessment items in Examples were measured as follows.

(1)DBP吸収量 DBP吸収量は、JISK6217−4に基づいて測定した。 (1) DBP absorption DBP absorption amount was measured based on JISK6217-4.

(2)平均凝集粒径 レーザー回折/散乱式粒度分布測定装置LA920(堀場製作所製)を用い、水を分散媒とし、超音波3分照射後の粒度分布を相対屈折率1.5で測定したときの体積中位粒径(D50)の値を繊維状炭素、カーボンブラックの平均凝集粒径、正極活物質、工程2における造粒物、及び工程3を経て得られた複合粒子の平均凝集粒径とした。 (2) using the average aggregate particle size laser diffraction / scattering particle size distribution measuring apparatus LA920 (manufactured by Horiba), water as a dispersion medium, a particle size distribution was measured after irradiation ultrasonic 3 minutes at a relative refractive index 1.5 the average aggregate particle size volume value of median particle size (D50) of the fibrous carbon, the carbon black when the positive electrode active material, granules in step 2, and an average aggregate particle of the obtained composite particles through the steps 3 and the diameter.

(3)カーボンブラックの一次粒子径 電界放出形走査電子顕微鏡(日立製S−4000)により撮影した倍率10000〜50000倍のSEM像から、一次粒子50個を抽出し、それらの直径の平均値を一次粒子径とした。 (3) from the SEM image and magnification 10,000 to 50,000 times the shooting by the primary particle size field emission scanning electron microscope of the carbon black (manufactured by Hitachi S-4000), extracts the 50 primary particles, the average value of their diameter It was the primary particle diameter. ただし、前記直径とは、(長軸径+短軸径)/2で算出される値で、着目するカーボンブラックのSEM像を2本の平行線ではさんだ時、その2本の平行線の間隔が最小となるときの間隔を短軸径、この平行線に直角な方向の2本の平行線でこのカーボンブラックのSEM像をはさんだ時、その2本の平行線の間隔を長軸径とする。 However, the A diameter (major axis diameter + minor axis diameter) / 2 value calculated by, when sandwiching the SEM image of the focused carbon black by two parallel lines, the distance between the two parallel lines There minor axis diameter a distance at which the minimum, when sandwiching the SEM image of the carbon black in two parallel lines in the direction perpendicular to the parallel lines, and a long axis diameter the distance of the two parallel lines to.

(4)繊維状炭素の繊維径および繊維長 電界放出形走査電子顕微鏡(日立製S−4000)により撮影した倍率2000〜50000倍のSEM像から、繊維状炭素30個を抽出し、以下のように測定した線分の長さの平均値を繊維径とし、繊維の長さの平均値を繊維長とした。 (4) from the SEM image with magnification from 2,000 to 50,000 times the captured by the fibrous carbon fiber diameter and fiber length field emission scanning electron microscope (manufactured by Hitachi S-4000), it extracts the 30 fibrous carbon, as follows the average length of line segments measured as the fiber diameter was the average length of the fiber and the fiber length. ここで、前記線分の長さとは、30個の繊維状炭素のそれぞれについて、繊維状炭素の画像の長さ方向の輪郭が描く2本の曲線の一方の曲線の法線が、これら2本の曲線に切り取られる線分の長さをいう。 Herein, the length of the line segment, for each of the thirty fibrous carbons, the normal of one of the curves of the two curves length direction of the outline of the image of the fibrous carbon is drawn, these two It refers to the length of the line segment to be cut to the curve.

(5)繊維状炭素のアスペクト比 繊維状炭素の繊維長を繊維径で除することで求めた。 (5) the fiber length of the aspect ratio fibrous carbon of the fibrous carbon was determined by dividing the fiber diameter.

(6)体積抵抗 JIS K 1469の方法において、粉体試料量を0.3g、粉体圧縮時圧力を100kg/cm に変更して、円筒状に圧縮した圧縮粉体試料の電気抵抗値を測定し、測定抵抗値より下記の式1を用いて体積抵抗率(電気抵抗率)を算出した。 (6) In the method of the volume resistivity JIS K 1469, a powder sample amount 0.3 g, at a powder compression pressure was changed to 100 kg / cm 2, the electric resistance value of the compression powder sample was compressed into a cylindrical shape measured and calculated volume resistivity (electric resistivity) using the formula 1 below from the measured resistance value. 具体的には、絶縁性円筒(ベークライト製、外径28mm、内径8mm)と(−)電極からなる円筒容器に粉体試料を0.3g充填し、試料を詰めた絶縁性円筒容器に(+)電極を挿入して粉体試料を挟み、プレス機架台上に設置した。 Specifically, an insulating cylinder (BAKELITE Co., outer diameter 28mm, inner diameter 8 mm) and (-) in a cylindrical container made of the electrode sample powder was 0.3g filled, the insulating cylindrical containers filled with sample (+ ) electrode was inserted to clamp the powder sample was placed on a pressing machine mount. プレス機により円筒容器内の試料に100kg/cm の力を加え、圧縮した。 A force of 100 kg / cm 2 was added to the sample in the cylindrical container by a pressing machine and compressed. (+)電極と(−)電極をデジタルマルチメーターの測定用入力ケーブルに接続し、圧縮開始から3分経過後、電気抵抗値を測定した。 (+) Electrode and the (-) connect the electrodes to a measuring input cable digital multimeter, after 3 minutes passed from the compression start, were measured electric resistance value.

ρ=S/h×R (式1) ρ = S / h × R (Formula 1)
ここで、ρは電気抵抗率(Ω・cm)、Sは試料の断面積(cm )、hは試料の充填高さ(cm)、Rは電気抵抗値(Ω)である。 Here, [rho electric resistivity (Ω · cm), S is the cross-sectional area of the sample (cm 2), h is the height of the filled sample (cm), R is the electric resistance (Omega).

用いた(−)電極は、電池グレードの黄銅製であり、電極面は7.8±1mmφで、高さ5mmの突起部のある台座状電極であり、(+)電極は、電池グレードの黄銅製であり、電極面は7.8±1mmφで、長さ60mmの棒状電極であった。 Using (-) electrodes are made of brass of a battery grade, the electrode surface is 7.8 ± 1 mm in diameter, a pedestal-shaped electrode with a protrusion height of 5 mm, (+) electrode, the battery grade yellow made of copper, the electrode surface is 7.8 ± 1 mm in diameter, were rod-shaped electrode length 60 mm.

(7)細孔容量 水銀圧入式細孔分布測定装置(ポアサイザー9320、島津製作所製)を用いて、0.01〜1μmの範囲の細孔容量の合計を測定し、得られた値を細孔容量とした。 (7) pore volume mercury intrusion pore size distribution measurement device (Poasaiza 9320, manufactured by Shimadzu Corporation) was used to measure the total pore volume in the range of 0.01 to 1 [mu] m, the pores obtained value to a volume.

(8)溶媒中での分散状態の確認方法 レーザー回折/散乱式粒度分布測定装置LA920(堀場製作所製)に、スラリーと同一の溶媒120mLを添加し、攪拌循環(循環レベル4)させた。 (8) Confirmation of dispersed state in the solvent method a laser diffraction / scattering particle size distribution measuring apparatus LA920 (manufactured by Horiba), was added the same solvent 120mL and slurry was stirred circulated (circulation level 4). そこに、サンプリングしたスラリー(溶媒中に正極活物質粒子と繊維状炭素とを含有するスラリー)を滴下し、装置のセル内のレーザーの透過率が75%〜95%の範囲になるようスラリー濃度を調節した。 There was added dropwise sampled slurry (the slurry containing a positive electrode active material particles and fibrous carbons in a solvent), slurry concentration such that the transmittance of the laser is in the range of 75% to 95% in the cell of the apparatus It was adjusted. そして、装置のメモリ7で超音波3分照射後の粒度分布を相対屈折率1.5で測定し、このときの体積中位粒径(D50)を上記(2)の条件で測定した正極活物質の平均凝集粒径で除して、これに100を乗じて比率を算出した。 Then, the particle size distribution after ultrasonic 3 minutes irradiation with memory 7 of the device was measured at a relative refractive index of 1.5, a volume-median particle size in this case the (D50) was measured under the conditions of the above (2) a cathode active divided by the average aggregate particle diameter of material was calculated ratio multiplied by this 100. 本発明では、この比率が130%以内になるような状態を分散状態とする。 In the present invention, the conditions such as the ratio is within 130% and the dispersion state.

(9)正極活物質粒子が繊維状炭素により保持されている状態の確認方法 正極活物質と繊維状炭素とを有する一粒の複合粒子を、600℃1時間加熱したとき、当該一粒の複合粒子が、複数の複合粒子に崩壊するか、又は繊維状炭素がほぼ消失した正極活物質粒子に崩壊した場合、当該一粒の複合粒子中の正極活物質粒子は繊維状炭素により保持されていたものとする。 (9) When the positive electrode active material particles with a grain of the composite particle and a confirmation method positive electrode active material and the fibrous carbon of the state held by the fibrous carbons was heated 600 ° C. 1 hour, the composite the grain of particles, or disintegrate into a plurality of composite particles, or if the fibrous carbon collapsed almost lost the positive electrode active material particles, the positive electrode active material particles in the composite particles of the grain was retained by the fibrous carbon and things. すなわち、600℃1時間加熱した複合粒子を電界放出形走査電子顕微鏡(日立製S-4000)により撮影し、倍率1000〜50000倍のSEM画像を目視観察する。 That is, the composite particles heated 600 ° C. 1 hour taken by a field emission scanning electron microscope (manufactured by Hitachi S-4000), and visually observing the SEM image magnification from 1,000 to 50,000 times. 観察の結果、繊維状炭素がほぼ消失した正極活物質粒子のみ観察される場合、正極活物質粒子に繊維状炭素が絡んだ複合粒子のみ観察される場合、さらには、繊維状炭素がほぼ消失した正極活物質粒子と正極活物質粒子に繊維状炭素が絡んだ複合粒子の両方が観察される場合を正極活物質粒子が繊維状炭素により保持されていたものとする。 As a result of observation, if the fibrous carbon is observed only substantially lost the positive electrode active material particle, when observed in the positive electrode active material particles only composite particles tangled fibrous carbon, more, fibrous carbon has almost disappeared It is referred to as a cathode active material particles were supported by the fibrous carbons when both of the positive electrode active material particles and the positive electrode active material particles in the composite particles tangled fibrous carbon is observed. 一方、繊維状炭素がほぼ消失した正極活物質粒子と凝集した繊維状炭素の粒子が観察される場合、正極活物質粒子が繊維状炭素により保持されていなかったものとする。 On the other hand, if the particles of the fibrous carbon fibrous carbon are aggregated almost lost the positive electrode active material particles are observed, it is assumed that the positive electrode active material particles is not held by the fibrous carbons.

(10)電池の作製 表2に示す配合比にて正極用複合材料、カーボンブラック、12%ポリフッ化ビニリデン(PVDF)のNメチルピロリドン溶液、Nメチルピロリドンを均一に混合し、塗工用ペーストを調製した。 (10) a composite material for positive electrode at compounding ratios shown in Preparation Table 2 battery, carbon black, N-methylpyrrolidone solution of 12% polyvinylidene fluoride (PVDF), were uniformly mixed N-methylpyrrolidone, a coating paste It was prepared. 当該ペーストをコーター(YBA型ベーカーアプリケーター)にて集電体として用いたアルミニウム箔(厚さ20μm)上に均一に塗工(乾燥後に0.009g/cm )し、80℃にて12時間以上かけて減圧(100〜300mmHg)乾燥した。 The paste coater (YBA type baker applicator) of aluminum foil used as a current collector (thickness 20 [mu] m) uniformly applying on (after drying to 0.009g / cm 2), 80 ℃ at least 12 hours and then dried under reduced pressure (100~300mmHg) over. 乾燥後、所定の大きさ(20mm×15mm)に切断し、アルミニウム箔を含む全体の厚さが55μmになるようにプレス機で均一膜厚に成型して、試験用正極とした。 After drying, was cut to a predetermined size (20 mm × 15 mm), the thickness of the whole containing the aluminum foil is molded into a uniform film thickness by a pressing machine so as to 55 .mu.m, and a positive electrode for testing.

ハードカーボン10重量部、12重量%ポリフッ化ビニリデン(PVDF)のNメチルピロリドン溶液9.3重量部、Nメチルピロリドン8.5重量部を均一に混合し、塗工用ペーストを調製した。 Hard carbon 10 parts by weight, N-methylpyrrolidone solution 9.3 parts by weight of 12 wt% polyvinylidene fluoride (PVDF), N-methylpyrrolidone 8.5 parts by weight were uniformly mixed to prepare a coating paste. 当該ペーストをコーター(YBA型ベーカーアプリケーター)にて集電体として用いた銅箔(厚さ18μm)上に均一に塗工し、80℃にて12時間以上かけて減圧(100〜300mmHg)乾燥した。 The paste was uniformly coated on the copper foil (thickness 18 [mu] m) was used as a current collector by coater (YBA type baker applicator), and vacuum over 80 ° C. at least 12 hours (100~300MmHg) Drying . 乾燥後、所定の大きさ(20mm×15mm)に切断し、プレス機で均一膜厚に成型して、試験用負極とした。 After drying, it was cut to a predetermined size (20 mm × 15 mm), and molded into a uniform film thickness by a pressing machine to obtain a negative electrode for testing. このときの負極層の厚さは25μmとした。 The thickness of the negative electrode layer at this time was 25 [mu] m. セパレータはセルガード#2400(セルガード製)を使用した。 The separator was used Celgard # 2400 (manufactured by Celgard). 電解液は、1mol/LのLiPF のエチレンカーボネート:ジエチルカーボネート(1:1vol%)溶液を用いた。 Electrolyte, 1 mol / L ethylene carbonate LiPF 6 of: diethyl carbonate (1: 1 vol%) solution was used. 試験セルの組み立てはアルゴン雰囲気下のグローブボックス内で行った。 Assembly of the test cell was performed in a glove box under an argon atmosphere. 試験セルの組み立て後、25℃にて24時間放置後、内部抵抗特性評価を行った。 After assembly of the test cell, after 24 hours standing at 25 ° C., it was internal resistance characterization.

(11)内部抵抗特性評価 後述する実施例3,4および比較例1により得られたリチウムイオン二次電池の内部抵抗を評価した。 (11) were evaluated the internal resistance of the lithium ion secondary battery obtained by the internal resistance characterization Examples 3 and 4 and Comparative Example 1 described later. まず、0.2Cの定電流で4.0Vまで充電した後、4.0Vで定電位充電を1時間行うことにより、各電池を満充電の約60%の充電状態に調整した。 First, after charging at 0.2C constant current to 4.0V, by performing 1 hour constant potential charging at 4.0V, and adjusted to the state of charge of about 60% of the full charge of each battery. そして、5Cの定電流値で30秒間放電を行い、電位降下値を測定した。 Then, for 30 seconds discharged at a constant current of 5C, and measuring the potential drop value. この電位降下値を放電電流値で除した値を電池の内部抵抗値として、得られたリチウムイオン二次電池の内部抵抗を評価した。 A value obtained by dividing this potential drop value at a discharging current value as the internal resistance of the battery was evaluated internal resistances of the obtained lithium ion secondary battery. 表2には比較例1の内部抵抗値を100とした場合の実施例3,4の内部抵抗値の相対値を示す。 Table 2 shows the relative values ​​of the internal resistance of Examples 3 and 4 in the case of the 100 internal resistance value of Comparative Example 1.

実施例1 Example 1
水100重量部にフェニル基を官能基にもつノニオン型分散剤(花王製エマルゲンA−90)を0.375重量部添加し溶解させた。 Phenyl group to 100 parts by weight of water were nonionic dispersant (Kao Emulgen A-90) was added 0.375 parts by weight dissolved with the functional group. その溶液に繊維径20nm、繊維長5μm、アスペクト比250のカーボンナノチューブを0.375重量部添加し、カーボンナノチューブの平均凝集粒径が3μmになるまで超音波分散した。 Fiber diameter 20nm to the solution, the fiber length of 5 [mu] m, the carbon nanotube aspect ratio 250 was added 0.375 parts by weight, average aggregated particle diameter of the carbon nanotube was ultrasonically dispersed until the 3 [mu] m. このカーボンナノチューブ分散液に超音波を照射しながら、平均凝集粒径2μm(一次粒子径25nm)、DBP吸収量155cm /100gのカーボンブラックを0.15重量部添加し1分間超音波照射した後、平均凝集粒径1.2μmのマンガン酸リチウム7.5重量部を添加し、更に超音波による分散を2分行った。 While irradiating ultrasonic waves to the carbon nanotube dispersion liquid, the average aggregate particle size 2 [mu] m (primary particle size 25 nm), after ultrasonic irradiation of carbon black DBP absorption 155cm 3 / 100g 0.15 parts by weight added to 1 minute It was added an average aggregate particle size 1.2μm lithium 7.5 parts by weight manganate was carried out further two minutes dispersed by ultrasound. 得られた分散液を噴霧乾燥機(東京理化器械製SD−1000)を用いて熱風温度135℃で噴霧乾燥した。 The resulting dispersion was spray dried at a hot air temperature of 135 ° C. using a spray dryer (Tokyo Rika Kikai Ltd. SD-1000). 得られた顆粒6gを円筒ろ紙にいれ、ソックスレー抽出機で、400mlのエタノールにより、8時間抽出し、顆粒に残留している分散剤を除去した。 Put resulting granules 6g in a cylindrical filter paper, in a Soxhlet extractor, the ethanol 400 ml, and extracted 8 hours to remove the dispersant remaining in the granules. 得られた正極用複合材料を図1に、物性を表1に示す。 The resulting composite material for positive electrodes was 1 shows the physical properties in Table 1. 得られた正極用複合材料は、上記(9)に示す方法で確認したところ、正極活物質粒子がカーボンナノチューブにより保持された複合粒子であり、より詳細には、図1に示すように、カーボンナノチューブが正極活物質粒子間隙に存在するとともに、カーボンナノチューブが正極活物質粒子を網目状に包み込んだ形態を有していた。 The resulting composite material for positive electrode was confirmed by the methods described above (9), the positive electrode active material particles are composite particles retained by the carbon nanotube, and more specifically, as shown in FIG. 1, carbon nanotubes with present in the positive electrode active material particle gaps, carbon nanotubes had a form that wraps the positive electrode active material particles in a mesh shape.

実施例2 Example 2
実施例1と同じ要領で噴霧乾燥して得た、分散剤が含有した顆粒1.5gを電気炉で200℃、10時間加熱し、分散剤を分解気化させ除去した。 Obtained by spray-drying in the same manner as in Example 1, 200 ° C. in an electric furnace granules 1.5g of dispersant contained, and heated for 10 hours to remove by decomposing vaporized dispersant. 得られた正極用複合材料を図2に、物性を表1に示す。 The resulting composite material for positive electrodes was 2 shows the physical properties in Table 1. 得られた正極用複合材料は、上記(9)に示す方法で確認したところ、正極活物質粒子がカーボンナノチューブにより保持された複合粒子であり、より詳細には、図2に示すように、カーボンナノチューブが正極活物質粒子間隙に存在するとともに、カーボンナノチューブが正極活物質粒子を網目状に包み込んだ形態を有していた。 The resulting composite material for positive electrode was confirmed by the methods described above (9), the positive electrode active material particles are composite particles retained by the carbon nanotube, and more specifically, as shown in FIG. 2, carbon nanotubes with present in the positive electrode active material particle gaps, carbon nanotubes had a form that wraps the positive electrode active material particles in a mesh shape.

実施例3 Example 3
フェニル基を官能基にもつノニオン型分散剤の使用量を0.15重量部、カーボンナノチューブの使用量を0.15重量部にしたこと以外は、実施例1と同じ手法で正極用複合材料を得た。 0.15 parts by weight of the amount of nonionic dispersing agent having the phenyl group to a functional group, a except that the 0.15 parts by weight The amount of the carbon nanotubes, the composite material for positive electrode in the same manner as in Example 1 Obtained. 得られた正極用複合材料を図3に、物性を表1、電池作製時の内部抵抗を表2に示す。 3 for a positive electrode composite material obtained are shown in Table 1, the internal resistance in the battery manufactured in Table 2 the physical properties. 得られた正極用複合材料は、上記(9)に示す方法で確認したところ、正極活物質粒子がカーボンナノチューブにより保持された複合粒子であり、より詳細には、図3に示すように、カーボンナノチューブが正極活物質粒子間隙に存在するとともに、カーボンナノチューブが正極活物質粒子を網目状に包み込んだ形態を有していた。 The resulting composite material for positive electrode was confirmed by the methods described above (9), the positive electrode active material particles are composite particles retained by the carbon nanotube, and more specifically, as shown in FIG. 3, carbon nanotubes with present in the positive electrode active material particle gaps, carbon nanotubes had a form that wraps the positive electrode active material particles in a mesh shape.

実施例4 Example 4
カーボンナノチューブの代わりに、繊維径120nm、繊維長10μm、アスペクト比83のVGCF(0.225重量部)を用い、分散剤の使用量を0.225重量部としたこと以外は、実施例1と同じ手法により正極用複合材料を得た。 Instead of the carbon nanotubes, fiber diameter 120 nm, fiber length 10 [mu] m, using a VGCF (0.225 parts by weight) of the aspect ratio 83, except that the amount of dispersing agent and 0.225 parts by weight, as in Example 1 to obtain a composite material for positive electrode in the same manner. 得られた正極用複合材料を図4に、物性を表1、電池作製時の内部抵抗を表2に示す。 The resulting positive pole composite material 4, shown in Table 1, the internal resistance in the battery manufactured in Table 2 the physical properties. 得られた正極用複合材料は、上記(9)に示す方法で確認したところ、正極活物質粒子がVGCFにより保持された複合粒子であり、より詳細には、図4に示すように、VGCFが正極活物質粒子間隙に存在するとともに、VGCFが正極活物質粒子を網目状に包み込んだ形態を有していた。 The resulting composite material for positive electrode was confirmed by the methods described above (9), a composite particle where the positive electrode active material particles held by VGCF, more specifically, as shown in FIG. 4, VGCF is together present in the positive electrode active material particle gap, VGCF had a form that wraps the positive electrode active material particles in a mesh shape.

比較例1 Comparative Example 1
実施例1において、カーボンナノチューブ0.375重量部を使用する代わりに、カーボンブラック0.375重量部を使用することで、カーボンブラックの合計量を0.525重量部としたこと以外は、実施例1と同じ手法により正極用複合材料を得た。 In Example 1, instead of using 0.375 parts by weight of carbon nanotubes, by using carbon black 0.375 parts by weight, except that the 0.525 parts by weight the total amount of carbon black, Example to obtain a composite material for positive electrode in the same manner as 1. 得られた正極用複合材料の物性を表1、電池作製時の内部抵抗を表2に示す。 The physical properties of the obtained composite material for positive electrodes are shown in Table 1, the internal resistance in the battery manufactured in Table 2.

比較例2 Comparative Example 2
実施例1において、分散剤を加えずに、同量のカーボンナノチューブ、カーボンブラック、及びマンガン酸リチウムをマグネチックスターラーにより混合して、スラリーを調製したこと以外は、実施例1と同じ手法により正極用複合材料を得た。 In Example 1, without adding a dispersing agent, the same amount of carbon nanotubes, carbon black, and lithium manganate is mixed with a magnetic stirrer, except that a slurry was prepared, the positive electrode in the same manner as in Example 1 to obtain a use composite material. 得られた正極用複合材料の物性を表1に示す。 The physical properties of the obtained composite material for positive electrodes are shown in Table 1. なお、実施例1〜4では、噴霧乾燥前の分散液の状態について、上記(8)に示す方法で求めた比率が何れも130%以内であったが、この比較例2では、当該比率が400%であり、分散状態とはいえなかった。 In Examples 1-4, the state of the dispersion before spray drying, the although the ratio determined by the method shown in (8) was within 130% both, in Comparative Example 2, is the ratio is 400%, not be said to be dispersed state. また、比較例2の正極用複合材料は、上記(9)に示す方法で確認したところ、一粒の複合粒子が、繊維状炭素がほぼ消失した正極活物質粒子と凝集した繊維状炭素の粒子とに崩壊したため、正極活物質粒子が繊維状炭素(カーボンナノチューブ)により保持された複合粒子ではなかった。 The composite material for positive electrode of Comparative Example 2, was confirmed by the method shown in the above (9), a grain of the composite particle, the particles of the fibrous carbon to the fibrous carbon are aggregated almost lost the positive electrode active material particles since collapsed bets, the positive electrode active material particles were not retained composite particles by the fibrous carbon (carbon nanotubes).

表1の結果が示すように、実施例1〜4のリチウム電池正極用複合材料は、体積抵抗が小さく、細孔容量も十分であるため、電池の放電時にリチウムイオンの移動がスムーズになると考えられる。 As shown in Table 1 results, a composite material for a lithium battery positive electrode of Example 1-4 has a smaller volume resistance, because the pore capacity is sufficient, considered that the movement of the lithium ions becomes smooth during discharge of the battery It is. また、表2の結果が示すように、電池作製時の特性として、その内部抵抗をより小さくすることができた。 Further, as shown by the results in Table 2, as characteristics at the time of battery production, it was possible to further reduce the internal resistance.

一方、繊維状炭素を使用せずに得られたリチウム電池正極用複合材料(比較例1)では、体積抵抗が大きく、細孔容量も不十分であり、電池作製時の内部抵抗も大きい値となった。 On the other hand, in the lithium battery positive electrode composite material obtained without the use of fibrous carbon (Comparative Example 1), a large volume resistivity, pore capacity is insufficient, a value larger internal resistance in battery production became. また、繊維状炭素の分散が不十分なスラリーを使用して噴霧造粒により得られたリチウム電池正極用複合材料(比較例2)では、正極活物質粒子がカーボンナノチューブにより保持されていないため、体積抵抗が大きかった。 Moreover, since the dispersion of the fibrous carbon is insufficient slurry a lithium battery positive electrode composite material obtained by spray granulation using (Comparative Example 2), the positive electrode active material particles are not retained by the carbon nanotube, volume resistivity was great.

実施例1で得られた正極用複合材料の走査型電子顕微鏡(SEM)写真 Scanning electron microscopy of the composite material for positive electrodes obtained in Example 1 (SEM) Photos 実施例2で得られた正極用複合材料の走査型電子顕微鏡(SEM)写真 Scanning electron microscopy of the composite material for positive electrodes obtained in Example 2 (SEM) Photos 実施例3で得られた正極用複合材料の走査型電子顕微鏡(SEM)写真 Scanning electron microscopy of the composite material for positive electrodes obtained in Example 3 (SEM) Photos 実施例4で得られた正極用複合材料の走査型電子顕微鏡(SEM)写真 Scanning electron microscopy of the composite material for positive electrodes obtained in Example 4 (SEM) Photos

Claims (12)

  1. 正極活物質粒子と繊維状炭素とを含む複合粒子から構成されるリチウム電池正極用複合材料であって、 A composite material for configured lithium battery positive electrode of a composite particle comprising a fibrous carbon positive electrode active material particles,
    前記複合粒子は、前記正極活物質粒子が前記繊維状炭素により保持されている形態を有するリチウム電池正極用複合材料。 The composite particles, the composite material for a lithium battery positive electrode having a form in which the positive electrode active material particles are held by the fibrous carbon.
  2. 前記複合粒子は、前記繊維状炭素の少なくとも一部が前記正極活物質粒子間隙に存在する形態を有する請求項1に記載のリチウム電池正極用複合材料。 The composite particles, the composite material for a lithium battery positive electrode according to claim 1 in the form of at least a portion of the fibrous carbon is present in the positive electrode active material particle clearance.
  3. 前記複合粒子は、前記繊維状炭素の一部が前記正極活物質粒子間隙に存在するとともに、前記繊維状炭素が前記正極活物質粒子を網目状に包み込んだ形態を有する請求項1又は2に記載のリチウム電池正極用複合材料。 The composite particles, together with a part of the fibrous carbon is present in the positive electrode active material particle gap according to claim 1 or 2 wherein the fibrous carbon has a enveloped form the positive electrode active material particles in a mesh shape composite material for lithium battery of the positive electrode.
  4. 前記正極活物質粒子の平均凝集粒径が、0.1〜10μmである請求項1〜3のいずれか1項に記載のリチウム電池正極用複合材料。 The positive active average aggregate particle size of material particles, the composite material for a lithium battery positive electrode according to claim 1 is 0.1 to 10 [mu] m.
  5. 前記繊維状炭素の繊維径が、1〜1000nmである請求項1〜4のいずれか1項に記載のリチウム電池正極用複合材料。 Fiber diameter of the fibrous carbon, a lithium battery positive electrode composite material according to claim 1 which is 1 to 1,000 nm.
  6. 前記繊維状炭素が、カーボンナノチューブである請求項1〜5のいずれか1項に記載のリチウム電池正極用複合材料。 The fibrous carbon, a composite material for a lithium battery positive electrode according to any one of claims 1 to 5 carbon nanotubes.
  7. 前記複合粒子は、溶媒中に前記正極活物質粒子と前記繊維状炭素とが分散した状態で含まれるスラリーから噴霧造粒により得られる請求項1〜6のいずれか1項に記載のリチウム電池正極用複合材料。 The composite particles, lithium battery cathode according to the positive active material particles to any one of claims 1 to 6, from the slurry obtained by spray granulation contained in a state in which the fibrous carbon is dispersed in a solvent use composite materials.
  8. 前記複合粒子は、前記溶媒中にて前記繊維状炭素が分散剤により分散されている前記スラリーから噴霧造粒により得られる請求項7に記載のリチウム電池正極用複合材料。 The composite particles, the composite material for a lithium battery positive electrode according to claim 7 obtained by spray granulation from the slurry are dispersed the fibrous carbon by the dispersant in the solvent.
  9. 前記複合粒子は、前記噴霧造粒で得られた造粒物から前記分散剤を除去して得られる請求項8に記載のリチウム電池正極用複合材料。 The composite particles, the composite material for a lithium battery positive electrode according to claim 8 obtained by removing the dispersing agent from the granules obtained in the spray granulation.
  10. 前記分散剤が、芳香族環及び/又は脂肪族環を含む官能基を有する請求項8又は9に記載のリチウム電池正極用複合材料。 The dispersing agent is an aromatic ring and / or a composite material for a lithium battery positive electrode according to claim 8 or 9 having a functional group containing an aliphatic ring.
  11. 請求項1〜10のいずれか1項に記載のリチウム電池正極用複合材料、及びバインダーを含有してなるリチウム電池正極。 Composite material for a lithium battery positive electrode according to any one of claims 1 to 10, and the lithium battery positive electrode comprising a binder.
  12. 請求項1〜10のいずれか1項に記載のリチウム電池正極用複合材料、及びバインダーを含有してなる正極を備えるリチウム電池。 Composite material for a lithium battery positive electrode according to any one of claims 1 to 10, and a lithium battery comprising a positive electrode comprising a binder.
JP2008308870A 2007-12-25 2008-12-03 Composite material for lithium battery positive electrode Active JP5377946B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007332650 2007-12-25
JP2007332650 2007-12-25
JP2008308870A JP5377946B2 (en) 2007-12-25 2008-12-03 Composite material for lithium battery positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308870A JP5377946B2 (en) 2007-12-25 2008-12-03 Composite material for lithium battery positive electrode

Publications (2)

Publication Number Publication Date
JP2009176721A true JP2009176721A (en) 2009-08-06
JP5377946B2 JP5377946B2 (en) 2013-12-25

Family

ID=41031576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308870A Active JP5377946B2 (en) 2007-12-25 2008-12-03 Composite material for lithium battery positive electrode

Country Status (1)

Country Link
JP (1) JP5377946B2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113884A1 (en) * 2009-03-31 2010-10-07 宇部興産株式会社 Electrode for lithium ion battery and method for producing same
WO2012114590A1 (en) * 2011-02-23 2012-08-30 三洋電機株式会社 Electrode for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
WO2012173072A1 (en) * 2011-06-15 2012-12-20 東洋インキScホールディングス株式会社 Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
US8470477B2 (en) 2011-08-29 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US8663841B2 (en) 2011-09-16 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8685569B2 (en) 2011-08-19 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
WO2014054792A1 (en) * 2012-10-05 2014-04-10 ソニー株式会社 Active material, process for manufacturing active material, electrode, and secondary battery
US8709654B2 (en) 2011-08-31 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US8814956B2 (en) 2011-07-14 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device, electrode, and manufacturing method thereof
US8822088B2 (en) 2011-09-16 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8883351B2 (en) 2011-09-30 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Graphene and power storage device, and manufacturing method thereof
JP2014241229A (en) * 2013-06-11 2014-12-25 電気化学工業株式会社 Conductive composite particle, secondary battery positive electrode arranged by use thereof, and secondary battery
US8945772B2 (en) 2011-10-07 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8993156B2 (en) 2011-08-31 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Carbon-based negative electrode material and secondary battery including negative electrode material
JP2015096578A (en) * 2013-11-15 2015-05-21 フタムラ化学株式会社 Metal-adhered conductive resin film and conductive resin-metal composite
US9044793B2 (en) 2011-11-22 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Method for cleaning film formation apparatus and method for manufacturing semiconductor device
US9059478B2 (en) 2011-03-25 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion secondary battery with graphene and composite oxide layered electrode
US9118077B2 (en) 2011-08-31 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
US9142358B2 (en) 2012-03-21 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electric device
US9183995B2 (en) 2012-06-01 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9218916B2 (en) 2011-06-24 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Graphene, power storage device, and electric device
US9249524B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
US9252419B2 (en) 2011-09-09 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
US9293770B2 (en) 2012-04-10 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Graphene oxide, positive electrode for nonaqueous secondary battery using graphene oxide, method of manufacturing positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and electronic device
US9373834B2 (en) 2011-12-16 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Method for forming positive electrode for lithium-ion secondary battery
US9385366B2 (en) 2012-08-27 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for secondary battery, secondary battery, and method for fabricating positive electrode for secondary battery
US9384904B2 (en) 2012-04-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US9461300B2 (en) 2011-09-30 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9487880B2 (en) 2011-11-25 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Flexible substrate processing apparatus
US9490474B2 (en) 2010-10-08 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material for energy storage device and energy storage device
JP2017500702A (en) * 2013-12-27 2017-01-05 エルジー・ケム・リミテッド Conductive material composition, the lithium secondary battery of the electrodes forming slurry compositions using the same and a lithium secondary battery
US9680272B2 (en) 2012-02-17 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Method for forming negative electrode and method for manufacturing lithium secondary battery
US9815691B2 (en) 2011-08-19 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US9859585B2 (en) 2012-02-29 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9929407B2 (en) 2011-12-21 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for non-aqueous secondary battery, non-aqueous secondary battery, and manufacturing methods thereof
US10026966B2 (en) 2011-12-07 2018-07-17 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for lithium secondary battery, lithium secondary battery, and manufacturing methods thereof
US10044027B2 (en) 2010-08-19 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Electrical appliance
US10049825B2 (en) 2012-04-27 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Cyclic quaternary ammonium salt, nonaqueous solvent, nonaqueous electrolyte, and power storage device
EP3297075A4 (en) * 2015-05-14 2018-12-19 Sekisui Chemical Co., Ltd. Carbon material, carbon material-active material composite, electrode material for lithium-ion secondary battery, and lithium-ion secondary battery
US10243214B2 (en) 2011-06-03 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing electrode

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162811A (en) * 1996-11-29 1998-06-19 Showa Denko Kk Electrode material for battery and secondary battery
JP2003173777A (en) * 2001-12-07 2003-06-20 Hitachi Metals Ltd Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
JP2005158721A (en) * 2003-10-31 2005-06-16 Hitachi Maxell Ltd Electrode material of nonaqueous secondary battery, its process of manufacture, and nonaqueous secondary battery using electrode material
JP2006134777A (en) * 2004-11-08 2006-05-25 Erekuseru Kk Positive electrode for lithium battery and lithium battery using this
JP2006164859A (en) * 2004-12-10 2006-06-22 Shin Kobe Electric Mach Co Ltd Positive electrode material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2006172821A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Electrode and cell using same
JP2006302617A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Manufacturing method of electrode for secondary battery
JP2007048692A (en) * 2005-08-12 2007-02-22 Hitachi Vehicle Energy Ltd Lithium secondary battery cathode material, cathode plate for lithium secondary battery, and lithium secondary battery using this
JP2007109631A (en) * 2005-09-15 2007-04-26 Nissan Motor Co Ltd Electrode for battery
JP2007273639A (en) * 2006-03-30 2007-10-18 Nippon Zeon Co Ltd Composite particle for electrode of electrochemical device
JP2008117749A (en) * 2006-10-13 2008-05-22 Gs Yuasa Corporation:Kk Mixture of lithium phosphoric acid transition metal compound and carbon, electrode with the same, battery with electrode, method of manufacturing mixture and method of manufacturing battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162811A (en) * 1996-11-29 1998-06-19 Showa Denko Kk Electrode material for battery and secondary battery
JP2003173777A (en) * 2001-12-07 2003-06-20 Hitachi Metals Ltd Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
JP2005158721A (en) * 2003-10-31 2005-06-16 Hitachi Maxell Ltd Electrode material of nonaqueous secondary battery, its process of manufacture, and nonaqueous secondary battery using electrode material
JP2006134777A (en) * 2004-11-08 2006-05-25 Erekuseru Kk Positive electrode for lithium battery and lithium battery using this
JP2006164859A (en) * 2004-12-10 2006-06-22 Shin Kobe Electric Mach Co Ltd Positive electrode material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2006172821A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Electrode and cell using same
JP2006302617A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Manufacturing method of electrode for secondary battery
JP2007048692A (en) * 2005-08-12 2007-02-22 Hitachi Vehicle Energy Ltd Lithium secondary battery cathode material, cathode plate for lithium secondary battery, and lithium secondary battery using this
JP2007109631A (en) * 2005-09-15 2007-04-26 Nissan Motor Co Ltd Electrode for battery
JP2007273639A (en) * 2006-03-30 2007-10-18 Nippon Zeon Co Ltd Composite particle for electrode of electrochemical device
JP2008117749A (en) * 2006-10-13 2008-05-22 Gs Yuasa Corporation:Kk Mixture of lithium phosphoric acid transition metal compound and carbon, electrode with the same, battery with electrode, method of manufacturing mixture and method of manufacturing battery

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113884A1 (en) * 2009-03-31 2010-10-07 宇部興産株式会社 Electrode for lithium ion battery and method for producing same
JP2010238575A (en) * 2009-03-31 2010-10-21 Ube Ind Ltd Electrode for lithium ion battery and its manufacturing method
US10044027B2 (en) 2010-08-19 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Electrical appliance
US10164243B2 (en) 2010-10-08 2018-12-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material for energy storage device and energy storage device
US9490474B2 (en) 2010-10-08 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material for energy storage device and energy storage device
JPWO2012114590A1 (en) * 2011-02-23 2014-07-07 三洋電機株式会社 Non-aqueous electrolyte secondary battery and a method for manufacturing the same, and a non-aqueous electrolyte secondary battery
WO2012114590A1 (en) * 2011-02-23 2012-08-30 三洋電機株式会社 Electrode for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
US9059478B2 (en) 2011-03-25 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion secondary battery with graphene and composite oxide layered electrode
US10205160B2 (en) 2011-03-25 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Graphene composite oxide layered electrode for lithium-ion secondary batteries
US10243214B2 (en) 2011-06-03 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing electrode
WO2012173072A1 (en) * 2011-06-15 2012-12-20 東洋インキScホールディングス株式会社 Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
US9853290B2 (en) 2011-06-15 2017-12-26 Toyo Ink Sc Holdings Co., Ltd. Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
JPWO2012173072A1 (en) * 2011-06-15 2015-02-23 東洋インキScホールディングス株式会社 Secondary battery electrode-forming composition, the secondary battery electrode, and a secondary battery
US9653728B2 (en) 2011-06-24 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Graphene, power storage device, and electric device
US9218916B2 (en) 2011-06-24 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Graphene, power storage device, and electric device
US8814956B2 (en) 2011-07-14 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device, electrode, and manufacturing method thereof
US9815691B2 (en) 2011-08-19 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US10050273B2 (en) 2011-08-19 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
US8685569B2 (en) 2011-08-19 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
US8470477B2 (en) 2011-08-29 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US8685570B2 (en) 2011-08-29 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US10096428B2 (en) 2011-08-29 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US9711292B2 (en) 2011-08-29 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US9118077B2 (en) 2011-08-31 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
US8993156B2 (en) 2011-08-31 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Carbon-based negative electrode material and secondary battery including negative electrode material
US9249524B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
US8709654B2 (en) 2011-08-31 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US10270097B2 (en) 2011-08-31 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
US9935313B2 (en) 2011-09-09 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
US9556536B2 (en) 2011-09-09 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
US9252419B2 (en) 2011-09-09 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
US8663841B2 (en) 2011-09-16 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8822088B2 (en) 2011-09-16 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9911973B2 (en) 2011-09-16 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8883351B2 (en) 2011-09-30 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Graphene and power storage device, and manufacturing method thereof
US9461300B2 (en) 2011-09-30 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9601764B2 (en) 2011-10-07 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8945772B2 (en) 2011-10-07 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9044793B2 (en) 2011-11-22 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Method for cleaning film formation apparatus and method for manufacturing semiconductor device
US9487880B2 (en) 2011-11-25 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Flexible substrate processing apparatus
US10026966B2 (en) 2011-12-07 2018-07-17 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for lithium secondary battery, lithium secondary battery, and manufacturing methods thereof
US9373834B2 (en) 2011-12-16 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Method for forming positive electrode for lithium-ion secondary battery
US9929407B2 (en) 2011-12-21 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for non-aqueous secondary battery, non-aqueous secondary battery, and manufacturing methods thereof
US9680272B2 (en) 2012-02-17 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Method for forming negative electrode and method for manufacturing lithium secondary battery
US9859585B2 (en) 2012-02-29 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9142358B2 (en) 2012-03-21 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electric device
US9384904B2 (en) 2012-04-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US10263243B2 (en) 2012-04-06 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US9899660B2 (en) 2012-04-06 2018-02-20 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US9685653B2 (en) 2012-04-06 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US9293770B2 (en) 2012-04-10 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Graphene oxide, positive electrode for nonaqueous secondary battery using graphene oxide, method of manufacturing positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and electronic device
US10049825B2 (en) 2012-04-27 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Cyclic quaternary ammonium salt, nonaqueous solvent, nonaqueous electrolyte, and power storage device
US9490080B2 (en) 2012-06-01 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9183995B2 (en) 2012-06-01 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9911971B2 (en) 2012-06-01 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9698412B2 (en) 2012-06-01 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9385366B2 (en) 2012-08-27 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for secondary battery, secondary battery, and method for fabricating positive electrode for secondary battery
WO2014054792A1 (en) * 2012-10-05 2014-04-10 ソニー株式会社 Active material, process for manufacturing active material, electrode, and secondary battery
JPWO2014054792A1 (en) * 2012-10-05 2016-08-25 ソニー株式会社 Active material, a manufacturing method of an active material, electrode and secondary battery
JP2014241229A (en) * 2013-06-11 2014-12-25 電気化学工業株式会社 Conductive composite particle, secondary battery positive electrode arranged by use thereof, and secondary battery
JP2015096578A (en) * 2013-11-15 2015-05-21 フタムラ化学株式会社 Metal-adhered conductive resin film and conductive resin-metal composite
JP2017500702A (en) * 2013-12-27 2017-01-05 エルジー・ケム・リミテッド Conductive material composition, the lithium secondary battery of the electrodes forming slurry compositions using the same and a lithium secondary battery
US10033044B2 (en) 2013-12-27 2018-07-24 Lg Chem, Ltd. Conducting material composition, and slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
EP3297075A4 (en) * 2015-05-14 2018-12-19 Sekisui Chemical Co., Ltd. Carbon material, carbon material-active material composite, electrode material for lithium-ion secondary battery, and lithium-ion secondary battery

Also Published As

Publication number Publication date
JP5377946B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
KR100816612B1 (en) Non-aqueous electrolyte secondary battery
JP4584307B2 (en) Lithium secondary battery
CN102612772B (en) Active material particles and use of same
JP4252847B2 (en) Lithium ion secondary battery
CN101981727B (en) Porous film and a secondary battery electrode
US20080166474A1 (en) Conductive composite particle, method of manufacturing the same, electrode using the same, lithium ion secondary battery
KR101333380B1 (en) Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery, lithium secondary battery and method for producing carbon material for negative electrode of lithium secondary battery
CN101573812B (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery comprising the same, and method for producing the same
KR101114122B1 (en) Composite positive electrode material for lithium ion battery and battery using the same
JP5470255B2 (en) Lithium-ion secondary battery separator, a method for producing the same, and a lithium ion secondary battery
CN1902774A (en) Negative electrode material for lithium battery, and lithium battery
KR20080022494A (en) Negative active material for electrical storage device and method for manufacturing the same
JP2008186732A (en) Negative electrode active material for lithium secondary battery, negative electrode using the same, and manufacturing method
JP2012501515A (en) A composite electrode material, and an electrode of a battery including this material, lithium cell having this electrode
JP2010287496A (en) Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it
KR20130037090A (en) Negative active material and lithium battery containing the material
Xu et al. Electrospun carbon nanofiber anodes containing monodispersed Si nanoparticles and graphene oxide with exceptional high rate capacities
EP2034541B1 (en) Method for producing composite material for positive electrode of lithium battery
JP2009272041A (en) Lithium-ion secondary battery
EP2760070A1 (en) Slurry composition for use in forming lithium-ion secondary battery electrode, containing cellulose fiber as binder, and lithium-ion secondary battery electrode
KR101951488B1 (en) Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
CN102640332B (en) Positive electrode active material particles for lithium ion secondary battery, positive electrode using said positive electrode active material particles, and lithium ion secondary battery
CN103443976A (en) Sodium ion rechargeable battery and negative electrode active material used for the sodium ion rechargeable battery
JP2017168466A (en) Negative electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, method for manufacturing negative electrode, method for manufacturing negative electrode active substance, and method for manufacturing lithium ion secondary battery
CN105375014A (en) A composite electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115